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Abstract

The main objective of this study is to perform Uncertainty Quantification (UQ) using a detailed
representation of fractured reservoirs. This is achieved by creating a simplified representation of the fracture
network while preserving the main characteristics of the high-fidelity model. We include information at
different scales in the UQ workflow which allows for a large reduction in the computational time while
converging to the high-fidelity full ensemble statistics.

Ultimately, it allows us to make accurate predictions on geothermal energy production in highly
heterogeneous fractured porous media. The numerical reservoir simulation tool we use in this work is the
Delft Advanced Research Terra Simulator (DARTS). It is based on Finite Volume approximation in space,
fully coupled explicit approximation in time, and uses the novel linearization technique called Operator-
Based Linearization (OBL) for the system of discretized nonlinear governing equations. We use a fracture
network generation algorithm that uses distributions for length, angles, size of fracture sets, and connectivity
as its main input. This allows us to generate a large number of complex fracture networks at the reservoir
scale. We developed a pre-processing algorithm to simplify the fracture network and use graph theory
to analyze the connectivity before and after pre-processing. Furthermore, we use metric space modeling
methods for statistical analysis.

A robust coarsening method for the Discrete Fracture Matrix model (DFM) is developed which allows
for great control over the degree of simplification of the network’s topology and connectivity. We apply
the framework to modeling of geothermal energy extraction. The pre-processing algorithm allows for a
hierarchical representation of the fracture network, which in turn is utilized in the reduced UQ methodology.
The reduced UQ workflow uses the coarser representation of the fracture networks to partition/rank the
high-fidelity parameter space. Then a small subset of high-fidelity models is chosen to represent the full
ensemble statistics. Hereby, the computational time of the UQ is reduced by two/three orders of magnitude,
while converging to similar statistics as the high-fidelity full ensemble statistics.

The methods developed in this study are part of a larger project on a prediction of energy production from
carboniferous carbonates. The final goal is to perform UQ in pre-salt reservoirs which are characterized
by complex reservoir architecture (i.e., large karstification and fracture networks). The UQ of fractured
reservoirs is typically done in the petroleum industry using effective media models. We present a
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methodology that can efficiently handle a large ensemble of DFM models, which represent complex fracture
networks and allow for making decisions under uncertainty using more detailed high-resolution numerical
models.

Introduction

Society heavily depends on the availability of energy (e.g., industry and agriculture, logistics, and
households) and raw materials (e.g., plastic, medicine, tires, and solvents). Carbonate reservoirs host a major
part of the world’s hydrocarbon reserves, approximately 60% of the oil and 40% of the gas reserves (Akbar
et al., 2000). This percentage is likely to increase due to several large discoveries made in the past decade,
such as pre-salt carbonates in off-shore Brazil (Mello et al., 2011; Boyd et al., 2015) and the Tarim basin
in China (Huang et al., 2017). The ongoing energy transition has also resulted in an increase in geothermal
discoveries, for example, the geothermal potential in Dutch onshore Carboniferous carbonates (Reijmer et
al., 2017).

Developments of any project related to the subsurface are often associated with large uncertainty and
risks (Caers, 2011). The main reason for this is the lack of information on some of the modeling parameters,
such as, in the case of natural fracture networks, the spatial distribution of matrix permeability and fracture
aperture. These parameters largely control the resulting fluid-flow and geomechanical behavior of the
porous media, hence greatly impact any decision making related to these subsurface activities.

A popular remedy for the lack of information is to assume, based on the available data, some (prior)
distribution of the modeling parameters and generate a large set of models. This set of models, generally
denoted as an ensemble, is subjected to the modeling effort and subsequently attempts to explain the
uncertainty in the flow- or geomechanical response. This class of uncertainty quantification (UQ) methods
belongs to the Monte Carlo (MC) methods (Hammersley, 2013). MC methods often need a large amount of
random samples to converge and, in the case of large fractured reservoirs, this can lead to an insurmountable
computational effort.

