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 A B S T R A C T

The intermolecular interactions in the pseudo-potential lattice Boltzmann (PPLB) method can readily be 
extended to more than two components. We report about a three-component PPLB approach to explore whether 
the effect of a surfactant could be included in describing droplet behaviour in (liquid–liquid) emulsions. 
The two main liquid components are taken to follow the Carnahan-Starling equation of state (EoS), while 
the surfactant obeys an ideal EoS. We investigate the nature of the phases present at equilibrium and the 
dependence of the interfacial tension between the two liquid phases on the amount of surfactant. The response 
of a droplet subjected to simple shear is investigated in the absence and the presence of a surfactant. Our 
exploratory simulations show how during droplet deformation the surfactant re-distributes itself due to the 
action of the shear and flows towards the far ends of the deformed droplet, up to the moment the droplet 
breaks up. This inhomogeneous surfactant distribution along the interface increases the shear rate that is 
needed for droplet breakup such that the critical capillary number for breakup increases and the breakup 
process is delayed. The simulations also reveal the detailed flow fields inside and outside the deforming droplet.
1. Introduction

Many computational fluid dynamics (CFD) methods are available to 
simulate multicomponent, multiphase flows for industrial applications 
such as emulsification. First, there is a variety of interface capturing 
algorithms, such as level set (LS) and volume of fluid (VOF), which 
can be coupled with solvers for the Navier–Stokes equations (usu-
ally exploiting finite volume methods) to compute multiphase flows. 
While these computational approaches can describe the evolution of 
the interfaces that separate fluid phases, they do not consider and 
model the underpinning intermolecular interactions that lead to phase 
separation. As such, they do not contribute much to the understanding 
of the physico-chemical details of interfacial phenomena including the 
behaviour of a surfactant which is the topic of this paper.

Over the past few decades, lattice Boltzmann (LB) techniques have 
been increasingly applied to simulate all types of multiphase flows. 
Since these techniques are based on a kinetic equation for particle 
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distribution functions, they are considered mesoscopic-scale simula-
tion methods that occupy a middle ground between molecular dy-
namics simulations and methods that consider only macroscopic fluid 
scales (Chen et al., 2014; Zarghami et al., 2015; Van den Akker, 
2018). The local nature of the calculations in LB enables efficient 
parallelization and therefore faster computations (Krüger et al., 2017). 
A drawback of LB methods is that, depending on the lattice (grid) 
density, phase interfaces become diffuse, i.e. the composition of an 
interface varies smoothly across the interface (Engblom et al., 2013; 
Mukherjee et al., 2019a).

A popular class of LB models is based on a phase-field model for 
simulating the interface position and behaviour by exploiting a free 
energy function (Cahn-Hilliard or Landau-Ginzburg). The phase field 
equation is then combined with a Navier–Stokes equation to include 
the flow and interface dynamics. Any phase field model consists of a 
series of complex equations with several empirical parameters which 
can be used to tune the physics and to stabilize the numerical solution. 
Further details can be found in e.g. Kian Far et al. (2023).
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In the Pseudo-Potential lattice Boltzmann (PPLB) method, also 
called the Shan–Chen model (Shan and Chen, 1993; Shan and Doolen, 
1995), the thermodynamic behaviour is described by an inter-particle 
potential; through the choice of this potential, the simulated fluid 
can obey arbitrary equations of state (EOSs). Separation of a mul-
ticomponent mixture into different phases can be modelled via a 
single short-range force between the components that models molecular 
attraction or repulsion between components. In comparison with con-
ventional CFD models, the formation and evolution of phase interfaces 
are captured automatically in PPLB, as molecular interactions are 
incorporated as the driving force for phase separation. In addition, 
unlike mesh-based methods, the PPLB approach allows a straightfor-
ward treatment of topological changes, i.e. merging and splitting of 
interfaces. As a result, the PPLB approach may be closer to physics and 
is mathematically simpler. Drawbacks of PPLB are that surface tension 
is just the result of a simulation (such that iterations are required 
to mimic a real-life two-phase flow system with a targeted surface 
tension) and that PPLB simulations are more sensitive to numerical 
instabilities, with fewer options for tuning. Many successful two-phase 
flow simulations with PPLB have been reported in the literature, such 
as (Kamali and Van Den Akker, 2013; Zarghami et al., 2015; Huang 
et al., 2007; Chen et al., 2014; Mukherjee et al., 2019a,b; Van den 
Akker, 2018).

This paper then focuses on the role of a surfactant in emulsions. 
By accumulating along interfaces, surfactants affect droplets in many 
ways, including their shape when subjected to shear, the velocity 
distributions within them, and the conditions under which they break 
up (and coalescence).

Studies of these phenomena have been reported for different numer-
ical methods such as phase field (Soligo et al., 2019), smoothed particle 
hydrodynamics (SPH) (Adami et al., 2010), front tracking (de Jesus 
et al., 2015), level set (Xu et al., 2006), and free energy LBM (Kom-
rakova et al., 2014; Van Der Sman and Meinders, 2016). These methods 
were found to be capable of modelling the effects of surfactant con-
centration on the interfacial tension between phases and on droplet 
dynamics (de Jesus et al., 2015; Lee and Pozrikidis, 2006; Pan et al., 
2016). This paper now reports about our study as to whether the 
simpler and faster PPLB method can (also) be used to elucidate the 
impact of a surfactant in emulsions. Earlier, we reported how to include 
a surfactant as the third component in PPLB simulations and applied the 
method to drop formation from an aperture (Mukherjee et al., 2019a). 
In this paper, we report about the role of a surfactant in the deformation 
and breakup of a single droplet in a simple shear flow.

During shear-driven droplet deformation, the shear may also induce 
a non-uniform distribution of a surfactant across the interface which 
may result in tangential Marangoni stresses in the direction from 
high to low surfactant concentration (i.e., from low to high interfacial 
tension). Such Marangoni stresses balance the shear stresses exerted 
on the droplet to effect a different droplet shape than without a 
surfactant. Modelling these stresses is therefore essential for simulations 
of surfactant-laden droplets and other interfacial flows with spatially 
varying interfacial tension (Sui, 2014; Liu et al., 2018).

The effects of non-uniform surfactant concentrations on droplet 
deformation and break-up in shear flow have been observed in many 
papers. Several authors (Liu and Zhang, 2010; Engblom et al., 2013; 
Van Der Sman and Meinders, 2016; Shi et al., 2019; Soligo et al., 2019; 
Kian Far et al., 2023; Chen et al., 2023; Zhou et al., 2023; Zhang et al., 
2024) improved and applied phase-field LB methods for investigating 
the role and impact of mainly soluble surfactants. A detailed review of 
their methods and findings is beyond the scope of this paper. Soligo 
et al. (2019) modelled the effects of a surfactant on interfacial tension 
through an EOS and showed that the presence of a surfactant increases 
deformability by shear. Van der Sman and Van der Graaf (2006) found 
that during deformation of a droplet the surfactant accumulated at the 
regions of the droplet interface with the highest curvature. Liu and 
Zhang (2010) and Shi et al. (2019) reported that increasing amounts 
2 
of surfactant result in increasing deformation of a droplet (expressed in 
terms of the Taylor deformation parameter D), faster droplet breakup, 
and production of more droplets compared to clean (i.e., surfactant-
free) liquid–liquid dispersions (Shi et al., 2019). Similar findings have 
been reported by Chen et al. (2023), Zhou et al. (2023) and Zhang et al. 
(2024).

