
 
 

Delft University of Technology

Impact of railway disruption predictions and rescheduling on passenger delays

Ghaemi, Nadjla; Zilko, Aurelius; Yan, Fei; Cats, Oded; Kurowicka, Dorota; Goverde, Rob

DOI
10.1016/j.jrtpm.2018.02.002
Publication date
2018
Document Version
Accepted author manuscript
Published in
Journal of Rail Transport Planning and Management

Citation (APA)
Ghaemi, N., Zilko, A., Yan, F., Cats, O., Kurowicka, D., & Goverde, R. (2018). Impact of railway disruption
predictions and rescheduling on passenger delays. Journal of Rail Transport Planning and Management,
8(2), 103-122. https://doi.org/10.1016/j.jrtpm.2018.02.002

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jrtpm.2018.02.002
https://doi.org/10.1016/j.jrtpm.2018.02.002


Impact of Railway Disruption Predictions and Rescheduling on Passenger
Delays

Nadjla Ghaemia, Aurelius A. Zilkob, Fei Yana,∗, Oded Catsa, Dorota Kurowickab, Rob M.P. Goverdea

aDepartment of Transport and Planning, Delft University of Technology, The Netherlands
bDelft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

Abstract

Disruptions such as rolling stock break-down, signal failures, and accidents are recurrent occurrences during

daily railway operation. Such events disrupt the deployment of resources and cause delay to passengers.

Obtaining a reliable disruption length estimation can potentially reduce the negative impact caused by the

disruption. To investigate the impact of the disruption length estimates on the rescheduling strategy and

the resulting passengers delays, this research presents a framework consisting of three models: a disruption

length model, short-turning model and passenger assignment model. The framework is applied to a part of

the Dutch railway network. The results show the effects of the different disruption length estimates on the

number of affected passengers, generalized travel time and number of passengers rerouting and transferring.

Keywords: railway disruption, prediction, dependence model, short-turning, passenger assignment

• Railway disruption length is modelled as a probability distribution.

• Short-turning measures are determined based on disruption length predictions.

• Consequences on passenger costs of prediction accuracy and rescheduling are assessed.

• The integrated framework is applied to a case study on a part of Dutch railway network.

• By incorporating a reliable disruption length, we can achieve a faster transition to the original timetable.

1. Introduction

Railway operations are repeatedly disturbed by events such as technical and mechanical failures of infras-

tructure and rolling stock, traffic accidents and malicious attacks. Railway timetables are usually designed to

compensate for some delays by including buffer times. However in case of long disruptions and infrastructure

unavailability, these buffer times are ineffective and a new timetable should be designed with adjusted train

services.
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The decisions regarding the rescheduling of resources need to be carefully communicated between the

railway infrastructure manager, the train operators and other involved actors to ensure the safety and

feasibility of the plan. To facilitate the challenging task of the traffic controllers in such cases, many countries

use contingency plans designed specifically for disruption scenarios (Chu and Oetting (2013)). In The

Netherlands these plans are manually designed by expert traffic controllers and are specific for each location

and disruption case regardless of disruption length.

The proposed solution in the contingency plans is based on the timetable (basic hourly pattern) and the

capacity of the disrupted location. The solution is instructing the traffic controllers how to deal with the

disrupted traffic by determining cancelled services, short-turned or rerouted services and the services that

are allowed to operate in the original timetable. Short-turnings are particularly beneficial for isolating the

disrupted area, while maintaining services on both sides of the disruption. This implies short-turning the

arriving trains to the last station before a disruption (on both sides) and continue service in the opposite

direction. In case of short-turning, the stations where the short-turning should occur as well as the platform

and departure times also need to be determined. By means of simulating the short-turning Coor (1997)

concluded that this measure is most efficient in case of large disruptions.

The traffic level during a disruption can be conceptualized as a process that resembles a bathtub (Ghaemi

et al. (2016)). As is shown in Figure 1 some services are cancelled due to the disruption. This reduction

in train traffic starts immediately after the disruption occurs. Three phases can be identified within the

disruption period. In the first phase the traffic controllers are facing lots of uncertainty regarding the

disruption location, cause and most importantly the estimation of disruption length. In the Dutch railway

operation, there are rough estimates for the length of different kinds of disruptions. These estimates are

used to inform the passengers about the expected disruption length. Once the location is known, the traffic

controllers retrieve the relevant contingency plan designed for that specific location. In case there is a need

for repairing the disrupted infra, the repairmen are sent to the field to deal with the cause of disruption. The

repairmen estimate the required time for resolving the problem and report it to the traffic controllers. In case

the cause of disruption is resolved earlier than the informed disruption length, the operation is not resumed

until the communicated time has elapsed. In case the disruption takes longer than the initially estimated

length, the passengers are updated with a new disruption length. Throughout this paper the estimates that

are longer than the actual disruption length are referred to as pessimistic and those that are shorter than

the real length are referred to as optimistic estimates.

Once the communicated length has passed and the cause of the disruption has been removed, the traffic

can resume and recover back to original level. The first and third phases are called transition phases where

the operation has a transition from the original timetable to the disruption timetable and vice versa. The
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contingency plan corresponds to the second phase of the bathtub model where there is a stable though

decreased level of traffic. Since there is no reliable disruption length estimation, the contingency plans do

not provide any insight regarding the third phase where there is a transition from the disruption timetable

to the original timetable. In practice the effects of different disruption length estimations on the resched-

uled timetable during the three phases of disruption, and consequently the affected passengers, are remain

unknown.

First phase Second phase Third phase

Transition planTransition plan

Original

timetable

Original

timetable Disruption timetable

Time

T
ra

ff
ic

Start of disruption

Figure 1: The service level during disruptions

While the bathtab model is widely known and used to conceptualize traffic states during disruptions,

only limited research efforts have been devoted to analyzing and modeling railway disruption management.

Ghaemi et al. (2017) provide a review of rescheduling models for disruptions and concluded that only a few

studies considered all three phases. Examples of such models were developed by Veelenturf et al. (2016) and

Nakamura et al. (2011). However, the disruption length is assumed to be known in advance and passenger

delays are not taken into consideration. Meng and Zhou (2011), Yang et al. (2013) and Yang et al. (2014)

model the third phase by taking into account the uncertainty of the disruption length. Besides the lack of a

timetable for the first and second phase, their approaches do not explicitly model the influencing factors on

the disruption length. In particular Yang et al. (2013) and Yang et al. (2014) model the disruption length as

a fuzzy variable that reflects the estimation by expert judgment. Hirai et al. (2006) and Zhan et al. (2015)

focus on the first phase where trains need to stop before the disruption area. However both approaches

disregard the uncertainty regarding the disruption length and the consequences for passenger delay. De-Los-

Santos et al. (2012) and Cats (2016) introduced indexes for measuring network robustness by measuring the

effects of disruptions in terms of changes in passengers travel times. Yet the defined indexes are not suitable

for real-time application where the disruption length is not yet known and might get updated frequently.

