

Delft University of Technology

Towards a methodology of system manifestation features-based pre-embodiment design

Pourtalebi Hendehkhaleh, Shahab; Horvath, Imre

DOI
10.1080/09544828.2016.1141183
Publication date
2016
Document Version
Final published version
Published in
Journal of Engineering Design

Citation (APA)
Pourtalebi Hendehkhaleh, S., & Horvath, I. (2016). Towards a methodology of system manifestation
features-based pre-embodiment design. Journal of Engineering Design, 27(4-6), 232-268.
https://doi.org/10.1080/09544828.2016.1141183

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1080/09544828.2016.1141183
https://doi.org/10.1080/09544828.2016.1141183

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=cjen20

Journal of Engineering Design

ISSN: 0954-4828 (Print) 1466-1837 (Online) Journal homepage: http://www.tandfonline.com/loi/cjen20

Towards a methodology of system manifestation
features-based pre-embodiment design

Shahab Pourtalebi & Imre Horváth

To cite this article: Shahab Pourtalebi & Imre Horváth (2016) Towards a methodology of system
manifestation features-based pre-embodiment design, Journal of Engineering Design, 27:4-6,
232-268, DOI: 10.1080/09544828.2016.1141183

To link to this article: https://doi.org/10.1080/09544828.2016.1141183

© 2016 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 05 Feb 2016.

Submit your article to this journal

Article views: 469

View related articles

View Crossmark data

Citing articles: 4 View citing articles

http://www.tandfonline.com/action/journalInformation?journalCode=cjen20
http://www.tandfonline.com/loi/cjen20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/09544828.2016.1141183
https://doi.org/10.1080/09544828.2016.1141183
http://www.tandfonline.com/action/authorSubmission?journalCode=cjen20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=cjen20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/09544828.2016.1141183
http://www.tandfonline.com/doi/mlt/10.1080/09544828.2016.1141183
http://crossmark.crossref.org/dialog/?doi=10.1080/09544828.2016.1141183&domain=pdf&date_stamp=2016-02-05
http://crossmark.crossref.org/dialog/?doi=10.1080/09544828.2016.1141183&domain=pdf&date_stamp=2016-02-05
http://www.tandfonline.com/doi/citedby/10.1080/09544828.2016.1141183#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/09544828.2016.1141183#tabModule

Towards a methodology of system manifestation
features-based pre-embodiment design
Shahab Pourtalebi and Imre Horváth

Faculty of Industrial Design Engineering, Delft University of Technology, Delft, The Netherlands

ABSTRACT
The main assumption is that complicated systems, such as cyber-
physical systems (CPSs), can be modelled by specific compositions
of system manifestation features (SMFs). SMFs are regarded as
architectural domains of a system having significance from an
operational viewpoint. As system modelling entities, SMFs
represent both physical and computing transformations of
domains. Based on mereo-operandi theory (MOT), a
computational framework for using SMFs in pre-embodiment
design of CPSs is proposed. MOT offers a theoretical platform for
concurrent modelling of architectural elements and their
operations. The traditional ‘application feature technology’ has
been generalised in order to provide a methodological basis. The
computational formalisation captures state transitions and input/
output streams, in addition to spatiotemporal, physical and/or
computational attributes of domains. Domain transformations are
represented by flows of operation (FoOs) that consist of time-
sequenced and logically constrained sets of units of operations
(UoOs), and processed by various computational methods as
procedures. The domains of SMFs are aggregated into a feasible
architecture, and their UoOs are combined into FoOs. An
application case is used to explain the concepts and to
demonstrate feasibility of the proposed approach. Further
research will focus on implementation of an SMFs-based pre-
embodiment design system and testing its feasibility and usability
with designers of CPSs.

ARTICLE HISTORY
Received 7 April 2015
Revised 6 January 2016
Accepted 8 January 2016

KEYWORDS
Cyber-physical systems; pre-
embodiment design; system
manifestation features;
mereo-operandi theory;
architecture and operation
knowledge frames

1. Introduction

1.1. Objectives of the presented work

Cyber-physical computing creates a high-level synergy among physical (analogue and
digital hardware), middleware (control and application software) and cyber (media and
knowledge) constituents of cyber-physical systems (CPSs) (Kurtoglu, Tumer, and Jensen
2010; Horváth and Gerritsen 2012). In combination with their broad functional spectrum,
the heterogeneity of the constituents and the intricacy of their interactions pose many
challenges for CPS developers (Bar-Yam 2004) (De Micheli 1996). Designers may come

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

CONTACT Shahab Pourtalebi s.pourtalebihendehkhaleh@tudelft.nl

JOURNAL OF ENGINEERING DESIGN, 2016
VOL. 27, NOS. 4–6, 232–268
http://dx.doi.org/10.1080/09544828.2016.1141183

http://orcid.org/0000-0003-3482-5492
http://orcid.org/0000-0002-6008-0570
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s.pourtalebihendehkhaleh@tudelft.nl
http://www.tandfonline.com

across some of these challenges already in the pre-embodiment design phase, where off-
the-shelf or custom-made heterogeneous constituents should be built together and
their interoperability should be achieved (Abdul-Ghafour et al. 2014). This is typical for
that family of CPSs which is referred to as complicated technical systems (Horváth and Ger-
ritsen 2013). Efficient conceptualisation of this kind of systems needs multi-disciplinary
tools and unified approaches (Sztipanovits 2012). As a novel approach, the idea of using
system-level features for modelling these systems has been introduced (Liang et al.
2012). Nevertheless, system-level feature-based support of structural configuration and
behavioural simulation of CPSs is still in its infancy even as a research issue. With the
aim of keeping pace with the pioneers, our research efforts have been devoted to the
development of the concept of system manifestation features (SMFs) for pre-embodiment
design.

Our guiding assumptions were: (i) complicated technical systems, such as CPSs, can be
modelled by using SMFs, and (ii) an SMFs-based system model can describe both the archi-
tecture and the operation of the system (Horváth and Pourtalebi 2015). The assumptions
made by Tiihonen, Soininen, and Sulonen (1996) have also been considered, namely that
system feature-based configurable systems are pre-designed systems, which: (i) need to
be adapted according to the customers’ requirements for each order or installation, (ii)
have an operation-implied or a pre-designed system architecture, (iii) consist of a large
number of off-the-shelf or only pre-designed components, and (iv) are adapted by a sys-
tematic configuration process or the producer, or by using the embedded (built-in) custo-
misation options by the end-users (Da Silveira, Borenstein, and Fogliatto 2001). As a
starting point for our research we presumed that: (i) the requirements of the engineering
part of pre-embodiment design has been completed, (ii) the concepts concerning the
overall architecture and operations of the system have been devised, and (iii) sufficient
number of pre-designed SMFs are available as components or modules. The latter obviously
minimises the need for creative or innovative design actions (Baldwin and Clark 2006).

In other research, the tools with such functionality were referred to as product configura-
tors, or product customisers (Stjepandić et al. 2015). Though it is often named differently, e.g.
as configuration design (Tiihonen et al. 1998), the challenges and specific issues of pre-
embodiment design are well acknowledged in the literature (Hotz et al. 2014). The major
novelty of our work is that we imposed a massively physical view on pre-embodiment
design and modelling. We have realised that by doing so we can develop a tool that may
go well beyond the affordances of traditional logic-based modelling tools or languages.
This is important in a comparison with the currently commercially available system model-
ling and simulation tools. It is well known that some of them, e.g. Modelica®, use an analytic
formulation (representation) of the functionality and behaviour of the physical components,
and derive the architecture accordingly. Other tools, e.g. SysML®, support system-level rep-
resentation by applying high-level logical abstractions and simplifications. A mathematical
representation of components and systems is applied by MATLAB Simulink®, Ptolemy II®
and LabVIEW®. The reason is that these systems have been developed based on traditional
system modelling and simulation paradigms, which have made huge progress in terms of
capturing the functional aspects, but did not intend to make the physicality of the system
fully tangible from an architecting point of view.

The intention of our work was to model the architecture and operations of CPSs on a
system level as well as on multiple component levels in their physicality. In addition,

JOURNAL OF ENGINEERING DESIGN 233

the target tool was supposed to support both the development of SMF entities and their
composition into a system. The development process should be guided by novel architec-
tural and operational principles (Oreizy et al. 1999). Thus, the theoretical framework
offered by the mereo-operandi theory (MOT) was used to guide the conceptualisation of
SMFs and to transfer the theoretical concepts into a computational approach (Pourtalebi,
Horváth, and Opiyo 2014b). In this paper, we present the results of the two recently com-
pleted phases of the research, which concentrated on the theoretical fundamentals of SMFs
and the computational framework (Figure 1). The next subsection gives a concise overview
of MOT, whose details can be found in Horváth and Pourtalebi (2015). Our first results indi-
cate that SMFs can be used for both system configuration (Pourtalebi, Horváth, and Opiyo
2014a) and embedded customisation (Eckert, Clarkson, and Zanker 2004).

1.2. A brief overview of MOT

MOT has been developed to underpin transdisciplinary modelling and pre-embodiment
design of complex heterogeneous systems. It includes numerous concepts to uniformly
represent various parts of complex systems and to facilitate integration of inherently
diverse hardware (HW), software (SW) and cyberware (CW) constituents (Gerritsen and
Horváth 2015). It aims to represent not only the architectural relations and composition
of these constituents as aggregated ware (AW), but also their operations and interactions
as a synergetic whole. The four assumptions of MOT are: (i) a complex system is a hetero-
geneous composition of HW, SW and CW constituents and their aggregations, (ii) the com-
ponents of a complex system should be captured on multiple levels, (iii) it is sufficient to
consider the architectural and operational characteristics and their interdependencies for
a non-exhaustive description (modelling) of systems and components, and (iv) a complex
system can be de-aggregated into a finite number of semantic entities (Horváth and Pour-
talebi 2015). It differentiates between homogeneous entities (constituents) and hetero-
geneous entities (components). MOT facilitates the representation and manipulation of

Figure 1. Implementation phases of SMFs-based support of pre-embodiment design of CPSs.

234 S. POURTALEBI AND I. HORVÁTH

architectural domains and flows of operations on various aggregation (granularity) levels,
as well as the simulation of system operations according to different application scenarios.

Bjørner and Eir (2010) raised the issue of compositionality of: (i) simple entities, (ii) oper-
ations, (iii) events, and (iv) behaviours. They used mereology to study composite entities
and to address the compositionality problem of software constituents. These principles
seem to be extendable to SMFs too. Composability can be used as a measure of the
degree to which SMFs can be assembled in various combinations to satisfy specific user
requirements (Doboli et al. 2014). The theory of SMF is seen as a complement of MOT
towards a practical methodology. This complementing theory: (i) fosters the development
of specific procedures, methods and algorithms for a unified handling of system-level fea-
tures, (ii) interlinks their architectural and operational aspects, (iii) enables the develop-
ment of SMFs ontologies and libraries, and (iv) facilitates the management of
interaction of complex systems with the stakeholders (users) and the surrounding environ-
ment (Mcgrenere and Ho 2000). In order to form a system in an aggregative manner, SMFs
should have proper interfaces that support meeting composability conditions.