Liu et al. (2018) used a hybrid lattice Boltzmann–finite differ-
ence method to model droplets with an insoluble surfactant. For low 
confinement ratios (ratio of droplet size to the distance between the 
sheared walls) the presence of surfactants delays droplet break-up. With 
high confinement ratios, the presence of surfactants promotes breakup. 
Shang et al. (2023) used a front-tracking method for simulating interfa-
cial flows with particles and soluble surfactants with a focus on droplet 
dynamics, deformation and agglomeration.

As said, we explored the applicability of a three-component PPLB to 
shear-driven droplet deformation and breakup. Few PPLB simulations 
with more than two components have been reported in the literature. 
In simulations of Janus droplets (Shardt et al., 2014), which are pairs 
of adhering droplets of different fluids that are suspended in a third 
fluid, all three components were present in comparable amounts. In 
the present work, the amount of one component (the surfactant) is 
present in a much lower quantity than the other two. This is also 
the case in recent work, which we now extend, by Mukherjee et al. 
(2019a), who used PPLB to simulate a liquid–liquid dispersion with a 
soluble surfactant. To include the inter-component interaction force, 
they used the original Shan–Chen method (Shan and Chen, 1993). 
In 3D simulations of spinodal decomposition with a surfactant, they 
found that inclusion of a surfactant component changes the droplet size 
distribution and the dynamics of newly-formed droplets.

In this paper, we present a PPLB surfactant model in which the two 
liquid phases are described by a Carnahan-Starling equation of state. 
The surfactant component, which is present in small concentrations 
relative to those of the primary liquid phases, is modelled with an 
ideal equation of state. All three components interact with each other 
through repulsive forces. We show how the surfactant concentration 
accumulates at the interfaces between the liquid phases due to the 
action of the mutual G-values and affects the breakup of droplets. 
In the presence of shear, our PPLB method spontaneously leads to a 
non-uniform spatial distribution of the surfactant along interfaces. We 
observe that in the presence of such non-uniform surfactant concentra-
tions a higher shear rate is needed to break up a droplet — an effect 
attributed to Marangoni stress.

All simulations reported in this paper are in 2-D. While nothing 
restricts us from running 3-D simulations, which do require substantial 
more computational time, there is no need to go beyond 2-D to demon-
strate that a PPLB surfactant model works and delivers appealing and 
qualitatively correct results. In Section 2, we now will first detail all 
our PPLB model equations.

2. Methods

2.1. Lattice Boltzmann method

In LBM, the movement of fluids at macroscopic scales is related to 
the evolution of particle distributions in a discrete lattice (Chen and 
Doolen, 1998; Krüger et al., 2017; Van den Akker, 2018). Mimick-
ing the behaviour of gas molecules, the fictitious LB particles move 
(stream) between lattice sites and collide, which is modelled as re-
laxation to an equilibrium distribution. In the absence of forces, the 
standard LB equation with the Bhatnagar-Gross-Krook (BGK) collision 
operator is 

𝑓𝜎𝑖 (�⃗� + 𝑐𝑒𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) − 𝑓
𝜎
𝑖 (�⃗�, 𝑡) = − 𝛥𝑡

𝜏𝜎
(𝑓𝜎𝑖 (�⃗�, 𝑡) − 𝑓

𝜎,𝑒𝑞
𝑖 (�⃗�, 𝑡)), (1)

where the left side describes streaming and the right side describes 
relaxation to equilibrium. Since we consider a multicomponent system, 
the equation has been written for an arbitrary component 𝜎. Each 
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component occupies its own lattice and has its own populations 𝑓𝜎𝑖 (�⃗�, 𝑡)
at every position �⃗� in the lattice and time 𝑡. The subscript 𝑖 counts over 
the discrete directions of the lattice. The lattice speed is 𝑐 = 𝛥𝑥∕𝛥𝑡, and 
we take 𝛥𝑥 = 𝛥𝑡 = 1. Note that in LB all variables are in LB units, i.e. are 
reported without units. 𝜏𝜎 is the relaxation time, which determines 
the kinematic viscosity of each component. All simulations we present 
use a D2Q9 lattice, which has nine directions 𝑒𝑖 (𝑖 = 0, 1,… , 8) in 
two dimensions, and the isothermal speed of sound 𝑐𝑠 is given by 
𝑐2𝑠 = 𝑅𝑇 = 1∕3, with 𝑅𝑇  being the product of the gas constant and 
the absolute system temperature. The equilibrium distribution 𝑓𝜎,𝑒𝑞𝑖  is 
a function of the local density 𝜌𝜎 and fluid velocity 𝑢𝜎 according to 

𝑓𝜎,𝑒𝑞𝑖 = 𝑤𝑖𝜌
𝜎
[

1 +
𝑒𝑖 ⋅ 𝑢𝜎

𝑅𝑇
+

(𝑒𝑖 ⋅ 𝑢𝜎 )2

2(𝑅𝑇 )2
− 𝑢𝜎 ⋅ 𝑢𝜎

2𝑅𝑇

]

, (2)

where the weight factors are 𝑤0 = 4∕9, 𝑤1−4 = 1∕9 and 𝑤5−8 = 1∕36. 
𝜌𝜎 and 𝑢𝜎 are computed as the zeroth and first moments of 𝑓𝜎𝑖 : 

𝜌𝜎 =
∑

𝑖
𝑓𝜎𝑖 , 𝜌𝜎𝑢𝜎 =

∑

𝑖
𝑒𝑖𝑓

𝜎
𝑖 . (3)

At the macroscopic level, the LBM equations solve the continuity and 
Navier–Stokes equations for weakly compressible flow (Krüger et al., 
2017). Pressure follows from the equation of state 𝑃 𝜎 = 𝜌𝜎𝑅𝑇 , and the 
viscosity 𝜈𝜎 of a component is 𝜈𝜎 = 𝑐2𝑠 (𝜏

𝜎 − 1∕2).
As presented thus far, the LB scheme would describe the flow of 

a single ideal component in the absence of body forces. The sections 
that follow describe the modifications of this basic LB scheme that are 
needed to: (a) specify a non-ideal equation of state for each component 
(or at least the two main components) and (b) introduce coupling 
between the components, including repulsive interactions that induce 
phase separation. These effects were incorporated into our LB model by 
adding to the right-hand side of a source term 𝑆𝑖 that acts as a vehicle 
for the forces involved.