In response, the ensemble of fractured reservoir models is regularly upscaled to effective media
models (e.g., dual-porosity or Embedded Discrete Fracture Models) to reduce the computational time and
still attempt to make meaningful predictions. However, in the case of realistically complicated fracture
orientation and connectivity, these models might not actually reflect reality. Therefore, the use of a Discrete
Fracture Matrix (DFM) model, which explicitly represents the fracture geometry, is preferred (Moinfar et
al., 2011).

Since the mesh is conformal to the fractures in DFM models, the main problem, especially in the case of
complex realistic fracture networks, is the gridding step. This is particularly problematic whenever complex
fracture intersections are present. The resulting mesh will often contain several artifacts: non-orthogonal
control volume connections, control volumes with a large aspect ratio (i.e., flat triangles), and a massive
difference in the size of the control volumes. This will eventually diminish the quality of the resulting
numerical solution and also lead to poor nonlinear convergence of the simulation process. Therefore, we
have developed a pre-processing algorithm, which borrows concepts from early work done is this area
(Koudina et al., 1998; Maryvska et al., 2005) as well as more recent approaches (Mustapha and Mustapha,
2007; Mallison et al., 2010; Karimi-Fard and Durlofsky, 2016). The main idea is to simplify the fracture
network such that the meshing artifacts are reduced while keeping the main characteristics of the fracture
network intact. This allows for a reliable and fast way of constructing DFM models on any desired scale.

Finally, we present a methodology that can efficiently handle a large ensemble of DFM models, which
represent complex fracture networks and allow for making decisions under uncertainty using more detailed
high-resolution numerical models. This approach is similar to those in Scheidt and Caers (2009); Scheidt et
al. (2011); de Hoop et al. (2018), however, here we utilize information of coarse-scale models, obtained via
our efficient and robust pre-processing procedure, to rank and partition the high-fidelity parameter space.
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Subsequently, a small subset of high-fidelity models is chosen to represent the full ensemble statistics.
Hereby, the computational time of the UQ is reduced by several orders of magnitude, while the reduced
approach is converging to similar statistics as the full high-fidelity ensemble of models.

Method and theory

In this section all the relevant theory is briefly described.

Generation fracture networks

In this section, we present a generic framework which allows us to generate various types of fracture
networks with different properties (e.g., connectivity, orientation, length, etc.). Fractures, as observed in
outcrops, typically occur in sets with characteristic angles of intersection, connectivity, and spacing (Bour
and Davy, 1997; Manzocchi, 2002; Bakay et al., 2016). Therefore, we propose to generate the fractures
as sets which are parameterized by the number of fractures in the set, lengths, and the angles at which
they intersect. Connectivity of the final network, expressed as the total length of the largest connected sub-
network divided by the total length of all the fractures in the domain, is calculated and adjusted (i.e., fracture
sets are connected or disconnected) based on the target connectivity.

Fracture networks themselves are only a means in any modeling workflow and (almost) never constitute
the final objective. Usually the objective is to make predictions on a subsurface system, which in turn can
contain a fracture network. Our proposed algorithm considers the discretization accuracy, denoted as /., at
which the final high-fidelity subsurface model will be constructed from the start of the generation. Fractures
that belong to the same fracture set will not intersect at a scale or have a spacing that is smaller than /..
This results in a uniform discretization of each fracture set and minimizes the numerical artifacts which are
often observed in Discrete Fracture Network (DFM) models (Berre et al., 2018). Interaction of different
fracture sets can still result in a complex fracture network where intersections occur below the discretization
accuracy, hence the need for a robust pre-processing method as explained below in section Pre-processing
fracture network.

The algorithm sequentially populates the domain with fractures sets, where the characteristics of the
fracture sets are sampled from a specified distribution. For example, the length of the fractures is repeatedly
described by a power-law distribution, but you could use any distribution that models your input data
(outcrop analogue, seismic, or borehole data). The length of each fracture in the domain is some (random)
multiple of the discretization accuracy /.. Before adding a fracture to the domain, it is split into 7] segments
of length /., where #} is the number of smaller fracture segments of fracture i. Additional fractures of the
same set as fracture i always intersect at the nodes of the smaller segments, hence a uniform distribution of
control volumes is expected after meshing the fracture network.

