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ABSTRACT

In radar polarimetry, the differential phaseCDP consists of the propagation differential phaseFDP and the

backscatter differential phase dhv. WhileFDP is commonly used for attenuation correction (i.e., estimation of

the specific attenuationA and specific differential phaseKDP), recent studies have demonstrated that dhv can

provide information concerning the dominant size of raindrops. However, the estimation ofFDP and dhv is not

straightforward given their coupled nature and the noisy behavior ofCDP, especially over short paths. In this

work, the impacts of estimatingFDP on the estimation ofA over short paths, using the extended version of the

ZPHI method, are examined. Special attention is given to the optimization of the parameter a that connects

KDP and A. In addition, an improved technique is proposed to compute dhv from CDP and FDP in rain. For

these purposes, diverse storm events observed by a polarimetric X-band radar in the Netherlands are used.

Statistical analysis based on the minimum errors associated with the optimization of a and the consistency

between KDP and A showed that more accurate and stable a and A are obtained if FDP is estimated at range

resolution, which is not possible by conventional range filtering techniques. Accurate dhv estimates were able

to depict the spatial variability of dominant raindrop size in the observed storms. By following the presented

study, the ZPHI method and its variations can be employed without the need for considering long paths,

leading to localized and accurate estimation of A and dhv.

1. Introduction

Conventional S- and C-band weather radars have

been used for several decades to monitor the evolution

of precipitation. In recent years the technology of those

conventional radars has been upgraded to polarimetric

technology in order to further improve weather radar

measurements (Doviak et al. 2000). Severe weather can

produce rapid and localized surface damage associated

with, for example, heavy rain and tornadoes. In this

context, a network of small polarimetric X-band weather

radars may be suitable to obtain observations of fast-

developing storms at close range and at resolutions higher

than those from conventional radars (McLaughlin et al.

2009; Chandrasekar et al. 2018).

One of the advantages of polarimetric radars is given

by the measurements of differential phase between the

horizontally and vertically polarized signals caused by

the delay of one with respect to the other as both sig-

nals propagate through hydrometeors. In this way, the

differential phaseCDP (8) is independent of attenuation,
miscalibration, and partial beam blockage (PBB) effects

(Doviak and Zrnić 1993). However,CDP measurements

can include phase shifts in the backward direction as a

result of Mie scattering, the so-called backscatter dif-

ferential phase dhv (8), and random fluctuations « (8) on
the order of few degrees. In general, aCDP range profile

is modeled as

C
DP

(r)5F
DP

(r)1 d
hv
(r)1 « , (1)

where FDP(r) (8) represents the differential phase in the

forward direction and r (km) indicates the distance from

the radar. Two useful variables that can be estimated from

FDP are the specific differential phase KDP (8km21) and

the specific attenuation A (dBkm21), which are com-

monly used for the estimation of rainfall rate and atten-

uation correction (Bringi and Chandrasekar 2001).

The traditional method to estimateKDP (orFDP) from

CDP when dhv is significant is given by Hubbert and

Bringi (1995), and several attempts have been proposed

to improveKDP estimates at X-band frequencies (Wang

and Chandrasekar 2009; Giangrande et al. 2013;

Schneebeli et al. 2014; Huang et al. 2017). The specific
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differential phase KDP has been used to correct mea-

surements of reflectivity Z (dBZ) affected by radar

calibration and PBB (Giangrande and Ryzhkov 2005).

In addition, KDP has led to improved estimation of

rainfall rate, mostly in heavy rain or mix rain, because of

its quasi-linear relation to liquid water content (Lim

et al. 2013). Although radar measurements seem to

benefit from usingKDP, comprehensive research onKDP

is still needed because it is a challenge to provide accu-

rate KDP from noisy measurements of CDP.

Existing methods to estimate A in rain assume that

A 5 aKDP, where a is a constant for a given frequency

(Bringi et al. 1990). Testud et al. (2000) also used the

relation betweenA andKDP in their rain profiling ZPHI

technique, to expressA in terms of the difference ofFDP

and measurements of Z, avoiding KDP calculation.

However, it is known that a is sensitive to temperature,

drop size distribution (DSD), and drop size variabilities;

therefore, Bringi et al. (2001) extended the ZPHI tech-

nique to avoid a priori value for a. These methods

have been adapted to address attenuation problems at

X-band frequencies (Matrosov et al. 2002; Park et al.

2005a; Gorgucci et al. 2006; Lim and Chandrasekar

2016). Moreover, Ryzhkov et al. (2014), Wang et al.

(2014), and Diederich et al. (2015) modified the ex-

tended ZPHI method to improve rainfall-rate estima-

tion and to demonstrate that A can be used to reduce

issues related to radar calibration and PBB. Despite

these promising benefits, the potential of using A might

be limited depending on the approach to obtainFDP and

a (Bringi et al. 2001; Ryzhkov and Zrnić 2005).

In contrast to KDP and A, limited research has been

conducted on the applications of dhv. For example, dhv
can be a suitable candidate to mitigate uncertainties

related to the differential reflectivity ZDR (dB) because

dhv and ZDR offer a correlated behavior (Scarchilli et al.

1993; Testud et al. 2000) and because dhv is independent

of attenuation and radar calibration; see Eq. (1). These

aspects of dhv could be useful to establish relations be-

tween dhv and the median drop diameter D0 (mm)

(Trömel et al. 2013) because D0 is often expressed in

terms of ZDR (Matrosov et al. 2005; Kim et al. 2010).

Moreover, Otto and Russchenberg (2010) included dhv
estimates to retrieve DSD parameters. Hubbert and

Bringi (1995), Otto and Russchenberg (2011), and

Trömel et al. (2013) estimated dhv by subtracting FDP

fromCDP, while Schneebeli and Berne (2012) included a

Kalman filter approach. The effectiveness of estimating

dhv at high resolution is rather complicated because of

the cumulative and noisy nature of CDP and possible

remaining fluctuations on FDP.

The purpose of this work is to 1) explore the role and

impact of estimated FDP profiles on the performance of

the extended ZPHI method at X-band frequencies to

improve estimates of a and A over short paths and 2)

develop a technique to compute dhv in rain while keep-

ing the spatial variability of drop sizes. For such purpose,

two KDP (or FDP) methods, by Hubbert and Bringi

(1995) and Reinoso-Rondinel et al. (2018), are reviewed

in section 2 as well as three attenuation correction ap-

proaches, by Bringi et al. (1990), Testud et al. (2000),

and Bringi et al. (2001). In addition, the dhv algorithm is

introduced, which integrates estimates of KDP and A. In

section 3, the performances of the attenuation correc-

tion methods that assume a constant a are compared

using four storm events. This comparison is extended in

section 4 to examine the selection of a profile by profile

and its impact onA andZ. In section 5, the dhv technique

is evaluated. Section 6 focuses on the statistics of a,A,Z,

and dhv to conduct further assessments of the presented

methods. Finally, section 7 draws conclusions of this

article.

2. Estimation techniques for CDP-based variables

a. Estimation of KDP

In the conventional technique given by Hubbert and

Bringi (1995), a low-pass filter is designed such that gate-

to-gate fluctuations at scales of the range resolution Dr
(km) are filtered from a CDP(r) profile. Fluctuations at

range scales larger than Dr (i.e., dhv ‘‘bumps’’) are re-

moved by applying the same filter multiple times to new

generated Cg
DP profiles by combining a previous fil-

tered and original CDP profile. In this manner the cor-

responding FDP profile is obtained and KDP is given by

taking a range derivative of FDP. For the generation of

Cg
DP, a predetermined threshold t (8) is required, which

is on the order of 1–2 times the standard deviation of

CDP, hereafter sP (8). One of the limitations of this

technique is that accurate estimates of FDP and KDP at

Dr scales are hardly achieved (Grazioli et al. 2014).

An adaptive approach that estimates KDP at high

spatial resolution while controlling its standard de-

viation sK (8km21) is given by Reinoso-Rondinel et al.

(2018). For notation purposes, the difference of a radar

variable V over a given pathlength is expressed as DV.

Besides CDP, attenuation-corrected Z and ZDR profiles

are also required, as well as a predefined pathlength

interval [Lmin;Lmax] (km). For gate i, located at range

ri, a set of sK samples are obtained from [Lmin;Lmax]

using a theoretical expression of sK. The pathlength that

minimizes the sK set is selected and denoted as L(i).