2.2. Multicomponent, multiphase pseudo-potential model

Rather than using the ideal LB EOS 𝑃 𝜎 = 𝑐2𝑠 𝜌
𝜎 , we allow for arbitrary 

EOSs, by introducing for each component 𝜎 a self-interaction (or intra-
molecular) force 𝐹 𝜎 in terms of an effective mass or pseudo-potential 
𝜓

𝐹 𝜎 = 𝜓𝜎 (�⃗�)
∑

𝑖
𝑤𝑖 𝜓

𝜎 (�⃗� + 𝑒𝑖) 𝑒𝑖 (4)

in which 

𝜓 =

√

2
𝑐2𝑠

(

𝑐2𝑠 𝜌 − 𝑃𝐸𝑂𝑆
)

. (5)

Due to the form of this self-interaction force, this pseudo-potential 
𝜓 allows the ideal LB EOS to be replaced with an arbitrary EOS 
𝑃𝐸𝑂𝑆 (𝜌) (Kupershtokh et al., 2009; Yuan and Schaefer, 2006).

Following earlier work (Kamali and Van Den Akker, 2013; Mukher-
jee et al., 2019b,a), we use the Carnahan-Starling EOS (CS-EOS) for 
the two main fluid components, denoted 𝛼 and 𝛽. Compared with 
other EOSs, such as Van der Waals and Peng-Robinson, the CS-EOS has 
been found to have lower spurious currents along interfaces and better 
numerical stability (Zarghami et al., 2015). The CS-EOS is 

𝑃𝐸𝑂𝑆 = 𝜌𝑅𝑇
1 + 𝑏𝜌∕4 + (𝑏𝜌∕4)2 − (𝑏𝜌∕4)3

(1 − 𝑏𝜌∕4)3
− 𝑎𝜌2, (6)

where 𝑎 and 𝑏 are attraction and repulsion parameters, respectively, 
and 𝑅 is the component’s gas constant, which is related to the universal 
gas constant 𝑅𝑢 through 𝑅 = 𝑅𝑢∕𝑀 in which 𝑀 denotes the molecular 
mass of either main component. In this work, we use 𝑎 = 1, 𝑏 = 4, 
𝑅 = 1 which simplifies computations and has been found to provide 
satisfactory stability and interface thickness in LB simulations (Huang 
et al., 2011). With these parameter values, the critical temperature is 
𝑇 = 0.09433, the critical density is 𝜌 = 0.1304, and the critical pressure 
𝑐 𝑐

3 
is 𝑃𝑐 = 0.004417. The reduced temperature, pressure, and density are 
defined as 𝑇𝑟 = 𝑇 ∕𝑇𝑐 , 𝑃𝑟 = 𝑃∕𝑃𝑐 , and 𝜌𝑟 = 𝜌∕𝜌𝑐 , respectively.

Since we consider systems in which the density of the surfactant 𝑠, 
being the third component, is small (𝜌𝑠 ≲ 0.02), we use an ideal EOS 
for this component. The partial pressure of the surfactant is therefore 
𝑃 𝑠 = 𝜌𝑠𝑅𝑠𝑇 , (7)

where 𝑅𝑠 = 𝑅𝑢∕𝑀𝑠 is the surfactant’s gas constant, 𝑅𝑢 is the universal 
gas constant, and 𝑀𝑠 is the molecular mass of the surfactant. Variation 
in the choice of 𝑅𝑠, which we consider later, should therefore be 
interpreted as a change in the molecular weight of the surfactant. 
Though the EOS for the third component is ideal, it differs from the 
LB EOS, and this change in EOS is implemented through the self-
interaction force, Eq. (4). In fact, in our LB implementation, we use 
the so-called 𝛽 scheme which is a modified form of Eq. (4) given by 

𝐹 𝜎 = 𝛽𝜓𝜎(�⃗�)
∑

𝑖
𝑤𝑖 𝜓

𝜎 (�⃗� + 𝑒𝑖) 𝑒𝑖 + ((1 − 𝛽)∕2)
∑

𝑖
𝑤𝑖 (𝜓𝜎 (�⃗� + 𝑒𝑖) )2𝑒𝑖 (8)

Use of this scheme (Kupershtokh et al., 2009; Zarghami et al., 2015) 
to evaluate the pseudo-potential interaction force has been shown to 
improve numerical stability and reduce spurious currents. It also pro-
vides a better agreement between the computed vapour-liquid densities 
and values for the CS-EOS as obtained via the Maxwell construction, 
in particular along its vapour branch, with an optimal value of 𝛽 =
1.25 (Zarghami et al., 2015). Fig.  1 and particularly the inset show 
that running single-component simulations resulted in a similar finding 
about the effect of 𝛽. In our study on liquid–liquid dispersions in the 
absence of a vapour phase (see Section 3.2 below), we anyway used 
𝛽 = 1.25 throughout for all three components, all at 𝑇𝑟 = 0.95.

In addition to their self-interaction, which specifies the EOS of 
the individual components, all components experience a force due to 
the other components that are present. The populations of the three 
components, 𝛼, 𝛽 and surfactant 𝑠, are calculated on separate lattices, 
while they interact through body forces that describe intermolecular 
forces (Krüger et al., 2017; Huang et al., 2015; Chen et al., 2014). The 
force 𝐹 𝛼,𝛽 on component 𝛼 due to component 𝛽 is given by 

𝐹 𝛼,𝛽 = −𝐺𝛼𝛽𝜓𝛼(�⃗�)
∑

𝑖
𝑤𝑖𝜓

𝛽 (�⃗� + 𝑒𝑖𝛥𝑡)𝑒𝑖. (9)

The strength of the interaction between components 𝛼 and 𝛽 is 
specified by the parameter 𝐺𝛼𝛽 , denoted as the interaction strength, 
with a positive (negative) value indicating repulsion (attraction). For 
the calculation of the inter-component interactions, we use 𝜓𝜎 = 𝜌𝜎

(different from Eq. (5)). The total intercomponent interaction force on 
component 𝛼 is the sum of the contributions from all other components 
𝛽. Due to the intra- and inter-component interactions, the total pressure 
in the multiphase, multicomponent system is (Krüger et al., 2017) 

𝑃 = 𝑐2𝑠
∑

𝜎
𝜌𝜎 +

𝑐2𝑠
2

∑

𝜎

∑

�̄�
𝐺𝜎�̄�𝜓

𝜎𝜓 �̄� . (10)

The second sum includes all pairs of components, which includes the 
self-interaction terms for which 𝐺𝜎𝜎 = −1. Note that the definition of 
𝜓 is different for intra- and inter-component interactions.

