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a b s t r a c t

The traditional secondary frequency control of power systems restores nominal frequency by steering
Area Control Errors (ACEs) to zero. Existing methods are a form of integral control with the characteristic
that large control gain coefficients introduce an overshoot and small ones result in a slow convergence to
a steady state. In order to deal with the large frequency deviation problem, which is the main concern of
the power system integrated with a large number of renewable energy, a faster convergence is critical. In
this paper, we propose a secondary frequency control method named Power-Imbalance Allocation Control
(PIAC) to restore the nominal frequency with a minimized control cost, in which a coordinator estimates
the power imbalance and dispatches the control inputs to the controllers after solving an economic power
dispatch problem. The power imbalance estimation converges exponentially in PIAC, both overshoots and
large frequency deviations are avoided. In addition, when PIAC is implemented in a multi-area controlled
network, the controllers of an area are independent of the disturbance of the neighbor areas, which allows
an asynchronous control in the multi-area network. A Lyapunov stability analysis shows that PIAC is
locally asymptotically stable and simulation results illustrate that it effectively eliminates the drawback
of the traditional integral control based methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Rapid expansion of the contribution of distributed renewable
energy sources has accelerated research efforts in controlling the
power grid. In general, frequency control is implemented at three
different levels distinguished from fast to slow timescales (Ilić &
Zaborszky, 2000; Schavemaker & van der Sluis, 2008). In a short
time scale, the power grid is stabilized by decentralized droop
control, which is called primary control. While successfully balanc-
ing the power supply and demand, and synchronizing the power
frequency, the primary control induces frequency deviations from
the nominal frequency, e.g., 50 or 60 Hz. The secondary frequency
control regulates the frequency back to its nominal frequency in a
slower time scale than the primary control. On top of the primary
and secondary control, the tertiary control is concernedwith global
economic power dispatch over the networks in a large time scale.
Consequently it depends on the energy prices and markets.

✩ The material in this paper was presented at the 20th World Congress of the
International Federation of Automatic Control, July 9–14, 2017, Toulouse, France.
This paper was recommended for publication in revised form by Associate Editor
Jun-ichi Imura under the direction of Editor Thomas Parisini.
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(J.L.A. Dubbeldam), H.X.Lin@tudelft.nl (H.X. Lin), jan.h.van.schuppen@xs4all.nl
(J.H. van Schuppen).

The secondary frequency control is the focus of this paper.
An interconnected electric power system can be described as a
collection of subsystems, each of which is called a control area.
The secondary control in a single area is regulated by Automatic
Generation Control (AGC), which is driven by Area Control Error
(ACE). The ACE of an area is calculated from the local frequency
deviations within the area and power transfers between the area
and its neighbor areas. The AGC controls the power injections to
force the ACE to zero, thus restores the nominal frequency. Due
to the availability of a communication network, other secondary
frequency control approaches have recently been developedwhich
minimize the control cost on-line (Dörfler, Simpson-Porco, & Bullo,
2016), e.g., the Distributed Average Integral Method (DAI) (Zhao,
Mallada, & Dörfler, 2015), the Gather-and-Broadcast (GB) method
(Dörfler & Grammatico, 2017), economic AGC (EAGC) method (Li,
Zhao, & Chen, 2016), and distributed real time power optimal
power control method (Liu, Qu, Xin, & Gan, 2017). These meth-
ods suffer from a common drawback, namely that they exhibit
overshoot for large gain coefficients and slow convergence for
small gain coefficients (Berger & Schweppe, 1989; Elgerd & Fosha,
1970; Ibraheem, Kumar, & Kothari, 2005). This is due to the fact
that they rely on integral control which is well-known to give
rise to the two phenomena mentioned above. Note that the slow
convergence speed results in a large frequency deviation which is
themain concern of power systems integratedwith a large amount
of renewable energy.
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0005-1098/© 2018 Elsevier Ltd. All rights reserved.
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The presence of fluctuations is expected to increase in the near
future, due to weather dependent renewable energy, such as solar
and wind energy. These renewable power sources often cause
serious frequency fluctuations and deviation from the nominal fre-
quency due to the uncertainty of the weather. This demonstrates
the necessity of good secondary frequency control methods whose
transient performance is enhanced with respect to the traditional
methods. We have recently derived such a method called Power
Imbalance Allocation Method (PIAC) in Xi, Dubbeldam, Lin, and
van Schuppen (2017b), which can eliminate the drawback of the
integral control based approach. This paper is the extended version
of the conference paper (Xi et al., 2017b) with additional stability
analysis and the extension of PIAC to multi-area control.

We consider power systems with lossless transmission lines,
which comprise traditional synchronous machines, frequency de-
pendent devices (e.g., power inverters of renewable energy or
frequency dependent loads) and passive loads. We assume the
system to be equipped with the primary controllers and propose
the PIAC method in the framework of Proportional–Integral (PI)
control, which first estimates the power imbalance of the sys-
tem via the measured frequency deviations of the nodes of the
synchronous machines and frequency dependent power sources,
next dispatches the control inputs of the distributed controllers
after solving the economic power dispatch problem. Since the
estimated power imbalance converges exponentially at a rate that
can be accelerated by increasing the control gain coefficient, the
overshoot problem and the large frequency deviation problem are
avoided. Hence the drawback of the traditional ACE method is
eliminated. Furthermore, the control gain coefficient is indepen-
dent of the parameters of the power system but only relies on the
response time of the control devices. Consequently the transient
performance is greatly enhanced by improving the performance
of the control devices in PIAC. When implemented in a multi-
area power network, PIAC makes the control actions of the areas
independent, while the controllers of each area handle the power
imbalance of the local area only.

The paper is organized as follows. We introduce the mathe-
matical model of the power system in Section 2. We formulate
the problem and discuss the existing approaches in Section 3,
then propose the secondary frequency control approach, Power-
Imbalance Allocation Control (PIAC), based on estimated power
imbalance in Section 4 and analyze its the stability invoking the
Lyapunov/LaSalle stability criterion in Section 5. Finally, we eval-
uate the performance of PIAC by simulations on the IEEE-39 New
England test power system in Section 6. Section 7 concludes with
remarks.