Canca et al. (2016) propose a short-turning model to accommodate extra demand induced by a disruption

in the tactical level, but the disruption length is not taken into account. Zhan et al. (2016) and Nielsen et al.

(2012) incorporate the uncertainty of disruption length for rescheduling through a rolling horizon framework.

Their approaches do not include the impacting factors on the disruption length. Moreover, the impact of the
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rescheduled timetable on the passengers is disregarded. Kumazawa et al. (2008) developed a rescheduling

model considering passenger inconvenience. They do not provide any information regarding the length of

the disruption. Cats and Jenelius (2014) analyzed the impacts of disruptions on passenger welfare using a

non-equilibrium passenger loading model. They quantified the value of real-time information provision in

case of disruption.

As mentioned above the contingency plans do not provide any instructions regarding the transition

phases and the proposed solution is given independently of the disruption length estimation. In reality, the

disruption length is very uncertain and it is unknown how long a disruption will last. Having a reliable

disruption length prediction is instrumental in devising the rescheduling measures and thus for achieving a

smooth and fast transition to the original timetable in the third phase of the bathtub model. To tackle this

problem, Zilko et al. (2016) represent the disruption length as a probability distribution. Several determinants

of disruption length are considered from which the joint distribution between disruption length and these

factors is constructed with a Copula Bayesian Network. Having the joint distribution enables the traffic

controller to obtain a conditional distribution of disruption length when a disruption occurs by conditioning

the model on the observed values of the influencing factors.

A disruption length prediction is derived from this conditional distribution. Having a probability dis-

tribution enables the traffic controller to choose different values of prediction corresponding to different

quantiles of the distribution. If the controller is optimistic about the disruption length, a lower quantile of

the distribution can be chosen. Alternatively, a higher quantile of the distribution can be chosen. Without

a reliable length estimation, there is no support for the traffic controllers for the third transition phase.

In this paper a framework is proposed to investigate the effects of different choices of predictions on the

rescheduling measures and consequently the passengers delay. The framework integrates three components:

• Estimating the disruption length.

• Rescheduling the timetable given the estimated disruption length.

• Measuring the passenger delays based on the computed schedule.

In the remaining of the paper, the three components are described in more details in Section 2. The

modeling framework is then demonstrated using an application to part of the Dutch railway network in

Section 3. Section 4 concludes with practical implications and directions for future studies.

2. Framework

The three components are explained in detail under sub-sections 2.1 to 2.3 and the interaction between

these components are shown in sub-section 2.4.
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2.1. The Disruption Length Model

This modeling component has been first introduced by Zilko et al. (2016) and is adopted in this paper

where this technique is integrated into a real-time prediction and mitigation framework.

The disruption length is divided into two sequential stages: the latency time and the repair time. The

latency time is the length of time the mechanics need to get to the disrupted site while the repair time is

the length of time they need to repair the problem.

The joint distribution between the latency time and repair time with the influencing factors is constructed

using a Copula Bayesian Network. As a prototype, a Copula Bayesian Network model is constructed for

disruptions caused by track circuit (TC) failures in the Netherlands. These disruptions are affected by eight

influencing factors: (1) contract type, (2) distance to the nearest mechanics’ workshop, (3) distance to the

nearest level crossing, (4) whether or not the disruption is during the mechanics’ contractual working time,

(5) whether or not the temperature is above 25oC, (6) whether or not the disruption occurs during rush hour,

(7) whether or not there is another disruption going on at the same time, and (8) the cause of disruption.

The Copula Bayesian Network uses a Bayesian Network (BN) to represent the dependence between the

variables. A BN is a directed acyclic graph consisting of nodes and arcs, representing the variables and

flow of influence between the variables, respectively. Figure 2(a) presents the TC disruption length model.

The eleven nodes in the structure correspond to the ten variables in the model and the variable “Disruption

Length” which is the sum of the latency and repair times. The arcs represent the flow of influence between

the variables. The absence of an arc between two nodes indicates (conditional) independence between the

variables the two nodes represent.

The joint distribution of the ten variables is constructed using copula. A copula is the n-dimensional

joint distribution in the unit hypercube of n uniform random variables. It is a popular tool to model the

dependence between variables (see, e.g. Nelsen (2006) and Joe (2014)). The theorem of Sklar states that

any cumulative distribution function (X1, . . . , Xn), denoted as F1,...,n, can be rewritten in terms of the

corresponding copula C as

F1,...,n(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (1)

where Fi(Xi) denotes the marginal distribution of the i-th variable.

There are many different copula families. This approach used the multivariate Normal, or Gaussian,

copula CΣ to construct the TC disruption length model. This copula is defined as

CΣ(u1, . . . , un) = ΦΣ(Φ−1(u1), . . . ,Φ−1(un)) (2)

where Φ−1 denotes the inverse cumulative distribution of a univariate standard normal distribution and ΦΣ
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(a) The unconditional Track Circuit BN

(b) A conditional Track Circuit BN

Figure 2: The Track Circuit BN.

denotes the cumulative joint distribution of a multivariate normal distribution with a mean value of zero

and correlation matrix Σ. The parameter Σ of the TC disruption length model corresponds to the arcs in

the BN structure in Figure 2. This copula is of interest because it allows conditionalization to be computed

rapidly, a very useful feature in the real-time decision making environment of the traffic control centers.

The copula parameter Σ is computed using the maximum likelihood approach using ProRail’s SAP

database. The constructed model, as presented in Figure 2, was validated using empirical data with the

model being able to obtain a good conditional distribution of disruption length. Figure 2(a) presents the
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unconditional BN, i.e. the TC BN model when no information is available. Figure 2(b) presents the

conditional BN when information about the influencing factors is available. Notice that the distribution of

disruption length changes.

However, conditionalization on the variable Cause can only be performed after the mechanics diagnose

the problem and find the cause. This time is called the “diagnosis time”. Unfortunately, the diagnosis time

is not available in the data and is actually included in the definition of repair time. The data does not

provide any information to allow decoupling the diagnosis time from the actual repair time. In practice,

usually the mechanics are given 15 minutes to diagnose the problem after they arrive at the site. Therefore,

in this paper we assume that diagnosis time always takes 15 minutes and the cause is always found in this

time.

2.2. The Short-turning Model

The short-turning model is designed to cope with the disruption cases with complete blockages where no

train can use the infrastructure during the disruption period. In such cases, all the trains running towards the

disruption location should short-turn before the blockage. The short-turning model is an extended version

of the Mixed Integer Linear Program introduced in Ghaemi et al. (2016) that computes the optimal short-

turning time and station for each approaching train service. We briefly discuss the optimal short-turning

problem while focusing on the recovery plan which is the extended part. Prior to the problem description,

it is necessary to describe the definition of services used in this approach. In this formulation a service is a

trip between a departure and arrival (either with or without dwell time). Thus, a train line that may have

multiple stops, consists of an ordered set of services performed by a train. Each service is denoted as vil,n

where i indicates the order of the service within the operational line, l is the line number that determines

the stops and n determines the time of operation.