In all simulations reported in this paper, all intra- and inter
-component forces are incorporated by using the method of Guo et al. 
(2002). In our multicomponent multiphase system, use of the EDM (Ku-
pershtokh et al., 2009) or Shan–Chen (Shan and Chen, 1993) forcing 
schemes with 𝐺𝛼𝛽 = 0 led to phase separation within the vapour phase, 
an unphysical effect. This separation does not occur with the Guo 
scheme. In the Guo forcing scheme, the barycentric velocity 𝑢𝑏, given 
by 

𝑢𝑏 =
1
𝜌
∑

𝜎

(

𝜌𝜎𝑢𝜎 + 𝐹 𝜎

2

)

, 𝜌 =
∑

𝜎
𝜌𝜎 , (11)

is used as the equilibrium velocity of every component, i.e. 𝑢𝜎 = 𝑢𝑏
in Eq. (2) for all 𝜎. Here, 𝐹 𝜎 is the total force acting on component 𝜎
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Fig. 1. Vapour and liquid densities for the C-S EOS as determined using the Maxwell construction (solid line) and the PPLB model with the 𝛽 forcing scheme and varying values 
of the parameter 𝛽. In these single-component simulations, 𝜏 = 1 and the force is implemented using the method of Guo. The dotted small black boxes in the insert show the 
specific reduced temperature for this study (𝑇𝑟 = 0.95).
according to the 𝛽-scheme of Eq. (8). The Guo scheme uses a power 
series expansion to discretize the force, resulting in the source term 

𝑆𝜎𝑖 =
(

1 − 1
2𝜏𝜎

)

𝑤𝑖

(

𝑐𝑖 − 𝑢
𝑐2𝑠

+
(𝑐𝑖 ⋅ 𝑢)𝑐𝑖
𝑐4𝑠

)

⋅ 𝐹 𝜎 (12)

to be added to the right-hand side of the LB equation (Eq. (1)).
The modelling approach presented here offers several advantages 

over previous work (Mukherjee et al., 2019b,a). First, use of the Guo 
forcing scheme overcomes the instability of the Shan–Chen approach 
for low reduced temperatures (𝑇𝑟 < 0.9) and the unphysical separation 
of the gas phase for 𝐺𝛼𝛽 → 0. Additionally, instead of using three non-
ideal fluids, an ideal EOS is used for the surfactant, which eliminates 
the computational expense of evaluating the CS-EOS for the third 
component. Though we do not pursue these topics in this paper, use 
of a non-ideal vapour-liquid EOS in the model offers two benefits: the 
possibility of simulating liquid–liquid systems with unequal densities 
(by specifying different molecular weights or critical temperatures for 
the components) and three-phase systems.

Finally, the implementation of PPLB for a three-component system 
in this study avoids the use of a factor 𝑆 (as defined by Skartlien et al., 
2011 and Mukherjee et al., 2019a) to scale the liquid-to-surfactant 
force. The motivation for this factor was to avoid instabilities at low 
surfactant densities; without this factor, Mukherjee et al. observed that 
a high surfactant density is needed to avoid such instabilities, as a 
result of which droplets of the surfactant component may form. Use 
of this scaling factor affects the conservation of momentum as pair-
wise momentum between the liquids and surfactant is not conserved 
for 𝑆 ≠ 1.

3. Simulating multicomponent systems in PPLB

In the sections that follow, we present the effects of various system 
parameters on the composition of the phases and interfacial tension be-
tween them before considering simulations of droplet deformation and 
breakup in the presence and absence of surfactants. First in Section 3.1, 
we describe the computational approach of this study, and then in 
Section 3.2, we describe the compositions of the two main liquids in 
a two-component PPLB simulation as a result of phase separation for 
varying values of PPLB’s intermolecular interaction parameter. We then 
show in Section 3.3 how interfacial tension responds to the introduction 
of a surfactant as the third phase in then a three-component PPLB 
model for varying values of the interaction force 𝐺𝛼𝛽 , among other 
parameters.

Section 4 then turns to the main topic of this paper: the role of a 
surfactant in shear driven droplet deformation and breakup and the 
4 
underpinning (flow) behaviour of the surfactant in a thin interface layer 
during the ongoing deformation process. Finally, Section 5 presents the 
conclusions of this exploratory study on how to deal with a surfactant 
in a PPLB model and about the effect of a surfactant on droplet 
deformation and breakup.

3.1. Computational approach

We use the parallel, open-source LB code Palabos (Latt, 2009), 
which we adapted to implement a three-component system. Post pro-
cessing and analysis of results is performed in Matlab. For all simula-
tions, we use 𝜏𝛼 = 𝜏𝛽 = 𝜏𝑠 = 1, and therefore (see the text below Eq. (3)) 
the viscosity of the combined (multi-component) fluid is 𝜈 = 𝜈𝜎 = 1∕6.

We use simulations of spinodal decomposition to determine the 
phases present and their compositions as a result of the automatic 
phase separation caused by the intermolecular interactions modelled in 
PPLBM. Spinodal decomposition describes the rapid demixing of a mix-
ture to form distinct phases. Two dimensional simulations of spinodal 
decomposition with two and three components in a periodic domain 
were performed. In these simulations, the initial density distribution of 
each component was random with 1% fluctuations around a specified 
average density (�̄�𝛼 , �̄�𝛽 , and �̄�𝑠). The domain size was 𝑛𝑥 × 𝑛𝑦 = 75× 37. 
Only those random initial conditions that led to the presence two flat 
interfaces that separate one region with primarily the 𝛼 component and 
another with the 𝛽 component were analysed.

Spinodal decomposition simulations were also used to determine 
the interfacial tension as a function of the components present, their 
properties, and the strengths of the interactions between them. For 
these simulations (without imposed flow), the domains were larger 
(75 × 75), and they proceeded until an equilibrium was achieved with 
a steady density distribution and one droplet present. The required 
equilibration time was ≈ 106 time steps (approximately 30𝑛2𝑥∕𝜈, where 
𝜈 is an estimate of the rate of diffusion in this LB model). Note that 
surface tension is neither an input parameter nor a variable in the 
simulation. A posteriori, the Young–Laplace equation can be used to 
find a value for the interfacial tension 𝛾, i.e. 𝛾 = 𝑅𝛥𝑃 , where 𝛥𝑃 =
𝑃𝑖−𝑃𝑜 is the difference in pressure between the interior (𝑃𝑖) and exterior 
(𝑃𝑜) of the droplet, and 𝑅 is the droplet radius. To determine the radius 
of the droplet, the position of its interface is considered to be located 
where 𝜌𝛼 = 𝜌𝛽 .

3.2. Phase behaviour of the two main components

Since the third (surfactant) component will only be present in small 
amounts, we evaluate first the composition of the coexisting phases in 
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Fig. 2. Sample density distributions for a two-component system showing two liquid phases surrounded by a vapour phase. The average densities of the 𝛼 and 𝛽 components are 
equal (�̄�𝛼 = �̄�𝛽 = 0.09), 𝑇 𝛼𝑟 = 𝑇 𝛽𝑟 = 0.95, and 𝐺𝛼𝛽 = 0.5.
a two-component system. In these studies, we use simulations with a 
negligible average surfactant density (�̄�𝑠 = 10−6) as surrogates for truly 
two-component (surfactant-free) systems for simplicity in the numerical 
implementation. To our knowledge, the behaviour of a system with 
two non-ideal components that follow the CS-EOS together with inter-
component interactions with a surfactant based on 𝜓 = 𝜌 has not been 
previously reported.