2. The model

A power system is described by a graph G = (V, E) with nodes
V and edges E ⊆ V × V , where a node represents a bus and edge
(i, j) represents the direct transmission line connection between
nodes i and j. We consider a power system as a lossless electric
network with constant voltage (e.g., transmission grids where the
line resistances are neglected) and an adjacency matrix (B̂ij) where
B̂ij denotes the susceptance between node i and node j. The system
consists of three types of nodes, synchronous machines, frequency
dependent devices and passive loads, the sets ofwhich are denoted
by VM , VF and VP respectively. Thus V = VM ∪ VP ∪ VF . The fre-
quency dependent devices are for example frequency dependent
loads, inverters of renewable energy, buses equipped with droop
controllers. Denote the number of the nodes in V,VM ,VF ,VP by
n, nM , nF , andnP respectively, hencen = nM+nF+nP . Themodel is
described by the following Differential Algebraic Equations (DAEs),

see e.g., Dörfler, and Grammatico (2017),

θ̇i = ωi, i ∈ VM ∪ VF , (1a)

Miω̇i + Diωi = Pi −
∑
j∈V

Bij sin(θi − θj) + ui, i ∈ VM , (1b)

Diωi = Pi −
∑
j∈V

Bij sin(θi − θj) + ui, i ∈ VF , (1c)

0 = Pi −
∑
j∈V

Bij sin(θi − θj), i ∈ VP , (1d)

where θi is the phase angle at node i, ωi is the frequency deviation
from the nominal frequency, i.e., ωi = ωi − f ∗ where ωi is the
frequency and f ∗

= 50 Hz or 60 Hz is the nominal frequency,
Mi > 0 denotes the moment of inertia of a synchronous machine,
Di > 0 is the droop control coefficient, Pi is the power injection
or demand, Bij = B̂ijViVj is the effective susceptance of line (i, j),
Vi is the voltage at node i, ui ∈ [ui, ui] is a secondary frequency
control input. Note that ui is a constrained input of the secondary
frequency control, ui and ui are its lower and upper bounds, respec-
tively. Furthermore, the set of nodes equipped with the secondary
controllers is denoted by VK ⊆ VM ∪VF and ui = 0 for i ̸∈ VK . Here,
we have assumed that the nodes that participate in secondary
control are equipped with primary controllers. Note that the loads
can also be equipped with primary controllers (Zhao, Topcu, Li,
& Low, 2014). The dynamics of the voltage and reactive power is
not modeled, since they are irrelevant for control of the frequency.
More details on decoupling the voltage and frequency control in
the power system can be found in Kundur (1994), Simpson-Porco,
Dörfler, and Bullo (2016), and Trip, Bürger, and De Persis (2016).
The model with linearized sine functions in (1) is also widely
studied to design primary and secondary frequency control laws,
e.g., Andreasson, Dimarogonas, Sandberg, and Johansson (2014), Li
et al. (2016) and Zhao, Mallada, Low, and Bialek (2016). For the
validity of the linearized model with lossless network, we refer
to Ilić and Zaborszky (2000), and Van Hertem (2006).

3. Secondary frequency control of power systems

3.1. Problem formulation

In practice, the frequency deviation should be in a prescribed
range in order to avoid damage to the devices in the power system.
We assume droop controllers to be installed at some nodes such
that

∑
i∈VM∪VF

Di > 0. When the power supply and demand
are time-invariant, the frequencies of all the nodes in VM ∪ VF
synchronize at a state, called synchronous state defined as follows,

θi = ωsynt + θ∗

i , i ∈ V, (2a)
ωi = ωsyn, i ∈ VM ∪ VF , (2b)
θ̇i = ωsyn, i ∈ V, (2c)
ω̇i = 0, i ∈ VM ∪ VF , (2d)

whereωsyn is the synchronized frequency deviation, and the phase
angle differences at the steady state, {θ∗

i − θ∗

j , (i, j) ∈ E}, de-
termine the power flows in the transmission lines. The explicit
synchronized frequency deviation ωsyn of the system is obtained
by substituting (2) into (1) as

ωsyn =

∑
i∈V Pi +

∑
i∈VK

ui∑
i∈VM∪VF

Di
. (3)

If and only if
∑

i∈VPi +
∑

i∈VK
ui = 0, the frequency deviation

of the steady state is zero, i.e., ωsyn = 0. This implies that a
system with only droop control, i.e., ui = 0, for i ∈ VK , can never
converge to a steady state with ωsyn = 0 if the power demand and
supply are unbalanced such that

∑
i∈VPi ̸= 0. This shows the need
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for the secondary control. As more renewable power sources are
integrated into the power system, the power imbalance

∑
i∈VPi

may fluctuate severely leading to frequency oscillations. We aim
to design an effective method to control ωsyn to zero by solving
the following problem, e.g., Dörfler and Grammatico (2017) and
Dörfler et al. (2016).

Problem 1. Compute the inputs {ui, i ∈ VK } of the power system
so as to achieve the control objective of a balance of power supply
and demand in terms of ωsyn = 0, or equivalently,

∑
i∈VPi +∑

i∈VK
ui = 0.

The following assumption states the basic condition for which
a feasible solution of Problem 1 exists.

Assumption 1. During a small time interval the values of power
supply anddemand are constant. In addition, for these values there
exist control inputs {ui ∈ [ui, ui], i ∈ VK }, such that

∑
i∈VPi +∑

i∈VK
ui = 0.

In a small time interval, the tertiary control, which calculates
the operating point stabilized by the secondary control, guaran-
tees the existence of a steady state and its local stability (Ilić &
Zaborszky, 2000;Wood &Wollenberg, 1996). In addition, themain
task of the generators is to provide electricity to the loads and
maintain the nominal frequency, so Assumption 1 is realistic.

For different controllers in the system, the control costmight be
different for various reasons such as different device maintenance
prices. From the global perspective of the entire network, we aim
to minimize the secondary frequency control cost which leads to
Problem 2.

Problem 2. Compute the inputs {ui, i ∈ V} of the power system
so as to achieve the control objective of minimal control cost, in
addition to the control objective of a balance of power supply and
demand with ωsyn = 0.

Corresponding to Problem 2, the following economic power
dispatch problem needs to be solved, e.g., Dörfler and Grammatico
(2017) and Trip and De Persis (2016).

min
{ui,i∈VK }

∑
i∈VK

Ji(ui) (4)

s.t.
∑
i∈V

Pi +
∑
i∈VK

ui = 0

where Ji(ui) is the control cost of node i, which incorporates the
cost money and the constraints ui ∈ [ui, ui]. Note that to solve
(4), the power imbalance

∑
i∈VPi should be known and the solution

is for the small time interval mentioned in Assumption 1. Here,
with respect to the existence of the solution of the economic power
dispatch problem, we make the second assumption.

Assumption 2. The cost functions Ji : R → R, i ∈ VK are twice
continuously differentiable and strictly convex such that J ′′(ui) > 0
where J ′′(ui) is the second order derivative of J(ui) with respect
to ui.

Assumption 2 is also realistic because the constraint ui ∈ [ui, ui]

can be incorporated in the objective function Ji(ui) for i ∈ VK in a
smooth way.