Assuming the correlated behavior betweenZDR and dhv,

DCDP samples in the range [ri 2L(i); ri 1L(i)] that do

not satisfy the condition jDZDRj,sZDR
are filtered to

avoid contamination from Ddhv. The standard deviation
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of the ZDR profile is denoted as sZDR
. The spatial vari-

ability of CDP at Dr scales is captured by downscaling

each remaining DCDP sample from L(i) to Dr scale. A
downscaling parameter w(i) 2 [0, 1] is derived from Z

and ZDR in the same interval [ri 2L(i); ri 1L(i)], and

KDP(i) is estimated as

K
DP

(i)5
1

M
�
M

j51

DC(j)
DPw

(j)(i)

2Dr
, with j5 1, 2, . . . ,M , (2)

where M represents the number of DCDP samples with

negligible Ddhv. The actual sK(i) is calculated using the

terms inside the sum operation in Eq. (2). The KDP and

sK profiles are obtained by repeating the same pro-

cedure over the remaining gates, while the correspond-

ingFDP profile is calculated by simply integratingKDP in

range. In addition, a profile of the normalized standard

error (NSE) of KDP is given by the ratio between actual

sK and KDP. This approach was demonstrated for rain

particles at X-band frequencies, and therefore any un-

detected Z and ZDR echoes from hydrometeors other

than rain can lead to inaccurate KDP estimates. The two

KDP methods will be referred to as the conventional (C)

and the adaptive high-resolution (AHR) approaches,

respectively. A diagram is presented in Fig. 1 to briefly

indicate the inputs and outputs of each method.

b. Estimation of A

For attenuation correction purposes, Z and ZDR

profiles are represented as Z(r)5 z(r)1PIA(r) and

ZDR(r)5 zdr(r)1PIADP(r), respectively, where z (dBZ)

and zdr (dB) represent the attenuated reflectivity and

the attenuated differential reflectivity, respectively; and

PIA(r) (dB) indicates the two-way path-integrated at-

tenuation in reflectivity and PIADP(r) (dB) in differen-

tial reflectivity.

Bringi et al. (1990) introduced the differential

phase (DP) approach such that A(r) 5 aKDP(r) and

PIA(r)5aFDP(r), where a [dB (8)21] is assumed to be a

constant coefficient. Gorgucci and Chandrasekar (2005)

studied the accuracy of this method using simulated

radar variables at X-band frequencies and showed that

FIG. 1. Methods associated with the estimation of (a)KDP and (b)A. The outputs related to the conventionalKDP technique are indicated

with red, while the outputs related to the adaptive high-resolution approach are indicated with green.
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estimates of A are very sensitive to inaccurate estimates

of KDP, while estimates of PIA lead to Z values associ-

ated with only a slight degradation of the average error

for attenuation correction, 61.5 dB.

To improve the DP method, Testud et al. (2000) in-

troduced the ZPHImethod that estimatesA(r) in a path

interval [rp; rq], where rq . rp. First,A(r) is expressed as a

function of two known variables, z(r) and z(rq), and one

unknown, A(rq). Then, A(rq) is obtained using z(rq) and

the empirical relation DPIA 5 aDFDP, where DPIA 5
PIA(rq) 2 PIA(rp) and DFDP 5 FDP(rq)2FDP(rp). In

this way, A(r) is estimated at Dr scales, reducing errors

related toKDP(r). Although [rp; rq] can be freely selected;

DFDP could be inaccurate at short path intervals and/or

be contaminated by dhv(rp) and dhv(rq). In addition, if z(r)

includes localized observations of hail or mixtures of rain

and hail in [rp; rq], then A(r) might be biased over the

entire path interval.

Using a constant a may lead to limited approxima-

tions of A(r) and PIA(r) because a is sensitive to DSD,

drop shape, and temperature variabilities (Jameson

1992). To take into account the sensitivity of a, Bringi

et al. (2001) extended the ZPHI method to search for

optimal a values at C-band frequencies, called the

CZPHI method. An initial value for a is selected from a

predefined interval [amin;amax], and A(r) is estimated

according to the ZPHI method. The estimated A(r) is

integrated over [rp; rq] to build a differential phase

profile denoted as FDP(r, a). Repeating this procedure

for the remaining values of a, the optimal a is the one

that minimizes the error E (8) given by

E 5 �
q

i5p

jF
DP

(r
i
,a)2F

DP
(r

i
)j, with i5 p, . . . ,q . (3)

Note that the optimization process requires the esti-

mation of FDP, which implies the need for a proper way

to filter noise and dhv components from CDP while

maintaining its spatial variability. However, meeting

such requirements is not straightforward; therefore, the

reliability of an ‘‘optimal’’ a to estimate A and PIA

depends on the performance of the chosen approach to

estimate FDP. The inputs and outputs associated with

the three presented attenuation correction methods are

summarized in Fig. 1.

To determine PIADP(r), integrate the specific dif-

ferential attenuation ADP(r) (dBkm21) that is given by

ADP 5 gA. The DP and ZPHI methods assume g to be

constant, whereas the CZPHI technique searches for an

optimal g, addressing its sensitivity to DSD variability

(i.e., rain type). However, such sensitivity of g is less at

X-band frequencies than at C- and S-band frequencies

(Ryzhkov et al. 2014). In this work,ADP will be given by

ADP 5 gA(CZPHI), where A(CZPHI) represents the

specific attenuation determined by the CZPHI approach

and g is assumed a constant.

Representative values for a and g at X-band fre-

quencies can be given by the mean fit of simulated po-

larimetric relations using a large set of DSDs and

different drop shapes and temperatures. For example,

Kim et al. (2010) and Ryzhkov et al. (2014) demon-

strated that a values vary in the interval [0.1; 0.6] dB

(8)21, and Otto and Russchenberg (2011) obtained an

average value of 0.34 dB (8)21 for a and for g a value of

0.1618. Similar results were suggested by Testud et al.

(2000), a5 0:315 dB (8)21; Kim et al. (2010), a5 0:35 dB

(8)21; and Snyder et al. (2010) a5 0:313 dB (8)21; while

Ryzhkov et al. (2014) estimated g equal to 0.14 for

tropical rain (i.e., low ZDR and high KDP) and 0.19 for

continental rain (i.e., high ZDR and low KDP). It is im-

portant to note that other authors have suggested

smaller average values for a. For example, Bringi and

Chandrasekar (2001) simulated polarimetric variables

in rain and indicated that a5 0:23 dB (8)21. Matrosov

et al. (2014) avoided simulations by using observations

resulting from collocated X- and S-band radars and

found a in the range of 0.20–0.31 dB (8)21. Thus, a rep-

resentative value for a can vary depending on models

and assumptions used to simulate polarimetric variables,

on the type of observed storms and their geographical

locations, and on the accuracy of measurements.

c. Estimation technique for dhv

A dhv approach is presented to identify and separate

Mie scattering signatures from noise and random fluc-

tuations embedded in CDP. A flowchart of the dhv al-

gorithm is illustrated in Fig. 2. Three inputs are

required: a 2D CDP field measured in rain, the corre-

sponding KDP field obtained from the AHR approach,

and the A field estimated by the CZPHI method. Given

these inputs, the resulting dhv field is based on the fol-

lowing five steps:

1) Design and apply a filter to smooth strong outliers

from a CDP profile, taking Dr into account. Correct

each smoothedC0
DP profile for system phase offset by

subtracting the mean of C0
DP over the first 5% of

measured gates.

2) Obtain FDP by integrating profiles of A, if they are

associated with a minimum error E, otherwise by

integrating KDP profiles. Next, subtract FDP from

C0
DP, profile by profile, as a first attempt to estimate

the corresponding dhv field. The next steps are related

to 2D processing.

3) Remove unusual dhv values larger than 128 from
the dhv field. According to Testud et al. (2000),

2362 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35



Trömel et al. (2013), and Schneebeli et al. (2014), the

simulated dhv values at X-band frequencies rarely

reach 128. The remaining noise in dhv is reduced by

assuming that similar values of dhv are collocated

with similar values of KDP as follows. Set Kmin as the

minimum of KDP and Kmax as Kmin 1DK, where DK

(8km21) is given by Eq. (4). Define S as a set of dhv
samples, whose gates are collocated with KDP values

in the interval [Kmin;Kmax]. Reject dhv samples from S

that are outside the interval [dhv 2 ysdhv; dhv 1 ysdhv],

where dhv and sdhv indicate the arithmetic mean and

the standard deviation of the samples in S, respec-

tively; y is a predefined threshold in the interval [1; 2]

and a value of 1 is chosen. This process is iterated by

shifting [Kmin;Kmax] toward high values in small steps

such that Kmin 5 Kmax and Kmax 5 Kmin 1DK until

Kmax is equal to the maximum of KDP. To obtain

sufficient samples in S, DK is given as

D
K
5

8><
>:

0:2 K
min

# 2:58 km21 ,

0:5 2:58,K
min

, 88 km21 ,

1:0 K
min

$ 88km21 ,

(4)

because high KDP values are less frequent than small

KDP values (e.g., see the KDP fields in Figs. 3, 8,

and 11).

4) Apply a 2D interpolation method to fill empty gaps

on dhv caused by step 3. For this task, the inpainting

(or image fill-in) algorithm (Bertalmio et al. 2003;

Criminisi et al. 2004; Elad et al. 2005) is selected

because it is one of the image processing algorithms

commonly used to smoothly interpolate 2D images.