The following parameters are input to the generation framework:

e Connectivity, C;

e Number of fractures pairs, Nj;

e Maximum number of fracture pairs per set, N;
o Set of length distributions, L;;

o Set of angle distributions, O.

Since the number of fractures and maximum number of fractures per set are highly correlated with the
total connectivity of the network, you can choose to express those parameters as a function of connectivity.

For example, N p= N?\/E , Where N (} is the some base number of fractures (e.g., at maximum connectivity).
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Also, as could be inferred from the parameters above, the fractures are always added in pairs within each
fracture set. This means that there are two length and angle distributions per fracture set. We designed a
detailed algorithm for sequential generation of fracture network following the approach suggested in Sartori
Suarez (2018).

After the algorithm has finished and N, fracture pairs are added to the domain, the connectivity is
calculated using graph theory. First construct the unweighted undirected graph G = (E, V), where V is the
set of vertices of the graph and F is the set of paired vertices called edges. Based on these two sets we can
construct the following matrices:

¢ Incidence matrix: B(G), which is a n X m matrix, where n is the number of vertices and m the
number of edges in the graph. B; = 1 if vertex i is on edge j otherwise B; = 0;

e Degree matrix: D(G), which is a n % n matrix describing the number edges attached to each vertex.
The degree matrix can be obtained using the follow equation D = diag (B1), where diag(v) is a
function that constructs a square matrix with vector v on its diagonal and 1 is a vector of ones
with size m % 1;

e Discrete Laplacian matrix: L(G) which can be found via the following equation L = D — BB”.

The Laplacian of the graph can be used for finding spanning trees of a given graph (i.e., connected
fracture sets in the fracture network). Particularly, each element of the rational basis of the null-space of
the Laplacian describes a connected component of the graph (Spielman, 2010). With this basis we can find
the number of connected fracture sets in our network but also the connectivity of the network (as defined
above). If this connectivity is larger than the specified connectivity, fracture sets are disconnected until the
actual connectivity reaches the desired connectivity (within some threshold). The reverse (i.e., connecting
fracture sets) is done when the specified connectivity is lower than the desired connectivity. Components
of the graph are sequentially merged or disconnected based on this smallest distance between each vertex
in the component of the graph and each vertex in the fracture sets.

Pre-processing fracture network

All the fluid flow evaluations are done with the Delft Advanced Research Terra Simulator (DARTS),
recently developed at the Delft University of Technology (Khait and Voskov, 2017, 2018a,b). DARTS
is finite volume based simulator capable of solving thermal flow and transport problem in complex and
realistic fractured reservoirs by using the DFM model adapted from Karimi-Fard et al. (2004). Current DFM
implementation in DARTS is based on a Two-Point Flux Approximation (TPFA) scheme where fractures are
represented explicitly in the numerical model. However, explicit representation of the fractures, especially in
fracture networks generated from outcrops, often contain complex fracture intersection which in turn might
pose meshing difficulties. The resulting mesh, therefore, can contain abundant artefacts which negatively
impact the performance of the reservoir simulator.

Meshing difficulties related to fracture networks are thoroughly explained in Koudina et al. (1998);
Mustapha and Mustapha (2007); Mallison et al. (2010); Karimi-Fard and Durlofsky (2016); Berre et al.
(2018). All of the meshing challenges are related to scale. If we choose a discretization scale which is
sufficiently small, any complex fracture interaction can be accurately represented. However, this is often
not feasible especially when simulating a large ensemble of models required for uncertainty quantification.