A necessary condition for solving the economic dispatch prob-
lem is (Ilić & Zaborszky, 2000),

J ′i (ui) = J ′j (uj) = λ, i, j, ∈ VK (5)

where J ′i (ui) is the derivative of Ji(ui), which is the marginal cost of
node i, i ∈ VK , and λ ∈ R is the nodal price. At the optimum of

(4) all the marginal costs of the controllers are equal to the nodal
price. Themarket clearing price λ∗ is obtained as the solution of the
equation

0 =

∑
i∈V

Pi +
∑
i∈VK

J ′−1
i (λ∗) (6)

where J ′−1
i (·) is the inverse function of J ′i (·) which exists by As-

sumption 2. Since in practice the power imbalance is uncertain
with respect to the fluctuating power loads, the economic power
dispatch problem (4) cannot be solved directly.

3.2. A brief review of secondary frequency control

Before embarking on solving Problems 1 and 2, we briefly
outline existing secondary frequency control methods and discuss
their relevance for finding a solution to Problems 1 and 2.

ACE based AGC (Ilić & Zaborszky, 2000): The Area Control Error
(ACE) of an area is defined as

ACE = Bω + Pex − P∗

ex, (7)

where B is a positive constant, ω is the frequency deviation of the
area, Pex is the net power export, and P∗

ex is the nominal value of
Pex. The adjustment of the power injection of the area is given as
follows

u̇ = −k · ACE

where k ∈ (0, ∞) is a control gain coefficient. In the traditional Au-
tomatic Generation Control (AGC) method, the frequency deviation
is measured at a local node and communicated by a coordinator
as the ACE to the controllers in the system, which calculate their
control inputs according to their participation factors. When the
interconnected system is considered as a single area, the AGC has
the form (Dörfler & Grammatico, 2017)

λ̇ = −kωi∗ , i ∈ V, ui = J ′−1
i (λ), (8)

where k ∈ (0, +∞) is a control gain coefficient,ωi∗ is themeasured
frequency deviation at a selected node i∗.λ can be seen as the nodal
price which converges to themarket clearing price λ∗ as the power
supply and demand are balanced. Note that the participation factor
is involved in the derivative of the cost function, J ′i (ui). The fre-
quency deviation of the area is not well reflected in (8) since it
is measured at only one node. Furthermore, the communication
network is not used so efficiently because it only communicates
the nodal price λ from the coordinator to the controllers.

Gather-and-Broadcast (GB) Control (Dörfler & Grammatico,
2017): In order to well reflect the frequency deviation of the area
and use the communication network efficiently, the GB method
measures the frequency deviations at all the nodes connected by
the communication network. It has the form

λ̇ = −k
∑
i∈V

Ciωi, i ∈ V, ui = J ′−1
i (λ), (9)

where k ∈ (0, +∞) is a control gain coefficient and Ci ∈ [0, 1] is a
set of convex weighting coefficients with

∑
i∈VCi = 1. The ACE in

the GB method is actually the weighted average of the frequency
deviations. As in the ACE based AGC method (8), a coordinator in
the network also broadcasts the nodal price to the controllers and
the controllers compute the control inputs according to their own
cost functions.

Distributed Averaging Integral control (DAI): Unlike the ACE
based AGC method and GB method implemented in a centralized
way, DAI is implemented in a distributedway based on the consen-
sus control principle (Andreasson et al., 2014). In the DAI method,
there are no coordinators and each controller computes its own
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nodal price and communicates to its neighbors. A local node in the
system calculates its control input according to the local frequency
deviation and the nodal prices received from its neighbors. As the
state of the interconnected system reaches a new steady state, the
nodal prices of all the nodes achieve a consensus at the market
clearing price, thus Problem 2 is solved. It has the form (Zhao et al.,
2015)

λ̇i = ki(−ωi +
∑
j∈V

wij(λj − λi)), ui = J ′−1
i (λi), (10)

where ki ∈ (0, +∞) is a gain coefficient for the controller i and(
wij

)
denotes the undirected weighted communication network.

When wij = 0 for all the lines of the communication network, the
DAI control law reduces to a Decentralized Integral (DecI) control
law. The DAI control has been widely studied on both the tradi-
tional power grids and Micro-Grids, e.g., Schiffer, Seel, Raisch, and
Sezi (2016) and Simpson-Porco, Shafiee, Dörfler, Vasquez, Guer-
rero, and Bullo (2015). Wu, Shen, and Iravani (2017) proposed a
distributed secondary control method where it is not necessary to
know the nominal frequency for all the nodes in VK .

When a steady state exists for the nonlinear system (1), all
the approaches above can restore the nominal frequency with an
optimized control cost. However, it can be easily observed that the
control approaches, e.g., (8) and (9), are in the form of integral
control where the control inputs are actually the integral of the
frequency deviation. This will be further explained in Section 4.
A common drawback of integral control is that the control input
suffers from an overshoot problemwith a large gain coefficient or slow
convergence speed with a small one, which causes extra oscillation
or slow convergence of the frequency (Berger & Schweppe, 1989;
Elgerd & Fosha, 1970; Ibraheem et al., 2005).

The methods that we discussed above, concern controlling the
nonlinear system (1) based onpassivitymethods. However, the lin-
earized version of the evolution equations (1) was also addressed
based on primal–dual method in the literature. For example, Li
et al. proposed an Economic AGC (EAGC) approach for the multi-
area frequency control (Li et al., 2016). In this method each con-
troller exchanges control signals that are used to successfully steer
the state of the system to a steady state with optimized dispatch,
by a partial primal–dual gradient algorithm (Boyd, Parikh, Chu,
Peleato, & Eckstein, 2010). Unfortunately, transient performance
was not considered in the method. A potentially very promising
method to the control of the linear system was recently proposed
by Zhao et al. (2016) a novel framework for primary and secondary
control, which is called Unified Control (UC), was developed. The
advantage of UC is that it automatically takes care of the conges-
tions that may occur in the transmission lines. Numerical simula-
tions results show that the UC can effectively reduce the harmful
large transient oscillations in the frequency. However, so far a theo-
retical analysis on how the UC improves the transient performance
is lacking. Other recently reported studies are by Liu et al. (2017)
and by Wang, Liu, Low, Zhao, and Mei (2017). These methods
optimize both control costs and manage power flow congestion
using the principle of consensus control, but cannot prevent large
frequency deviations at short times. Formore details of distributed
frequency control, we refer to the survey paper (Molzahn, Dörfler,
Sandberg, Low, Chakrabarti, Baldick, & Lavaei, 2017).