The essential idea is to formulate a partial differ-

ential equation (PDE) for the ‘‘hole’’ (interior un-

knowns) and to use the perimeter of the hole to

obtain boundary values. The solution for the interior

FIG. 2. A flowchart for the estimation of dhv. It consists of five steps, where steps 1 and 2 are processed in 1D

(i.e., along a PPI radial), while steps 3–5 are processed in 2D (i.e., a complete PPI).
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unknowns involves the discretization of PDEs on the

unknowns’ points into a system of linear equations.

D’Errico (2006) implemented an inpainting code for

2D arrays that is freely available and used for this

step. The code offers multiple methods to formulate

a PDE, and the method referred to as the spring

method is selected because it provides a reasonable

compromise between accuracy and computational

time.

5) (optional) To better distinguish storm cells from

their background (i.e., for radar displaying pur-

poses), it is recommended to replace areas of dhv
that are linked to jKDPj , 0.48km21 (i.e., weak rain

echoes) by a representative value. This value is

chosen as the mean of dhv samples constrained by

jKDPj , 0.48km21 and jdhvj,sdhv, where sdhv indi-

cates the mean of sdhv samples obtained in a similar

manner as in step 3 but using dhv after step 4. The

value of 0.48km21 is found tomatch the 30-dBZ level

used in this work for storm cell identification.

3. Evaluation of KDP processing by the ZPHI
method

a. Datasettings and preprocessing

The polarimetric X-band International Research

Center for Telecommunications and Radar (IRCTR)

Drizzle Radar (IDRA; Figueras i Ventura 2009) is lo-

cated at the CabauwExperimental Site for Atmospheric

Research (CESAR) observatory in the Netherlands

(NL) at a height of 213m from ground level (Leijnse

et al. 2010). Its operational range and range resolution

are equal to 15.3 and 0.03 km, respectively, while the

antenna rotates over 3608 in 1min. Four storm events,

E1–E4, that occurred in the Netherlands during the

year 2011 will be used for demonstration and analysis

FIG. 3. Observations by IDRA radar at elevation angle of 0.58 in the NL at 1216 UTC 18 Jun 2011, event E1.

Fields of (a) differential phaseCDP, (b) z, (c)KDP(C) from the conventional approach, and (d)KDP(AHR) from the

AHR approach. In (b)–(d), attenuation-corrected 30-dBZ levels are indicated by black contour lines; in (c) and

(d), 218 km21 levels are indicated by magenta contour lines. The red rings are at 5-km increments.
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purposes. A description of these events is summarized

in Table 1.

To remove areas that include particles other than

rain and/or areas with low signal-to-noise ratio (SNR),

measurements of linear depolarization ratio LDR (dB)

are used, such that range gates with LDR larger

than 218dB are discarded from CDP, z, and zdr fields.

Further preprocessing includes suppressing isolated

segments of a CDP profile smaller than 0.25 km and

rejecting a CDP profile if the percentage of gates with

measurements is less than 5%. Because a CDP profile

could be noisy at ranges behind strong reflectivity ech-

oes associated with low SNR and fully attenuated sig-

nals, its range extent needs to be determined. The

ending range of aCDP profile is determined based on sP,

which represents the average of multiple sP samples by

running a five-gate window along theCDP profile. If sP is

less than 1.58, then the ending range is given by the last

measured gate in the downrange direction. Otherwise,

the ending range is set by the middle gate of the second

consecutive window whose sP values are less than sP,

starting at the last measured gate andmoving toward the

radar. The ending range is used to limit the corre-

sponding extent of z and zdr profiles. After this, sP is

calculated again to estimate KDP by the conventional

technique.

b. Comparison between KDP and A

Next, KDP(C) and KDP(AHR) will be compared

against A(ZPHI) using the empirical relation A 5
aKDP, where a is 0.34 dB (8)21, as suggested by Otto

and Russchenberg (2011). In this scheme,A(ZPHI) is

used as a reference to evaluate both KDP techniques

and their impact on Z.

To estimate KDP(C), a finite impulse response (FIR)

filter is used such that the order of the filter is 36 and the

cutoff range scale is 1 km, including a Hann window.

The required threshold t is set to 1.5 sP. Such a filter

design is found suitable for Dr5 0.03 km. For the

estimation of KDP(AHR), values of L on the order of

3 km are associated with theoretical values of sK ,
0.58km21 for Dr 5 0.03 km (Reinoso-Rondinel et al.

2018) and therefore [Lmin;Lmax] is predefined as [2; 5] km.

The z and zdr inputs are corrected for attenuation and

differential attenuation, respectively, according to the

DP method, in which a linear regression fit of 1 km is

applied to CDP profiles. To estimate sZDR
a five-gate

window is run along a given ZDR profile. For the cal-

culation of A(ZPHI), DFDP is derived from FDP(C)

instead of FDP(AHR) to evaluate KDP(AHR) in an in-

dependent manner. A path interval [rp; rq] is defined by

the first and last data points, in the downrange direction,

of aFDP(C) profile. In cases whereDFDP , 08 as a result
of a reduced SNR profile, the estimation of A(ZPHI)

is avoided.

Results from the storm event E1 at 1216 UTC are

shown in Fig. 3. TheCDP field shows a rapid increment in

range on the north side of the storm, whereasCDP rarely

increases on the south side. Note that the CDP field is

not adjusted for phase offset. The attenuated z field

represents a relatively small cell of a nonuniform

structure in close proximity to the radar. The 30-dBZ

contour is obtained from the attenuation-corrected Z

using the ZPHI method [i.e., after calculating A(ZPHI)

as explained previously]. Comparing KDP(C) and

KDP(AHR), theKDP(AHR) field is able to maintain the

spatial variability of the storm down to range resolution

scale, eliminating areas of KDP smaller than 218km21,

which are present in KDP(C). However, the coverage

of the KDP(AHR) field is smaller than that of KDP(C).

This is because in the AHR approach, it is not always

possible to obtain DCDP samples with negligible Ddhv;
that is,M5 0 in Eq. (2). Note that isolatedKDP segments

smaller than 2km were removed from bothKDP fields in

TABLE 1. Description of four storm events E1–E4 observed in the Netherlands.

Event Date Period (UTC) Storm type

E1 18 Jun 2011 1200–1230 Single cell, area ;40 km2 and range paths up to 5 km, moderate rain

E2 25 Aug 2011 1350–1520 Mini-supercella with an echo appendage and ZDR arc, area ;80 km2

and range paths up to 10 km, moderate rain

E3 10 Sep 2011 1930–2030 Tornadic cellb with a leading bow apex, area;500 km2 and range paths

up to 30 km, heavy rain

E4 7 Oct 2011 0450–0610 Cells of irregular shape, area ;50–100 km2 and range paths ;3–5 km,

light rain

a A photograph was taken at 1454 UTC in Oudewater, 4 km northwest of IDRA, showing a low-topped storm with a tilted updraft

structure (https://www.weerwoord.be/uploads/16820112527543.jpg by W. Kasius).
b E3 resulted from an early supercell storm observed in the city of Gent, Belgium, 130 km southwest from an IDRA location. Radar-based

vortex signatures were observed inAmeide, 4.71 km southeast of IDRA,where photographs of tornado damagewere taken (http://www.

hartvannederland.nl/top-nieuws/2011/overlast-en-schade-door-noodweer/) and reported to local news (https://www.rtlnieuws.nl/

nieuws/binnenland/gewonde-door-windhoos-bij-noodweer), indicating that E3 was a tornadic storm.
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order to avoid estimates ofKDP that could be associated

with noisy areas and/or low accuracy.

The scatterplots KDP(C)–A(ZPHI) and KDP(AHR)–

A(ZPHI) resulting from the same event, E1, are com-

pared in Fig. 4. In Fig. 4a, it can be seen that the

KDP(AHR)–A(ZPHI) scatterplot (14 783 data points) is

more consistent than that of KDP(C)–A(ZPHI) (15 490

data points) with respect to the empirical relation A 5
0.34KDP. In a quantified comparison, the correlation

coefficient rKA between KDP(C) and A(ZPHI) is equal

to 0.65, whereas for KDP(AHR) and A(ZPHI) it is

0.96. Their corresponding standard deviations sKA

with respect to the empirical relation are 1.20 and

0.418km21, respectively. To compare the impact of both

KDP techniques on the DP method, z values are cor-

rected for attenuation using the DP and ZPHI correc-

tionmethods, and are denoted asZ(DP,C),Z(DP,AHR),

and Z(ZPHI, C); see Fig. 1. The scatterplots Z(DP, C)–

Z(ZPHI, C) andZ(DP,AHR)–Z(ZPHI, C) are compared

in Fig. 4b such that Z(ZPHI, C) estimates are used as

reference. It is observed that for relatively high values of

Z(ZPHI, C),Z(DP, C) values are slightly overcorrected,

which agrees with Gorgucci and Chandrasekar (2005)

and Snyder et al. (2010). In contrast,Z(DP,AHR) values

are found significantly consistent with Z(ZPHI, C) es-

timates. The mean biases associated with Z(DP,C) and

Z(DP, AHR) are equal to 0.95 and 20.21dB, respec-

tively, for Z(ZPHI, C) $35dBZ. The errors quantified

by rKA, sKA, and bias Z are summarized in Table 2. The

remaining events, E2–E4, at 1450, 1955, and 0558 UTC,

respectively, were also analyzed in a similar manner and

the corresponding quantified errors are indicated in

Table 2.