The short-turning model is an assignment model that allocates the arriving trains to the scheduled

departures in the opposite direction. In the example illustrated in Figures 3 to 5 service vil,n can either

short-turn in station a′ to serve vjl,m,vjl,o or vjl,r or it can continue as service vi+1
l,n and short-turn to serve

vj−1
l,m ,vj−1

l,o or vj−1
l,r in station a. Obviously in case vi+1

l,n short-turns to serve vj−1
l,m , this departure would be

delayed. The reason is that the arrival time of train vi+1
l,n is scheduled after the departure of service vj−1

l,m

which is shown in grey. These short-turning possibilities are shown by the red arcs for the arriving service

vil,n. The output of the model is the short-turning pattern which refers to the selected arc that determines

the departure time and location of an arriving train.

If the short-turning of service vil,n occurs in station a′ to serve vjl,m as shown in Figure 4 then the service

vi+1
l,n , all of the associated short-turning patterns in station a, and vj−1

l,m should be cancelled. The passengers
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Figure 3: The possible short-turning patterns

travelling between these stations will be affected by these cancellations. Notwithstanding, early short-turning

can reduce the delay propagation to the opposite stations and overall can result in less delay.
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Figure 4: The cancellation resulting from short-turning in station a′

In the preprocessing phase we define the services that operate in the disruption area during the disruption

period. Those services with both planned departure and arrival within the disruption location and period are

cancelled. In case there is a service towards the disrupted location and departs before the start of disruption

is not cancelled and it is assumed to be the last running service in the blockage section before the disruption.

In case the departure of the approaching services towards the disrupted area is within the disruption period

and the arrival is close to the end of disruption, then it might be better to wait until the disruption is over

and then depart on the original route. The main decision for the final service is whether to continue short-

turning or wait until the disruption is over and continue on the original route. This decision concerns those

trains that arrive close to the end of the disruption period. In case there are more arriving services than the

number of scheduled departures in the opposite direction within the disruption period, then the extra train

service (due to the periodicity of the timetable, there is usually one extra train service) should wait until

the disruption is over and start using the recently resolved blockage. If there are more scheduled departures

in the opposite direction, then the final arriving train can either short-turn or wait until the disruption is

over and continue in the same direction. Based on this decision, there would be cancellation either for the
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scheduled departure in the opposite direction, or the scheduled departure in the same direction. The short-

turning model computes the disruption timetable for the second phase of disruption and the transitions.

With a disruption length prediction we are able to plan the recovery phase where trains are able to continue

their original routes and start using the track after the blockage ends.

A set of candidate transition services that might be canceled needs to be defined. As shown in Figure

5, service vi+2
l,n is cancelled since its departure and arrival is within the disruption period. The transition

services (vi+2
l,q and vj−2

l,r shown by dash-dotted arrows) are planned to depart before the end of disruption

and arrive after the disruption. These services are either cancelled or wait until the disruption is over and

continue on their original route. In other words, for transition services the possibility for operating on the

original route with a possible delay is considered. In this example, in case service vj−2
l,r is cancelled, the
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Figure 5: The transition services shown by dash-dotted arrows (vi+2
l,q in one direction and vj−2

l,r in the other direction )

following service vj−1
l,r is either performed by a short-turning in station a or should also be cancelled. But

if the service vj−2
l,r is not cancelled, it should depart after the end of disruption and this would introduce a

delay to all of the following services performed by this train. The decision whether to cancel service vil,n is

modelled as a binary variable cvi
l,n

.

The main objective of the short-turning model (3) is to minimize the departure and arrival delay (dd
vi
l,n

,

da
vi
l,n

) and the number of cancelled services. The penalties assigned to departure or arrival delay and a

cancelled service vil,n are denoted by ωdd

vi
l,n

,ωda

vi
l,n

and ωc
vi
l,n

, respectively.

min
∑

vi
l,n∈V

(ωdd

vi
l,n
· ddvi

l,n
+ ωda

vi
l,n
· davi

l,n
+ ωc

vi
l,n
· cvi

l,n
). (3)

2.3. Passenger Flow Distribution Model under disruptions

A passenger loading model is developed to represent how passengers are distributed over the network in

the event of a disruption. The passenger flow distribution model allows assessing the impact of alternative

9



scenarios on passengers by calculating passengers’ total travel delay, transfer times and the number of

transfers compared to the scheduled timetable. The disruption length model generates predictions on the

length of the blockage time with updated predictions from time to time, and the short-turning model finds

an adjusted timetable according to the given disruption length. Based on the given rescheduled timetable,

the passenger flow model generates alternative travel routes for each pair of origin and destination (OD)

and assigns passengers to selected routes from the corresponding alternative routes. Passengers face different

route choice conditions during the course of the disruption. In particular, three phases, as illustrated in Figure

6. Under normal operations, route choice is based on the planned timetable. When a disruption occurs, a

rescheduled timetable is generated based on the predicted disruption length, passengers are made informed

of the new departure times and will thus choose their route based on the prevailing conditions. Hence,

passengers choose from a new set of alternative routes based on the rescheduled timetable. Furthermore,

passengers who have already boarded a train might need to reroute as a consequence of the disruption and the

rescheduling. Additional updates to the disruption length predictions may result in additional rescheduling

of train services and consequently the rerouting of passengers. Finally, when the disruption has ended, delays

might still occur as the service recovers back to the original timetable.

Tr
af

fi
c

Time

First phase Second phase Third phase

Original
 timetable

Original
 timetable

Start of disruption End of disruption
End of second phase

t1 t2 tn

Recovery time
Time t: update new prediction of 

length and corresponding 
timetable

Disruption timetable

End of first phase End of third phase

Figure 6: Transition points in the process of dynamic passenger loading

The dynamic passenger loading model consists of two steps. In the first step, alternative routes for

each origin-destination (OD) pair are generated, followed by a probabilistic route choice model based on

the framework of discrete random utility models. The latter determines the share of passengers that are

assigned to each route. The overall workflow, including model input and output (parallelogram) and the

main modules (rectangles), is depicted in Figure 7 and described in the following sub-sections.