Finally, we mention here control methods whose underlying
principle is neither based on integral control nor on primal–dual
method. The optimal load-frequency control framework by Liu
et al., described in Liu, Song, Ma, Mei, and Lu (2003), is an ex-
ample of such a method. The goal is still to optimize the control
costs and frequency deviation, but rephrasing it as a finite horizon
optimization problem. This can only be solved when the loads are
precisely known within the selected time horizon. Obviously, this
will require very precise forecasting of the loads. A more robust

approach based on the concept of the Active Disturbance Rejection
Control (ADRC) (Han, 2009), was pursued by Dong, Zhang, and
Gao (2012). The method is robust against model uncertainties,
parameter variations and large perturbationswhichwas employed
to construct a decentralized load frequency approach for intercon-
nected systems. However, the decentralized control employed in
this method prevents a solution to Problem 2.

As more renewable power sources are integrated into the
power system, the fluctuations in the power supply become faster
and larger. There is a need to design a control law that has a
good transient performance without the overshoot problem and
with a fast convergence speed. The traditional method to elimi-
nate the overshoot is to calculate the control gain coefficients by
analyzing the eigenvalue of the linearized systems (Wu, Dörfler,
& Jovanovic, 2016; Wu & Shen, 2017). However, the improvement
of the transient performance obtained by the eigenvalue analysis
is still poor because of the dependence of the eigenvalues on the
control law structure, and the large scale, complex topology and
heterogeneous power generation and loads of the power system.

Based on the framework of PI control this paper aims to design a
secondary frequency control method that remedies the drawbacks
mentioned above of the existingmethods. To this end, we consider
the following problemconcerning the transient performance of the
power system (1) after a disturbance.

Problem 3. For the power system (1) with primary and secondary
controllers, design a secondary frequency control law for {ui, i ∈

VK } so as to eliminate the extra oscillation of the frequency caused
by the overshoots of the control inputs, thus improve the transient
performance of the system after a disturbance through an acceler-
ated convergence of the control inputs.

To address Problem 3, various control laws have been proposed
for the frequency control of power systems, e.g., the sliding mode
based control laws (Mi, Fu, Wang, & Wang, 2013; Vrdoljak, Perić,
& Petrović, 2010) andH2/H∞ control based control laws (Bevrani,
2014, chap. 5) and (Rerkpreedapong, Hasanovic, & Feliachi, 2003),
which are able to shorten the transient phase while avoiding the
overshoots and large frequency deviations. However, they focus
on the linearized system and did not consider the economic power
dispatch problem (4) at the steady state.

4. Power imbalance allocation control

In this section, we introduce the Power-Imbalance Allocation
Control (PIAC) method to solve Problems 1–3.

The communication network is necessary for solving Problem2,
for which we make the following assumption.

Assumption 3. All the buses in VM ∪ VF can communicate with a
coordinator at a central location via a communication network. The
frequency deviations ωi, i ∈ VM ∪ VF , can be measured and subse-
quently communicated to the coordinator. For i ∈ VK , the control
input ui can be computed by the coordinator and dispatched to the
controller at node i via the communication network.

In Assumption 3, the local nodes need to provide the coor-
dinator the local frequency deviation which are the differences
between the measured frequencies by meters and the nominal
frequency. We remark that there usually are time-delays in the
measurement and communications which are neglected in this
paper.

In the following, we first define an abstract frequency devia-
tion for the power system, for which we design a control law to
eliminate the overshoot of the control input. Then we introduce
the PIAC method for the power system controlled as a single area
in subsection 4.1 followed by a multi-area control approach in
subsection 4.2.
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Definition 1. For the power system (1), define an abstract fre-
quency deviation ωs such that

Msω̇s = Ps − Dsωs + us, (11)

where Ms =
∑

i∈VM
Mi, Ps =

∑
i∈VPi, Ds =

∑
i∈VDi, and us =∑

i∈VK
ui.

Note that ωs(t) is a virtual global frequency deviation, which
neither equals ωi(t) nor ωsyn(t) in general. However, if the power
loads (or generation) Pi change slowly and the frequencies {ωi, i ∈

VM ∪ VF } synchronize quickly, the differences between ωi(t) and
ωs(t) are negligible, i.e., ωi(t) = ωs(t), by summing all the equa-
tions of (1), (11) is derived.

At the steady state of (11), we have ω∗
s = (Ps + us)/Ds

which leads to ω∗
s = ω∗

syn by (3). Then the objective of the
secondary frequency control that restores the nominal frequency
of the system (1) is equivalent to controlling ωs of (11) to zero,
i.e., limt→∞ωs(t) = 0.

Since the frequencies {ωi, i ∈ VM ∪ VF } of system (1) with
primary controllers synchronize quickly, the extra oscillations of
ωi are actually introduced by the overshoot of the total amount
of control inputs us in the traditional control approach (8). This is
because it is in the form of integral control. It will be explained in
an extreme case where system (1) is well controlled by primary
controllers such that ωi = ωs for all i ∈ V . It can be obtained easily
for (8) by substituting ωi by ωs that the total amount of control
inputs, us, is calculated as follows,

λ̇s = ωs, (12a)
us = −kλs, (12b)

which is in the form of integral control. Note that (12) can also be
obtained similarly for the GB method (9) and for the DAI method
(10) with a special setting of control gain coefficients ki and com-
munication weight wij e.g., {ki, i ∈ Vk} are all identical and wij
forms a Laplacian matrix, L = (wij), such that

∑nK
i=1wij = 0 for all

j = 1, . . . , nK (nK is the number of nodes in VK ).
In order to accelerate the convergence of the frequency to its

nominal value without introducing extra oscillations, the over-
shoot of us should be avoided. Similar to the PI cruise control of
a car (Aström & Murray, 2008), for ωs in (11), we introduce the
following control law,

η̇s = Dsωs, (13a)
us = −kMsωs − kηs, (13b)

where k ∈ (0, +∞) is a parameter to be chosen by engineers.
Details on the setting of this parameter will be further discussed
after introducing the PIAC method in this section. From (11) and
(13), we obtain

u̇s(t) = −k(Ps + us(t)), (14)

which indicates that us is an estimate of −Ps and converges to the
power imbalance −Ps exponentially. Hence, the overshoot of us is
eliminated. With the value of us obtained from (13), the control
input ui for node i ∈ VK is computed by solving the following
economic power dispatch problem,

min
{ui∈R,i∈VK }

∑
i∈VK

Ji(ui), (15)

s.t. − us(t) +

∑
i∈VK

ui(t) = 0.

However, us cannot be calculated as in (13) since ωs is a virtual
frequency deviation which cannot be measured in practice. In the
following, we introduce the PIAC method where us also converges
to −Ps exponentially as in (14).

4.1. Single-area implementation of piac

We consider the power system controlled as a single area with-
out any power export (or import). The PIAC method is defined as
follows.