From the previous analysis, the following can be

highlighted. The values of KDP(AHR) and A(ZPHI),

determined by two independent methods, show a strong

agreement to the empirical relation A5aKDP, lead-

ing to equivalent Z(DP,AHR) and Z(ZPHI,C) results.

In the contrary, the agreement between KDP(C) and

A(ZPHI) is less evident, and although KDP(C) barely

FIG. 4. (a) The KDP(C)–A(ZPHI) scatterplot resulting from event E1 at 1216 UTC is indicated by red dots, and

theKDP(AHR)–A(ZPHI) scatterplot is indicated by green dots. In addition, the empirical relationKDP 5 (1/a)A is

indicated by the black line, where a5 0.34 dB (8)21. (b) As in (a), but for Z(DP, C)–Z(ZPHI) and Z(DP, AHR)–

Z(ZPHI) scatterplots. Also, the relationZ(DP)5Z(ZPHI) is indicated by the black line. The biases are computed

for Z(ZPHI) $ 35 dBZ.

TABLE 2. Comparison results between KDP(C) estimates and KDP(AHR) using as a reference values of A(ZPHI) resulting from the

ZPHI method for four storm events. Data points in each event are given: event E1 (;14 000), E2 (;13 000), E3 (;40 000), and E4

(;30 000).

rKA (2) sKA (8 km21) Bias Z (dB)

Events KDP(C) KDP(AHR) KDP(C) KDP(AHR) KDP(C) KDP(AHR)

E1 0.65 0.96 1.20 0.41 0.95 20.21

E2 0.48 0.95 1.75 0.52 1.05 20.56

E3 0.76 0.97 1.74 0.54 0.90 20.57

E4 0.59 0.92 1.15 0.68 0.98 20.29
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includes substantial errors on attenuation-corrected

Z(DP,C), it can significantly impact estimates of A by

the DP method. Similar findings at X-band frequencies

were reported by Gorgucci and Chandrasekar (2005)

but using simulated data.

4. Impact ofKDP processing on the CZPHI method

In this section, the ability to estimateFDP by bothKDP

approaches is studied and their impact on the perfor-

mance of finding optimal a values for the estimation of

A and the correction of Z by the CZPHI method is

measured. For analysis purposes, the minimum E ob-

tained from Eq. (3) is expressed as E 5 �ei, with i 5
p, . . . , q, where ei represents the minimum error at

range ri. As such, the arithmetic mean and standard

deviation of ei, emin (8) and semin
(8), respectively, will be

used as quality measures.

At X-band frequencies, [amin;amax] is predefined as

[0.1;0.6] dB (8)21 with steps of 0.02 dB (8)21, as suggested

by Park et al. (2005b) and Ryzhkov et al. (2014). For a

correct optimization process, it is recommended that

rq 2 rp should be at least 3 km and that DFDP be larger

than 108. In addition, if the FDP(C) profile is used in

Eq. (3), then the percentage of gates with KDP .
08km21 should be at least 50%, whereas if the

FDP(AHR) profile is used, the percentage of gates with

KDP . 0.58km21 and NSE, 20% should be larger than

80%. The percentage threshold for FDP(C) is less than

for FDP(AHR) because the conventional method rarely

avoids negative KDP values. If these conditions are met,

a is selected by minimizing E, considering only range

FIG. 5. (a) Errors obtained from Eq. (3): E–FDP(C) (red) and E–FDP(AHR) (green) in the azimuth 288.18, as
a function of a 2 [amin;amax]. (b) Profiles of CDP, FDP(C), and FDP(CZPHI) are shown as a function of range. In

addition, upper and lowerFDP(CZPHI) bounds (dashed lines) corresponding to amin and amax, respectively. (c) As

in (b), but using FDP(AHR) rather than FDP(C). (d) Stemplots of selected a–FDP(C) (red) and a–FDP(AHR)

(green) as a function of azimuth.
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gates that satisfy the stated conditions; otherwise a is

equal to 0.34 dB (8)21.

a. Event E1: Single cell

1) OPTIMIZATION ANALYSIS

Results involved in the optimization process along

azimuth 288.18 for storm event E1 at 1216 UTC are

shown in Figs. 5a–c. In Fig. 5a, it is seen that the mini-

mum E when FDP(C) is used is much larger than when

FDP(AHR) is used and their corresponding optimal

values for a are a–FDP(C) 5 0.24 and a–FDP(AHR) 5
0.34dB (8)21. The reason why the two a values are dif-

ferent can be explained by observing the measured

CDP and the estimated FDP(C) and FDP(AHR) pro-

files shown in Figs. 5b and 5c, respectively. First, note

that CDP might include (i) a dhv bump in the range

[3:5; 5:5] km and (ii) oscil lations in the range

[6:5; 8:5] km. Second, the dhv bump is more noticeable

in FDP(C) than in FDP(AHR). In consequence, the

matching between FDP(C) and FDP(CZPHI) shown in

Fig. 5b is not as good as the one observed in Fig. 5c. Note

that FDP(CZPHI) represents FDP(ri, a) in Eq. (3). The

extent of the FDP(AHR) profile is less than that of

FDP(C) because M in Eq. (2) appears to be 0 at the

beginning and ending ranges of CDP. However, this

limited extent ofFDP(AHR) avoids the oscillations seen

at the ending ranges of CDP.

The selected a–FDP(C) and a–FDP(AHR) values as a

function of azimuth for the same storm are depicted in

Fig. 5d. Values for a that are related to a minimumE (i.e.,

optimal a values) are encircled by black edges, while those

that are nonrelated to a minimum E are represented

without edges. Note that optimal a–FDP(AHR) values

are close to 0.34 dB (8)21, whereas those related to

FDP(C) are mostly smaller than 0.34dB (8)21 and some-

time equal to amin. An optimal a that equals amin or amax

could be associated with an inadequate matching be-

tween the input FDP and the obtained FDP(CZPHI),

which can lead to incorrect a. The resulting emin values

associated with FDP(C) and FDP(AHR) are 2.168 and
0.208, respectively, and their corresponding semin

values

are 0.758 and 0.088. These results come from the azi-

muthal sector [2808; 3108], which covers approximately

the north side of the storm shown in Fig. 3. Outside this

sector, the constant a was selected, associated with ei-

ther FDP(C) or FDP(AHR), because the stated condi-

tions were not met.

2) PERFORMANCE ANALYSIS

The impact of the optimal selection of a–FDP(C)

and a–FDP(AHR) on the estimation of A(CZPHI) is

measured using KDP(AHR) as a reference because of

1) the consistency between KDP(AHR) and A(ZPHI)

demonstrated in section 3b and 2) the fact that the

presented data were collected from one radar. Hence,

the following analysis is based on internal polarimetry

consistency.

The scatterplots A(CZPHI, C)–KDP(AHR) and

A(CZPHI, AHR)–KDP(AHR) resulting from event

E1 are shown in Fig. 6a. Observe that multiple

A(CZPHI, C) estimates are smaller than those from

A(CZPHI, AHR) as a consequence of selecting ‘‘small

optimal’’ a–FDP(C) values. The correlation coefficient

rAK from A(CZPHI, C)–KDP(AHR) is equal to 0.78,

while from A(CZPHI, AHR)–KDP(AHR) it is 0.98.

FIG. 6. (a) TheA(CZPHI, C)–KDP(AHR) andA(CZPHI, AHR)–KDP(AHR) scatterplots resulting from event E1 at

1216UTC are represented by the red and green dots, respectively. (b)As in (a), but forZ(CZPHI, C)–Z(DP,AHR) and

Z(CZPHI,AHR)–Z(DP,AHR) scatterplots. In addition, the relationZ(CZPHI)5Z(DP) is indicated by the black line.
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Their corresponding standard deviations sAK with respect

to A 5 aKDP are 0.28 and 0.05dBkm21, respectively,

where a values are given by a–FDP(AHR). In Fig. 6b,

attenuation-corrected Z(CZPHI, C) and Z(CZPHI,

AHR) are compared against Z(DP, AHR), where Z(DP,

AHR) is obtained from KDP(AHR) and a–FDP(AHR).

Their root-mean-square errors (RMSE) are equal to 1.67

and 0.10dB, respectively, forZ(DP,AHR)$ 35dBZ. This

means that the attenuation-correctioned CZPHI method

can lead to lower performance than the ZPHI method,

comparing Fig. 6b with Fig. 4b. In this analysis, the RMSE

was used instead of the mean bias to take into account the

standard deviation ofZ(CZPHI) estimates associatedwith

the variability of a. The quantified errors used to evaluate

the CZPHI method are summarized in Table 3.