Most of the existing fracture network processing methods attempt to achieve the same, particularly to
increase the orthogonality of control volume connections and reduce the number of extremely small control
volumes. Subsequently this improves the accuracy of the numerical solution. All processing should be
achieved while minimizing the changes of the configuration and topology of the actual fracture network
input data.
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As mentioned in the introduction, this study is greatly inspired by previous efforts in this area (e.g.
Karimi-Fard and Durlofsky, 2016). Besides the merging of fracture nodes that violate some algebraic
constrain based on /., we also identify the angles at which fractures intersect and correct any intersection
that falls below a certain threshold value (0,,,). Particularly, we perform the following steps to obtain a
suitable fracture network for DFM simulations:

1. Find all intersections of all the fractures in the domain;

2. Sequentially discretize each fracture (from largest to smallest fracture) and check algebraic constraint
(related to /.);

3. Straighten fractures elements of node degree 2-2 or 2-1 if their angle is below a tolerance angle (8,.:,);

4. Solve remaining and/or created low angle intersections (i.e., intersection that occur at an angle below
emin-

Governing equations of the physical systems
This section briefly covers the governing equations of the physical system that was used in the uncertainty
quantification workflow, particularly the equations describing geothermal energy production.

Continuous form. The conservation of mass, in general form, is written as

np "p "p

0

E(¢z XepPpSp +V'Z xcpPpr+z xcpppqp:()a c=1 ..., n (1)
=1 =1 =1

where @ represents the porosity, x., is the molar mass fraction of component c in phase p, p, is the density,
s, 1s the saturation, and ¢, is the source term of the p-th phase respectively, and v, is the velocity of the
p-th phase.

The Darcy velocity of the p-th phase is given by

kr,
Vp= —T:Kv(pp—ppg), pElow} )

where k,, is the relative permeability, u, is the viscosity and p, is the pressure of the p-th phase respectively, K
is the permeability tensor and g is the directional gravitational acceleration defined as g#z. The conservation
of energy, required for the geothermal simulations, is described by the following equation

el _
ot 1-¢

np np np
¢Z PspUp+ U, +divz hpppvardiv(KVT)JrZ hpppqp=0, 3)
rl p=1 =1

where U, is the internal energy of fluid phase p, U, is the rock internal energy, 4, is the enthalpy of phase
P, K is the thermal conduction, and 7 is the temperature.

Discretization and Operator-Based Linearization. We apply a finite-volume discretization on a general
unstructured grid (using a TPFA for the fluxes across interfaces with upstream weighting) and a backward
(implicit) Euler time discretization strategy to both the conservation equations and obtain the following
system of equations (assuming no gravity and capillarity)

np ntl np

V[(qﬁ;l xcpppsp) - "] - AtZ ; xé ppfp Fé,A p!
/

p , 4)

+ At ppxcpqp=0, c=1..,n

p

2 XepPySp
p=1

=1

and
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"]

o,
1_¢)Ur) —(¢Z pyspUpt
=1

np
V[(qﬁz PyspUp ™t 1-¢|U,
=1
np i (5)
—AtZ > hé,péFéApHF{;ATl +Atz hop 2, =0,
1 =

where Ffp is the convective and I'. is the thermal transmissibility of interface / and phase p respectively.

For the linearization of the above system of nonlinear equations we use the Operator-Based Linearization
(OBL). In this approach, the discrete form of the mathematical equations are grouped into the state
dependent operators. These operators are subsequently calculated, exactly, in a set of supporting points. The
solution, or rather the value of the operator, for a particular state, is then multi-linearly interpolated inside a
particular hypercube in the parameter-space. The multi-linear interpolation means simple, exact, and above
all flexible (partial) derivatives for the nonlinear solution procedure. For details on the OBL framework the
reader is referred to Voskov (2017); Khait and Voskov (2017, 2018a).

Uncertainty quantification framework

The uncertainty quantification workflow utilizes a distance-based method and ranking procedure similar
to those proposed in Scheidt and Caers (2009); Scheidt et al. (2011); de Hoop et al. (2018). Distance-
based methods attempt to reduce the dimensionality and complexity of the modeling task. They can be
extremely effective for visualizing the variability of an ensemble of models, which is often high dimensional.
This dimensionality reduction is achieved by projecting onto a (much) lower-dimensional space. This is
especially efficient when a distance, or dissimilarity measure, is used that has a high correlation with the
modeling objective (e.g., predicting the distribution of total energy produced of the ensemble) (Caers, 2011).
Subsequently, the global and local structure of the response uncertainty can be visually and quantitatively
analyzed in this reduced space.