Definition 2 (PIAC). Consider the power system described by
(1) with Assumptions 1–3, the PIAC control law is defined as the
dynamic controller,

η̇(t) =

∑
i∈VM∪VF

Diωi(t), (16a)

us(t) = −k
(
η(t) +

∑
j∈VM

Mjωj(t)
)
, (16b)

0 = −us(t) +

∑
i∈VK

J ′−1
i (λ(t)), (16c)

ui(t) = J ′−1
i (λ(t)), i ∈ VK , (16d)

where k ∈ (0, ∞) is a parameter of the control law, η is a state
variable introduced for the integral term as ηs in (13a), and λ is an
algebraic variable for solving the optimization problem (15), which
is a function of time.

For the special case with quadratic cost function Ji(ui) =
1
2αiu2

i
for node i, the control law becomes

η̇ =

∑
i∈VM∪VF

Diωi,

us = −k(
∑
i∈VM

Miωi + ηs),

ui =
αs

αi
us, i ∈ VK ,

1
αs

=

∑
i∈VK

1
αi

,

where αi ∈ R is the control price of node i.
PIAC is based on the design principle of coordination. The local

nodes in VM ∪ VF send the measured frequency deviations to the
coordinator. The coordinator computes the control inputs {ui, i ∈

VK } or marginal cost λ using the local measurements and sends
them to all local controllers of the nodes indexed by VK . The
procedure is similar to the GB method which gathers the locally
measured frequency deviation from the nodes and broadcasts the
nodal price to the controllers. The control procedure andproperties
of PIAC are summarized in the following procedure and theorem
respectively.

Procedure 1. If Assumptions 1–3 hold, then the secondary frequency
control approach of the power system (1), PIAC, is implemented as
follows.

(i) Collect the measured frequency deviations

{ωi, i ∈ VM ∪ VF },

(ii) Calculate the total amount us(t) of control inputs by (16b),
(iii) Solve the optimization problem (15) by (16c), (16d),
(iv) Allocate the power compensation {ui, i ∈ VK } to the controllers.

Theorem 1. Consider the power system (1) and the PIAC control law,
the controller has the following properties,

(a) at any time, t ∈ T , us(t) satisfies (14). Thus it is an estimate of
the power imbalance −Ps;

(b) at any time, t ∈ T , the input values {ui(t), i ∈ VK } are computed
by solving the optimization problem (15). So the total amount
of control inputs, us(t), are dispatched to the local nodes of VK
economically;
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(c) at the steady state, ω∗

i = 0 for all i ∈ VM ∪ VF and the power-
imbalance Ps is optimally compensated by the local controllers.
Hence both Problems 1 and 2 are solved;

(d) because

us(t) = −k
∑
i∈VM

Miωi(t) − k
∫ t

0

∑
j∈VM∪VF

Djωj(τ )dτ ,

the PIAC control law is of Proportional-Integral type.

Proof. (a). From (1) it follows,∑
i∈VM

Miω̇i =

∑
i∈V

Pi −
∑

i∈VM∪VF

Diωi +
∑
i∈V

ui. (18)

It follows from (16a), (16b) that,

u̇s(t) = −k
( ∑
i∈VM∪VF

Diωi(t) +

∑
j∈VM

Mjω̇i(t)
)

by (18),

= −k
(∑
i∈VK

ui(t) +

∑
j∈V

Pi
)

by (16d),

= −k
(∑
i∈VK

J ′−1
i (λ) +

∑
j∈V

Pi
)

by (16c),

= −k
(
us(t) + Ps

)
,

Thus (14) is obtained which indicates that us(t) is an estimate of
−Ps with k ∈ (0, ∞), i.e., us(t) converges to−Ps exponentially with
a speed determined by the control gain coefficient k.

(b). According to the definition of the PIAC control law that at
any time, t ∈ T ,

J ′i (ui(t)) = J ′j (uj(t)) = λ(t), ∀ i, j ∈ VK .

Thus the necessary condition (5) for economic dispatch of us(t) to
all the local nodes is satisfied and at any time t ∈ T , the control
inputs {ui, i ∈ VK } solve the optimization problem (15). Hence,
{ui(t), i ∈ V} achieve the minimal cost.

(c). It follows from (14) that u∗
s = −

∑
i∈VPi at the steady state,

which yields ωsyn = 0 by (3). Thus ω∗

i = 0 for all i ∈ VM ∪ VF
by (2), Problem 1 is solved. It follows from (b) that the control
inputs {ui, i ∈ V} achieve minimal cost at the steady state. So
the optimization problem (4) is solved at the steady state. Hence,
Problem 2 is solved.

(d). This follows directly from the definition of the PIAC control
law. □

Note that in Theorem 1(c), we have assumed that the steady
state exists which will be further described in Assumption 4 in
Section 5.

In order to clearly illustrate how PIAC improves the transient
performance of the system, with the abstract frequency deviation
ωs and control inputs us, we decompose the dynamic process into
three sub-processes,

(i) the convergence process of us to −Ps as in (14) with a speed
determined by k.

(ii) the convergence process ofωs to zero as in (11) with a speed
determined by us and Ds.

(iii) and the synchronization process of {ωi, i ∈ VM ∪ VF } to ωs
described by (1) andwith the synchronization speedmainly
determined by {Di, i ∈ VM ∪ VF }.

The transient performance of the power system can be im-
proved by tuning the corresponding control gain coefficients for
the sub-processes. PIAC focuses on the first two sub-processes only
in which the transient behaviors of us and ωs can be improved by
increasing the parameter k, and the primary control focuses on
the synchronization of {ωi, i ∈ VM ∪ VF } which can be improved
by tuning the coefficient {Di, i ∈ VM ∪ VF } as in Dörfler et al.
(2016), and Motter, Myers, Anghel, and Nishikawa (2013). As us
converges to −Ps exponentially, the control inputs {ui, i ∈ VK } in
(16d) also converge to the desired optimal values in an exponential
way without any overshoots and their convergence speed increase
with a large k. Thus the extra oscillation caused by the overshoot
of us is avoided and Problem 3 is solved by PIAC.

With the process decomposition, the improvement in the tran-
sient performance by the UC control law (Zhao et al., 2016) can
be explained, and the control gain coefficients of the primal–dual
based control laws, e.g., Wang et al. (2017) without triggered con-
straints of line flows, which also estimate the power disturbance,
can be tuned to improve the transient performance.

In the following, we introduce the properties of PIAC in the
implementation for the power system controlled as a single area.

On the communications in PIAC, note that the communicated
data include dynamic data and static data. The dynamic data are
the frequency deviations {ωi, i ∈ VM ∪ VF } and the control inputs
{ui i ∈ VK }, both should be communicated frequently. The static
data are the moment inertia {Mi, i ∈ Vi}, the droop control
coefficients {Di, i ∈ VM ∪VF } and the cost functions {Ji(ui), i ∈ VK },
which are constant in a short time as in Assumption 1 and are not
necessary to communicate as frequently as the dynamic data.