A similar analysis of A(CZPHI) is performed using

KDP(C) as a reference instead of KDP(AHR) and the

results are summarized next. The correlation coefficient

between A(CZPHI, C) and KDP(C) is equal to 0.59 and

smaller than those shown in Fig. 6a. This is because of the

limited accuracy associated with KDP(C). The resulting

RMSE between Z(CZPHI, C) and Z(DP, C) is equal to

0.82 and smaller than the case when Z(DP, AHR) is used

as a reference. This is becauseZ(CZPHI, C) andZ(DP, C)

are obtained from the same a–FDP(C) values, leading to

similar attenuation correction results. Nonetheless, even if

Z(DP, C) is set as a reference, their resulting RMSE is still

larger than the one fromZ(CZPHI, AHR)–Z(DP,AHR).

Attenuated z and zdr and attenuation-corrected

Z(CZPHI, AHR) and ZDR fields from event E1 are

displayed in Fig. 7. The Z(CZPHI, AHR) field restored

attenuated z areas with PIA values up to 14dB mostly

on the north side of the storm cell, which is associated

with rapid increments of CDP (see Fig. 3). A similar

situation is observed by comparing the fields of zdr and

ZDR, where enhanced areas ofZDR correspond to oblate

raindrops. From the ZDR field, it seems that its lower

bound is between 22 and21dB, which could be due to

radar miscalibration rather than prolate-shaped parti-

cles, and therefore Z and ZDR fields may not represent

calibrated measurements. Furthermore, the radial pat-

tern presented in the zdr andZDR fields may be associated

with an azimuthal modulation as result of a metallic

fence near the radar causing PBB effects (Giangrande

and Ryzhkov 2005). Although such error sources may

cause uncertainties on Z and ZDR, they do not seem to

affect estimates ofKDP andA by neither of the discussed

methods and they do not influence the results of the

presented analysis.

b. Event E2: Mini-supercell

The performance of the CZPHI method from event

E2 at 1450 UTC is analyzed in a similar manner as for

event E1 and the quantified errors are summarized in

Table 3. The results show again that the CZPHI method

performs better when a is given by a–FDP(AHR) in-

stead ofa–FDP(C). Nonetheless, event E2 shows specific

signatures associated with the spatial distribution of

raindrop size that can be used to illustrate the ability

of selecting proper a values using the outcome of both

KDP approaches.

The resulting Z(CZPHI, AHR) and ZDR fields at

1450 UTC, associated with PIA (PIADP) values up to

10 dB (1.6 dB), are shown in Fig. 8. In the Z(CZPHI,

AHR) field, a significant gradient can be seen along the

inflow edge of the storm (arrow 1), as well as a narrow

echo appendage (arrow 2). An echo appendage typically

curves in the presence of a mesocyclone process; how-

ever, this feature was not seen during the considered

period. The ZDR field shows an area of significantly

enhanced values along the inflow edge (arrow 3). This

feature, commonly seen in supercell storms, is referred

to as the ZDR arc signature as a result of possible size

sorting processes (Kumjian and Ryzhkov 2008). The

fields of KDP(C) and KDP(AHR) are also illustrated in

Fig. 8. It is seen that the KDP(AHR) field retains the

spatial variability of the storm better than the KDP(C)

field while reducing negative KDP estimates. Note that

both KDP fields show enhanced values along the inflow

edge of the storm with values as high as 128km21 col-

located with theZDR arc. Estimates ofKDP over the echo

appendage, in both KDP fields, are not possible because

of its narrow width of less than 1km.

The selected values for a–FDP(C) and a–FDP(AHR)

are given in Fig. 9 as a function of azimuth. Observe

that the optimization of a using FDP(C) was possible

only in three azimuthal profiles of the mini-supercell.

This is because in multiple azimuthal profiles, the

TABLE 3. Comparison results between A(CZPHI, C) and A(CZPHI, AHR) using KDP(AHR) as a reference for four storm events.

emin (8) semin
(8) rAK (2) sAK (dB km21) RMSE Z (dB)

Events FDP(C) FDP(AHR) FDP(C) FDP(AHR) FDP(C) FDP(AHR) FDP(C) FDP(AHR) FDP(C) FDP(AHR)

E1 2.16 0.20 0.75 0.08 0.78 0.98 0.28 0.05 1.67 0.10

E2 2.28 0.27 0.79 0.25 0.91 0.97 0.29 0.11 1.87 0.32

E3 1.72 0.45 0.50 0.17 0.94 0.98 0.28 0.12 1.60 0.34

E4 2.04 1.25 1.04 0.89 0.85 0.89 0.18 0.07 1.04 0.17
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percentage of gates per profile withKDP(C). 08km21 is

less than 50%, which led to the selection of the constant

a, avoiding suboptimal a values. This means that in

those profiles,A is given by the ZPHI method, leading

to a reasonable correlation rAK as shown in Table 3. On

the other hand, the optimization of a using FDP(AHR)

occurred in multiple azimuthal profiles, resulting in values

mostly larger than 0.34 dB (8)21 in contrast to those re-

sulting from FDP(C). According to Ryzhkov and Zrnić

(1995) and Carey et al. (2000), such large values are

expected in areas of big raindrops, which is consistent

with the ZDR arc signature.

c. Event E3: Tornadic cell

This event was associated with a bow apex feature

along the leading edge of the storm. According to Funk

et al. (1999), cyclonic circulations can occur along or

near the leading bow apex, which can produce tornadoes

of F0–F3 intensity. For a detailed observation of event

E3, only the southeast side of the Z(CZPHI, AHR),

ZDR, KDP(C), and KDP(AHR) fields at 1955 UTC are

shown in Fig. 10. The Z field shows a strong gradient

along the leading edge (arrow 4), indicating a region of

strong convergence and low-level inflow (white arrows).

A bow apex attribute resulting possibly from a de-

scending rear inflow jet (Weisman and Trapp 2003) is

also noticeable (arrow 5). This feature seems to be as-

sociated with a rotation pattern in the form of a hook or

weak-echo hole (Bluestein et al. 2007) (extended arrow

6) that caused wind and tornado damage as indicated in

Table 1. It is also observed that the core of the weak-echo

hole, whose inner diameter is approximately 0.75km, is

related to bounded weak ZDR and KDP values, located

in the center of the white circles. It can be observed that

KDP(AHR) preserves the storm structure better than

KDP(C) because the AHR approach avoids a segmented

KDP texture and negativeKDP values, which are observed

in the KDP(C) field. Maximum values of PIA and PIADP

reached 18 and 3 dB, respectively, while fully attenuated

areas (south side) occurred behind strong rain echoes

associated with KDP values on the order of 108km21.

The resulting values of a–FDP(C) and a–FDP(AHR)

as a function of the azimuthal sector [08; 3608], not
shown here, indicate that for most azimuthal profiles,

FIG. 7. Event E1 at 1216 UTC. Fields of (a) z, (b) zdr, (c) Z(CZPHI,AHR), and (d) ZDR are illustrated. The black

contours represent the 30-dBZ level.
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a values are associated with a minimum error E, except

in the azimuthal sector of [408; 1208], where estimates of

A were determined by the ZPHI method. This sector

was related to light and uniform rain profiles, where

DFDP values are smaller than 108. Optimal values of

a–FDP(AHR) are predominantly found between 0.34

and 0.50 dB (8)21. The absence of a. 0.50 dB (8)21, in

contrast to event E2, may indicate the lack of big drops

present at this time. Selected values of a–FDP(C) are

frequently smaller than or equal to 0.34 dB (8)21 but in a

few profiles they are equal to 0.1 or 0.6 dB (8)21, possibly

as a result of an inadequate optimization process. The

resulting emin and semin
, together with rAK, sAK, and

RMSE are given in Table 3, showing that FDP(AHR)

profiles lead to more reliable values of a and better es-

timates of A and Z.

d. Event E4: Irregular-shaped cell

In contrast to events E1–E3, E4 is mainly related to

light rain with a few spots of moderate rain and it is not

associated with any known reflectivity signatures. In

addition, multiple radial paths with reflectivity echoes

larger than 30dBZ are mostly smaller than 5km, in

which PIA reached values of 2.5 dB, and only in few

profiles it increased to 14dB. The fields of Z(CZPHI,

AHR), ZDR, KDP(C), and KDP(AHR) at 0558 UTC are

shown in Fig. 11. Comparing the fields ofZ andKDP, the

KDP(AHR) field maintains the spatial structure of

the storm better than KDP(C). It can be seen that the

magnitudes of KDP(C) and KDP(AHR) are frequently

smaller than 48km21, implying a slow incremental be-

havior of estimated FDP profiles. As such, only the azi-

muthal sectors [758; 1508] (east side) and [2508; 2808]
(west side) were associated with DFDP . 108. In both

sectors, the optimization process was characterized

by an inadequate performance because, in multiple

azimuthal profiles, repetitive values equal to 0.1 dB

(8)21 were selected and the associated errors were larger

than those found in E1–E3. In the remaining profiles,

values of a–FDP(C) were smaller than 0.34 dB (8)21,

FIG. 8. Event E2 at 1450 UTC. Fields of (a) Z(CZPHI, AHR), (b) ZDR, (c) KDP(C), and (d) KDP(AHR) are

shown. The black contours indicate the 30-dBZ level, and the magenta contours in (c) show the218 km21 level. In

addition, theZ gradient along the inflow edge, theZ narrow appendage, and theZDR arc signatures are indicated by

arrows 1–3, respectively. The low-level inflow in (a) is represented by the three arrows.
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while values of a–FDP(AHR) were comparable to

0.34dB (8)21, indicating the absence of raindrops of con-

siderable size. The results associatedwith the selection ofa

using FDP(C) and FDP(AHR) are indicated in Table 3,

showing a decreased performance of the CZPHI method

compared to the results of E1–E3.