MOT applies the principles of spatiotemporal mereotopology for identifying and repre-
senting the architectural elements of system and their mutual relationships (Asher and
Vieu 1995; Kim, Yang, and Kim 2008). The physical entities are interpreted as proper
parts of the whole, and defined as domains that lend themselves to certain operations
(Kim and Yang 2008). Domains are abstracted physical manifestations of components
and constituents of various aggregation levels. Though domains are defined as spatial
entities, mereotopological abstraction makes it possible to describe them without consid-
ering their actual metrics, morphology and materialisation (Borgo, Guarino, and Masolo
1996). Thereupon, MOT is able to describe all HW, SW and CW constituents notwithstand-
ing their inherent differences. MOT introduces two families of relationships, namely part-of
and connected-to/with relations (also referred to as containment and connectivity
relationships). Figure 2 introduces the possible architectural relations between com-
ponents and constituents of a complex system. Part-of relations allow a logically hierarch-
ical, multi-level de-aggregation of systems and a uniform handling of components and
constituents (without differentiating between constituents). Connected-to/with relations

Figure 2. Internal and external relationships within and among constituents and components.

JOURNAL OF ENGINEERING DESIGN 235

can describe neighbourhood, remoteness and functional relationships between com-
ponents and constituents.

By imposing a purely physical view, MOT assumes that existence is an intrinsic (an indis-
pensable) operation of all entities included in a system. When existent, each domain per-
forms either physical or computational transformations, or concurrently both. Operations
are described in terms of four generic aspects: (i) underlying principles of physical, com-
putational, informing and/or synergic effects, (ii) morphological characteristics of the
domains, (iii) conduct of the elementary operations of the domains, and (iv) flows of oper-
ations of the lower-level domains. Since HW, SW and CW have different morphologies and
operate according to different principles, the concept of unit of operation (UoO) has been
introduced in MOT. It provides a uniform scheme for representation of HW, SW and CW
constituents, as well as for AW components. In fact, UoO creates consistency with
respect to the material, energy and information streams, and the state transitions of the
corresponding architectural domains.

We hypothesised that the concept of features and the idea of feature-based design can
be generalised, adapted and reused as a methodological analogy in the context of multi-
disciplinary systems. Accordingly, the core principles of the classical feature theory have
been imported into a specific system-level feature theory (SLFT) and have been extended
with new principles that are entailed by MOT and the contexts of CPSs. Based on the con-
siderations discussed below, the proposed SLFT is actually a complement of MOT. SMFs
capture and integrate architectural and operational views, and synthesise the architectural
and operational parameters on different levels. SMFs give the opportunity for system
designers to focus their attention on those aspects of the system that are the most rel-
evant and important at a given moment.

Throughout the paper, an application case is used to explain the concepts and to
demonstrate the feasibility of the proposed approach. Actually, this is a commercialised

Figure 3. Side lift with the Pablo rehabilitation/training system.

236 S. POURTALEBI AND I. HORVÁTH

product, marketed under the fantasy name Pablo®1 (Figure 3). Developed for motor reha-
bilitation of shoulder, lower arm and hand functions, and for repetitive training, this basic
system (device) can be connected to a PC via a USB interface. Including a hand loop, an
element of the device is a sensor grip that makes it possible to perform exercises and con-
tains strength and movement sensors to measure the forces of various (cylinder and
pinch) grip patterns, and stretching and bending of the human hand. The device is able
to measure the mobility range of the arm and the different characteristics of movements.
The handle can determine which position the hand is in and when the exercise is finished.
This simple system will be used to clarify the concepts introduced in association with both
architecture and operation modelling.

2. Defining the architecture of SMFs

2.1. From traditional feature technology to SMFs

A feature is a notable property as well as a distinctive (prominent) characteristic of things
(artefacts, systems, processes and phenomena) that sets them apart from similar items for
humans or smart systems (Shah 1991). In the classical theory of engineering product fea-
tures, a feature is something that has significance in a given context (Xie and Ma 2015). For
example, form features capture regions of both prismatic and freeform industrial shapes
that have a meaning for humans or smart system agents from a semantic point of view
(e.g. chamfer, hole, rounding, sharp edge, depression, protrusion) (Bidarra and Bronsvoort
2000). This idea has been extended to applications where geometry, structure, materiali-
sation, implementation, etc. imply some meaning in the context of a particular application
(e.g. as is done by manufacturing features, assembly features, piping features, etc.)
(Syaimak and Axinte 2009). They are often called part features or application features.
Though it was addressed by many researchers, transformation between feature spaces
and conversion of feature definitions between various applications remained a partially
solvable problem due to the need for handling intrinsic meanings (Altidor et al. 2009).
On the other hand, remarkable progress has been achieved in terms of parameterised
and constraints-based feature-based design algorithms. In the last two decades, attention
was paid to ontology-based feature definition (Horváth et al. 1998), information sharing
(Kim, Manley, and Yang 2006), mapping (Tessier and Wang 2013) and feature conversion
(Kim et al. 2009). Feature-based design has had more influence on the detailed design and
planning activities of product development processes, than on the conceptual or pre-
embodiment design activities (Brunetti and Grimm 2005). This comes from the depen-
dence of meaning on the details of manifestation (Chen et al. 2006).

Theoretically, two categories of system-level features can be identified. The first cat-
egory includes features that distinguish a particular type of system from other types of
systems. We have called them paradigmatic system features (PSFs). They are generic and
abstract, and do not have explicit relations with the engineering realisation/implemen-
tation of systems. The advantage of introducing paradigmatic features is to avoid mistakes
in overall characterisation of systems based on specific details and attributes (the often-
cited ‘blind man and the elephant’ situation). Examples of PSFs of CPSs are as follows:
(i) open system boundary, (ii) run-time built architecture, (iii) non-linear behaviour, (iv)
dynamic network management, (v) decentralised control structure, (vi) context-dependent

JOURNAL OF ENGINEERING DESIGN 237

services, (vii) smart observing and reasoning, (viii) proactive operation scenarios, (ix) func-
tional autonomy, (x) multi-scale composition, (xi) self-evolving capabilities and (xii) trans-
disciplinary framework. The second category includes features that exist only in a
particular implementation of a system. Above, we referred to them as SMFs. They are con-
currently genotypic and phenotypic in nature. In our context, genotypic means that SMFs
can be used to determine the overall composition or makeup of a system, or a component
thereof. Phenotypic means that they can also be used to determine specific physical and
visual traits of a system/component. Technically, these are made possible by multi-level
and multi-aspect parameterisation of SMFs. PSFs and SMFs represent two different
levels of abstractions, but they are conceptually not independent from each other. For
instance, having wheels is a paradigmatic feature of a car, but this implies a manifestation
feature that the diameter of the wheels is, say, 18 inches. Considering these facts, we could
draw demarcation lines between paradigmatic features and manifestation features.

SMFs can be uniquely characterised by spatiotemporal, architectural and operational
attributes. Just like traditional part features (e.g. form∼, design∼ and manufacturing∼),
SMFs can be represented by computational constructs containing a structured set of inter-
related parameters, constraints, values and semantic annotations. A particular SMF may
occur multiple times in a system in different instantiations (with different sets of values
assigned to its parameters and annotations). SMFs may also appear on multiple aggrega-
tion levels. In the language of topology it means that various rougher and finer domain
topologies can be interpreted over the overall domain of a system. For instance, a
digital processor simultaneously represents an architectural domain and an operation per-
former. In a higher resolution, the domain of the processor is an aggregate of a number of
interrelated digital elements, and the operation of the processor is the sum of the specific
operations of these elements. This issue is called ‘multi-granularity of SMFs’ and will be
revisited in the next subsections from different perspectives.

SMFs are seen as prefabricated ‘components’ that can be used in designing both the
architecture and the operation of a system. From a computational point of view, an
SMF is virtual entity parametrically representing a specific domain and the related oper-
ations. However, instead of working with two separate models for architecture and oper-
ations, the proposed approach uses SMFs as dual-aspect building blocks. SMFs capture the
necessary and sufficient pieces of information about architecture and operation of a com-
ponent. Using SMFs supports fast configuration and adaptation of the architecture and
operations of systems. It also facilitates the reuse of components in pre-embodiment
design of different system variants. Nevertheless, aggregation of SMFs brings the chal-
lenge of feature interfacing, which is a well-known issue for the traditional feature
theory, into the forefront. In addition, SMFs should be made interoperable in order to
realise the functional objectives of the designed systems (Demoly et al. 2011). As men-
tioned in the literature, features trigger ideas concerning the way of organising knowledge
that facilitates computing and inferences (Ostrosi and Ferney 2007; Hotz et al. 2014).
Below, we utilise this potential from both architectural aspects and operational aspects.

2.2. Multi-level interpretation of SMFs from an architectural point of view

In this subsection, we concentrate on the interpretation of SMFs from an architectural
point of view, while in Section 2.3 we present examples for defining their prescriptive

238 S. POURTALEBI AND I. HORVÁTH

contents. In Section 2.4, knowledge frames will be proposed to enable specifying SMFs on
various aggregation levels. The starting point is that the information structures specifying
a particular SMF should include: (i) description of domains of different physical extents and
aggregation levels, (ii) capturing and representing operations happening on different
aggregation levels, and (iii) interfacing between different architecture and operation
levels. Thus, the computational representation should be flexible enough to allow both
architecture and operation aggregation and interfacing even if the architectural and oper-
ational connections of SMFs are not standardised, or do not obey set contracts.

As interpreted by MOT, an architectural/operational domain is a spatiotemporal
abstraction of the manifestation of an AW component, which may include HW, SW and
CW constituents. Accordingly, the domains of an SMF, the parts of the domains and the
relationships among them are described by spatiotemporal mereotopological operations
introduced in Horváth and Pourtalebi (2015). As architectural relationships within a
domain and between domains, part-of and connected-to/with relationships have been
introduced. For part-of relationship of physical aggregates, specific graphical and symbolic
representations have been applied. For instance, the graphical relation symbol
means that B is a part of A. Figure 4 shows various possible part-of relationships. Figure 4
should be interpreted in a physical view, as enforced by MOT. That is, the aggregate of all
first-level components is the system itself. The aggregates of second-level components are
the first-level components, and so forth-down to the levels of constituents. The various
graphical entity symbols indicate the type of architectural entities on the respective
levels of aggregation. The hierarchical relations between them indicate only logical
relationships, while the physical relationships are captured by the abovementioned mer-
eotopological expressions.