Depending on the amounts of the two components present, their 
reduced temperatures, and the strength of the interactions between 
them, up to three phases could be present at equilibrium for a two-
component system: two liquid phases and a vapour phase. Sample 
density distributions for such a case with three phases are shown in 
Fig.  2. We see that in the droplet of the 𝛼 phase, a small amount of 𝛽
is dissolved, which appears as a dark blue region in the distribution of 
the 𝛽 component. Similarly, a small amount of 𝛼 is in the droplet with 
mostly 𝛽, which is centred at the corners of the periodic domain. The 
surfaces of the droplets are diffuse which is a characteristic of PPLB 
simulations (Engblom et al., 2013; Mukherjee et al., 2019a). For this 
simulation, the average densities are �̄�𝛼 = �̄�𝛽 = 0.09, which is less than 
the critical density. The densities of both components in the vapour 
phase are equal. The vapour phase densities lie in between the densities 
found in the liquid droplets.

Since we focus on liquid–liquid systems in this paper, the average 
densities of the components were chosen to be sufficiently high that a 
vapour phase cannot form. For example, if the CS-EOS gives the liquid 
phase density 𝜌𝐿 at a particular 𝑇𝑟, the average densities of the two 
components that will yield a volume fraction 𝜙 for the phase that is 
rich in the 𝛼 component can be estimated using:
�̄�𝛼 ≈ 𝜙𝜌𝐿 (13)

�̄�𝛽 ≈ (1 − 𝜙)𝜌𝐿 (14)

This estimate assumes that the vapour phase density at these conditions 
is small compared to the density of the dominant component in each 
liquid phase, and also the dissolved amount of the non-dominant 
component in each phase is negligible. Once the compositions of the 
coexisting liquid phases are known for a particular 𝐺𝛼𝛽 and 𝑇𝑟, the 
required average densities to achieve a volume fraction 𝜙 can be 
estimated more accurately using
�̄�𝛼 ≈ 𝜙𝜌𝐿𝛼 + (1 − 𝜙)𝜌𝐷𝛼 (15)

�̄�𝛽 ≈ (1 − 𝜙)𝜌𝐿𝛽 + 𝜙𝜌𝐷𝛽 (16)

where 𝜌𝐿𝑖  is the density of component 𝑖 in the phase in which it is 
dominant, and 𝜌𝐷𝑖  is the dissolved amount of component 𝑖 in the other 
phase.

In this paper, we consider only symmetric systems in which the 
two components have the same properties (same EOS and parameters); 
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these equations are readily generalized for components with different 
properties. As a result, the densities of the dominant and dissolved 
components in each phase are equal and only their identities are 
exchanged, i.e. 𝜌𝐿𝛼 = 𝜌𝐿𝛽  and 𝜌𝐷𝛼 = 𝜌𝐷𝛽 .

Fig.  3 presents the observed densities in a series of simulations with 
varying 𝑇𝑟 (same for both components) and 𝐺𝛼𝛽 . For these spinodal de-
composition simulations, each component was initialized with random 
1% variation around average densities of �̄�𝛼 = 0.16 and �̄�𝛽 = 0.13. Since 
the system is symmetric (both components are identical), this figure 
shows the composition of either phase that forms.

For weak interaction strengths (𝐺𝛼𝛽 = 0.01), each component 
behaves independently of the other component, rach separating into 
a liquid and a vapour phase. In this limit of low 𝐺𝛼𝛽 , we compare the 
observed densities with analytical results for the CS-EOS. For 𝑇𝑟 ≥ 0.9, 
the phase compositions are in good agreement with the analytical liquid 
and vapour densities for the CS-EOS. In the inset of Fig.  3, we see 
that the reduced pressures in the binary mixture for 𝐺𝛼𝛽 = 0.01 the 
(blue curve) are approximately double those of the CS-EOS for one 
component (the black curve).

With higher values of 𝐺𝛼𝛽 , only two liquid phases form. This con-
trasts with the conditions of Fig.  2, where the lower average densities 
allowed a vapour phase to form. The black squares in Fig.  3 show 
the densities of the phases in the liquid–liquid–vapour system that was 
shown in Fig.  2. We see that the densities in the liquid phases are sim-
ilar in both cases, and the vapour density in the liquid–liquid–vapour 
system is similar to the expected value from the CS-EOS.

Phase separation occurs up to 𝑇𝑟 = 1.07 and 1.15 for 𝐺𝛼𝛽 = 0.5 and 1, 
respectively. As is evident from the right side of Fig.  3 and its inset, the 
critical solution temperature for the two-component system increases 
with increasing 𝐺𝛼𝛽 . Above this critical temperature, two liquid phases 
no longer form, and the two components are miscible. The inset of Fig. 
3 shows how the 𝑃 −𝑇  curves shift up and to the right with increasing 
𝐺𝛼𝛽 . The endpoint of each curve is at the critical solution temperature, 
and we see that this point shifts to higher temperatures and pressures 
with increasing 𝐺𝛼𝛽 . In the region with 𝑇𝑟 > 1, we see phase separation
above the critical temperature of either pure component, which is 
similar to a phenomenon called ‘‘gas–gas immiscibility’’ and observed 
experimentally (van Konynenburg and Scott, 1980).

3.3. Effect of surfactant on interfacial tension

We then ran PPLB simulations with three components, the third 
component being the surfactant at a concentration lower than the 
CMC such that the formation of micelles is not taking place. By a 
proper choice of the mutual G-values, the surfactant collects at the 
interface between the two liquid phases, with all components varying 
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Fig. 3. Composition of the liquid phases in the simulated symmetric two-component system as a function of the interaction strength 𝐺𝛼𝛽 and the reduced temperature 𝑇𝑟. For both 
liquid phases, the upper branch shows the density of the dominant component, while the lower branch shows the dissolved amount of the other component, all depending on the 
value of 𝐺𝛼𝛽 . The three black squares show the densities of the phases in the sample liquid–liquid–vapour system shown in Fig.  2. The horizontal (dashed purple) line shows the 
critical density. The inset shows the relationship between reduced pressure and temperature for the same data points as in the main figure. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Interfacial tension between liquid phases as a function of 𝐺𝛼𝛽 and 𝑇𝑟 in a two 
component system with �̄�𝛼 = 0.13 and �̄�𝛽 = 0.16.

diffusely across the droplet interface, just as reported by Mukherjee 
et al. (2019a).

To provide reference data with which we can compare the three-
component results, we first examine the effects of the model parameters 
on the interfacial tension in a clean, i.e. surfactant-free, system. Fig.  4 
shows the interfacial tension as a function of 𝐺𝛼𝛽 for several reduced 
temperatures. Consistent with the behaviour of a single component, 
interfacial tension increases with decreasing 𝑇𝑟. As the repulsive force 
between the components is increased, the interfacial tension between 
the liquid phases increases.

We consider now how adding small amounts of a third component 
changes the interfacial tension. We vary �̄�𝛼 and �̄�𝑠 over the ranges �̄�𝛼 ∈
[0.063, 0.14] and �̄�𝑠 ∈ [10−6, 0.02] while keeping �̄�𝛽 = 0.147. The system 
temperature is 𝑇 = 0.0896, and therefore 𝑇 𝛼 = 𝑇 𝛽 = 0.95. We use 𝑅 =
𝑟 𝑟 𝑠
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1.57, 𝐺𝛼𝛽 = 1, 𝐺𝛽𝑠 = 𝐺𝛼𝑠 = 0.8. We have also investigated, but do not 
report at this stage, the effects of changes in 𝑅𝑠, 𝐺𝛼𝛽 , 𝐺𝛽𝑠, and 𝐺𝛼𝑠. The 
choice of maximum �̄�𝑠 is limited by the formation of a surfactant phase 
or stability of the numerical method. In all simulations, the viscosity of 
all components (and therefore phases) is the same (𝜏𝛼 = 𝜏𝛽 = 𝜏𝑠 = 1). 
To have equal amounts of surfactant in the dispersed and continuous 
phases, we use 𝐺𝛽𝑠 = 𝐺𝛼𝑠.