5. Evaluation of dhv estimates

For each storm event, the preprocessedCDP (section

3a), the obtained KDP(AHR) fields, and A(CZPHI,

AHR) fields were set as inputs to the dhv algorithm for

its evaluation. As part of the dhv approach (step 1), a

low-pass FIR filter specified by a 32-filter order and

1-km cutoff range scale was applied to the CDP field.

The estimated dhv fields resulting from storm events

E1–E4 at 1216, 1450, 1955, and 0558 UTC, respectively,

are shown in Fig. 12. In all events, it can be seen that the

areas of dhv that are given by a uniform value corre-

spond to the areas of Z smaller than the 30-dBZ level,

which defines the shape of the described storm cells.

Moreover, a spatial correlation between the dhv fields and

their corresponding ZDR fields is observed, which con-

firms the correlation nature between dhv and ZDR (e.g.,

compare Figs. 12a and 7d). Such a spatial correlation is

not exclusive to dhv andZDR because a similar correlation

is also observed between the fields of dhv, Z, and KDP,

exemplifying the self-consistency relation (Scarchilli et al.

1996) betweenZDR,Z, andKDP in a comparablemanner.

The ability of the algorithm to capture the spatial

variability of dhv is substantial. For example, in Fig. 12a,

significant dhv values are more visible on the north side

than on the south side of the storm cell, indicating the

presence of Mie scattering. Another example of the

spatial variability and consistency aspects of dhv is de-

rived from E2, where increased dhv values (dhv . 78),
shown in Fig. 12b, are collocated with increased Z, ZDR,

and KDP values shown in Fig. 8. This scenario suggests

the presence of DSDs related to big raindrops, which is

consistent with theZDR arc shown in Fig. 8 and the large

values for a given in Fig. 9.

In event E3, estimates of dhv were achieved only in the

azimuthal sector [108; 1288], see Fig. 12c, where it was

possible to correctC0
DP profiles for system phase offset at

beginning ranges (step 1). Outside this sector, C0
DP mea-

surements were associated with a rapid increase as a result

of heavy rain, not shown here, causing difficulties when

removing the phase offset. Nonetheless, the dhv field

shows features that are consistent with the structure of the

tornadic storm, illustrated by Fig. 10, that is bounded by

weak values in the center of theweak-echo hole, increased

values on the south side of the apex feature, and uniform

values in areas of light rain. In contrast to E3, the C0
DP

field from event E4 was associated with light rain at the

beginning ranges, allowing for phase-offset correction

over the entire azimuthal scan. The estimated dhv field

shown in Fig. 12d is characterized by values in the range

28–58, indicating that this event, in contrast to E1–E3, is

dominated by small and medium raindrop sizes.

During the estimation of dhv, a percentage of dhv
samples were removed (step 3) and replaced by inter-

polated values (step 4). Moreover, the areas of dhv
collocated with jKDP(AHR)j, 0.48km21 (i.e., areas

of light rain) were replaced by a uniform value (step 5).

The percentages I (%) of dhv resulting from interpo-

lation in E1–E4 are 25.12%, 27.48%, 29.42%, and

27.06%, respectively, while the uniform values U (8)
are 0.598, 0.658, 0.878, and 0.138, respectively, and they

are summarized in Table 4.

To evaluate the improvements expected from adding

steps 3 and 4 to the calculation of dhv given by steps 1 and

2 [i.e., similar to the calculation derived fromEq. (1)], the

results obtained from steps 1 and 2 denoted as dhv(S12)

and the results obtained from steps 1–4 indicated as

dhv(S14) will be compared. This comparison could be

performed usingZDR measurements because dhv andZDR

show a similar sensitivity to raindrop size. However, the

presented measurements of ZDR are affected by an azi-

muthal modulation pattern and radar miscalibration,

limiting the use of ZDR. Instead, an empirical relation

in rain at 9.41GHz between dhv andKDP demonstrated by

Schneebeli et al. (2014) is used to conduct further as-

sessments on dhv. In their work, range profiles of sto-

chastically simulated DSDs were obtained such that

FIG. 9. Event E2 at 1450UTC. Selected values for a usingFDP(C)

and FDP(AHR) are given by the stemplots in red and green,

respectively, as a function of azimuth.
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their DSD properties, in terms of spatial and temporal

structures (i.e., small-scale variability), match the prop-

erties of DSDs measured by a network of ground-based

disdrometers. Although measured DSDs could have

been used instead of simulated DSDs, the simulation of

representative DSDs allows for obtaining a sufficient set

and a wide range of KDP and dhv values, which is rarely

the case for measured DSDs. The scattering amplitudes

were given by T matrix calculations in which three dif-

ferent but commonly used models for drop shape were

considered, while equivolumetric spherical drop di-

ameters were given by [0:1; 7:0] mm. In addition, three

temperatures of 278, 178, and 78C were included. From

their simulated dhv–KDP scatterplot (not shown here),

two empirical linear fits were given as

L
1
: d

hv
5 2:37K

DP
1 0:054 08#K

DP
# 2:58km21 (5)

and

L
2
: d

hv
5 0:14K

DP
1 5:5 2:58,K

DP
# 158 km21 . (6)

The resulting dhv(S12)–KDP and dhv(S14)–KDP scat-

terplots from event E1 are presented in Fig. 13, where

KDP is given by KDP(AHR). In addition, the dhv and

dhv 6sdhv curves, derived from dhv(S14) as a function of

KDP, are also shown. Both statistical curves were ob-

tained in a similar manner as in step 3. The strong

agreement between the dhv curve and linear fits L1 and

L2 shows an indirect validation of the presented method

to estimate 2D dhv in rain. The spread of estimated

dhv(S14)–KDP scatterplot is found to be comparable to

the spread of the simulated dhv–KDP scatterplot. Using

both remarks, it can be said that the estimation of dhv
associated with dhv(S14) is capable of reducing the out-

liers seen in dhv(S12), illustrating improvements from

steps 3 and 4. These outliers could be due to random

oscillations of C0
DP profiles or a decreasing behavior of

C0
DP with range. To quantify the consistency of the scat-

terplots, the mean absolute error (MAE; 8) between the

dhv magnitudes and the empirical linear fits is used as a

quality measure. The resulting MAE values related to

FIG. 10. Event E3 at 1955 UTC. Fields of (a) Z(CZPHI, AHR), (b) ZDR, (c) KDP(C), and (d) KDP(AHR) are

indicated. Various levels are shown: 40 dBZ (black contours), 18 km21 (red contours), and 218 km21 (magenta

contours). The Z gradient along the inflow edge (arrow 4), the bow apex (arrow 5), and the weak-echo hole

(arrow 6) are given in (a). The low-level inflow (white arrows) and the rotation pattern associated with the echo-

weak hole (white circles) are also shown.

DECEMBER 2018 RE INOSO -ROND INEL ET AL . 2373



dhv(S12) and dhv(S14) are equal to 0.748 and 0.378, re-
spectively. Moreover, the arithmetic mean of the sdhv

samples [mean standard deviation (MSD; 8)], derived
from dhv(S12) is equal to 1.668, whereas for dhv(S14) it is
reduced to 1.108. Similar analyses were conducted for

events E2–E4 and the quantified errors are summarized

in Table 4.

6. Assessment on A and dhv

a. Performance of the CZPHI method

To further evaluate the CZPHI method, the same

quality measures introduced in section 4 and the storm

events E1–E4 are used but during time periods, as given

in Table 1. For a representative and concise evaluation,

only the results from event E2 will be discussed in detail.

During the first 20min, this event consisted of an ordi-

nary storm cell of a small size, ;50km2. When this cell

was exiting the ‘‘view’’ of the radar, around 1420 UTC,

another storm cell entered the scope of the radar. This

storm manifested the characteristics of a mini-supercell

during the period 1430–1500UTC and that of a decaying

storm after 1500 UTC. The quality measures resulting

from event E2 are shown in Fig. 14.

Figure 14a illustrates the time series of the mean and

standard deviation of the errors related to the optimi-

zation of the parameter a. From these results, it can

be inferred that the degree of similarity between the

FDP(CZPHI) andFDP profiles is much higher whenFDP

is given by FDP(AHR) instead of FDP(C), leading to a

more reliable selection of a–FDP(AHR). In the period

1415–1430 UTC, the optimization of a did not occur

because the storm scenario was given by weak rain

echoes and rain paths of less than 3km, which are not

sufficient to meet the established conditions. The in-

crements of emin and semin
during 1500–1510 UTC cor-

respond to a temporal reduction of the storm cell in size

and intensity, associated with the decaying phase of

the storm.