Figure 4. Various part-of relations on multiple levels of aggregation (de-aggregation).

JOURNAL OF ENGINEERING DESIGN 239

Description of the hardware constituents of an SMF is more straightforward than that of
the software constituents. The reason is that an SW constituent exists in two alternative
forms: (i) in source (language) code (when it is a kind of white box, whose content is
directly readable and changeable by programmers), and (ii) in compiled or binary code
(when it is a kind of black box, whose machine instruction content is to be processed
by processors). These two forms are discrete and need different treatment from both archi-
tectural and operational points of view. Notwithstanding that both forms should be con-
sidered in design, below we deal with only the run-time form of SW constituents. The
possible containment relationships of components and constituents can be formally
described by the following mereotopological expressions (relations):

. PSysCom1
Ab describes that component AWb is a level 1 component and as such is

directly part-of the system.
. PCom1

Aa Com
2
Ad represents that component AWd is a level 2 component and is a part-

of AWa, which is a component of aggregation level 1.
. PCom3

Af Con
4
Hg means constituent HWg is a level 4 constituent and is a part-of com-

ponent AWf, which is a component of aggregation level 3.
. PCon4 Sh Con

5
Sj means constituent SWj is a level 5 constituent and is a part-of constitu-

ent SWh, which is a constituent of aggregation level 4.

Other architectural relationships between entities are described by either connected-to
or connected-with relations. These play a dual role as: (i) spatial neighbourhood relations
and as (ii) carrier architectural relations of some operations. In the latter role, they can
be: (a) one-directional relations (expressing dependence of B on A) or (b) bi-directional
relation (expressing mutual operational interdependence of A and B). A connected-to
relation is represented by an arrow, and a connected-with relation is represented
by an arrow. In the case of the latter (operation carrying) relationships, proximity
and directness have also been considered. The graphical scheme, shown in Figure 5, rep-
resents two plates (Hfm and Hfc) of a capacitor that are remotely connected-with each other,
and there is one connector (Hft), which is in a direct connection with one of the plates, Hfc.
In Figure 5, the type of connected-to/with relations is indicated by letters placed below the
connection line (i.e. r stands for ‘remote’, and d is for ‘direct’ connection). The symbols
above the arrows (at the ends of the connection line) indicate the enabler of the
remote or direct connection of the components (i.e. g1 and g2 stand for electromagnetic
fields, and e1 for electric current).

The mereotopological relations of the entities Hfm, Hfc and Hft are described symboli-
cally as r.CConHfm

g1 wConHfc
g2 , and d.CConHft

e1 tConHfc. Note that the codes can indi-
cate different kinds of dependencies and connectivity (i.e. existence, processing, heat
producing, energy consumption, information transmission, etc.).

Figure 5. Examples of connected-to/connected-with relations.

240 S. POURTALEBI AND I. HORVÁTH

2.3. Capturing architectural entities and relationships of SMFs

Below, we follow a ‘from-concrete-to-abstract’ reasoning in explaining how architectural
entities and relationships of SMFs can be derived and represented. In other words, we
will: (i) start out from a concrete existing system of moderate complexity, (ii) identify its
SMFs, (iii) take one particular SMF, (iv) identify its components and constituents, (v)
describe their spatiotemporal mereotopological relations, (vi) specify the operational pro-
cedures and computational methods, and (vii) define the computational knowledge frame
of the SMF.

Let us revisit the Pablo system now. From an architectural point of view, this system as a
whole has a physical part and a computational part. Both can be modelled as an aggregate
of SMFs. Among others, the physical part includes an accelerometer sensor, which consists
of an MEMS (micro-electromechanical system) detector, Hf, and an ASIC (application-
specific integrated circuit) converter, As. These two parts will be used as representative
SMFs in our further investigations. The lower-level architectural components and constitu-
ents of the MEMS detector and the ASIC converter, as well as their relationships, are shown
in the lower part of Figure 6.

On a lower level (of de-aggregation), the elements of the accelerometer capture the
acceleration of movements, and convert it into a capacitance change. As shown by its
schematic architecture in Figure 7, the MEMS detector (Hf) implements this functionality

Figure 6. The overall architecture and the architectural elements of the Pablo system.

JOURNAL OF ENGINEERING DESIGN 241

through a number of hardware constituents. The proof mass (Hfp) moves up and down due
to acceleration. The springs (Hfs) at two ends of Hfp brake and reinstate it. There are two
kinds of fixed plates (Hfc) connected to V + and V–. Together with the movable plates
(Hfm), which are connected to and move with Hfp, these plates create capacitors. The
exerted acceleration changes the distance between each Hfm and Hfc plates, hence
changes the electric current. The change of the electric current is proportional to the
acceleration.

These part-of (containment) relations can be formally specified as given below. These
symbolic expressions can be read as declarative statements. For instance, the meaning
of expression (a) is: ‘The spring (Hfs), which is a constituent on the fifth aggregation
level, is a part of the MEMS (Hf), which is a constituent on the fourth aggregation level’.

(a) PCon4 Hf Con
5
Hfs

(b) PCon4 Hf Con
5
Hfp

(c) PCon4 Hf Con
5
Hfm

(d) PCon4 Hf Con
5
Hfc

(e) PCon4 Hf Con
5
Hft

Figure 8 specifies and graphically visualises the connectivity and containment relations
between the constituents of the MEMS accelerometer. The constituents are all hardware
constituents, working based on different physical phenomena and effects. The following
symbols are used to indicate the characteristic attributes of the included constituents: (i)
m: movement, (ii) r: resistance against deformation, (iii) e: electric current, and (iv) g: elec-
tromagnetic field.

Considering these, the connectivity relationships of the constituents can be described
by the connected-to and connected-with relations given below. For instance, the symbolic
expression (a) means: ‘The proof mass (Hfp) as a constituent is directly connected with the
spring (Hfs) constituent’. The enabler on the spring side of the connection is resistance
against deformation (r1), while the enablers on the proof mass side of the connection

Figure 7. Schematic architecture of the MEMS detector (Hf).

242 S. POURTALEBI AND I. HORVÁTH

are movement (m2) and electric current (e3). The symbols indicating the enablers clarify
what are shared in the mutual connections. For instance, the proof mass deforms the
spring, and the spring exerts a reinstating force. Moreover, Hfp conducts electric current
to Hfs.

(a) d.CConHfs
r1 wConHfp

m2,e3

(b) d.CConHfp
m1 wConHfm

e2

(c) r.CConHfm
g1 wConHfc

g2

(d) d.CConHfs
e4 tConHft

(e) d.CConHft
e1 tConHfc

This form of stating (by symbolic relations) of the containment and connectivity
relationships supports their computational processing.

2.4. Formal specification of architectural entities and relationships of SMFs for
computation

To capture the architectural entities and relationships of SMFs for computation, the
concept of the so-called architecture knowledge frames (AKFs) has been introduced.
Every AKF represents one particular domain of manifestation and, by doing so, forms
the spatiotemporal basis of exactly one SMF. As a structured spatiotemporal abstraction,
this domain may represent a whole system, or any one of its first-, second-, third-level, or
so forth de-aggregates, which are treated uniformly as SMFs. The abstracted architectural
domains of SMFs reflect one particular level of component aggregation. The system, as
top-level formation, manifests itself as the aggregate of the first-level compound com-
ponents (AW), while the lowest level domains of components are formed by aggregates
of HW, SW and/or CW constituents. The domains on the intermittent levels are formed
in the same aggregative manner. The specific contents of AKFs are the basis of the
digital processing of the architectural entities and their relationships. It is to be noted
that in the case of systems of higher complexity, additional levels of aggregation/de-
aggregation can be considered, and thus AKFs can in principle be extended to any
number of aggregation levels.

An AKF consists of the following sections: (i) header, (ii) domain metadata, (iii) domain
entities, (iv) entity attributes, (v) entity morphologies, (vi) spatial positions, (vii) contain-
ment relations, (viii) connectivity relations, (ix) input assumptions, (x) output guarantees,

Figure 8. Connectivity relations among the constituents of Hf.

JOURNAL OF ENGINEERING DESIGN 243

and (xi) auxiliary data. The header section contains the identifiers of all entities that can be
referenced in containment and connectivity relations, in addition to the overall attributes
and states of the domain. Altogether these form a part of the various computational infor-
mation structures describing SMFs. During computation of operations, references are
made to these fields of AKFs from operation knowledge frames (OKFs). These external struc-
tural connections of SMFs are included in the ‘domain metadata’ section of the AKFs. This
way, any web-type arrangement of domains of SMFs can be captured. The names and pur-
poses of the represented SMFs are also included in the metadata field, to support inform-
ing designers and keyword-based retrieval.

As examples, we present two instantiations of AKF for two different SMFs. The first AKF
is instantiated for the MEMS accelerometer (Hf), which is an electromechanical component.
The AKF shown in Figure 9 captures the pieces of information needed to describe the
architectural domains of this electromechanical component, including the physical acti-
vating constituents, whose names and relationships are shown in Figure 8. Figure 10
shows an instance of another AKF, which is the knowledge frame of the ASIC converter
of the accelerometer (As). This is a computational component. The AKFs of these SMFs
include the specification of the lower-level entities making up their domains, assign refer-
ence-able identifiers to each of them and specify their types, architectural attributes,
convex spatial closures and reference points relative to the reference system of coordi-
nates of the domain. The containment and connectivity relations are specified for all
included entities. In general, the morphology of the physical entities can be specified
by skeleton models (if the entity geometries are still in the development process) or by
computer-aided design (CAD) geometries (if they are standard or commercialised
components).

3. Defining the operations of SMFs

3.1. Logical framework of specifying operations

Based on the reductionist stance taken in our work, we argue that flows and units of
operations can be reasoned out from the overall operation of a system, and that the
overall system operation can be aggregated from a finite set of discrete, but interlaced
flows and units of operations. However, it does not entitle us to deal with non-linear,
stochastic or random systems. In line with these, one of the foundational assumptions
of MOT is that, similar to architectural domains, operations of SMFs can be generated
by aggregation. It has also been assumed that the flows and units of operations are
(i) discrete (individually identifiable), (ii) finite (in terms of cardinality and occurrence),
(iii) definitive (implied by physical and computational laws), and (iv) orientated (i.e.
not reversible in the operation process of a system). Below, we present the concepts
and principles that help consideration of these assumptions in the computational speci-
fication of the operations of SMFs.