Fig.  5(a) shows that the interfacial tension (in LB units) remains 
effectively constant upon adding (small) amounts of surfactant, in-
creasing by just 1% with increasing �̄�𝑠 with all other parameters kept 
constant. Due to increasing mass in a fixed volume, the pressure (see 
Fig.  5(b)) also increases with increasing amount of the surfactant 
(Eq. (10)). Considering the limit of negligible �̄�𝑠 in Fig.  5(a) and 
(b), we see that interfacial tension in the two-component PPLB model 
increases with increasing density of the components present (in this 
case increasing �̄�𝛼) and therefore the system pressure.

The effect of adding the third component is also to (marginally) 
increase the pressure, which then is also expected to raise the interfacial 
tension (as when increasing 𝜌𝛼). Fig.  5(a), however, shows that the 
interfacial tension remains constant with increasing �̄�𝑠. Therefore any 
increases in interfacial tension due to increasing pressure (due to 
increasing �̄�𝑠) are offset by a decrease due to the presence of the third 
component.

The reduction of interfacial tension due to a surfactant in PPLB 
strongly depends on the 𝐺-values used for mimicking the mutual in-
teraction between the components and on the value of the molecular 
mass of the surfactant (leading to variations in 𝑅𝑠). As this was already 
found in our earlier PPLB simulations (Mukherjee et al., 2019a), this 
effect is outside the scope of this study. In this paper, we focus on the 
occurrence of an uneven spatial surfactant distribution and its effect on 
droplet deformation and breakup in a shear flow. Such an phenomenon 
was observed earlier in our studies on droplet formation at an aperture 
where the surfactant during the fall of a droplet was driven to the 
droplet’s tail (Mukherjee et al., 2019a).
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Fig. 5. (a) Interfacial tension and (b) external (continuous phase) pressure as a function of the amount of surfactant (�̄�𝑠) for several �̄�𝛼 , for 𝑇 𝛼𝑟 = 𝑇 𝛽𝑟 = 0.95, 𝑅𝑠 = 1.57, 𝐺𝛼𝛽 = 1, 
𝐺𝛽𝑠 = 𝐺𝛼𝑠 = 0.8, �̄�𝛽 = 0.147.
Fig. 6. (a) Surfactant density distribution along the interface of a droplet; (b) Density profiles of 𝛼, 𝛽 and surfactant across the diameter of a droplet for two (2c) and three (3c) 
component systems. Solid lines show the dispersed phase density, dashed lines show the continuous phase density, and the dash dotted line shows the surfactant density. The 
simulation parameters are 𝑇 𝛼𝑟 = 𝑇 𝛽𝑟 = 0.95, 𝑅𝑠 = 1.57, 𝐺𝛼𝛽 = 1, 𝐺𝛽𝑠 = 𝐺𝛼𝑠 = 0.8, �̄�𝛽 = 0.147.
3.4. Interface thickness

In this model, the interface thickness is O(10), defined as the 
distance over which 95% of the change in density occurs. Fig.  6 shows 
for a typical case (𝑇 𝛼𝑟 = 𝑇 𝛽𝑟 = 0.95, 𝑅𝑠 = 1.57, 𝐺𝛼𝛽 = 1, 𝐺𝛽𝑠 = 𝐺𝛼𝑠 = 0.8, 
�̄�𝛽 = 0.147) that adding surfactant steepens the density profiles of the 
two main components at the interface. The steeper interface profiles of 
the main components would indicate that interfacial tension is higher, 
but this increase is offset by the presence of the surfactant, and the 
net result is the minimal change in interfacial tension discussed in the 
preceding section.

4. Droplet deformation and breakup in shear

4.1. Introduction and validation

The presence of surfactant has two main effects on an interface. The 
first consequence is a lowering of the (average) interfacial tension. The 
second is the introduction of Marangoni stresses due to variation in 
surfactant concentration along the interface. These tangential stresses 
act in the direction from regions of high surfactant concentration (low 
tension) to lower surfactant concentration (higher tension). As a result, 
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the shape of a droplet in shear flow, the distribution of surfactant, and 
the flow patterns in and outside the droplet are tightly coupled. In this 
section, we assess the effects of variation in surfactant concentration 
on droplet deformation and breakup in shear. To isolate the effect 
of variation in surfactant concentration from the effect of a lower 
interfacial tension, we choose parameters so that we compare cases 
with the same interfacial tension. For the cases with surfactant, this is 
the (uniform) interfacial tension at rest before the shear flow is started.

Whether a droplet breaks apart in a shear flow or, if it does 
not break, which form it takes, depends on the ratio of viscous and 
interfacial stresses called the capillary number. The capillary number 
is defined as Ca = 𝜇�̇�𝑅

𝛾 , and 𝑅 is the droplet radius. With increasing 
Ca, droplets deform to a greater extent, and when a critical value Ca𝑐
is exceeded, they break. The shape and critical capillary number for 
breakup also depend on the droplet Reynolds number (Re = �̇�𝑅2∕𝜈). In 
this section, we assess how the shape of a droplet changes due to the 
presence of surfactant while keeping the capillary number constant. We 
also evaluate how the surfactant affects Ca𝑐 and the breakup process.

To validate our PPLB simulation method, we first compute steady 
droplet shapes for the two-component system at the three capillary 
numbers 0.2, 0.4, and 0.6, with the droplet Reynolds number being 
fixed at one. The droplet diameter is 32 lattice units in a 256 × 129 do-
main, and all steady droplet shapes are captured after 5×106 simulation 
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Fig. 7. (a) Steady droplet shapes for several Ca (0.2, 0.4 and 0.6) and Re = 1; (b) Droplet break-up for Ca = 1.4 and Re = 1.
Fig. 8. Effect of surfactant on droplet break-up at various moments in time 𝑡 = �̇�𝑡. (a) Sample simulation without surfactant and supercritical Ca = 0.271 and Re = 6.5 (b) Same Ca
as (a) but with surfactant and Re = 6.45 (�̄�𝑠 = 0.012, �̄�𝛼 = 0.07415). The compositions of the phases for these simulations can be found in Table  1. Initial droplet size was 40 l.u.
time steps. The BGK relaxation times for all fluids are the same, and the 
values are 1.7, 2.204 and 2.58 for 𝐶𝑎 = 0.2, 0.4 and 0.6, respectively. 
All simulations are for two liquids with equal densities and viscosities.