The impact of the optimization of a on the estima-

tion ofA is quantified by comparingA(CZPHI, C) and

A(CZPHI, AHR) againstKDP(AHR) using their degree

of correlation rAK and dispersion sAK. The time series in

Fig. 14b show values of rAK very close to 1 when A is

given by A(CZPHI, AHR) instead of A(CZPHI, C).

The two rAK time series are sometimes comparable

becauseA andKDP estimates could remain linear even if

the selected values for a are suboptimal, provided that

the a values are alike. In contrast, the results of sAK

appear to be more sensitive to the choice of a because

sAK evaluates the spread of the difference between

A(CZPHI) andA(DP, AHR) estimates. The decreasing

behavior of rAK during the period 1420–1430 UTC

corresponds to inaccurate A(ZPHI, C) values resulting

from noisy estimates of DFDP over small paths of light

rain. In Fig. 14c, the time series of RMSE illustrate the

FIG. 11. As in Fig. 8, but for E4 at 0558 UTC.
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impact ofA(CZPHI) on attenuation-corrected Z. It can

be said that between A(CZPHI, C) and A(CZPHI,

AHR), the estimates of A(CZPHI, C) can impact neg-

atively on the accuracy of Z. Furthermore, the RMSE

magnitudes for both cases tend to increase from a sce-

nario given by an ordinary cell, before 1420 UTC, to a

complex mini-supercell, after 1420 UTC. This tendency

is due to the spatial structure of the storm cells that can

pose a more or less challenging task to capture the

sensitivity of a to DSD and drop size variabilities. Such a

challenging level can be depicted from the emin 6semin

time series, as they exhibit a noticeable spread after

1420 UTC, indicating the difficulty in minimizing the

error E. The discontinuity of RMSE observed around

1420 UTC is because of the lack of Z samples$ 35dBZ

to compute RMSE. The quality measures resulting from

the events E1, E3, and E4 presented similar results to

those calculated from event E2. For example, in events

E1–E4, emin related to FDP(AHR) and FDP(C) were

found on the order of 08–0.58 and 18–2.58, respectively,
except in event E4, where it increased to 18 for the case

of FDP(AHR). In addition, RMSE values derived from

Z(CZPHI, C) were found in the range of 1–2dB, while

for Z(CZPHI, AHR) they were seen between 0 and

0.5 dB.

To analyze the distribution of the optimal values for

a associated with a minimum E, the histograms of

a–FDP(C) and a–FDP(AHR) resulting from the opti-

mization process during the same time periods of E1–E4

are shown in Fig. 15. Each histogram consists of 11 bins

whose centers are separated by 0.05 dB (8)21, while the

sum of the bin heights is equal to 1. In events E1–E3, a

frequent selection of a–FDP(C) equal to 0.1 dB (8)21 is

FIG. 12. The resulting fields of dhv from E1 to E4 at (a) 1216, (b) 1450, (c) 1955, and (d) 0558 UTC. The white

contours indicate the 30-dBZ level, whereas the black contours in (c) represent the 40-dBZ level.

TABLE 4. Comparison results between dhv estimates from steps 1

and 2 (S12) and steps 1–4 (S14) of the dhv algorithm for four storm

events. Also, the results from step 4 (S4) and step 5 (S5) are sum-

marized. For E3, ;20 000 data points were considered because of

the limited sector of the dhv field.

MAE (8) MSD (8) I (%) U (8)

Events S12 S14 S12 S14 S4 S5

E1 0.74 0.37 1.66 1.10 25.12 0.59

E2 2.43 1.57 2.24 1.49 27.48 0.65

E3 2.32 2.04 1.79 1.37 29.42 0.87

E4 0.59 0.78 2.25 1.29 27.06 0.13
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observed, as a result of a recurrent mismatch between

the measuredCDP and estimatedFDP, while for the case

of a–FDP(AHR) such selection is only occasionally

seen. The selection of a in the vicinity of 0.34 dB (8)21 is

more evident in the case of a–FDP(AHR) than in the

case of a–FDP(C). This remark agrees with the empirical

value of a that is obtained from simulations and fitting

procedures. Nonetheless, the histogram of a–FDP(AHR)

from E2 also shows a reasonable contribution from

a larger than the empirical one. The reason for such a

contribution is because of the increased size of rain-

drops associated with the mini-supercell structure as

shown in Figs. 8 and 9 and an inadequate optimization

process during the decaying period. In event E4, a

repetitive selection of a equal to 0.1 and 0.6 dB (8)21 is

noted, indicating an unstable behavior of the optimi-

zation process, which agrees with the increasing be-

havior of the emin and emin 6semin
times series but is not

shown here.

b. Performance of the dhv algorithm

To further assess the dhv algorithm, the results related

to steps 1 and 2 and steps 1–4 are compared using the

time periods of events E1–E4 and the quality measures

MAE, MSD, and I. Recall that MAE and MSD were

calculated using the empirical relation between dhv and

KDP. The time series resulting from all events are

shown in Fig. 16. In general, it is observed that the

results associated with dhv(S14) yield more satisfying

results than those from dhv(S12). However, the amount

of improvement changes according to the evolution of

the storms.

In terms of MAE, the improvement observed from

dhv(S14) with respect to dhv(S12) is more visible during

periods of light rain echoes over small paths, which

complicates the estimation of FDP from noisy CDP. For

example, in Fig. 16a, the storm scenario of E1 during

1205–1215 UTC was dominated by segmented profiles

ofCDP, values of KDP in the range from228 to 38km21,

and a temporal increase of emin. A similar scenario oc-

curred during the last 20min of event E2, Fig. 16b, that

corresponds to the decaying phase of the mini-supercell

storm and to the increased values of emin. Note that in all

events, the MAE time series resulting from dhv(S14)

show a different range in which they fluctuate. For in-

stance, the resulting time series from events E1 and E3

are on the order of 08–18, while for events E2 and E4

they are on the order of 08–28 and 18–28, respectively.
Thus, for E1 and E3, MAE values may indicate a fa-

vorable and persistent agreement, on average, with the

empirical relations. For E2 andE4, the slightly increased

values of MAE reflect the challenge of estimating dhv,

because of the strong variability of drop size, and the

noisy measurements of CDP, respectively. Such a range

FIG. 13. Event E1 at 1216UTC. The dhv–KDP(AHR) scatterplots

resulting from steps 1 and 2 (blue) and steps 1–4 (green) of the dhv
algorithm. The thick black line represents dhv (i.e., mean values of

dhv estimates as a function of KDP), while the thin lines represent

dhv 6sdhv. The gray straight lines indicate two linear relations, L1

and L2, derived from scattering simulations in rain.

FIG. 14. Time series of quality measures from the CZPHI method

for event E2. (a)Mean values emin (solid lines) related toFDP(C) (red)

and FDP(AHR) (green). The corresponding variabilities emin 6semin

(dashed lines). (b) rAK (solid lines) and sAK (dashed lines) related

to FDP(C) (red) and FDP(AHR) (green). (c) RMSE of Z associated

with FDP(C) (red) and FDP(AHR) (green).
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of fluctuations in E2 and E4 may be linked to the ac-

curacy of selecting optimal a values because the selec-

tion of suboptimal a–FDP(AHR) values were depicted

more frequently than for E1 andE3; see Fig. 15. Further,

the fluctuations of MAE in all events can be connected

to some extent with a misrepresentation of the empirical

dhv–KDP fit relations. The discontinuities seen in E2–E4

are associated with episodes of moderate to heavy rain

located adjacent to or on top of the radar, leading to a

difficult scenario to remove the offset of theCDP profiles

(step 1 of the dhv method) or, sometimes, to a significant

increase of the noise floor.

In contrast to MAE, MSD time series depict an evi-

dent improvement obtained from dhv(S14) in relation

to dhv(S12). Note that in all events, the MSD time series

for the case of dhv(S14) oscillate for the range of 18–28,
contrary to those observed for the range of 18–48 for

dhv(S12), and show a uniform dispersion level and stable

FIG. 15. (a) Histograms of optimal a–FDP(C) (red) and a–FDP(AHR) (green) for event E1. (b)–(d) As in (a), but for E2–E4, respectively.