2.3.1. Alternative route generation

Given a timetable, either the original or the outcome of the rescheduling model, the alternative route

module generates a set of alternatives from which individuals travelling between a given pair of OD will
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Original 
timetable

Rescheduled 
timetable

Initial state:

Disrupted states:

Or Alternative route generation

Passenger choices

Transition points

Network load & passenger 
travel experience

Passenger 
demand

Figure 7: Passenger loading model under disruption

choose from. The choice-set is generated by iteratively searching for routes with an increasing number of

transfers. A forward search algorithm is applied where transfer alternatives further downstream are examined

by considering all scheduled train trips and their corresponding stopping pattern and scheduled arrival and

departure times. For indirect alternatives, the transfer time must be within a user-defined acceptable range,

[γmin
trans, γ

max
trans]: satisfying the minimum transfer time – to ensure a sufficient time between train arrival and

the next train departure, and a maximum transfer time – to avoid excessively long transfer times. In addition,

indirect alternatives that induce a detour that exceeds by a user-defined ratio of γmax
detour are removed from

the choice-set as well as alternatives that are dominated by other alternatives when considering the number

of transfers, in-vehicle time, transfer time and service level (i.e. intercity vs. regional). For each of the

alternatives obtained in this process, the following attributes are stored along with the route itinerary: total

travel time, number of transfers, total in-vehicle time and transfer time. These attributes are then used in

the following choice step.

2.3.2. Passenger assignment

A multinomial logit (MNL) choice model is applied for route choice, to calculate the share of passengers

travelling along each route alternative, shown in equation (4).

Pijk =
exp(−θt̃ijk)∑

k∈Rij
exp(−θt̃ijk)

(4)

Pijk is the share of passengers that choose route k when travelling between i to j and Rij is the set of

alternative routes from i to j. Route k consists of an ordered set of legs denoted by a sequence of stations,

k = (sk,1, sk,2, ..., sk,|k|) and s ∈ S where S is the set of stations in the network. t̃ijk is the total generalised

cost of route k for a given OD pair ij. θ is the logit scale factor for route choice. More specifically, passenger

generalised travel time consists of waiting time, in-vehicle time, transfer time and other fixed penalties, which
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can be described as follows.

t̃ijk = λw · twsk,1
+

|k|−1∑
v=1

λin · tinsk,v,sk,v+1
+

|k|−1∑
q=2

λtr · ttrk,q + βtr ·N tr + βre ·Nre (5)

tws , tins1,s2 and ttrs are the initial waiting time, in-vehicle time and transfer time, respectively, and λw, λin and

λtr are the corresponding weights. N tr = |k| − 1 and Nre stand for the number of transfer and rerouting

decisions, and βtr and βre are penalty terms for each transfer and rerouting respectively, represented in time

equivalent units. The well-known IIA property of the MNL model is partially counteracted by the filtering

rules which result with a choice-set comprising of distinctive alternatives where the most correlated paths

are either eliminated due to dominance rules or merged into hyper-paths as described in Cats et al. (2016).

By calculating the choice model probabilities, the passenger flow on each diachronic time-dependent network

link can be calculated by equation (6), where dij is the number of passengers from i to j.

fijk = dij · Pijk (6)

The actual nominal travel time can be obtained as follows:

tijk = twsk,1
+

|k|−1∑
v=1

tinsk,v,sk,v+1
+

|k|−1∑
q=2

ttrk,q (7)

The dynamic passenger flow distribution model under a disruption is conducted as shown in Figure 7 by

performing the following sequence of steps:

• Step 1: Alternative route generation: Given a passenger OD demand matrix and scheduled timetable,

find alternative routes for each pair of stations and calculate passenger’s total in-vehicle time and

transfer time for each route. This is an initialization phase.

• Step 2: Passenger route choice: Simulate passenger generation and train movements. Progress simu-

lation clock from the beginning of the disruption, and calculate the generalised cost for each passenger

route departing on each minute. Use a logit model to obtain the proportion of each route, and then

assign passengers to routes.

• Step 3: Alternative route update: When the prediction length is updated, search for new alternative

routes for each passenger OD based on the corresponding rescheduled timetable.

• Step 4: Passenger assignment update: Reroute passengers assigned in Step 2 with routes in the
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disruption area, and update the corresponding travel time and routes information. Then assign new

passengers to routes until the next prediction is generated.

• Step 5: Transition and normal operations: Repeat step 4 until the last prediction is made, then sim-

ulate the model until a certain pre-defined time in order to have a fair comparison among prediction

scenarios.

Passenger loading results are assessed by calculating the following outputs: passenger total generalised

travel time, total passenger nominal travel time, the number of passengers, average passenger transfer

time, the number of average transfer, average in-vehicle time, average waiting time, average train load

and link load.

2.4. The Interaction Between the Models

The three models interact in a dynamical fashion, i.e. interaction occurs every time new information be-

comes available. New information can be input concerning the observed influencing factors in the disruption

length model or when we learn that the previous disruption length prediction was too short. The crosses in

the time diagram in Figure 8 illustrate when during the disruption period the interaction might occur.

P1

Time

P1a P1b P2aP2

Start of disruption End of disruption Mechanics arrive 
at the site

Cause known

P1 too short P1a too short P2 too short

Latency time Observed repair time in SAP

Diagnosis time (15 min) Actual repair time

Figure 8: The time diagram of a railway disruption.

Figure 8 shows an example of a disruption. When a disruption occurs, only the influencing factors of

the latency time are typically known. The unconditional BN is conditionalized based on this information.

Predictions made from this conditional BN model are called the “P1”predictions where, mainly, the latency

time is predicted using the additional sources of information, potentially yielding more accurate predictions.

“P1” suggests that the disruption ends within a certain time period marked by “P1a”. The start and end

time of the disruption period that are predicted by “P1” are communicated to the short-turning model.

Based on the disruption location, the relevant timetable and the disruption period, a disruption timetable is

computed and passed on to the passenger flow distribution model. To measure and compare the impact of

alternative disruption management scenarios the following key performance indicators (KPIs) are computed

and stored:
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1. The total number of passengers being affected during the disruption period.

2. The total experienced generalized travel time corresponding to equation (5) of all passengers considered

in the experiment.

3. The total number of passengers reroutings and transfers.

This interaction is shown in Figure 9.

When the predicted length “P1” has elapsed, it might be realized that the disruption is not over yet.

If the prediction is too short, the disruption is still unresolved even after the predicted disruption ends.

This situation occurs when the prediction is too “optimistic”, i.e. the chosen quantile of the conditional

distribution of disruption length is too low for the case. If this happens, the prediction is updated by

approximating a new conditional distribution of disruption length on the information that the disruption

length is longer than the predictions. This is done via sampling the original conditional distribution on the

quantiles higher than the prediction. In this paper, these “revised” predictions are denoted alphabetically

in orderly fashion. For instance, a “P1” prediction is updated to “P1a”, “P1b”, and so on. With each

prediction update the cycle shown in Figure 9 repeats and the mentioned statistics are computed and stored.

Fifteen minutes after the arrival of the mechanics to the disruption site, they report the diagnosis about

the cause of disruption. Knowing the cause of disruption, the BN is further conditionalized. The new

conditional BN is used to produce the “P2” predictions. Similarly with each prediction update, the short-

turning model computes the disruption timetable and passenger assignment model computes and stores the

total number of affected passenger, generalized travel time, and total number of reroutings and transfers.