Fig.  7(a) demonstrates that as Ca increases, droplet deformation 
increases, in good agreement with simulations by Zong et al. (2020) by 
means of a phase field approach, while Fig.  7(b) shows that at 𝐶𝑎 = 1.4
and 𝑅𝑒 = 1, the droplet breaks up into several droplets. This is in 
good agreement with snapshots reported by Van der Sman and Van 
der Graaf (Van der Sman and Van der Graaf, 2008) on the basis of 
free energy LB simulations. The critical capillary number for breakup 
is found to be 𝐶𝑎𝑐 ≈ 0.21 near 𝑅𝑒 = 7. This compares favourably with 
Li et al. (2000) who found in VOF simulations that droplets break up 
at 𝐶𝑎 = 0.2 for 𝑅𝑒 = 4 and at 𝐶𝑎 = 0.15 for 𝑅𝑒 = 10. Komrakova et al. 
(2014) using a free-energy LB method reported 𝐶𝑎𝑐 = 0.165 at 𝑅𝑒 = 10
and 𝐶𝑎𝑐 = 0.285 at 𝑅𝑒 = 1, while Khismatullin et al. (2003) obtained 
similar values by using a VOF technique. Given the spread in the results 
from the various computational studies, our conclusion is that our PPLB 
method produces critical capillary numbers in the right range.
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4.2. The effect of surfactant on breakup times

For the simulations of droplet deformation and break-up in shear, 
the domain size was 801 × 201 due to the elongation of the droplet 
before break-up. To study the effects of varying the amount of sur-
factant on droplet deformation and break-up, we compare simulations 
with and without surfactant but at the same capillary number and the 
same Reynolds number, viz. at Ca = 0.271 and Re = 6.5. Fig.  8(a) shows 
the result for the surfactant-free system. In this case, the droplet splits 
into two droplets at 𝑡 = �̇�𝑡 = 37. At the same capillary number but 
with �̄�𝑠 = 0.012 (Fig.  8(b)), we see that breakup is delayed until 𝑡 = 43. 
Hence, at Ca = 0.271 and Re = 6.5, we find that addition of surfactant 
delays breakup. This is, however, not always the case.

To further investigate this phenomenon, we ran simulations over a 
range of supercritical Ca values. The dependence of non-dimensional 
breakup time �̇�𝑡 on Ca and the presence of surfactant is shown in Fig. 
9. In general, we see two curves shifted with respect to each other. This 
means that due to the addition of surfactant the overall behaviour for 
a clean interface is shifted to higher Ca values. For values of Ca that 
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Table 1
Composition of the dispersed (superscript 𝑑) and continuous (𝑐) phases for the cases shown in Fig.  8. The last two columns provide the total densities of the dispersed and 
continuous phases. All values are determined after equilibration (3 × 106 time steps) and before shear starts.
 Case 𝜌𝑑𝛼 𝜌𝑐𝛼 𝜌𝑑𝛽 𝜌𝑐𝛽 𝜌𝑑𝑠 𝜌𝑐𝑠 𝜌𝑑𝑡𝑜𝑡𝑎𝑙 𝜌𝑐𝑡𝑜𝑡𝑎𝑙  
 Fig.  8 (a) 0.2329 0.01588 0.01516 0.2305 – – 0.2481 0.2564 
 Fig.  8 (b) 0.2344 0.01583 0.01512 0.232 0.01192 0.01196 0.2615 0.2598 
Fig. 9. Changes in droplet breakup time with increasing capillary number for droplets 
with (�̄�𝑠 = 0.01236) and without surfactant. Initial drop size was 40 l.u.

are slightly supercritical (say, in excess of 0.2), the time until breakup 
increases with increasing Ca. For these values of Ca, the initial droplet 
splits into two droplets. If the capillary number is increased further, 
the initial droplet breaks into three droplets, and the time to breakup 
decreases. The critical capillary numbers for breakup into both two and 
three droplets are higher in simulations with surfactant than without.

In this Fig.  9, the capillary numbers are calculated using the in-
terfacial tension of the initial single droplet at rest after equilibration, 
i.e. before shear is started. If the effect of adding a surfactant on droplet 
breakup were a reduction of the average interfacial tension only, a 
single curve would result in Fig.  9. The figure therefore shows the addi-
tional effects of the surfactant beyond a reduction in average interfacial 
tension. The observed shift to higher Ca indicates that stronger shear 
stresses are needed to break a surfactant-coated droplet than one that 
has a clean interface and the same average interfacial tension. Similar 
effects were reported by Liu et al. (2018) for insoluble surfactants.

The evident need for higher shear to obtain the same droplet 
breakup time is indicative of extra forces resisting the breakup or miti-
gating the impact of the shear. This reminds us of the role of Marangoni 
stresses as a result of inhomogeneous surfactant concentrations along 
an interface. Note that in PPLB, Marangoni stress is not an explicit 
input parameter of the simulations, similar to how interfacial tension 
is not specified directly. A characteristic feature of PPLB simulations 
is that the behaviour is defined in terms of intra- and inter-component 
forces (see Eqs. (4), (8), (9), (11) and (12)). Eq. (9) establishes that the 
local forces on the primary components depend on the local surfactant 
concentration, which is the origin of spatially varying interfacial forces 
and therefore Marangoni stresses in our model. The indirect a posteriori 
evidence that Marangoni stresses are part of the PPLB solution is in Fig. 
9: if we did not have Marangoni stresses, the ‘with surfactant’ findings 
would be the same as the ‘no surfactant’ results (unless there is unex-
pected behaviour in the model). In addition, breakup is delayed (see 
Fig.  8). Because the results are consistent with studies that explicitly 
include Marangoni effects, we consider our results sound and not a 
model defect. In our view, the (automatic) inclusion of the Marangoni 
stresses is related to the inherent and spontaneous phase redistribution 
and separation in PPLB.
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4.3. Surfactant distribution due to shear

We ran a transient PPLB simulation of the breakup of a droplet 
loaded with a surfactant. In this case, the capillary number 𝐶𝑎 =
0.255 was low enough to get simple binary breakup, as reported by 
Zhang et al. (2021). According to De Bruijn (1993), our surfactant 
concentration was sufficiently high to prevent tip streaming from oc-
curring. The snapshots in Fig.  10 from this transient simulation show 
how the surfactant distribution evolves along the interface of a droplet 
during deformation and breakup. Under the action of the shear stresses 
exerted upon the droplet by the flow field, the droplet is deformed 
and stretched while the surfactant is transported from the middle of 
the droplet (where later breakup will occur) towards the tips of the 
deforming droplet where it reduces the local interfacial tension. In the 
middle of the stretched droplet, a neck is formed that breaks up after 
a pause during which the surfactant continues to redistribute. After 
breakup, the two droplets regain a similar elliptical shape with again a 
non-uniform surfactant distribution and interfacial tension. Given the 
shift between the two curves in Fig.  9, these inhomogeneous surfactant 
concentrations evidently result in (Marangoni) stresses mitigating the 
effect of shear.

Our observations from these PPLB simulations are in line with the 
observations reported by Liu et al. (2018) on the basis of their hybrid 
LB and finite–difference simulations of droplet dynamics with insoluble 
surfactants. The breakup process in our current simulations resembles 
the necking and pinch-off process of a droplet formed at an orifice as 
reported earlier (Pozrikidis, 2012; Berghout and Van den Akker, 2019; 
Van den Akker et al., 2021). Overall, there is a good agreement with 
the observations reported by Liu et al. (2018) on deformation, break-
up and surfactant concentrating at the tips for capillary numbers in the 
same range as ours.