In the computing of the control inputs {ui, i ∈ VK }, solving
the optimization problem (15) is equivalent to solving Eqs. (16c)
and (16d). So the computation includes calculating the integral of
frequency deviation in (16a) and solving the algebraic equations
(16c), (16d). For quadratic cost functions Ji(ui) =

1
2αiu2

i , the com-
putation requires approximately 4nM + nF arithmetic operations
that are ×, +, − etc. For nonlinear cost functions, an iteration
method is used to solve the one dimension nonlinear algebraic
equation (16c) for λ, which needs more computing than for the
quadratic cost functions.

Remark1. PIAC is a centralized controlwhere the communications
and computations increase as the scale of the power systems
increases. In a large-scale power system, a large number of devices
communicate to the coordinator simultaneously. In that case, the
time-delay due to the communications and computing is not neg-
ligible, in such a situation further investigation for the transient
performance and stability of the nonlinear system is needed.

On the dynamics of us, it can be observed from (14) that us
converges exponentially with a speed that can be accelerated by
increasing the control gain coefficient kwhich does not depend on
any parameters of the power system and the cost functions. Hence,
when the dynamics of the voltages are considered which does not
influence the dynamics of us in (14), the power supply and demand
can also be balanced.

On the control gain coefficient k, we remark that it does neither
depend on the parameters of the system nor on the economic
power dispatch problem, and can be set very large from the per-
spective of theoretical analysis. However, it relies on how sensitive
the control devices are to the fluctuation of power imbalance. In
this case, it can be tuned according to the response time of the
control devices and the desired range of the frequency deviation.
The control actuators of traditional hydraulic and steam turbines
are their governor systems. For details of the model of the gov-
ernor system and its response time, we refer to Kundur (1994,
chap. 9, 11).



78 K. Xi et al. / Automatica 92 (2018) 72–85

By Assumption 3, the PIAC method requires that all the nodes
in VM ∪ VF can communicate with the coordinator. However, our
initial numerical experiments show that PIAC can still restore the
nominal frequency even without all the frequency deviation col-
lected, where the estimated power imbalance converges to the ac-
tual power imbalance although not exponentially. This is because
PIAC includes the integral control which drives the synchronized
frequency deviation to zero.

Remark 2. In practice, the state of the power system is never
at a true equilibrium state, because of the fluctuations of the
power imbalance caused by the power loads. Furthermore, the
fluctuations become even more serious when a large amount of
renewable power sources are integrated into the power system.
In this case, it is more practical to model the power imbalance as
a time-varying function. For the power system with time-varying
power imbalance, analysis and numerical simulations show that
PIAC is also able to effectively control the synchronized frequency
to any desired range by increasing the control gain coefficient k (Xi,
Lin, & van Schuppen, 2017c).

4.2. Multi-area implementation of PIAC

When a power system is partitioned into several control areas,
each area has either an export or an import of power. After a
disturbance occurred, the power export or the power import of an
area must be restored to the nominal value calculated by tertiary
control. In this subsection, we introduce the implementation of
PIAC for multi-area control where each area has power export (or
import).

Denote the set of the nodes in the area Ar by VAr , the set of
the boundary lines between area Ar and all the other areas by EAr .
Denote VMr = VM ∩ VAr , VFr = VF ∩ VAr and VKr = VK ∩ VAr . The
multi-area control of PIAC in the area Ar is defined as follows.

Definition 3. Consider the power system (1) controlled as several
areas with Assumptions 1–3, the multi-area implementation of
PIAC for area Ar is defined as the dynamic controllers,

η̇r (t) =

∑
i∈VMr ∪VFr

Diωi(t) + Pex(t) − P∗

ex, (20a)

ur (t) = −kr (
∑
i∈VMr

Miωi(t) + ηr (t)), (20b)

0 = −ur +

∑
i∈VKr

J ′−1
i (λr ), (20c)

ui = J ′−1
i (λr ), i ∈ VMr ∪ VFr (20d)

where Pex =
∑

i∈VAr ,(i,j)∈EAr
Bij sin(θi − θj) is the export power of

area Ar , P∗
ex is the nominal value of Pex, kr ∈ (0, ∞) is a control gain

coefficient, ηr is a state variable for the integral term as ηs in (13a)
and λr is an algebraic variable for the controller.

It can be observed from (20) that the control procedure for the
coordinator in area Ar is similar to Procedure 1 but the power
export deviation, Pex − P∗

ex, should be measured. The sum of the
three terms on the right hand side of (20a) is actually the ACE
of the area. PIAC has the proportional control input included in
secondary frequency control, which is consistent with the PI based
secondary frequency control (Machowski, Bialek, & Bumby, 2008,
chap. 9) and (Bevrani, 2014, chap. 4). In PIAC, the weights of the
frequency deviation of node i are specified as the inertiaMi and the
droop coefficient Di for the proportional input and integral input
respectively. The proportional input is used to estimate the power
stored in the inertia at the transient phase, which is usually ne-
glected in the traditional ACE method. The control gain coefficient

kr can be different for each area, which can be tuned according
to the sensitivity of the control devices in the area. By (20a), as
the synchronous frequency deviation is steered to zero, Pex also
converges to the nominal value P∗

ex. Similar as the derivation of (14)
for PIAC (16), we derive for (20) that

u̇r (t) = −kr
( ∑
i∈VAr

Pi + P∗

ex + ur (t)
)

which indicates that the controllers in area Ar only respond to the
power imbalance

∑
i∈VAr

Pi. Hence, in the network, the control ac-
tions of all the areas can be done in an asynchronous way where
each area can balance the local power supply–demand at any time
according to the availability of the devices.

In particular, PIAC becomes a decentralized control method if
each node is seen as a single area and VP = ∅, VK = VM ∪ VF ,
i.e., for all i ∈ VM ∪ VF ,

η̇i = Diωi +
∑
j∈V

Bij sin(θij) −

∑
j∈V

Bij sin(θ∗

ij ),

ui = −ki(Miω + ηi),

where {θ∗

i , i ∈ V} are the steady state calculated by tertiary
control. Since ui is tracking −Pi +

∑
j∈VBij sin(θ∗

ij ), each node com-
pensates the power imbalance locally and the control actions of the
nodes are irrelevant to each other. However, the control cost is not
optimized by this decentralized control method.