3. Experiments

The framework that is applied on a part of the Dutch railway network is depicted in Figure 10. The

disruption length model is constructed using a computationally-efficient software called UNINET which was

developed at Delft University of Technology and is available at www.lighttwist.net/wp/uninet. The short-

turning model is implemented in MATLAB R2016a and YALMIP (Löfberg (2012)) is used to construct the

MILP and Gurobi is used as the solver. The passenger flow distribution model is constructed in MATLAB

2014. In the experiment, we consider a complete blockage in the railway segment between stations Utrecht

and Houten. The blockage is caused by a track circuit failure.

Two local train lines are considered by the short-turning model: line 16000 which runs between Utrecht

(Ut) and s’Hertogenbosch (Ht) and line 6000 which operates between Ut and Tiel (Tl). Due to the disruption,

these trains have the possibility to short-turn either at the station Geldermalsen (Gdm) or the latest at station

Houten (Htn).
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Short-turning

Length

Passenger assignment

Schedule

Disruption length

Travel time

Increased generalized cost

Status 

update

Figure 9: The interaction between the models

Figure 10: The area the passenger flow model considers in the experiment. The illustration is adapted from NS’ main train
service map. Source: The Dutch railways (NS).

To study the effect of different choices of quantiles of the conditional distribution of predicted disruption

length, different disruption length predictions are examined. For each prediction, when a successive prediction

15



is made, the new prediction is chosen to be the value of the new conditional distribution corresponding to the

same quantile as in the previous prediction. For instance, when a prediction using the quantile 50 (median)

is updated, the new prediction is also taken to be the median of the updated conditional distribution. In

principle, this does not necessarily have to be the case. This choice is made to narrow down the space of

possible “combinations” of prediction scenarios.

Note that the “P1” predictions are only valid until new information regarding the cause is available from

which the updated “P2” predictions can be made. This means that the “P1” predictions and the entailed

disruption timetables are only used until at most 15 minutes after the mechanics arrive at the disrupted site.

The “P2” predictions are updated until the actual disruption ends. When this happens, no new timetable

is computed but, instead, the last “P2” timetable is run until the “P2” predicted end of disruption. This

choice is made to penalize a prediction that is too “pessimistic”, i.e. a prediction that surpasses the realized

disruption length. In contrast, choosing a of lower quantile is undesirable because it is likely to be too

optimistic and thus results in many “revised” predictions. This is not attractive from the passengers’ point

of view who, will presumably perceive the communicated information as unreliable. Additionally, having

many “revised” predictions is not practical from a logistical point of view. In practice every time a new

prediction is made, aside from the train traffic, the traffic controllers must also revise the rolling stock

and crew assignments. Therefore, train operators are not inclined to choose the lower quantile predictions.

Therefore, in this experiment, we only consider the 25% quantile as the representative of these scenarios for

comparison. The remaining quantiles that are considered in the experiments are 50%, 75%, 85%, 90%, as

well as the mean.

The short-turning model computes the disruption timetable for lines 16000 and 6000 through stations

Ut, Htn, Houten Castellum (Htnc), Culemborg (Cl), Gdm, Tiel Passewaaij (Tpsw), Tl, Zaltbomel (Zbm)

and Ht. In the short-turning model, the main parameters are the penalties for arrival, departure delays and

cancelled services. Since the frequency of the services in Houten is either 16 or 14 minutes in both directions,

and with each cancelled service the travellers need to wait around a quarter of an hour for the next train,

the cancellation penalty (ωc
vi
l,n

) is set to 1000 seconds. Arrival and departure delays (ωda

vi
l,n

and ωdd

vi
l,n

) are

equally penalized by 1. Moreover the minimum short-turning time is assumed to be around 7 minutes (420

seconds). For the choice of minimum short-turning time we refer to the study by Chu and Oetting (2013).

A norm of 3 minutes is considered for the minimum headway.

Given a disruption timetable, the passenger flow model computes the passengers traffic. Due to data

availability limitations, the passenger flow model considers in this case study only the passenger-trips for

which both origin and destination are within the case study area, i.e. the loop shown in Figure 10. Data about

the number of daily passengers between all pairs of these OD stations was obtained from the Netherlands

16



Railways (Nederlandse Spoorwegen/NS). The daily distribution of passenger demand was specified based on

data made available by NS which manifests the conventional morning and afternoon peaks.

Passengers travelling between Utrecht Centraal and Houten stations have two alternatives: to detour via

Arnhem and Nijmegen or to take the public bus service between the two stations. The travel time with bus

between Utrecht Centraal station and Houten is about 35 minutes while a regular train service would have

taken only 9 minutes. On the other hand, the detour via Arnhem and Nijmegen is also not very attractive

due to the tremendous detour it induces. For passengers travelling to Houten from Utrecht, this detour

takes almost 2 hours. To fairly compare the different choices of predictions, we monitor the train traffic and

passengers flow for a fixed period of six hours in all scenarios. Two actual disruption cases are chosen and

examined. Also the consequences of the same disruption cases if they would have occurred during a different

time of the day are investigated. Thus, we analyze four case studies which are explained in detail in the

following sections.

3.1. Case Study 1

The first case study is based on an incident which occurred on Thursday, 10 July 2014. The incident

started at 14:22 and had the information listed in Tables 1.

Contract type OPC
Working station distance 7.1620
Level Crossing distance 872.372

Working Time yes
Warm yes

Rush Hour no
Overlapping disruption no

Cause a setting problem caused by heat

Table 1: The initial information of the disruption case 1

Moreover, the real observed latency and repair time are 70 and 73 minutes, respectively. This means the

total disruption length is 70 + 73 = 143 minutes.

Table 2 presents the “P1” predictions which are presented in terms of the length (in minutes) and the

predicted end of disruption in time. Notice that in the scenario corresponding to the 25% quantile, in total

there are 8 predictions that are generated throughout the disruption. The predictions in Table 2 are used

by the short-turning model to produce the disruption timetable whose cyclic characteristics are shown in

Table 3. This Table contains the number of cancelled services (#C), the number of delayed services (#D),

the total train delay in minute (Del), and the number of short-turned services (#ST ).

At 15:32, the mechanics arrive at the site. After 15 minutes of diagnosis time, the cause of a TC failure is

identified and, at 15:47, the “P1” predictions are updated to the “P2” predictions. These “P2” predictions

are presented in Table 4. The results of the short-turning model are shown in Tables 5 and 6.
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Table 2: The P1 predictions for Case Study 1.

Qtl P1 P1a P1b

(%) Length Time Length Time Length Time

25 49 15:11 72 15:34 97 15:59
50 81 15:43 144 16:46
75 143 16:45
85 205 17:47
90 254 18:36

Mean 118 16:20

Table 3: The results of the short-turning model for P1 in Case Study 1.