Fig.  10, just like Fig.  7(b) and Fig.  8, illustrates the benefits of 
diffuse interface simulations such as PPLB. Diffusion regularizes the 
singularities of sharp interface models and allows such simulations 
where topological changes are a consequence of the model equations. 
Simulations of droplet breakup and coalescence with LB and FV tech-
niques are widely reported in the literature. Here we focus on surfactant 
modelling within a framework that can conveniently handle topological 
changes. Also with this three component PPLB, we even track the 
evolution of surfactant concentrations during topological changes — 
see also e.g. Mukherjee et al. (2019a).

Fig.  11 once more shows the spatial distribution of the surfactant 
along with the flow field outside and inside the droplet in high–
resolution detail for a droplet with Taylor deformation parameter 𝐷
= (𝐿 − 𝐵)/(𝐿 + 𝐵) = 0.45. The shape of the droplet and its internal 
recirculatory flow resembles a case (𝐶𝑎 = 0.265, 𝐷 = 0.43, low drop 
viscosity) reported by Bazhlekov et al. (2006). The 𝐷 values reported 
by Zhou et al. (2023) are some 10% lower.

This figure is in general agreement with the (mainly) experimental 
observations on the transport of a surfactant at the interface of a shear 
driven deforming droplet as reported by e.g., Janssen et al. (1994b,a) 
and Feigl et al. (2007). These authors reported about the deformation, 
the internal circulation inside the droplet, and the flow of surfactant 
inside a thin interface layer with varying surfactant concentration due 
to diffusive transport into the bulk of the droplet. All these aspects are 
confirmed in Fig.  10. A key advantage of our PPLB approach is its abil-
ity to track the evolution of surfactant concentration during topological 
changes. As a result, our figures reveal much more detailed information 
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Fig. 10. Normalized surfactant concentration during breakup of a droplet at 𝐶𝑎 = 0.255. Four times are shown (top to bottom): during initial deformation (𝑡 = 9.5 after the start 
of the shear flow), during stretching of the neck (𝑡 = 41.8), several time steps before breakup (𝑡 = 44.8), and after separation (𝑡 = 50.7). The interaction strengths are 𝐺𝛼𝛽 = 1 and 
𝐺𝛼𝑠 = 𝐺𝑠𝛽 = 0.8. The surfactant concentration is �̄�𝑠 = 0.012, and the initial droplet radius was 40. Only the region near the droplets is shown; the full domain size is 801 × 201, 
and the initial droplet radius is 40.
Fig. 11. Structure of the velocity field in and around a droplet with surfactant (blue 
to red shows low to high surfactant density). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
10 
about surfactant distribution during deformation and breakup than 
provided in earlier papers or is available from experiments.

Our computational method elegantly exploits a full PPLB method for 
both the flow field around the droplet and the surfactant transport and 
redistribution at the droplet’s interfaces. In PPLB, the formation and 
evolution of phase interfaces are captured automatically, as molecular 
interactions are incorporated as the driving force for phase separation. 
In addition, unlike mesh-based methods, the PPLB approach allows 
for a straightforward treatment of topological changes, i.e. merging 
and splitting of interfaces. As a result, the PPLB approach is closer to 
physics and mathematically simpler. As such, our approach is also very 
different from those of  Renardy et al. (2002), Yun et al. (2014),  Liu 
et al. (2018) and Zhang et al. (2021) who all proposed and applied 
sophisticated computational models without producing the same de-
tailed pictures of flow fields combined with surfactant distributions. 
Our results confirm the potential of our approach for dealing with a 
surfactant, as reported earlier by Mukherjee et al. (2019a).

An issue that still needs further investigation is how these ex-
ploratory computational results relate to real-world droplet break-up 
and real-world emulsions. In PPLB, interfacial tension is the resultant of 
the simulation, also in a three-component system where the surfactant, 
due to properly chosen values for the interaction strengths 𝐺, collects 
at the interface (see also e.g. Mukherjee et al., 2019a). A trial-and-error 
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method may have to be used to find the proper surfactant concentration 
and the proper 𝐺 values.

A next step would be about finding out how to relate the values 
of our (successful) input parameters, particularly the various 𝐺 values, 
to real-world physical properties and flow variables. The break-up case 
reported in this were obtained for 𝑅𝑒 = 1 and 𝐶𝑎 = 0.255, with all 
𝐺 values of 𝑂(1). Further study is required to determine how to run 
simulations for emulsions with relevant droplet sizes susceptible to 
deformation and break-up as a function of 𝑅𝑒 and the property group 
𝑅𝑒∕𝐶𝑎 = 𝛾𝑅∕(𝜌𝜈2) with properly chosen 𝐺 values. This was beyond 
the scope of this exploratory study which focused on how to simulate 
in a PPLB model droplet break-up due to shear in the presence of a 
surfactant and on whether we could observe in PPLB the behaviour of 
the surfactant during the deformation and break-up process.

5. Conclusions

Our three-component PPLB model is capable of reproducing im-
portant aspects of the role and behaviour of a surfactant in the shear 
driven deformation and breakup of a liquid droplet immersed in an 
immiscible second liquid. Our method was implemented on the parallel, 
open-source LB code Palabos, with post-processing in Matlab. We first 
investigated and reported the phase separation and phase behaviour 
of the two main liquid components. Next, the liquid–liquid system 
was extended by adding a surfactant. The effect of stepwise adding 
increased amounts of the surfactant on the interfacial tension between 
the two main component was assessed. We found that the interfa-
cial tension remains constant with increasing surfactant concentration 
due to competition between phenomena that increase and decrease 
interfacial tension.

The eventual focus of our research was on the role and behaviour 
of a surfactant during the shear driven deformation and breakup of an 
immiscible liquid drop. Our method shows the surfactant concentrating 
in a thin interface layer (as it should be), as in our method it is repelled 
by both main liquid components — in agreement with earlier findings 
(obtained with partly different methods) reported by Skartlien et al. 
(2011), Mukherjee et al. (2019a) and Van den Akker (2018).

Adding a surfactant not only reduces the average interfacial tension, 
it also induces further effects in the case of flow. The shear flow drives 
the surfactant to concentrate at the far ends of the deformed droplet 
and may reduce there the local interfacial tension while increasing 
the surfactant concentration halfway along the elongated droplet. The 
result of this inhomogeneous surfactant distribution along the interface 
is also that a higher shear is needed for droplet breakup and that 
breakup is delayed. Evidently, Marangoni stresses (opposing the shear 
driven flow) are captured inherently in our multicomponent PPLB 
simulations. In fact, this finding is part of the novelty of our paper.

During the increasing deformation, a continuous redistribution of 
the surfactant takes place up to the moment the droplet breaks up. The 
simulation results reveal the flow field of the external liquid phase, the 
internal circulation of the inner liquid, and the flow with surfactant 
gradients within the thin interface layer.
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