A commonly used approach for dimensionality reduction is the Multidimensional Scaling (MDS)
algorithm (Borg and Groenen, 2005). In MDS, the square symmetric distance matrix D, obtained by
taking the distances of a particular property between each ensemble member, is projected onto a Cartesian
hyperplane (after double centering it around a origin) of dimension Negucea = Nm << Ny, Where Ny is the
size of the ensemble M. For the details of the MDS algorithm we refer the reader to Borg and Groenen
(2005) chapter 12 and Caers (2011).

The dimension N, of the hyperplane required to accurately replicate the original D, depends on the
magnitude of the eigenvalues of the decomposition of the distance matrix. Typically N, attains one or two
when production data from wells are used in the computation of D. Generally in geoscience problems N,
can range from one utill six dimension(s) (Caers, 2011). The following simple example shows both the
effectiveness of reducing the size as well as detecting possible redundancy in the output space.

Fluid-flow simulations generally have high dimensional input data in the form of complex high-fidelity
models. However, decision are usually made on simple statistics, such as the amount of energy produced
from a (relatively) small set of wells. This often leads to redundancies in the output space of the simulations.
Sadly, due to the nonlinearity of the simulations, it is not necessarily easy to (a priori) predict which models
behave similarly. Therefore, using a fast way of detecting these possible redundancies in the output space
is the basis of the reduced UQ methodology. If we can predict which subset of models explains the same
variability of the full ensemble (i.e., first two stochastic moments), we can greatly reduce the computational
time of the UQ process.

In this work we utilize the coarse information, obtained from our pre-processing algorithm, to construct
the squared dissimilarity matrix, D@, of the full ensemble. Subsequently, we apply the MDS procedure
to this matrix and perform clustering based on the projected variability of the coarse representation of the
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full ensemble. The medoids of the clusters are the representative subset of models which are simulated on
the high-fidelity scale. Finally, three quantiles, particularly the P10, P50, and P90, are used to quantify the
mismatch between the full ensemble statistics and the approximate statistics from the subset of models.
Precisely, we calculate the mismatch with the following equation (Scheidt et al., 2009)

Ny
ENg = 3_]{%2 (Wél(f i) - Piole i)' + IPgL(l)u(f i) -P gltl)b (ti) + Lpg%l 1(’1') —-P BL(I)b (ti])’
7

(6)

where Ny represents the number of clusters (i.e., size of the subset of HF models), N, is the number of time-
steps, and ¢, represents the i-th time step.

Results

In this section the results of the fracture generation and cleaning are presented followed by the results of
the reduced uncertainty quantification workflow.

Fracture generation results
Figure 2 shows three examples of fracture networks generated with the above described algorithm. In these
examples the number of fractures and size of the fracture sets is a function of connectivity. The angles for
each fracture set are sampled from a random distribution. Characteristic length /. is chosen substantially
small in order to achieve a complex fracture network.

w
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. : : 6+ :
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Figure 1—Distances and similarities in the high-dimensional flow-response output space are preserved in the
reduced dimensional space (left and middle graph). Clustering will identify similar responses and this subset of
models converges to the full ensemble uncertainty characteristics (right graph). Taken from de Hoop et al. (2018).
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Figure 2—Three examples of the fracture networks with different connectivity,
generated using the algorithm in section Generation fracture networks.

An ensemble of fracture networks was generated for the analysis of the pre-processing strategy and
subsequent uncertainty quantification. A total number of 600 fracture networks were generated with a
varying degree of connectivity (200 low, 200 moderate, and 200 high connectivity fracture networks
respectively), number of fractures, and orientation of the fracture sets. The fluid-flow results presented in the
next section were performed on the 184 models with the largest connectivity. Moderate to low connectivity
results will be included in the future work.

Fracture pre-processing results

The pre-processing algorithm and its performance is first illustrated using a realistic fracture network,
generated from outcrop data (Bisdom et al., 2016). The meshes in Figure 3 are obtained using the free
software Gmsh (Geuzaine and Remacle, 2009). The figure attempts to illustrate the comparison between the
meshing results obtained from the unprocessed fracture input versus the pre-processed fracture network. A
large reduction in the degrees of freedom is observed in part (A) while a more uniform volume distribution
is observed in part (B).