Qtl P1 P1a P1b

(%) #C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 12 2 3 6 20 0 5 0 28 0 7 0
50 20 9 5 24 40 0 10 0
75 40 0 10 0
85 56 0 14 0
90 68 0 17 0

Mean 32 0 8 0

Table 4: The P2 predictions for Case Study 1.

Qtl P2 P2a P2b P2c P2d

(%) Length Time Length Time Length Time Length Time Length Time

25 85 15:47 102 16:04 118 16:20 135 16:37 150 16:52
50 95 15:57 134 16:36 179 17:21
75 133 16:35 240 18:22
85 160 17:02
90 194 17:36

Mean 119 16:21 188 17:30

Table 5: The results of the short-turning model for P2 in Case Study 1.

Qtl P2 P2a P2b

(%) #C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 24 0 6 0 28 0 7 0 32 0 8 0
50 24 9 6 24 36 0 9 0 48 0 12 0
75 36 0 9 0 64 0 16 0
85 44 0 11 0
90 52 0 13 0

Mean 32 0 8 0 52 0 13 0

Table 6: The remaining results of the short-turning model for P2 for Case Study 1.

Qtl P2c P2d

(%) #C #D #ST Del. #C #D #ST Del.

25 36 0 9 0 40 0 10 0

Each timetable is used when the prediction is still “valid”, i.e. it has not been changed. For instance,

the disruption timetable generated with the P1a prediction of the 50% quantile is used only for four minutes

between 15:43 and 15:47. At 15:47, the prediction is updated to P2 and a new disruption timetable is

constructed.

These disruption timetables are used by the passenger flow model to compute passenger route choice
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and the resulting passenger distribution over train services for six hours between 14:22 and 20:22. In this

period, there are 22163 passengers who are traveling in the case study area. We measure the impact on the

passengers for each choice of quantile. The results are presented in Table 7.

Table 7: The impact of different predictions to the passengers in Case Study 1.

Qtl Excess # Affected Inc. Orig Inc. Bench # Rerouting
# Transfers

(%) (minute) Passengers (%) (%) 1 2

25 7 8948 17.71 0.26 595 4 3597
50 36 11469 20.53 2.67 466 1 4015
75 97 16560 24.33 5.90 247 0 4671
85 17 9791 17.56 0.13 5 0 3775
90 51 12854 20.16 2.35 0 0 4126

Mean 45 12299 20.33 2.49 282 0 4136

Real 0 8374 17.4026 0 0 0 3773

The last row of Table 7 shows the benchmark case with the true disruption length. In this case, the true

end time of disruption is already known when the disruption starts at 14:221. Each scenario is compared to

this case to measure the increase in the impact of the prediction on the passengers with respect to the ideal

situation.

The second column of Table 7 shows the difference (in minute) between the true end of disruption and

the last P2 prediction when the blocked railway section between Utrecht and Houten is opened for train

operation. The third column presents the total number of passengers traveling during the blockage of the

section. The fourth and fifth column provide the increase (in %) in the total generalized travel time with

respect to the normal situation without disruption and the benchmark, respectively. In the sixth and seventh

column, the total number of passengers who have to reroute once or twice in each scenario are provided.

The number of transfers performed by the passengers can be found in the last column.

The benchmark case represents the best possible situation. In this case, fewer passengers are affected and

no passengers have to be rerouted since the initially provisioned information is accurate. Unsurprisingly, the

increase in the generalized travel time with respect to the no disruption situation is also the lowest.

In general, the longer the difference between the true end of disruption and the last P2 prediction is, the

more passengers are affected. However, this does not necessarily translate to a higher total generalized travel

time. Notice that the increase in the generalized travel time is higher in the 25%-quantile scenario than in

the 85%-quantile scenario even though the difference between the prediction and the realized value is only 7

minutes in the former and 17 minutes in the latter. The eight predictions in the 25%-quantile scenario cause

many passengers to reroute due to the frequent updates of the disruption timetable. Consequently, the total

generalized travel time is penalized severely. In the 85%-quantile scenario, much fewer passengers need to

1This is the best possible situation but, of course, is not realistic.
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reroute due to the pessimistic prediction.

Notice that the P2 predicted end time of the disruption of the 75%-quantile scenario (at 16:35, see Table

4) is 10 minutes shorter than the actual end time. Because of this slightly too optimistic prediction, the

predicted end time is updated to P2a that is at 18:22. This new prediction is dramatically too long and

consequently disrupts the late afternoon peak demand period. As a result, this scenario is the worst as

indicated by the number of affected passengers and the increase of the total generalized travel time.

3.2. Case Study 1A

In order to investigate the effect of the disruption’s time of occurrence on the choice of predictions, an

artificial disruption is considered in this case study. The exact same disruption as in Case Study 1 is assumed

to occur later on the same day, at 19:24. The realizations of the latency and repair time of this artificial

disruption are taken from the values of the computed conditional distribution of latency and repair time

which correspond to the same quantiles as the realizations of Case Study 1. In this case, the latency and

repair time are 89 and 73 minutes, respectively. The total length is 162 minutes and the disruption ends at

22:06.

The P1 predictions and the short-turning results are presented in Table 8 and 9.

Table 8: The P1 predictions for Case Study 1A.

Qtl P1 P1a P1b P1c

(%) Length Time Length Time Length Time Length Time

25 54 20:18 77 20:41 102 21:06 127 21:31
50 86 20:50 149 21:53
75 149 21:53
85 209 22:53
90 258 23:42

Mean 122 21:26

Table 9: The results of the short-turning model for P1 in Case Study 1A.

Qtl P1 P1a P1b P1c

(%) #C #D #ST Del. #C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 19 0 3 0 23 2 4 6 31 0 6 0 39 0 8 0
50 27 0 5 0 43 2 9 2
75 43 2 9 2
85 55 5 12 39
90 73 2 15 8

Mean 35 9 7 15

The P2 predictions are made at 21:08, 15 minutes after the mechanics’ actual arrival time at 20:53. These

predictions are presented in Table 10. The corresponding results of the short-turning model are represented

in Table 11 and 12.

As before, the predictions are used by the short-turning model to produce the disruption timetables which

are used by the passenger flow model to attain the distribution of passengers traffic. Between 19:24 and
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Table 10: The P2 predictions for Case Study 1A.

Qtl P2 P2a P2b P2c P2d

(%) Length Time Length Time Length Time Length Time Length Time

25 104 21:08 121 21:25 137 21:41 154 21:58 169 22:13
50 114 21:18 153 21:57 198 22:42
75 152 21:56 259 23:43
85 179 22:23
90 213 22:57

Mean 138 21:42 207 22:51

Table 11: The results of the short-turning model for P2 in Case Study 1A.

Qtl P2 P2a P2b

(%) #C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 31 0 6 0 35 2 7 6 39 2 8 6
50 35 0 7 0 43 9 9 24 55 2 12 8
75 43 9 9 15 73 2 15 10
85 47 4 10 38
90 55 12 12 69

Mean 39 9 8 15 55 5 12 31
Real 47 0 10 0

01:24, 7102 passengers are traveling in the case study area. Notice that there are fewer passengers in this

set-up than the previous one due to the different time of the day under consideration. Table 13 summarizes

the impact on passengers for each quantile.