Theoretically, operation of an SMF can be only existence or (existence and) transform-
ation. Every domain that is identified from an architectural point of view is supposed to be
existent, but not necessarily conducting transformation. In the case of an existence oper-
ation, the attributes of the start state and the end state of a domain are identical, i.e. a
‘no-change situation’ is idealised. In the case of a transformation operation, the start

244 S. POURTALEBI AND I. HORVÁTH

state of an existent architectural domain is converted into a different end state under the
effects of various physical phenomena. That is, manifestation changes are assumed, which
also concern the conversion of the input events, quantities and qualities into the output
events, quantities and qualities. The transformation can be physical or computing. The
overall operation of a domain is described by a flow of operation (FoO), while the operation
of the entities is described by a UoO. Since a domain is an architectural equivalent of a
particular SMF, the overall operations of SMF are captured by FoOs that are aggregates
of UoOs. Since domains may represent architectural manifestation of SMFs of various
aggregation levels, an FoO plays the role of a UoO on a higher aggregation level, while
a UoO plays the role of an FoO on a lower aggregation level. A practical implication is
that specification of a higher-level SMF requires the specification of the operations of all
incorporated lower-level SMFs. The involvement of SMFs in performing an operation
can be conditional and temporal. These issues need attention at specifying the conduct
of transformations performed by SMFs.

Figure 9. Instantiation of AKF in the case of the MEMS detector, Hf.

JOURNAL OF ENGINEERING DESIGN 245

The reasoning model shown in Figure 11 has been introduced and applied as an
attempt towards facilitating formal representation of FoOs of SMFs. According to this
model, the operations related to a domain of any architectural level can be defined by
seven conceptual elements, namely, by: (i) the description of the domain itself (D), (ii)
start state of the domain (SS), (iii) end state of the domain (ES), (iv) input events and
values (I), (v) output events and values (O), (vi) procedure of transformation (P), and (vii)
methods that are associated with procedural elements (M). Symbolically,
FoO = {D, SS, I, P, M, O, ES}. With respect to digital processing, transform-
ations are described by duals of a procedure (logic of implementing the transformation)
and methods (computational algorithms of implementing the transformation). As men-
tioned earlier, a transformation can be of physical or computational nature. A procedure
determines: (i) the UoOs, which eventually transform the concerned material, energy
and information streams, (ii) the timed logical sequences of these UoOs and (iii) the per-
manent or conditional constraints imposed on UoOs. Further explanation on these will be

Figure 10. Instantiation of AKF in the case of the ASIC converter, As.

246 S. POURTALEBI AND I. HORVÁTH

given in the following subsections. The specification of the procedures depends on the
aggregation level the domain of an SMF represents.

Due to the bijective relationship between a domain and the operations performed by it,
whenever the architectural attributes of the domain are changed, the performed operation
will also change, and vice versa. Interaction between domains and operations should be
considered across the aggregation levels. The reason is that a lower-level UoO can contrib-
ute tomultiple higher-level FoOs and/or UoOs as procedural element, or may have direct or
indirect effects on other operations. Therefore, while a system can logically be de-aggre-
gated into a containment hierarchy, its overall operation cannot be de-aggregated purely
hierarchically. As a trivial example, a processor as an architectural domain is a unique part
of the logic board and a unique aggregate of several subdomains, but it can contribute
to the realisation of operations on multiple operational levels of the system.

An FoO is a logical and temporal (timed) arrangement of transformative actions (UoOs),
whose digital processing is enabled by some associated computational methods. A
domain may be involved in multiple different physical operations at a given moment in
time, or over a time period (Gavrilescu et al. 2010). For instance, the main operation of
a processor is digital instruction processing, but its operation also consumes energy, gen-
erates heat and so forth. In order to be able to handle multi-operations of a domain, layers
have been considered for the representation and processing of elements of UoOs. The
related issues and solution will be discussed in Section 3.5.

3.2. Defining the computational procedures of operations

The transformations made by SMFs extend to material (M), energy (E) and information (I)
streams. In Figure 12, an example is given to show how higher-level operations are aggre-
gated from lower-level operations. This figure also shows how the procedural relationships
of UoOs are established on different de-aggregation levels. Like domains and parts thereof
in the architectural realm, operations are in containment relationship with each other (that
is, an operation can be specified as part of another operation). The architectural ‘con-
nected to/connected with’ relations are carriers of operational relations of FoOs that
specify the transformations of M–E–I streams. These streams are represented by arrows
in Figure 12. These show the logical ordering of the related UoOs and FoOs, but temporal
ordering or time sequences are not represented.

As shown in Figure 12, each UoO represents an FoO in a lower level. There are two types
of M–E–I streams associated with each FoO, namely: (i) internal streams (between the

Figure 11. Reasoning model for specification and computation of operations.

JOURNAL OF ENGINEERING DESIGN 247

UoOs) and (ii) external streams (that connect the UoOs of an FoO to other UoOs outside
that FoO). External M–E–I streams are actually inputs and outputs for operations of an SMF.
The external streams appearing in a lower-level FoO may be internal streams between
UoOs on a higher level, or external streams of some UoOs. For instance, the two FoOs
(FoOb and FoOc) in Figure 12 together form a higher-level FoO (FoOa). In a graphical rep-
resentation, their connectivity can be indicated by connecting the associated external
streams that have the same identifiers. Figure 13 shows the aggregation of the mentioned
FoOs.

For modelling the operations of a target system based on SMFs as building blocks, we
have to determine not only the concerned FoOs, but also the interfaces between these
FoOs. Interfaces should be able to connect SMFs according to both containment and con-
nectivity relations. Specification of the interfaces is an important issue for three reasons.
Firstly, they should allow an easy replacement of SMFs without paying attention to their
internal operations and parameters. That is, they should support flexibility and interchan-
geability. Secondly, the interfaces make it possible to define SMFs as independent model-
ling building blocks. For example, if an off-the-shelf component is used, we are not
interested in the details of its internal operation, but the interface should capture all

Figure 12. Containment and connectivity relations of FoOs.

Figure 13. Aggregation of two FoOs.

248 S. POURTALEBI AND I. HORVÁTH

pieces of information that are needed at building the component into a system as an SMF.
Thirdly, the interfaces should capture that amount of information that is exactly needed for
a correct architectural and operational embedding of an SMF. In fact, over-defined or
incompletely defined interfaces make the matching of SMFs complicated, time consuming
or even impossible.

From a computational point of view, aggregation of the operations of SMFs is facilitated
by an indexing convention, which is implemented in and applied by the modelling system.
As shown in Figure 13, the containment relationships can be rendered by comparing the
indexes of UoOs and FoOs. It means that UoOs with the same index as a given FoO should
be regarded as its de-aggregation on a lower level. The identifiers of the M–E–I streams
also help establish patterns of operational connectivity. Repeating the same stream iden-
tifiers in two FoOs indicates that these FoOs are operationally connected. Based on the
above formal specification, the operational interfaces can determine what kinds of infor-
mation need to be captured for the computational modelling of SMFs. These are: (i) iden-
tifier of the FoO, (ii) identifiers of the UoOs making up that FoO, (iii) identifiers of the
internal streams, (iv) the UoOs that are connected by the respective internal streams, (v)
identifiers of the external (outgoing and in-coming) streams, and (vi) the UoOs that
receive/send external streams. In order to capture all these pieces of information in a
compact form, the concept of matrix of streams (MoS) has been introduced. A MoS pro-
vides a uniform computational representation of all transformations made by UoOs, or
by any individual combination of them, on M–E–I streams.

Two groups of operations are associated with an FoO: (i) the operations of the UoOs
making up the FoO and (ii) the operations complementing the operations of the FoO.
As such, the latter operations are externally related to processing M–E–I streams by the
FoO. This second group of system-related complementary operations is indicated by
the symbol › (complement). The complementing operations may be operations of the
embedding environment, a coupled system, a system user, etc. All of these relationships
and the other contents are represented in the MoS, as shown graphically in Figure 14. This
figure depicts the arrangement of FoOb and the included UoOs, exemplified in Figure 12,
together with the related internal and external M–E–I streams. In the matrix represen-
tation, the operations complementing FoOb are placed into the first position of the des-
cending main diagonal of the matrix. It symbolises a kind of ‘gateway’ for both the
input and output streams. In the rest of the positions in the main diagonal, the respective
UoOs of FoOb are placed. In this context, the complementing operation represents all
operations of the embedding system, while the UoOs de-aggregated in the main diagonal
represent the operations (FoOs) of the customising SMFs.

The arrows in Figure 14(a) show the orientation, while the circles contain the identifiers
of the different M–E–I streams that are processed by the respective UoOs. The places of the
identifiers will be the same in the matrix representation as in the graphical representation
of an FoO. The size of an MoS matrix equals the number of UoOs in the FoO added by 1. As
shown in Figure 14.a, all incoming streams of the concerned FoO are included in the top
first row of the MoS, which is called input row. All outgoing streams of the FoO are included
in the left first column of the MoS, which is called output column. That is, the first row and
column of MoS always represent external streams, while the rest of the matrix describes
the internal streams of an FoO. MoS can be scaled up to capture the aggregation of an
arbitrary number of FoOs.

JOURNAL OF ENGINEERING DESIGN 249

To demonstrate the applicability of MoS formalism to a real-life case, let us take the
example of the Pablo rehabilitation device again. Through this example, we can clarify
how application-oriented meaning can be assigned to the formalism and symbols used
in Figure 15. We can also demonstrate how information about operations can be extracted
from practical processes. Mentioned earlier was that a typical operation mode of the
device is side lift. The device captures the range of the movements when side lift is exer-
cised. The two components of the device that are involved in this FoO, namely, the MEMS
detector and the ASIC converter, were discussed from an architectural perspective in
Section 2.4. They transform acceleration into capacitance change (UoOCM), and convert
the value of capacitance change into value of displacement (UoOCA), respectively. Since
they have specific operational domain and distinct operations, we regard them as two
SMFs.

Let us denote the FoO by FoOC and all complementary operations of FoOC by ›FoOC.
With these, we can construct the MoS of the two SMFs of the rehabilitation device, as

Figure 14. MoS of FoOb: (a) graphical representation of operations and streams, (b) the matrix of oper-
ations and streams.

Figure 15. Incoming, internal and outgoing M–E–I streams in the FoO of the accelerometer.

250 S. POURTALEBI AND I. HORVÁTH

shown in Figure 16(a). The descriptors of the M–E–I streams are shown in Figure 16(b). The
units of operations of the two discussed SMFs of the device are included in the main diag-
onal of the instantiated MoS. The MoS describes that UoOCM transforms an incoming
material stream, Mα (acceleration produced by the patient during physical training) and
an energy stream, Eα (input powering of the MEMS accelerometer SMF), without producing
any outgoing stream. It also shows that UoOCA transforms two incoming energy streams,
Eβ (input powering of the ASIC converter SMF) and Eγ (the voltage resulted from capaci-
tance change), respectively, into an outgoing information stream, Iα, (pieces of information
about acceleration, velocity and displacement).