Uncleaned (84K nodes) Cleaned (30K nodes)

Uncleaned (matrix cells only) Cleaned (matrix cells only)

Histogram of volumaes Histogram of volumes

2.010 4

0.008

0.006

frequency

0,002

0.000

(A) (B)

Figure 3—(A) Comparison between meshing results of the uncleaned and cleaned network. (B) Comparison of the
control volume size distribution of the uncleaned and cleaned fracture network. Modified from De Hoop et al. (2020)
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Figure 4 illustrates the differences between each level of coarsening for a geothermal simulation. The
numbers below the temperature fields correspond to the degrees of freedom in fracture and matrix cells
respectively. Even though large variations can be observed in the temperature fields, due to the large
reduction in spatial resolution, a similar response in terms of temperature at the production well can be
observed.

Field Temperature Production

2000
Time [days|

1000

10064 5598 3213 1890 1054 424
157952 45380 13928 4746 1762 560

Figure 4—Temperature response of the fracture network at different scales (field on the left and
rates on the right). The two numbers below the temperature fields at different scales indicate
the number of fracture and matrix cells respectively. Modified from De Hoop et al. (2020)

Besides studying the effect of the pre-processing on a single realizations, it is important to see the effect
on stochastic properties. Usually, decisions are made based on an ensemble of models, for example, the
ensemble of models generated in section Fracture generation results. It is important to see how the quantiles
are changing for each level of coarsening. In order to investigate this, numerical simulations were performed.

For the geothermal simulations, cold water is injected in the bottom left of the domain and water is
produced from the top right of the domain. Each well (i.e., doublet system) penetrates a fractures and
the distance between each well is roughly 800 meters. The simulation models have no flow boundary
conditions on each side of the domain. The injection well is controlled by rate (500 m*day) and an
injection temperature of 30 degrees Celsius, while the production well is set to bhp control (450 bar). The
initial reservoir temperature is 150 degrees Celsius and the initial pressure is 400 bar (i.e., high-enthalpy
geothermal system). The matrix permeability is set to 1 mD and the fracture aperture is 1 mm, resulting in
a contrast in permeability of roughly 10 (Kj,/Kyanic), resembling an average naturally fractured carbonate
system. Figure 5 shows the energy production rate for the 184 high connectivity models. Figure 6 shows
how the quantiles are changing for each of the coarsening level.

3000 40 5000
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Figure 5—Flow response of the ensemble of fracture networks for each coarsening level.
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Figure 6—Quantiles of energy production for each ensemble scale. Monotonous deviation of each coarse-
scale ensemble from the fine-scale can be observed, as well as an increase in the energy production for
each quantile. This is most likely caused by the increase in connectivity when coarsened is increased.

One artifact of the pre-processing algorithm is that disconnected networks become connected when
increasing the characteristic length scale /. (i.e., discretization accuracy). See Figure 7 as an example. This
is also observed in the flow-response as an increase in energy production due to a larger area of the reservoir
being depleted. Please note that matrix permeability and conductivity are not upscaled in these coarse-
scale realizations which also contributes to deviation from fine-scale response. This seems to imply that
the low to moderate connectivity models will deviate more from the fine-scale than the higher connectivity
models. For the UQ workflow, this would mean that the distance used for the MDS procedure would be
less representative of the distance between fine-scale ensemble members. To remedy this, we could keep
track to which fracture set each individual fracture belongs in the pre-processing algorithm and ultimately
disconnect fractures that were not connected in the unprocessed input data.
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Figure 7—Example of alterations to the fracture network based on desired discretization
accuracy /.. The proposed remedy for ensuring similar flow-behavior in the coarse scale
models is to dicsonnect fractures that have become connected due to coarsening.