In comparison to Case Study 1, the increase in the total generalized travel time with respect to the

normal situation is higher. This is because the disruption is longer than in the previous case study due to

the longer latency time.

The benchmark case still represents the best situation with fewer passengers being affected. The total

generalized travel time is the lowest in this scenario and no passengers are rerouted.

The longer the last P2 prediction is, the more passengers are affected by the disruption. For this reason,

the 75%-quantile scenario yields the highest total generalized travel time. Notice that as in Case Study 1, the

P2 prediction of this scenario is 10 minutes shorter than the actual end time of the disruption. Consequently,

the prediction is updated to P2a, which is then too long.

The nine predictions in the 25% quantile scenario cause many passengers to reroute. In this scenario,

there is a total of 1487 rerouting activities including a considerable amount of passengers who need to change

their plans more than twice. As a result, the total generalized travel time of this scenario is the second largest

due to the heavy penalty associated with rerouting.

3.3. Case Study 2

In this case study, we consider another real TC disruption at the same location which occured on Saturday,

18 October 2014 and started at 19:24. The incident had the information shown in Table 14.
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Table 12: The remaining results of the short-turning model for P2 in Case Study 1A.

Qtl P2c P2d

(%) #C #D #ST Del. #C #D #ST Del.

25 43 9 9 33 47 2 10 10

Table 13: The impact of different predictions to the passengers in Case Study 1A.

Qtl Excess # Affected Inc. Orig Inc. Bench # Rerouting
# Transfers

(%) (minute) Passengers (%) (%) 1 2

25 7 4966 32.68 7.47 438 195 1353
50 36 5563 31.09 6.18 479 8 1430
75 97 6563 35.12 9.45 83 0 1512
85 17 5180 29.46 4.86 52 0 1379
90 51 5843 32.15 7.05 0 0 1461

Mean 45 5733 27.16 3.00 91 0 1306

Real 0 4812 23.4516 0 0 0 1291

Contract type OPC
Working station distance 7.1620
Level Crossing distance 872.372

Working Time no
Warm no

Rush Hour no
Overlapping disruption no

Cause a cable problem

Table 14: The initial information of the disruption case 2

The observed latency and repair time are 47 and 88 minutes, respectively, with a total length of 135

minutes.

The P1 predictions and the short-turning results for this case study are presented in Tables 15 and 16.

Table 15: The P1 predictions for Case Study 2.

Qtl P1 P1a

(%) Length Time Length Time

25 54 20:18 77 20:41
50 86 20:50
75 149 21:53
85 209 22:53
90 258 23:42

Mean 122 21:26

Table 16: The results of short-turning model for P1 for Case Study 2.

Qtl P1 P1a

(%) #C #D #ST Del. #C #D #ST Del.

25 19 0 3 0 23 2 4 6
50 27 0 5 0
75 43 2 9 2
85 55 5 12 39
90 73 2 15 8

Mean 35 9 7 15
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Fifteen minutes after the mechanics’ actual arrival time at 20:11, the P2 predictions are made. Tables

17 and 18 presents these predictions and the short-turning model. Table 19 summarizes the impact on

passengers for each choice of quantile.

Table 17: The P2 predictions for Case Study 2.

Qtl P2 P2a P2b P2c

(%) Length Time Length Time Length Time Length Time

25 67 20:31 94 20:58 120 21:24 151 21:55
50 104 21:08 173 22:17
75 173 22:17
85 237 23:21
90 280 00:04

Mean 142 21:46

Table 18: The results of short-turning model for P2 for Case Study 2.

Qtl P2 P2a P2b P2c

(%) #C #D #ST Del. #C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 23 0 4 0 27 9 5 33 35 2 7 4 43 2 9 6
50 31 0 6 0 47 2 10 18
75 47 2 10 18
85 65 7 13 102
90 77 8 16 79

Mean 43 0 9 0
Real 39 2 8 2

Table 19: The impact of different predictions to the passengers in Case Study 2.

Qtl Excess # Affected Inc. Orig Inc. Bench # Rerouting
# Transfer

(%) (minute) Passengers (%) (%) 1 2

25 16 4562 14.43 0.64 426 32 1219
50 38 5052 17.11 2.99 252 32 1506
75 38 5052 16.11 2.11 0 0 1437
85 102 6246 19.30 4.92 0 0 1558
90 145 6792 21.43 6.79 0 0 1693

Mean 7 4351 14.89 1.04 2 0 1385

Real 0 4182 13.7099 0 0 0 1309

The benchmark case represents the best possible situation. With the least number of affected passengers

with no need for rerouting, the total generalized travel time is the lowest of all scenarios.

Notice that the final predicted end time of disruption of the 50%-quantile and 75%-quantile scenario

are the same. Consequently, the same number of passengers are affected in both cases. However, the 50%-

quantile scenario has three predictions while the 75%-quantile scenario has only two. Consequently, many

passengers need to be rerouted and more transfers need to be performed in the former. This results with

higher total generalized travel time in the case of the 50%-quantile scenario. The pessimistic 90%-quantile

scenario disturbs the most number of passengers because of a P2 prediction that is too long. Consequently,

the total generalized travel time is the largest, making this scenario the worst performing one in this case
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study.

3.4. Case Study 2A

Similarly to Case Study 1A, the incident in Case Study 2 is also considered to occur at a different time of

the day. In this case study, we assume this hypothetical incident to occur on the same day at 14:22. In this

case, because the incident occurs during the weekend, the prediction lengths do not change from Case Study

2; only the time-dependent passenger demand generation process is adjusted. Tables 20 and 21 present the

P1 predictions and the corresponding short-turning results. The P2 predictions and the short-turning results

are presented in Tables 22 and 23.

Table 20: The P1 predictions for Case Study 2A.

Qtl P1 P1a

(%) Length Time Length Time

25 54 15:16 77 15:39
50 86 15:48
75 149 16:51
85 209 17:51
90 258 18:40

Mean 122 16:24

Table 21: The results of the short-turning model for P1 in Case Study 2A.

Qtl P1 P1a

(%) #C #D #ST Del. #C #D #ST Del.

25 16 0 4 0 20 2 5 2
50 24 0 6 0
75 40 0 10 0
85 56 0 14 0
90 68 2 17 4

Mean 32 2 8 4

Table 22: The P2 predictions for Case Study 2A.

Qtl P2 P2a P2b P2c

(%) Length Time Length Time Length Time Length Time

25 67 15:29 94 15:56 120 16:22 151 16:53
50 104 16:06 173 17:15
75 173 17:15
85 237 18:19
90 280 19:02

Mean 142 16:44

The impact of different scenarios on the passengers are presented in Table 24. Notice that more passengers

are affected by the disruption in comparison to Case Study 2. This is due to the disruption occurring during

the day time when more passengers are traveling.