Having discussed the computational representation of UoOs and the streams related to
them (on different levels of granularity), we elaborate on some issues of specifying time
dependencies of the operations of SMFs below. First, we discuss the concepts of timing
and handling of operational conditions in the specification and computation of operations
of the SMF represented by the ASIC converter in Section 3.3. Then, we use the example of
the MEMS detector to discuss the computational methods in Section 3.4. Finally, we cast
light on the contents of the knowledge frame describing its complex operations in Section
3.5, and discuss the interlacing of AKF and OKF for computational modelling and simu-
lation of SMFs on multiple levels of aggregation in Section 3.6. This approach of infor-
mation structuring and integral handling is suitable for conjoint handling of AKFs and
OKFs of arbitrary number of SMFs.

3.3. Consideration of timing and conditional constraints in computation of
operations

Obviously, operations of SMFs should happen in a controlled manner. Therefore, logical,
temporal and conditional constraints should be considered in the computation of physical
and computing operations. Towards this end, first of all, we need to operationalise the
assumptions stated in Section 3.1 and to create opportunity for a purposeful logical arrange-
ment, time scheduling and constraintmanagement of FoOs andUoOs. In the literature, time
stamping and temporal logics are widely used to capture temporal aspects of existence and
transformative processes.While time stamping is typically used to assign date and timedata
to state changes (transformations), temporal logics is used to support procedural schedul-
ing and synchronisation. For temporal management of operations, both event- and chron-
ology-oriented approaches have been proposed (Eidson et al. 2012).

Consideration of time in the formal representation of SMFs has a dual perspective: (i)
incorporation of time variables in operational processes, and (ii) time-oriented

Figure 16. Specification of the FoO of the accelerometer (UoOC): (a) the contents of MoS, and (b)
descriptors of the streams.

JOURNAL OF ENGINEERING DESIGN 251

programming and execution of computation and control of operational processes.
Systems having a large number of physical (analogue) and cyber (computing) components
pose a challenge for real-time processing and control. In the case of large complexities,
there can be a dissonance between the time required for digital computation and the
time elapsed by physical operations. The specification of SMFs is supposed to support
the resolution of this dissonance and to create a robust platform for time-sensitive com-
putation. Towards this end, every time-dependent operational process needs to be rep-
resented as a timed operation sequence (TOS) by introducing and evaluation of time
variables. The activation points in time and the durations of the units of operations of
the concerned material, energy and information streams should be included in quantitat-
ive forms in a TOS.

In the context of the Pablo rehabilitation device, there are several UoOs that should be
described as TOSs. Consider, for instance, the unit of operation UoOCA, which converts
value of the current change into value of acceleration, velocity and displacement. The pro-
cedure of this UoO includes five lower-level time-dependent units of operation:

. UoOCAA: amplifying and measuring value of the input voltage (domain: in-connector Hsi,
detector Asa)

. UoOCAT: measuring time variable (domain: oscillator Hsr, clock generator Hsc)

. UoOCAC: calculating and sending acceleration value (domain: processor Asp, out connec-
tor Hso)

. UoOCAV: calculating and sending velocity value (domain: processor Asp, out connector
Hso)

. UoOCAD: calculating and sending displacement value (domain: processor Asp, out con-
nector Hso)

The above-mentioned five lower-level units of operation need to be described as TOSs.
This can be done by including the operation’s start point in time, halt points in time,
resume points in time and end point in time. This time-dependent parameterisation of
operation flow (FoOCA) is shown in Figure 17. The start point in time and the end point
in time define the whole duration of this FoO. The change of a domain due to physical
or computational operation is considered as an event (Tan, Vuran, and Goddard 2009).
Every event has its own time duration – this explains why halt points in time and
resume points in time are made explicit in the time-oriented parameterisation of the
descriptors. For example, the stream Eg starts at t1, is halted at tC1, is resumed at tC1+Δ2

and stops at t1+Δ1. These time dependences are specified for each stream in the table
of descriptors, as shown in Figure 18. According to the applied convention, the first
item in the descriptors block defines the start time and the last item defines the end
time of an operation. As an example, the time specification for stream Eg (in the fourth
row of Figure 18) is as follows: t1, .tC1, ∧tC1+Δ2, t1+Δ1, where the first item is the start
time, the item after ‘.’ is the halt time, the item after ‘∧’ is the resume time and the last
item is the end time. An operation descriptor with one timing item only means that it
does not have duration.

It can be seen in Figure 17 that, as input of UoOCAA, Eb1 stands for the supply of energy,
while Eg and Eg′ are the inputs generated by the MEMS that detects acceleration. The input
energy streams Eb1 and Eb2 are operated on only one time. However, the stream Eb3 is

252 S. POURTALEBI AND I. HORVÁTH

Figure 17. Time-oriented parameterisation of FoOCA.

Figure 18. Descriptors of the procedure of FoOCA.

JOURNAL OF ENGINEERING DESIGN 253

operated on three times by three different UoOs. Performed on the same architectural
domain, these three UoOs form a group of operations with respect to Eb3 and are captured
by a TOS. The operation multiplicity of stream Eb3 is reflected by the content of the top row
of the MoS shown in Figure 19. In this sample case, the time constraints on the operation
of the concerned SMF are the point of time of the input and the point of time of the output
of the respective streams.

Many of the physical and computational operations of SMFs are typically executed
under (i) space, (ii) time, (iii) attribute, (iv) logical and (v) recurrence constraints. These con-
straints should also be included in the computational specification of the operations of
SMFs. Usually, space, time and attribute constraints specify a threshold (minimum)
value, or a ceiling (maximum) value or a variation interval (min/max values) for the
respected variables. The logical constraints express either propositional or production
rules. Production rule-type conditional constraints are declared as: if (conditions) then
(consequence) else (alternative). The consequences are the states of the M–E–I streams
that are influenced by the conditional events. In order to express temporal sequences,
time variables are assigned to these events in our approach.

Since the techniques of using value constraints are well known in the literature (Gold-
ratt 1990) and rather frequently used in engineering computations (Benhamou, Jussien,
and O’sullivan 2013), we do not address this issue here. We only touch upon the use
and utility of logical (if–then) and recurrence constraints, which we refer to as conditional
constraints. These are introduced at a given point in time, and either remain active in the
rest of the operation or are deactivated at a given point in time or when a given time dur-
ation is elapsed. For instance, the empty circles in the upper part of the diagram in Figure
17 introduce two conditional constraints, C1 (which specifies a logical condition) and R1
(which specifies a recurrence condition) in the context of UoOCA, These conditions are
included in the condition field of the table of descriptors, which specifies the working vari-
ables associated with the streams and the timed events too.

3.4. Defining the computational methods of operation of SMFs

Other important resources for computation of operation of SMFs aremethods that are rep-
resented by quantitative formulas based on which the transformation of the input streams
of UoOs into output streams can be computed. An arrangement of methods is needed to
transform the starting state of an SMF into the end state. The methods should be compli-
ant with physical and computational laws and principles, as well as the constraints of oper-
ation. Methods are specified by mathematical expressions, systems variables and
constraints. The physical and computational laws (e.g. gravity, electromagnetic field,

Figure 19. MoS of the procedure of FoOCA.

254 S. POURTALEBI AND I. HORVÁTH

friction, etc.) and principles are represented by equations or set of equations. System vari-
ables are groups formed by individual variables and values associated with an operation
parameter, in order to reflect relatedness. System variables quantify input parameters (e.g.
electrical DC current of 12 V, 2 mA, for 25 min), intermittent parameters and output par-
ameters (e.g. vertical displacement of 173 mm). The methods have a one-to-one relation
with the procedural elements of a UoO, but a particular method can be applied to multiple
procedural elements. Below, we give a practical example for deriving the methods from
real-life operation.

The MEMS accelerometer is an analogue electromechanical component that detects
acceleration based on the movement of capacitor plates attached to a spring. As illus-
trated in Figure 20, it converts the detected acceleration into capacitance change, ΔC.
The input acceleration produces a dynamic force in the proof mass (F = m a), which
moves the plates against the spring. In turn, the spring deforms and causes a displace-

ment × on the capacitive plates (x = F
ks

, where ks is the spring constant (Young’s

modulus)). Knowing that x = d
DC
C0

(where d is the distance between the constant

plates, C0 is the initial capacitance and ΔC is the change of capacitance proportional
with displacement x), the change in capacitance is proportional to acceleration (Lyshevski
2002). These transformative steps can be described by one equation:

DC = mC0
ksd

a.

Many parameters of the MEMS accelerometer, such as Young’s modulus of elasticity of
the spring material, the proof mass, the distances between capacitor plates and the initial
capacitance, are constant. Taking this into consideration, we can define a so-called accel-

erometer constant (ka) that can be expressed as ka = ksd
mC0

. Using this, the relationship

between the input and output quantities of the operational domain representing the
MEMS accelerometer is a = kaDC. These equations are the basis of the computational
method and algorithm.

The ASIC converter performs computational operations. It is a chipset that converts the
value of capacitance change, ΔC, into a displacement value. As an operational domain, it

Figure 20. MEMS accelerometer (Fedder et al. 2008).

JOURNAL OF ENGINEERING DESIGN 255

includes an (i) oscillator, (ii) a clock generator, (iii) computing units, (iv) detectors and (v)
filters. The UoOs of the converter are described in Section 3.3. Knowing that a = kaDC,

and d = tv0 + 1
2
t2a, an equation describing the operation of the converter (i.e. converting

the value of the input voltage to the distance) can be derived. The ASIC converter applies a
Monte Carlo method when the acceleration is varying. Assuming that the value of accel-
eration in the second equation is constant, the displacement can be calculated by consid-
ering the time (t), accelerometer constant (ka), value of current change (ΔC) and initial
speed (v0). Thus, the computational method can be described by the following equation:

a = kaDC,

�v = tkaDC,

d = tv0 + 1
2
t2kaDC.

It should be taken into consideration at applying the method that it is accurate only in
the case of low acceleration and short distances.

3.5. Formal specification of operations of SMFs for computation

Resembling the formalism of AKFs, OKFs have been defined and used as means of struc-
turing the information needed to describe physical and computational operations of SMFs.
An AKF captures domain-specific containment (architectural aggregation) and connec-
tivity (architectural dependence) information for computing, whereas an associated OKF
describes an FoO and multiple units of physical and computational operations on some
aggregation level. OKFs have a complex and sophisticated architecture since they have
been designed to capture all information necessary for computation. The information is
used for: (i) creating a pre-embodiment artefact model, (ii) integration of the compu-
tational methods/algorithms and (iii) simulation of the behaviour of an SMF in various con-
texts. In addition to time-sequenced operations, the information structure of OKFs can
describe concurrent multi-physics operations and can be used as the basis of controlling
parallel computations of operations. From a computational viewpoint, every OKF is associ-
ated (exchanges data) with the AKF of a particular SMF. This will be discussed in the next
subsection.