In Figure 7, the .= 60 (i.e., 16 — lfineSt) can be seen as a scale at which the coarsening fails to accurately
represent the fine-scale fracture network (in terms of topology, orientation of fractures, and connectivity).
The question remains if this scale can still be used for ranking and selecting representative models for the
reduced UQ workflow, which will be answered for highly connected networks in the following section.
Finally, to further illustrate the performance of the cleaning, Figure 8 shows the connectivity of the pre-
processed versus connectivity of the input data for each level of coarsening.
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Figure 8—Displaying the behavior of the connectivity of the processed vs. raw input data as a function of coarsening levels.
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Uncertainty Quantification results

As mentioned in Uncertainty quantification framework, performing high-fidelity DFM simulations on a
large ensemble is often unfeasible and impractical. Instead of using dual-porosity models to speed up
the computation, we propose to utilize the more realistic DFM models at a coarser scale to identify
representative models. Ultimately, simulating this subset of high-fidelity models should convergence to the
same statistics as the full ensemble.

For the reduced UQ workflow in this section, we present the analysis on the 184 highest connectivity
models, as mentioned in the previous section. The coarse scale response that we utilize in the example
is based on the /. = 60 model scale. The reason for this is a trade-off between the quality of the distance
(higher for lower /.) and the computational gain of using a larger /.. Using a lower quality distance for the
MDS procedure will likely increase the number of representatives you need to select, since the correlation
between the coarse-scale and the fine-scale response is lower for larger /.. This will increase the overall
computational time since more representative models are required (which are simulated on the finest scale).
The total simulation time of the reduced UQ, as a function of /., is given by

tred.UQ (lc):NMxtprocessing (lc)+NMthim.coarse (Zc)+NK(ZC)thim.fine . (7)

The tequq 1s expect to be much smaller than #gug = Ny X fimfines SINCE Lsim fine > fsim.coarse aNd Ny >>
Nk. Computational time for the MDS and clustering procedure is negligible compared to the total time.
Processing time is dependent on the /. as well, but much smaller than #,, ... Therefore, the objective is to
minimize f.quq While also minimizing &y,

The results of the reduced UQ workflow are depicted in Figure 9. The coarse-scale response is translated
to z-scores (subtract mean and normalize by the standard deviation of the energy rate at each time-step).
Then the distances are projected into lower dimensional space using MDS and clustering is performed using
k-medoids algorithm. The centroids of each cluster is chosen as a representative and comprises the subset
of models. These models are then simulated on the fine-scale and for the computation of the cumulative
distribution function (CDF) the responses are weighted by the size of the cluster which they present (similar
to Scheidt et al. (2009)).
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Figure 9—The general workflow of reconstructing the stochastic response. First, use coarse scale information
to construct distances between ensemble members. Project into lower dimensional space using MDS and
perform clustering. Reconstruct the quantiles based on subset and compare with full ensemble statistics.
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Conclusions

In this work we have presented three main aspects which contribute to a robust and UQ quantification
workflow for naturally fractured reservoirs. Instead of the using a simplified effective media models (i.e.,
dual-porosity), we show that it’s possible to use high-fidelity DFM models to accurately represent the
complex geometry of the fracture networks. We achieve this by utilizing coarse-scale information and
selecting a subset of high-fidelity models which describe the same statistics as the full-ensemble of models.

The fracture network generation algorithm allows us to quickly generate a large ensemble of models,
depending on some input parameters (e.g., connectivity, number of fractures, orientation, etc.). Connectivity
of the final model is ensured by disconnected or connected realizations until target connectivity is achieved.
Creating a graph and computing its Laplacian allows for an easy computation of connected fracture sets
and therefore speed up this process.

The developed pre-processing method is essential in the reduced UQ workflow. Particularly, it allows
us to generate a uniformly meshed DFM model of complex fracture networks for a desired scale /., which
has a large mesh quality and therefore smooth numerical convergence. This allows for a quick way and
reliable way of ranking and partitioning the ensemble space in order to identify representative ensemble
members. The preprocessing method seems to be working bests for highly connected networks. Moderate
to low connectivity fracture networks seem to be more affected by the preprocessing strategy. Hence it is
expected that the coarser realizations result in a lower quality distance for the uncertainty quantification
procedure. A remedy for this will be included in future work and consists of a connectivity modification,
where necessary, to preserve the main flow characteristics.
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