FIG. 16. (a) Time series of quality measures from the dhv algorithm for event E1. Left y axis: MAE1 58 resulting
from steps 1 and 2 (solid blue) and from steps 1–4 (solid green). The black line indicates the 58 shift.MSD from steps

1 and 2 (dashed blue) and from steps 1–4 (dashed green). Right y axis: I resulting from step 4 (magenta). (b)–(d) As

in (a), but for E2–E4, respectively.
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performance. The stability of the MSD values can be

interpreted as a satisfactory performance of the steps 3

and 4 of the dhv approach in which dhv values outside

the 61sdhv extent are filtered and replaced by interpo-

lated values. The time series of I resulting from the es-

timation of dhv(S14) represent, in a percentage manner,

the number of occasions that dhv(S12) estimates were

replaced by interpolated values. It can be seen that the

percentage of dhv samples being interpolated increases

from E1 toward E4: E1 (10%–20%), E2 and E3 (10%–

30%), and E4 (20%–40%). Such tendency is consistent

with the challenging level, presented by each event, of

estimating accurate FDP either from A(CZPHI, AHR) or

directly from KDP(AHR). Note that in this analysis, the

impact of estimating FDP from A(CZPHI, C) or KDP(C)

on the estimation of dhv was not taken into account, instead

the analysis focused onmeasuring the benefits of including

steps 3 and 4, which is the mitigation of erroneous dhv
samples derived from steps 1 and 2.

7. Summary and conclusions

In weather radar polarimetry at X-band frequencies,

the differential phase CDP consists of two components:

the propagation differential phase FDP and the back-

scatter differential phase dhv. The use of FDP-based

variables such as the specific differential phase KDP

and the specific attenuation A has improved radar

measurements affected by, for example, attenuation,

miscalibration, and partial beam blockage. Another

variable of interest is dhv because of its sensitivity to the

dominant size of raindrops, similarly to ZDR. However,

the accuracy of KDP, A, and dhv strongly depends on the

ability to separate FDP and dhv from noisy CDP mea-

surements, especially over short rain paths. This work

has explored the impact of estimating FDP profiles on

the estimation of A and thereby on the attenuation

correction of Z using the extended version of the ZPHI

method, the CZPHI method. Special attention was

given to the optimization of the parameter a that relates

KDP and A in rain. Also, a technique to improve the

calculation of dhv in rain has been proposed, with an

emphasis on storm cells observed over short range paths.

For such purposes, the conventional range-filtering

method and the adaptive high-resolution (AHR) ap-

proach were implemented to estimate KDP, denoted as

KDP(C) and KDP(AHR), respectively. Additionally, the

ZPHI method (with a constant a) and the CZPHI

technique (with a variable a) were adapted at X-band

frequencies to estimate A, denoted as A(ZPHI) and

A(CZPHI), respectively.Moreover, the results obtained

from the AHR and CZPHI methods were included in the

estimation of dhv together with an interpolation process.

In the analysis associated with a constant a,KDP(AHR)

and A(ZPHI) magnitudes show a strong consistency,

leading to a correlation coefficient of;0.96 for moderate

to heavy rain and of ;0.92 for light rain. In contrast,

KDP(C) and A(ZPHI) present a low agreement; none-

theless, KDP(C) and KDP(AHR) lead to similar errors on

the attenuation correction ofZ, with a slight degradation

related to KDP(C). This means that the reduced perfor-

mance of KDP(C) does not severely affect the correction

of Z, but it can negatively impact the estimation of A.

These findings confirm the conclusions of similar studies

that when KDP (or FDP) is not properly estimated, the

performance of the DP (i.e., A5aKDP) and ZPHI

methods for attenuation correction purposes are similar,

with a lower performance of the DP method in esti-

mating A (Gorgucci and Chandrasekar 2005).

In the study related to a variable a, the CZPHI

method was tested using FDP profiles that are given by

FDP(C) and FDP(AHR). A comparative analysis in-

dicates that in the optimization of a,FDP(AHR) profiles

lead to minimum errors smaller than those related to

FDP(C) profiles, and therefore the a values associated

with FDP(AHR) appear to better represent the vari-

ability of DSD in the observed storms. The impact of the

selected values of a on the estimation of A was mea-

sured in terms of rAK and sAK, showing an improved

performance of the CZPHImethod when a is associated

with FDP(AHR) instead of FDP(C). A similar conclu-

sion is given about the impact of A(CZPHI) on the

correction ofZ but measured in terms of the RMSE. For

this analysis, KDP(AHR) was used as a reference be-

cause of the strong relation seen between KDP(AHR)

andA(ZPHI) and the fact that data were obtained from

one radar (i.e., without independent measurements at

the same time of the storm events). Nonetheless, such a

methodology allows a volume-to-volume comparison

between estimates of A and KDP obtained from in-

dependent approaches. On the one hand, the time se-

ries analysis illustrates the degradation of the CZPHI

method when the selection of a is connected to FDP(C).

This agrees with previous studies in which the perfor-

mance of the CZPHI technique for attenuation correc-

tionpurposes candecrease compared to theZPHIapproach

(Snyder et al. 2010). On the other hand,FDP(AHR) seems

to improve the optimal selection of a because the errors

related to the optimization process are on the order of

08–0.58, in contrast to 18–2.58 for FDP(C). Moreover,

the histograms of a–FDP(AHR) confirm, in most of

the cases, that the selection of a is consistent with

empirical values of a. However, in scenarios domi-

nated by light rain, the optimization can lead to the

selection of erroneous a values. Nonetheless, the pre-

sented analysis shows the potential of combining the
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AHR and CZPHI approaches for a better estimation of

A and correction of Z in rain recurring to the optimi-

zation of the parameter a over short range paths.

The proposed dhv algorithm, which considers the re-

construction of FDP by the AHR and the CZPHI ap-

proaches, provides 2D dhv fields that depict the spatial

variability of raindrop size and exhibit a spatial distri-

bution similar to the one of ZDR. Given that Z and KDP

also depend to some extent on the size of raindrops, the

estimated dhv fields also show a spatial correlation with

the fields of attenuation-corrected Z and KDP(AHR),

mainly in areas of KDP . 0.48km21. The results of the

time series analyses, which correspond to the evolution

of the presented storms, show a significant agreement

between estimated dhv–KDP(AHR) scatterplots and ex-

perimental linear fits in rain, with a mean absolute error

(MAE) and a mean standard deviation (MSD) on the

order of 08–28 and 18–28, respectively. In addition, the

time series of MAE and MSD depicted that the pro-

posed algorithm outperformed the approach of esti-

mating dhv, that is, by the difference between CDP and

FDP [i.e., similar to Eq. (1)]. Such improvement is

mainly because of the filtering and interpolation steps

considered during the estimation of dhv by the proposed

algorithm. The percentage of dhv samples resulting from

these two steps range from 10% to 40%. This range

corresponds to the amount of noise and/or fluctuations

inherent toCDP and the accuracy of reconstructingFDP.

The suggested dhv method is highly sensitive to any

possible mismatch between CDP and FDP at beginning

ranges. For example, dhv cannot be accurately estimated

when the slope of CDP increases rapidly at beginning

ranges (i.e., when a storm is on top of or adjacent to a

radar). Nonetheless, the presented dhv algorithm is able

to depict areas of moderate to large raindrops (i.e., Mie

scattering signatures) at high spatial resolution.

Even though it was shown that the presented work can

provide improved estimates of a,A, and dhv in rain using

data from an X-band radar with calibration limitations,

further development of the proposed techniques is re-

quired to achieve the ambitions of real-time operations.

This effort may require an automatic algorithm to sep-

arate rain particles from other hydrometeors, tuning of

the frequency-dependent coefficients in the relations

between polarimetric variables, and sensitivity analysis

to temperature conditions. It may also require quality

control to examine the impact of long-range obser-

vations and complex terrain—related to nonuniform

beam filling, beam blockage, and phase folding—on the

measurements of CDP, Z, and ZDR, which can lead to a

reduced performance of the discussed methods. There-

fore, before applying the presented techniques, it is

important to (i) identify error sources that can affect the

quality of measured polarimetric variables (Gourley

et al. 2006) and (ii) discriminate rain from other hy-

drometeors (Lim et al. 2013). In situations where Z and

ZDR data are corrupted and/or in areas other than rain, it

is recommended to use the conventional approach to

estimate FDP, the ZPHI method to estimate A, and the

proposed algorithm to estimate dhv but excluding steps

3–5. Regarding the implementation of the presented

algorithms, the AHR approach is basically a mean

average estimator with an adaptive but simple char-

acteristic of the selection of the pathlengths to obtain

derivatives of CDP. The CZPHI method requires a CDP

extent of at least 3 km as well as a set of predefined

conditions to avoid suboptimal results. The dhv algo-

rithm mainly adds two more steps (filtering and in-

terpolation) to the direct estimation of dhv, which do not

require any costly computational processing.

A careful CDP processing is vital to unleash the full

potential of polarimetric weather radars, especially at

X-band frequencies. This work shows an alternative to

processing CDP profiles in rain and thereby allows an im-

proved selection of a related to the CZPHI method and

enhanced estimation of dhv in difficult scenarios charac-

terized by small DFDP magnitudes (;108–508) and short

path intervals (;5–10km). This alternative could be ben-

eficial when a long path needs to be segmented because of

detected areas of hail along a beam. Although the results

of a, Z, and dhv could be further assessed using external

data from, for example, a network of disdrometers, mi-

crowave links, or collocated S- and X-band radars to

consolidate the findings of this work, it is foreseen that in

the context ofCDP processing, such as the one presented in

this work, users can benefit from better observations of

CDP-based variables in convective storm cells.
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