Like the previous three case studies, the scenario with the true disruption length is the best performing

one in terms of the total generalized travel time. The least number of passengers are affected and none of
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Table 23: The results of short-turning model for P2 for Case Study 2A.

Qtl P2 P2a P2b P2c

(%) #C #D #ST Del. #C #D #ST Del. #C #D #ST Del. #C #D #ST Del.

25 20 0 5 0 24 9 6 15 32 0 8 0 40 2 10 2
50 28 0 7 0 48 0 12 0
75 48 0 12 0
85 64 0 16 0
90 76 0 19 0

Mean 36 9 9 33
Real 36 0 9 0

Table 24: The impact of different predictions to the passengers in Case Study 2A.

Qtl Excess # Affected Inc. Orig Inc. Bench # Rerouting
# Transfers

(%) (minute) Passengers (%) (%) 1 2

25 16 9031 12.31 1.22 723 120 3249
50 38 10928 15.87 4.43 491 46 3725
75 38 10928 14.60 3.28 0 0 3703
85 102 16359 19.95 8.11 0 0 4549
90 145 19044 23.25 11.08 0 0 5069

Mean 7 8294 11.10 0.13 4 0 3128

Real 0 7736 10.9567 0 0 0 3128

them have to change their travel plans.

As in Case Study 2, the difference between the predicted end of disruption and the truth is 38 minutes in

both the 50%-quantile and the 75%-quantile scenario. However, the increase in the generalized travel time

is higher in the former case. This is due to the more frequent prediction updates so many passengers have

to reroute and slightly more transfers are needed. Consequently, the total generalized travel time of this

scenario is penalized more.

The very pessimistic 90% quantile scenario performs the worst in terms of the total generalized travel

time. The dramatic difference between the predicted end of disruption and the truth means a lot of passen-

gers are affected by the disruption. As a result, the total generalized travel time becomes very high.

4. Conclusions and Future Work

To measure the impact of a disruption length prediction on the passengers, a cost function needs to

be defined. In this paper, we choose the total generalized travel time as our cost function. The impact is

primairly measured using the weighted total travel time of all passengers which takes into the account the

waiting time, the in-vehicle time, the transfer time, the number of transfers, and the number of reroutings.

The impact of the uncertainty in the disruption length on the train traffic and passengers was investigated

in terms of changes in this cost function. On one hand, when the prediction is pessimistic, more passengers

are affected by the disruption which increases the total generalized travel time. On the other hand, when
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the prediction is optimistic, while less passengers are affected, this choice leads to more frequent updates of

the prediction and hence more passengers have to change their travel plans and reroute.

In the experiment when a prediction is updated, the new prediction is chosen to be the value of the

new conditional distribution corresponding to the same quantile. Moreover, no train operations are resumed

before the predicted end of the disruption even when the disruption has actually ended. The consequence

of these choices is that a prediction that is slightly shorter than the truth results with high costs. Because

the disruption ends not long after the predicted time, the updated prediction becomes too long. As a result,

more passengers are affected and the total generalized travel time increases. This situation is illustrated in

the 75%-quantile scenario in Case Study 1.

Rescheduling measures to mitigate the effects of train disruptions are conventionally devised or optimized

assuming that the disruption length is known a-priori or by discarding the disruption length. The latter has

to be predicted by service providers and the quality of the prediction has important consequences for the

desired rerouting of train traffic and the resulting rerouting of passenger flows. In this paper, we present an

integrated framework for predicting disruption length using a Bayesian network approach, determining train

short-turning measures using a mixed integer linear program and a probabilistic multi-stage passenger load

distribution model.

In a series of case studies, we have shown how different choices of predictions of disruption length would

affect the passengers in terms of the generalized travel time. On one hand, when the prediction is too

optimistic, many passengers have to be rerouted which increases the inconvenience and, hence, the total

generalized travel cost. On the other hand when the prediction is too pessimistic, more passengers are

affected which results in a higher total generalized travel cost. Similarly when the prediction is just slightly

shorter than the truth, more passengers are also affected. This is evident specially with pessimistic prediction

that leads to keeping the track blocked much longer than necessary, significantly beyond the end of disruption.

The experiments provide insights about the impact of the predictions on the passengers delays, suggesting

that starting with pessimistic predictions and thereafter gradually switching to the optimistic predictions

might result in a better prediction. Notwithstanding, we cannot conclude based on a few case studies which

value of the conditional distribution of disruption length is the “best” for a prediction. Moreover, different

quantiles were found to lead to the least passenger costs under different scenarios. To draw such a conclusion,

many more case studies need to be performed. The close-to-optimal solution can be found by testing a large

number of points from the solution space, i.e. by generating many different realizations of disruption length

from the conditional distribution. For each realization, the short-turning model and the passenger flow model

are run to compute the effect of different choices of disruption length predictions.

Moreover when a prediction is updated, in the case studies we took the same quantile of the conditional
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distributions as the predictions to simplify the problems. In principle, this does not need to be the case.

For instance, the choice of quantile in the “P2” prediction might depend on the quantile that realizes the

latency time in the “P1” prediction. The realization of the latency time might indicate how fast/slow the

mechanics work on the specified incident which might be a useful information to produce a more accurate

P2 prediction. Other possibilities could be considered as well.

The function of the total generalized travel time specified in this study can be extended in future studies.

During peak demand periods and disruptions it is especially relevant to consider vehicle capacity constraints

and the vehicle type. The bus service between Utrecht and Houten provides significantly less seat capacity

than the train service. Moreover, different vehicle types provide different levels of comfort to the passen-

gers. An Intercity train is generally more comfortable than a Sprinter train or a bus service. This can be

accommodate in equation (5) by adding a weight corresponding to the vehicle type to the second term of

the equation (5).

Choosing generalized travel time as the primary evaluation/selection criterion means the impact of the

uncertainty in disruption length is only measured from the passengers’ point of view. With this cost function,

an optimistic prediction is not attractive only because it causes inconvenience to the passengers who would

have to reroute. Note that we have not captured all costs associated with an optimistic prediction that

the traffic control faces. However, from an operational point of view, having a lot of timetable updates is

not practical due to the logistical issues that need to be carried out. For instance, the rolling stock and

crew assignments need to be reorganized accordingly with every update. Future studies may incorporate

additional aspects into the cost function in order to better reflect the aspects influencing real-time decision

making in the context of disruption management.

Note that the effect of different predictions depends considerably on the location and the time of the

incident. This is evident in the results of the case studies investigated in this paper. This is presumably even

more pronounced in denser areas where there is a greater hierarchy among different locations, such as the

Amsterdam area. Aside from the greater number of alternative rail services, passengers may switch to other

modes of public transport, consisting of metro, tram and bus, which contribute to network redundancy.
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