5. Stability analysis of PIAC

In this section, we analyze the stability of PIAC with the Lya-
punov/LaSalle approach as in De Persis and Monshizadeh (2018),
and Trip et al. (2016). The stability proof makes use of Theorem A.1
stated in the Appendix. As indicated in Section 4.2, the control ac-
tions of the areas are decoupled in the multi-area control network.
So we only need to prove the stability of PIAC implemented in
a single-area network. Extension to multi-area control networks
then follows immediately. With the control law (16), the closed-
loop system of PIAC is

θ̇i = ωi, i ∈ VM ∪ VF , (22a)

Miω̇i = Pi − Diωi −
∑
j∈V

Bij sin(θij) + J ′−1
i (λ), i ∈ VM , (22b)

0 = Pi − Diωi −
∑
j∈V

Bij sin(θij) + J ′−1
i (λ), i ∈ VF , (22c)

0 = Pi −
∑
j∈V

Bij sin(θij), i ∈ VP , (22d)

η̇ =

∑
i∈VM∪VF

Diωi, (22e)

0 =

∑
i∈VK

J ′−1
i (λ) + k(

∑
i∈VM

Miωi + η), (22f)

0 = J ′−1
i (λ), i ̸∈ VK , (22g)

where θij = θi−θj is the phase angle differences between the nodes
connected by a transmission line.

We denote the angles in the sets VM ,VF ,VP by column vectors
θM , θF , θP , the frequency deviations by column vectors ωM , ωF , ωP ,
the angles in V by θ = (θ T

M , θ T
F , θ T

P )
T , and the frequency deviations

by ω = (ωT
M , ωT

F , ω
T
P )

T .
Note that the closed-loop system may not have a synchronous

state if the power injections {Pi, i ∈ V} are much larger than
the line capacity Bij. For more details on the synchronous state of
the power system, we refer to Dörfler and Bullo (2012) and Xi,
Dubbeldam, and Lin (2017a). Therefore, we make Assumption 4.
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Assumption 4. For the closed-loop system (22), there exists a
synchronous state (θ∗, ω∗, η∗, λ∗) ∈ Rn

× Rn
× R × R with

ω∗

i = ωsyn and

θ∗(t) ∈ Θ = {θ ∈ Rn
||θi − θj| <

π

2
, ∀(i, j) ∈ E}.

The condition θ∗
∈ Θ is commonly referred to as a security

constraint (De Persis & Monshizadeh, 2018) in power system
analysis. It can be satisfied by reserving some margin of power
flow when calculating the operating point in tertiary control (Ilić
& Zaborszky, 2000).

Since the power flows {Bij sin(θi − θj), (i, j) ∈ E} only depend
on the angle differences and the angles can be expressed relative
to a reference node, we choose a reference angle, i.e., θ1, in VM and
introduce the new variables

ϕi = θi − θ1, i = 1, 2, . . . , n

which yields ϕ̇i = ωi − ω1. Note that ϕ1 = 0, ϕ̇1 = 0 for all t > 0.
With ωi = ϕ̇i + ω1 for i ∈ VF , the closed loop system (22) can be
written in the DAE form as (A.1) in the Appendix,

ϕ̇i = ωi − ω1, i ∈ VM ∪ VF , (23a)

Miω̇i = Pi − Diωi −
∑
j∈V

Bij sin(ϕij) + J ′−1
i (λ), i ∈ VM , (23b)

Diϕ̇i = Pi − Diω1 −

∑
j∈V

Bij sin(ϕij) + J ′−1
i (λ), i ∈ VF , (23c)

0 = Pi −
∑
j∈V

Bij sin(ϕij), i ∈ VP , (23d)

η̇ =

∑
i∈VM∪VF

Diωi, (23e)

0 =

∑
i∈VK

J ′−1
i (λ) + k(

∑
i∈VM

Miωi + η), (23f)

where ϕij = ϕi − ϕj, and Eqs. (23a)–(23d) are from the power
system and (23e)–(23f) from the controllers. We next recast the
system (23) into the form of the DAE system (A.1), the state vari-
ables are x = (ϕM , ϕF , ωM , η) ∈ RnM−1

× RnF × RnM × R, the
algebraic variables are y = (ϕP , λ) ∈ RnP × R, the differential
equations are (23a)–(23c), (23e) and the algebraic equations are
(23d), (23f). Here ϕM is with the components {ϕi, i ∈ VM} besides
ϕ1 which is a constant, ϕF with components {ϕi, i ∈ VF }, and ϕP
with components {ϕi, i ∈ VP }. Note that the variables {ωi, i ∈

VF } are not included into the state variable or algebraic variables
since the terms {Diωi, i ∈ VF } in (23e) can be replaced by {Pi −∑

j∈VBij sin(ϕij) + J ′−1
i (λ), i ∈ VF } . (22g) is neglected since it is

irrelevant to the following stability analysis.
When mapping θ to the coordinate of ϕ, Assumption 4 yields

ϕ ∈ Φ = {ϕ ∈ Rn
||ϕi − ϕj| <

π

2
, ∀(i, j) ∈ E, and ϕ1 = 0}.

We remark that each equilibrium state of (23) corresponds to a
synchronous state of (22). In the new coordinate, we have the
following theorem for the stability of the system (23).

Theorem 2. If the Assumptions 1–4 hold, for the system (23), then

(a) there exists a unique equilibrium state z∗
= (ϕ∗, ω∗

M , η∗, λ∗) ∈

Ψ where Ψ = Φ × RnM × R × R.
(b) there exists a domain Ψ d

⊂ Ψ such that for any initial state
z0 ∈ Ψ d that satisfies the algebraic equations (23d) and (23f),
the state trajectory converges to the unique equilibrium state
z∗

∈ Ψ .

Note that the cost functions are not required to be scaled for
the local asymptotically stable of PIAC as assumed in Dörfler and
Grammatico (2017), and the size of the attraction domain of the

equilibrium state z∗ is not determined in Theorem 2 which states
the stability of the PIAC method. The proof of Theorem 2 is based
on the Lyapunov/LaSalle stability criterion as in TheoremA.1. In the
following, we first present the verification of Assumptions 1 and 2
in the Appendix for the DAE system (23), then prove the stability
of (23) by designing a Lyapunov function as V (x, y) in Theorem A.1.
Lemma 1 states that (23) possesses an equilibrium state, which
verifies Assumption A.1, and Lemma 2 claims the regularity of the
algebraic equations (23d), (23f), which verifies Assumption A.2.

Lemma 1. There exists at most one equilibrium state z∗
= (ϕ∗,

ω∗

M , η∗, λ∗) of the system (23) such that z∗
∈ Ψ and

ω∗

i = 0, i ∈ VM , (24a)∑
i∈V

Pi +
∑
i∈VK

J ′−1
i (λ∗) = 0. (24b)

∑
i∈V

Pi − kη∗
= 0. (24c)

Proof. At the synchronous state, from (14) and (16b) it follows that

k(
∑
i∈VM

Miω
∗

i + η∗) =

∑
i∈V

Pi. (25)

Substitution of (25) into the algebraic equation (23f) and (24b).
Substitution of (24b) into (3)withui = J ′−1

i (λ∗),we obtainωsyn = 0
which yields {ω∗

i = 0, i ∈ VM}. Hence this and (25) yield∑
i∈VK

J ′−1
i (λ∗) + kη∗

= 0.

which leads to (24c). It follows from Araposthatis, Sastry, and
Varaiya (1981), and Skar (1980) that the system (22) has at most
one power flow solution such that θ ∈ Θ . Hence there exists at
most one equilibrium for the system (23) that satisfies ϕ ∈ Φ . □

With respect to the regularity of the algebraic equations (23d),
(23f), we derive the following lemma.