An OKF consists of the following sections: (i) header, (ii) operation metadata, (iii) domain
states, (iv) domain transformations, (v) operation constraints, (vi) units of operation, (vii)
operation layers and (viii) auxiliary data (Figure 22). The header section contains the iden-
tifiers of all entities that can be referenced by internal and external connectivity (oper-
ation) relations. It extends to the symbols (variables) used for the procedural elements
(UoOs), M–E–I streams transformed by the domain, and the states and events of the
domain. The metadata field of the OKF contains information about the FoO and the cor-
responding overall domain. The description of the operational state of the domain
includes the start state and the end state, the specification of the timing of the streams,
and the input and output events. The transformation section includes the contents of
the MoS, and the information about the numerical and algorithmic processing of the con-
cerned FoO. The operation constraints section specifies the overall time stamps, the

256 S. POURTALEBI AND I. HORVÁTH

scheduling constraints for the FoO and the operation constraints with regards to the
changes in the M–E–I streams. The section of units of operation includes the identifiers
of the subdomains and the UoOs performed on them. This organisation of the content
of the OKFs makes it possible to refer to one or more UoOs of an OKF from a higher-
level OKF. Introducing the operation layer concept, and the related section, in the OKF
makes it possible to handle multi-state, concurrent and hierarchical operations.

An important element of the OKF formalism is the use of layers for processing
coinciding physical and computational operations. Actually, layering allows separating
(computational) concerns, but also avoiding possible conflicts of computing concurrent
operations (Figure 21). Introduction of layers not only rationalises the computational spe-
cification of operations, but also provides flexibility in processing concurrent elements of
operation. For instance, layering makes the various states of software (language code,
compiled executable, processor instruction) describable. Similarly, two or more different
concurrent operations of components, whose computation needs different methods,
can be captured (e.g. dynamic loading, stress calculation and thermal dilatation calculation
can be combined into a multi-physics operation). In addition, layering also supports the
integral treatment of primary, secondary and tertiary physical effects (e.g. rotational
motion of a rubber wheel, the wear due to friction and the material behaviour on a mol-
ecular level). Each layer captures those alternative operations that are related to the same
subdomain. Layers are not considered to be independent of each other. On the contrary,
they are defined to share architecture and operation identifiers and variables. In this way,
they can connect individual operations into a composite operation, which is needed in
computation of multi-physics operations. For instance, an energy consumption variable
used in a layer assigned to energy change can be specified as dependent on the tempera-
ture variable used in another layer assigned to heat change. The status of the individual
variables and constraints described in the various layers can indicate if execution of an
operation is possible, or not.

Figure 21. Multi-layer view of a UoO.

JOURNAL OF ENGINEERING DESIGN 257

Figure 22. Instantiation of OKF in the case of FoOcm.

258 S. POURTALEBI AND I. HORVÁTH

A typical example of using layers in computing the simultaneous changes due to mul-
tiple concurrently present physical changes is consideration of effects of temperature vari-
ations in a wide temperature range on the MEMS accelerometer, which need to be
minimised in the process of optimisation (Liu et al. 2015). Because of the temperature vari-
ations thermal deformation occurs, which has a negative effect on the output performance
of the accelerometer (Wang, Li, and Rizos 2009). The main operation (i.e. detecting the
amount of acceleration) and the accompanying operation (i.e. deformation under
varying temperature) can be described using two layers. The two layers contain the
data needed for the computation of both respective operations, and the results of the
computations on the layers can be blended when they are available. The assignment of
computational methods to the layers of the springs of the detector, which connect the
proof mass to the frame, can be seen in the OKF shown in Figure 22. Calculating the
changes for both layers in the case of a sequence of sufficiently small Δt, we can find
the deviations of the output capacitance and resonance frequency caused by fluctuations
of temperature. The influence of temperature on Young’s modulus of elasticity of the
spring material is approximated by the following method:

k(T) = k(To)+ k(To) zE DT ,

where k(T) is Young’s modulus of elasticity of the spring material at a temperature T, k(To)
is Young’s modulus at the ambient temperature To, ζE is the temperature coefficient of
Young’s modulus and ΔT is the relative temperature change. The deflection of the
beam parts of the spring can be calculated by the following method:

d = 2
F
4

()
l3

k(T)I

()
,

where d is the deflection, F is the acceleration force, k(T) is the actual Young’s modulus of
the spring material, and I is the moment of inertia of the spring beam. The data handled on
the layers are derived partly from the general specifications in the domain states, domain
transformations, operation constraints and units of operation sections of the concerned
OKF and partly from the contents of the descriptive fields of the related AKF.

The indexes in the OKF shown in Figure 22 refer to domains and streams. Due to the
fact that a UoO can be referred to from multiple different aggregation levels, attention
is to be paid to parameterisation. The issue is that parameters used on different levels
are not independent from each other. Certain parameters and parameter relationships

Figure 23. Interlacing the metadata of AKFs and OKFs.

JOURNAL OF ENGINEERING DESIGN 259

may be shared by the different levels, but some parameters may be relevant just on a par-
ticular level of aggregation. In order to be able to handle the variables on different levels,
the shared parameter variables are specified as two-tuples such that V = {v, n}, where v is
a valuated variable used in an SMF and n is the aggregation level. However, in computing a
mathematical equation or evaluating a logical relationship only those parameters are con-
sidered, which belong to the same aggregation level.

4. Interlacing AKFs and OKFs for computational modelling and simulation
of SMFs on multiple levels of aggregation

4.1. Connections among AKFs and OKFs

We focused on the specification of the descriptive information structures in the preceding
sections. Therefore, we separated the architectural and operational aspects and the archi-
tectural and the OKFs. However, they are integral elements of SMFs and should be pro-
cessed in a conjoint manner when SMFs are used for artefactual modelling of a system,
or when the operation of systems built up by SMFs is computationally simulated. We
refer to the link between the architecture and OKFs as interlacing. From a data processing
point of view, interlacing is enabled by a set of references (field pointers) among the OKFs
and the AKFs associated with them. This creates a composite view whose advantage is that
it involves both the architectural and the operational aspects when systems are developed
by using SMFs as modelling entities. On the one hand, the introduced AKF and OKF spe-
cification formalism rationalises and simplifies the development and modification of SMFs,
and, on the other hand, it supports a dynamic artefactual modelling and behavioural simu-
lation of heterogeneous systems based on pre-programmed SMFs and structures thereof.
A significant advantage of the described approach is its flexibility with regards to aggrega-
tion and de-aggregation.

There are data fields included in the AKFs and OKFs for the sake of representing lower-
level entities. In AKFs, this data field is named domain entities. In OKFs, this data field is
called units of operation (Figure 23). The lines show the mutual relations between the

Figure 24. Containment and connectivity relations among AKFs of various levels.

260 S. POURTALEBI AND I. HORVÁTH

metadata fields of two complementary knowledge frames, as well as those among the
domain entities and the associated units of operations. The reference identifiers used con-
sistently in both types of knowledge frame helps to simplify the search in and link run-time
associated frames. Considering that one architectural domain may be linked to several
UoOs and vice versa, multiple reference identifiers are typically included in the metadata
fields. The simultaneous reference to the domains entities and to the units of operation in
the OKFs offers an opportunity for a direct checking of the correctness of the specification
of the contents of the frames before computation.

4.2. Multi-level handling of knowledge frames

Interlacing happens not only horizontally, that is between the fields of AKF and those of
the corresponding fields of the OKF, but also vertically, that is among the specific fields
of AKFs and OKFs representing different aggregation levels. Figure 24 shows the relation-
ships among AKFs describing unique architectural components of an aggregate SMF. The
information about containment can be retrieved from the metadata fields of the prede-
fined SMF. Connectivity relations are specified among the subordinate components
within an AKF, and make it possible to establish operational relations among them. The
so-called permanent internal containment and connectivity relations are coded when
the contents of an SMF are specified. Therefore, these relations can be changed only by
redefining the whole SMF. Other parts of the relations, called dynamic external contain-
ment and connectivity relations, are established when SMFs are combined into structures
in the design process. The data concerning these relations are included in the respective
aggregate level AKF and OKF in run-time. The connectivity data can be referred from the
fields of the aggregate-level frames to the fields of any lower-level frames, as needed by
the intended operation.

The dynamic external relations give the basis for describing time- and constraint-
dependent operations, i.e. controlled transformations of M–E–I streams. An explanatory
example is given in Figure 25. In this case, two aggregation levels of operations are con-
sidered. The top matrix (MoSC) represents the streams of the accelerometer sensor
(FoOC), which is an aggregation of the MEMS acceleration detector (UoOCM) and the
ASIC converter (UoOCA). The streams of the MEMS detector (MoSCM) are shown on the
left side of the figure and the streams related to the ASIC converter (MoSCA) are

Figure 25. Streams establishing operational relations on two levels.

JOURNAL OF ENGINEERING DESIGN 261

demonstrated on the right side of this figure. The two aggregation levels are interrelated
by the transformed streams.

The internal and the external operational relations are shown in the respective matrices
of streams (Figure 25). The higher-level UoO concerns one material stream, one infor-
mation stream and three energy streams. These streams variously appear in the lower-
level UoOs. For example, after being transferred into FoOC, the material stream, Mα, is
transformed by UoOCMP. In MoSC, the external energy supply stream, Eb, is received by
UoOCA. MoSCA provides power for all lower-level UoOs. The appearance of the indices
of a stream in a lower-level indicates that the concerned stream is de-aggregated. As an
example, by de-aggregating the information stream (Ia) we get to the three lower-level
streams. In the MoSC, there is an internal energy stream (Eg) from UoOCM to UoOCA. As
explained before, the MEMS detector detects the acceleration and generates a pro-
portional output voltage, Eg, which is converted into information about the acceleration,
Ia1, velocity, Ia2, and displacement, Ia3, by the ASIC converter. In the lower aggregation
level, Eg is an external stream from FoOCM to FoOCA that connects the two corresponding
MoOs. These transformations can be modelled and processed through the multi-level
handling of operational relations, as described above.

5. Discussion, conclusions and future work

5.1. Discussion of the new insights and the target application

MOT was presented in one of the authors’ earlier papers (Horváth and Pourtalebi 2015);
therefore only the details of the SMF theory and its implications for the system-level
design methodology are discussed. The constructs proposed by MOT have been used
for architecture and operation modelling of SMFs as building blocks in pre-embodiment
design of heterogeneous systems. SMFs naturally implement what is called HW, SW and
CW co-design (Wolf 1994). Though the idea of using parameterised features in CAD pro-
cesses is well known and has reached a mature level in commercialised CAD systems, the
idea of SMFs-based configuration and adaptation of heterogeneous systems has been
considered just recently. This paper makes an attempt to contribute to the further devel-
opment of this approach. Therefore, like in the ‘classical’ part feature theory, various issues
of information structuring and parameterisation have been addressed. Parameterisation
has been considered not only from geometric and structural aspects in the presented
work, but also from a semantic aspect.

The main contribution of the presented work is a novel theory for SMF-based architec-
ture modelling and operation simulation of heterogeneous systems (consisting of hard-
ware, software and cyberware components) in the pre-embodiment phase of
development. A strictly physical view is enforced, which applies the principle of aggrega-
tion in the generation of the architecture and the operations of a system, rather than that
of abstraction. For a consistent specification of the architectural and operational aspects of
SMFs, AKFs and OKFs have been introduced. Their information structures are the basis of
the artefactual modelling of the domains of SMFs, and the simulation of the conceivable
operations in the pre-embodiment phase of system development. The proposed SMF
theory complements MOT and facilitates the realisation of a computer-supported

262 S. POURTALEBI AND I. HORVÁTH

system configuration and adaptation methodology, as well as the development of a CAD
tool with an intended application in embedded customisation (Elgh 2014).

During our research we obtained some new insights. For instance, due to aggregate
complexity, the information structures needed to describe the architectural and oper-
ational characteristics of SMFs cannot be anything else but complicated. For this reason,
it was inevitable to introduce some level of modularity with respect to entity specification
and software programming. The modularisation of the architecture and operation infor-
mation structures led to a large number of information constructs, and to a multitude
of relationships among them. On studying practical cases, it was recognised that compo-
sability of SMFs was strongly influenced by the number and nature of relationships. In our
approach, various constraints (e.g. temporal, logical) are applied to the relationships, the
combination of which has an important role in fulfilling specific composability conditions.
Composability is the degree to which SMFs can be assembled in various combinations to
satisfy specific system and user requirements. A composition of SMFs should meet at least
the major composability conditions in order to form an architecturally and operationally
correct and feasible system. However, constraints cannot be predefined exhaustively
when an SMF is created, since the need for them may emerge in the composition
process. For the time being, we have not investigated the solution opportunities for this
issue and if any systematic method exists. The same applies to dynamic constraints man-
agement and system compositionality analysis. To increase composability of SMFs, suffi-
cient functional and interfacing information is to be included in the specification of the
related information constructs. The currently proposed solution is based on formalised
input assumptions and output guaranties.

We are currently working on the computational-level detailing of the SMFs-based meth-
odology in order to be able to transfer it to a testable prototype tool. In this first phase of
the work our, efforts were concentrated on guaranteeing feasibility and achieving effi-
ciency in terms of the procedures, methods and instruments. Furthermore, it was also
our goal to make the specification, operationalisation and exploitation of a large
number of SMF possible. Even though we have recognised the advantages of a parallel
specification or augmentation of the proposed computational approach with an SMFs-
based, user-orientated pre-embodiment design methodology, we could not accomplish
it yet because of the necessary experimental work. This will be done in the next phase
of our research, together with the practical investigation of utility and usability issues.

Many published papers address the idea of transdisciplinary conceptualisation of CPSs
and incorporating changeability into system architectures. The presented work may have
an impact in this respect since architecture or operation configuration of consumer dur-
ables by end-users and embedded customisation of human-cantered heterogeneous
systems are gaining importance in current days. As argued by Fricke and Schulz (2005),
‘systems to be delivered must be designed not only to meet customer or market needs,
but also increasingly to meet requirements and constraints of systems sharing its oper-
ational context and throughout their entire lifecycle’ and ‘Flexibility, agility, robustness,
and adaptability as four key aspects of changeability will be defined and described’. The
methodologies and the tools used in configuration and early design of systems must
provide an opportunity for upgrading the architectural components and the functional
scope of system already in service, or for releasing a new version of it in a fast, reliable
and economic procedure (Chandrasegaran et al. 2013). The SMF approach outlined in

JOURNAL OF ENGINEERING DESIGN 263

this paper enables achieving flexibility, agility, robustness and adaptability in system con-
figuration and customisation.

5.2. Conclusions and propositions

As system modelling entities, SMFs may represent both physical and computing trans-
formations of the domains. A system model can be formed by aggregating the domains
into a feasible structure and combining their UoOs into FoOs. Parameterisation of SMFs
comprising HW, SW and CW constituents represents a challenge because of the associated
heterogeneity and complexity issues (Merali and Mckelvey 2006). Nevertheless, a straight-
forward and comprehensive constraints management and satisfaction are needed. To the
best of our knowledge, no underlying mathematical theory has been developed for para-
metrised handling of SMFs. Being aware of the difficulties, we could strive after only a
partial theory supporting parameterised computational processing of SMFs. We believe
that the main advantages of the SMF-based approach are as follows:

(1) Connecting previously separated areas of system design such as designing analogue
hardware, digital hardware, system and application software, knowledge structures,
concept ontologies, information/data models and multimedia contents.

(2) Providing a uniform system development strategy and methodology for the pre-
embodiment design phase of system development, by only incrementally deviating
from the currently applied technologies, methodologies and best practices.

(3) Making possible for systems designers to focus on individual elements without losing
sight of the overall architecture and operation framework, and without drowning
designers in cognitive burdens.

(4) Allowing dynamic modelling and easy modification of the system concept by various
aggregates of domains and FoOs on a relatively high level.

(5) Making system modelling transparent for each stakeholder representing different pro-
fessional fields, balancing between different views and reaching a faster agreement
this way.

5.3. On-going and future research

Involving multiple Ph.D. research projects, the ultimate targets of our work are the devel-
opment of a practical methodology and a supporting software tool for a systematic pre-
embodiment design and an embedded customisation of CPSs (Pourtalebi, Horváth, and
Opiyo 2013). An SMFs-based workbench is being developed based on the theory pre-
sented in this paper. The workbench includes a suite of tools for: (i) development of
SMFs of multiple aggregation levels, (ii) management of SMFs in indexed and extendable
repositories, (iii) construction of SMF structures, (iv) modification of systems by embedding
SMFs, and (v) simulation of the operation and behaviour of systems in the pre-embodi-
ment design phase of development (Wache et al. 2001).

As indicated above, our future research will focus on: (i) further theoretical underpin-
ning of the computational processing methodology of SMFs, (ii) development of a meth-
odology for an SMFs-based pre-embodiment design of quasi-linear CPSs, and (iii)

264 S. POURTALEBI AND I. HORVÁTH

validation of the utility of the computational framework and the SMFs-based pre-embodi-
ment design methodology with end-users. Two papers are being written at this moment
to discuss the computational constructs that are needed for computer processing of SMF
procedures and data, and to present the methodology proposed for composition of SMFs
and system modelling. More specifically, the first paper will concentrate on what pieces of
information should be included in computational constructs and how the transition from
genotypes through phenotypes to instances of SMFs should be handled by a software
toolbox, also considering the issues of knowledge engineering. The second paper will
explain how the phenotypes of SMFs are composed and instantiated in the process of
modelling a specific CPS. It will also address methodological issues in order to support
system designers to tackle composability challenges with the aid of the SMF-based mod-
elling toolbox.

Note

1. See http://tyromotion.com/en/products/pablo.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Shahab Pourtalebi http://orcid.org/0000-0003-3482-5492
Imre Horváth http://orcid.org/0000-0002-6008-0570

References

Abdul-Ghafour, S., P. Ghodous, B. Shariat, E. Perna, and F. Khosrowshahi. 2014. “Semantic
Interoperability of Knowledge in Feature-based CAD Models.” Computer-Aided Design 56: 45–57.

Altidor, J., J. Wileden, Y. Wang, L. Hanayneh, and Y. Wang. 2009. “Analyzing and Implementing a
Feature Mapping Approach to CAD System Interoperability.” Proceedings of ASME 2009
International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, San Diego.

Asher, N., and L. Vieu. 1995. “Toward a Geometry of common sense: A semantics and a complete
axiomatization of mereotopology.” IJCAI (1) Citeseer, 846–852.

Baldwin, C., and K. Clark. 2006. “Modularity in the Design of Complex Engineering Systems.” In
Complex Engineered Systems, edited by D. Braha, A. A. Minai, and Y. Bar-Yam, 175–205. Berlin:
Springer.

Bar-Yam, Y. 2004. “Multiscale Variety in Complex Systems.” Complexity 9 (4): 37–45.
Benhamou, F., N. Jussien, and B.A. O’sullivan. 2013. Trends in Constraint Programming. West Sussex:

Wiley-ISTE.
Bidarra, R., and W. F. Bronsvoort. 2000. “Semantic Feature Modelling.” Computer-Aided Design 32 (3):

201–225.
Bjørner, D., and A. Eir. 2010. “Compositionality: Ontology and mereology of domains.” In Concurrency,

Compositionality, and Correctness. Lecture Notes on Computer Science, 5930. Berlin Heidelberg:
Springer, 22–59.

Borgo, S., N. Guarino, and C. Masolo. 1996. “A Pointless Theory of Space Based on Strong Connection
and Congruence.” KR 96: 220–229.

JOURNAL OF ENGINEERING DESIGN 265

http://tyromotion.com/en/products/pablo
http://orcid.org/0000-0003-3482-5492
http://orcid.org/0000-0002-6008-0570

Brunetti, G., and S. Grimm. 2005. “Feature Ontologies for the Explicit Representation of Shape
Semantics.” International Journal of Computer Applications in Technology 23 (2–4): 192–202.

Chandrasegaran, S. K., K. Ramani, R. D. Sriram, I. Horváth, A. Bernard, R. F. Harik, and W. Gao. 2013.
“The Evolution, Challenges, and Future of Knowledge Representation in Product Design
Systems.” Computer-Aided Design 45 (2): 204–228.

Chen, G., Y. S. Ma, G. Thimm, and S. H. Tang. 2006. “Associations in a Unified Feature Modeling
Scheme.” Journal of Computing and Information Science in Engineering 6 (2): 114–126. doi:10.
1115/1.2194910.

Da Silveira, G., D. Borenstein, and F. S. Fogliatto. 2001. “Mass Customization: Literature Review and
Research Directions.” International Journal of Production Economics 72 (1): 1–13.

De Micheli, G. 1996. “Hardware/Software Co-design: Application Domains and Design Technologies.”
In Hardware/Software Co-design, edited by G. De Micheli and M. Sami, 1–28. Dordrecht: Springer.

Demoly, F., X.-T. Yan, B. Eynard, L. Rivest, and S. Gomes. 2011. “An Assembly Oriented Design
Framework for Product Structure Engineering and Assembly Sequence Planning.” Robotics and
Computer-integrated Manufacturing 27 (1): 33–46.

Doboli, A., A. Umbarkar, V. Subramanian, and S. Doboli. 2014. “Two Experimental Studies on creative
Concept Combinations in Modular Design of Electronic Embedded Systems.” Design Studies 35 (1):
80–109.

Eckert, C., P. J. Clarkson, and W. Zanker. 2004. “Change and Customisation in Complex Engineering
Domains.” Research in Engineering Design 15 (1), 1–21.

Eidson, J. C., E. Lee, S. Matic, S. Seshia, and J. Zou. 2012. “Distributed Real-time Software for Cyber–
physical Systems.” Proceedings of the IEEE 100 (1): 45–59.

Elgh, F. 2014. “Automated Engineer-to-order Systems – A Task-oriented Approach to Enable
Traceability of Design Rationale.” International Journal of Agile Systems and Management 7
(3–4): 324–347.

Fedder, G. K., R. T. Howe, T.-J. K. Liu, and E. P. Quevy. 2008. “Technologies for Cofabricating Mems and
Electronics.” Proceedings of the IEEE 96 (2): 306–322.

Fricke, E., and A. P. Schulz. 2005. “Design for Changeability (DFC): Principles to Enable Changes in
Systems Throughout Their Entire Lifecycle.” Systems Engineering 8 (4): 342–359.

Gavrilescu, M., G. Magureanu, D. Pescaru, and A. Doboli. 2010. “Accurate Modeling of Physical Time in
Asynchronous Embedded Sensing Networks.” Intelligent Systems and Informatics (SISY), 2010 8th
International Symposium on IEEE, 477–482.

Gerritsen, B. H., and I. Horváth. 2015. “Advancements in Advanced Modelling of Complex Products
and Systems.” Engineering Computations: International Journal for Computer-Aided Engineering
and Software 32 (1): 1–4.

Goldratt, E. M. 1990. Theory of Constraints. New York, NY: North River Press.
Horváth, I., and B. Gerritsen. 2012. “Cyber-physical Systems: Concepts, Technologies and

Implementation Principles.” Proceedings of the International Tools and Methods of Competitive
Engineering Symposium, Karlsruhe, Germany: Delft University of Technology, 19–36.

Horváth, I., and B. Gerritsen. 2013. “Outlining Nine Major Design Challenges of Open, Decentralized,
Adaptive Cyber-physical Systems.” Proceedings of ASME 2013 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference, Portland, OR.

Horváth, I., and S. Pourtalebi. 2015. “Fundamentals of a Mereo-Operandi Theory to Support
Transdisciplinary Modelling and Co-design of Cyber-physical Systems.” Proceedings of ASME
2015 International Design Engineering Technical Conferences, Boston, MA.

Horváth, I., J. Pulles, A. Bremer, and J. Vergeest. 1998. “Towards an Ontology-based Definition of
Design Features.” Proceedings of the Workshop on Mathematical Foundations for Features in
Computer Aided Design, Engineering, and Manufacturing, SIAM, 1–12.

Hotz, L., A. Felfernig, A. Günter, and J. Tiihonen. 2014. “A Short History of Configuration
Technologies.” In Knowledge-based Configuration – From Research to Business Cases.
San Francisco, CA: Morgan Kaufmann, 9–19.

Kim, O., U. Jayaram, S. Jayaram, and L. Zhu. 2009. “An Ontology Mapping Application Using a Shared
Ontology Approach and a Bridge Ontology.” Proceedings of ASME 2009 International Design

266 S. POURTALEBI AND I. HORVÁTH

http://dx.doi.org/10.1115/1.2194910
http://dx.doi.org/10.1115/1.2194910

Engineering Technical Conferences and Computers and Information in Engineering Conference,
San Diego.

Kim, K.-Y., D. G. Manley, and H. Yang. 2006. “Ontology-based Assembly Design and Information
Sharing for Collaborative Product Development.” Computer-Aided Design 38 (12): 1233–1250.
http://www.sciencedirect.com/science/article/pii/S0010448506001680.

Kim, K.-Y., and Yang, H., 2008. “The Role of Mereotopology and SWRL Rules to Represent Joint
Topology Information for Design Collaboration.” Proceedings of ASME 2008 International
Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, American Society of Mechanical Engineers, 131–139.

Kim, K.-Y., H. Yang, and D.-W. Kim. 2008. “Mereotopological Assembly Joint Information
Representation for Collaborative Product Design.” Robotics and Computer-Integrated Manufacturing
24 (6): 744–754. http://www.sciencedirect.com/science/article/pii/S0736584508000367.

Kurtoglu, T., I. Tumer, and D. Jensen. 2010. “A Functional Failure Reasoning Methodology for
Evaluation of Conceptual System Architectures.” Research in Engineering Design 21 (4): 209–234.
doi:10.1007/s00163-010-0086-1.

Liang, H., X. Nannan, K. Zhejun, and Z. Kuo. 2012. “Review of Cyber-physical System Architecture.”
Proceedings of 15th IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops (ISORCW), Shenzhen, Guangdong.

Liu, G., F. Yang, X. Bao, and T. Jiang. 2015. “Robust Optimization of a Mems Accelerometer
Considering Temperature Variations.” Sensors 15 (3): 6342–6359.

Lyshevski, S. E. 2002. Mems and Nems: Systems, Devices, and Structures. Boca Raton, FL: CRC Press.
Mcgrenere, J., and W. Ho. 2000. “Affordances: Clarifying and Evolving a Concept.” Graphics Interface,

Montreal, Canada.
Merali, Y., and B. Mckelvey. 2006. “Using Complexity Science to Effect a Paradigm Shift in Information

Systems for the 21st Century.” Journal of Information technology 21 (4): 211–215. doi:10.1057/
palgrave.jit.2000082.

Oreizy, P., M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. L. Wolf. 1999. “An Architecture-based Approach to Self-adaptive Software.” IEEE Intelligent
Systems, 14 (3): 54–62.

Ostrosi, E., and Ferney, M., 2007. “Fuzzy Product Configuration in Advanced CAD Systems.” In Digital
Enterprise Technology, edited by P. Cunha and P. Maropoulos, 225–232. New York, NY: Springer.

Pourtalebi, S., I. Horváth, and E. Opiyo. 2013. “Multi-aspect Study of Mass Customization in the
Context of Cyber-physical Consumer Durables.” Proceedings of ASME 2013 International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference,
Portland, OR.

Pourtalebi, S., I. Horváth, and E. Z. Opiyo. 2014a. “First Steps Towards a Mereo-Operandi Theory for a
System Feature-based Architecting of Cyber-physical Systems.” In INFORMATIK 2014, Big Data –
Komplexität Meistern, edited by E. Plödereder, L.G., E. Schneider, and D. Ull (Hrsg.), 2001–2006.
Stuttgart: GI.

Pourtalebi, S., I. Horváth, and E. Opiyo. 2014b. “New Features Imply New Principles? Deriving Design
Principles for Mass Customization of Cyber-physical Consumer Durables.” Proceedings of the
TMCE, Budapest, Hungary, 95–108.

Shah, J.J. 1991. “Assessment of Features Technology.” Computer-Aided Design 23 (5): 331–343.
Stjepandić, J., E. Ostrosi, A.-J. Fougères, and M. Kurth. 2015. “Modularity and Supporting Tools and

Methods.” In Concurrent Engineering in the 21st Century, 389–420. Cham, Switzerland: Springer
International Publishing.

Syaimak, A., and D. Axinte. 2009. “An Approach of Using Primitive Feature Analysis in
Manufacturability Analysis Systems for Micro-milling/Drilling.” International Journal of Computer
Integrated Manufacturing 22 (8): 727–744.

Sztipanovits, J. 2012. “Cyber Physical Systems—Convergence of Physical and Information Sciences.”
It – Information Technology Methoden und innovative anwendungen der informatik und information-
stechnik 54 (6): 257–265.

JOURNAL OF ENGINEERING DESIGN 267

http://www.sciencedirect.com/science/article/pii/S0010448506001680
http://www.sciencedirect.com/science/article/pii/S0736584508000367
http://dx.doi.org/10.1007/s00163-010-0086-1
http://dx.doi.org/10.1057/palgrave.jit.2000082
http://dx.doi.org/10.1057/palgrave.jit.2000082

Tan, Y., M. C. Vuran, and S. Goddard. 2009. “Spatio-temporal Event Model for Cyber-physical Systems.”
Proceeding of IEEE International Conference on Distributed Computing Systems Workshops,
44–50.

Tessier, S., and Y. Wang. 2013. “Ontology-based Feature Mapping and Verification Between CAD
Systems.” Advanced Engineering Informatics 27 (1): 76–92.

Tiihonen, J., T. Lehtonen, T. Soininen, A. Puikkinen, R. Sulonen, and A. Riitahuhta. 1998. “Modeling
Configurable Product Families.” Modularity In Use-Experiences from Five Companies. Proceedings
of the 4th WDK Workshop on Product Structuring, October 22–23, 1998. Delft: Delft University
of Technology, 1–22.

Tiihonen, J., T. Soininen, and R. Sulonen. 1996. “State of the Practice in Product Configuration – A
Survey of 10 Cases in the Finnish Industry.” Knowledge Intensive CAD 1: 95–114.

Wache, H., T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hübner. 2001.
“Ontology-based Integration of Information – A Survey of Existing Approaches.” Proceedings of
the IJCAI-01 Workshop on Ontologies and Information Sharing, Seattle, WA: Citeseer, 108–117.

Wang, K., Y. Li, and C. Rizos. 2009. “The Effect of the Temperature-correlated Error of Inertial Mems
Sensors on the Integration of GPS/INS.” Proceedings of the Symposium of the International
Global Navigation Satellite Systems Society, Australia: IGNSS.

Wolf, W.H. 1994. “Hardware-software Co-design of Embedded Systems [and Prolog].” Proceedings of
the IEEE 82 (7): 967–989.

Xie, Y., and Y. Ma. 2015. “Design of a Multi-disciplinary and Feature-based Collaborative Environment
for Chemical Process Projects.” Expert Systems with Applications 42 (8): 4149–4166.

268 S. POURTALEBI AND I. HORVÁTH

	Abstract
	1. Introduction
	1.1. Objectives of the presented work
	1.2. A brief overview of MOT

	2. Defining the architecture of SMFs
	2.1. From traditional feature technology to SMFs
	2.2. Multi-level interpretation of SMFs from an architectural point of view
	2.3. Capturing architectural entities and relationships of SMFs
	2.4. Formal specification of architectural entities and relationships of SMFs for computation

	3. Defining the operations of SMFs
	3.1. Logical framework of specifying operations
	3.2. Defining the computational procedures of operations
	3.3. Consideration of timing and conditional constraints in computation of operations
	3.4. Defining the computational methods of operation of SMFs
	3.5. Formal specification of operations of SMFs for computation

	4. Interlacing AKFs and OKFs for computational modelling and simulation of SMFs on multiple levels of aggregation
	4.1. Connections among AKFs and OKFs
	4.2. Multi-level handling of knowledge frames

	5. Discussion, conclusions and future work
	5.1. Discussion of the new insights and the target application
	5.2. Conclusions and propositions
	5.3. On-going and future research

	Note
	Disclosure statement
	ORCID
	References