Lemma 2. For any ϕ ∈ Φ and strictly convex functions of {Ji(ui), i ∈

VK } in the optimization problem (4), the algebraic equations (23d),
(23f) are regular.

Proof. Since (23d) and (23f) are independent algebraic equations
with respect toϕP andλ respectively, the regularity of each of them
is proven separately.

First, we prove the regularity of (23d) by showing that its
Jacobian is a principle minor of the Laplacian matrix of a weighted
network. In the coordination of θ , we define function

U(θ ) =

∑
(i,j)∈E

Bij(1 − cos(θi − θj)).

The Hessian matrix of U(θ ) is

L =

⎛⎜⎜⎜⎝
B11 −B12 cos(θ12) . . . −B1n cos(θ1n)

−B21 cos(θ12) B22 . . . −B2n cos(θ2n)
...

...
. . .

...

−Bn1 cos(θn1) −Bn2 cos(θn2) . . . Bnn

⎞⎟⎟⎟⎠ ,

where Bii =
∑

j∈VBij cos(θij) and θij = θi − θj. L is the Laplacian
of the undirected graph G defined in Section 2 with positive line
weights Bij cos(θi − θj). Hence L is semi-positive definite and all its
principle minors are nonsingular (Brualdi & Ryser, 1991, Theorem
9.6.1). In the coordination of ϕ, we define function

U(ϕ) =

∑
(i,j)∈E

Bij(1 − cos(ϕi − ϕj)), (26)
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with Hessian matrix

L =

⎛⎜⎜⎜⎝
B22 −B23 cos(ϕ23) . . . −B2n cos(ϕ2n)

−B32 cos(ϕ32) B33 . . . −B3n cos(ϕ3n)
...

...
. . .

...

−Bn2 cos(ϕn2) −Bn2 cos(ϕn3) . . . Bnn

⎞⎟⎟⎟⎠ (27)

where Bii =
∑

j∈VBij cos(ϕij), ϕij = ϕi − ϕj, and ϕ1 = 0. Note
that Bij cos(ϕij) = Bij cos(θij), thus L is a principle minor of L and is
nonsingular. Hence the Jacobian of (23d) with respect to ϕP , which
is a principle minor of L, is nonsingular.

Second, because Ji is strictly convex by Assumption 2 such that
J ′′i > 0, we obtain (J ′−1

i )′ =
1
J ′′i

> 0 which yields
(∑

i∈VK
J ′−1
i (λ)

)′
>

0. Hence (23f) is nonsingular. □

What follows is the proof of Theorem 2 with the Lya-
punov/LaSalle stability criterion.

Proof of Theorem 2. Lemma 1 and Assumption 4 state that the
equilibrium state z∗

= (ϕ∗, ω∗

M , η∗, λ∗) ∈ Ψ is unique. The proof of
the statement (b) in Theorem 2 is based on Theorem A.1. Consider
an incremental Lyapunov function candidate,

V (ϕ, ωM , η, λ) = V1 + αV2 + V3, (28)

where V1 is the classical energy-based function (De Persis &
Monshizadeh, 2018),

V1(ϕ, ωM ) = U(ϕ) − U(ϕ∗) − ∇ϕU(ϕ∗)(ϕ − ϕ∗)

+
1
2
ωT

MMMωM ,

and V2, V3 are positive definite functions

V2(λ) =
1
2
(
∑
i∈VK

J ′−1
i (λ) −

∑
i∈VK

J ′−1
i (λ∗))2,

V3(ωM , η) =
k2

2
(
∑
i∈VM

Miωi + η − η∗)2.

Note that the definition of U(ϕ) is in (26) and V2 = V3 by (23f).
V3 is introduced to involve the state variable η into the Lyapunov
function.

First, we prove that V̇ ≤ 0. From the dynamic system (23) and
the definition of V1, it yields that

V̇1 = −

∑
i∈VM∪VF

Diω
2
i +

∑
i∈VK

ωi(J ′
−1
i (λ) − J ′−1

i (λ∗)), (29)

by (23f), we derive

V̇2 = −k
[∑
i∈VK

J ′−1
i (λ) −

∑
i∈VK

J ′−1
i (λ∗)

][∑
i∈VM

Miω̇i + η̇

]
by summing (23b–23e)

= − k
[∑
i∈VK

J ′−1
i (λ) −

∑
i∈VK

J ′−1
i (λ∗)

][∑
i∈V

Pi +
∑
i∈VK

J ′−1
i (λ)

]
by (24b)

= − k
[∑
i∈VK

J ′−1
i (λ) −

∑
i∈VK

J ′−1
i (λ∗)

]2
, (30a)

by expanding the quadratic

= − k
∑
i∈VK

[
J ′−1
i (λ) − J ′−1

i (λ∗)
]2

− 2k
∑

i̸=j,i,j∈VK

[
J ′−1
i (λ) − J ′−1

i (λ∗)
][

J ′−1
j (λ) − J ′−1

j (λ∗)
]

by Newton–Leibniz formula

= − k
∑
i∈VK

[
J ′−1
i (λ) − J ′−1

i (λ∗)
]2

− 2k
∑

i̸=j,i,j∈VK

[∫ λ

λ∗

(J ′−1
i )′ds

][∫ λ

λ∗

(J ′−1
j )′ds

]
. (30b)

and by V3 = V2 and (30a), we obtain

V̇3 = −k
[∑
i∈VK

(J ′−1
i (λ) − J ′−1

i (λ∗))
]2

. (31)

Hence, with (29), (30b), (31), we derive

V̇ = −

∑
i∈VM∪VF

Diω
2
i +

∑
i∈VK

ωi
[
J ′−1
i (λ) − J ′−1

i (λ∗)
]

− kα
∑
i∈VK

[
J ′−1
i (λ) − J ′−1

i (λ∗)
]2

− kα
∑

i̸=j,i,j∈VK

[∫ λ

λ∗

(J ′−1
i )′ds

][∫ λ

λ∗

(J ′−1
j )′ds

]
− k

[∑
i∈VK

J ′−1
i (λ) −

∑
i∈VK

J ′−1
i (λ∗)

]2

= −

∑
i∈VK

Di

2
ω2

i −

∑
i∈VK

Di

2

[
ωi −

J ′−1
i (λ) − J ′−1

i (λ∗)
Di

]2

−

∑
i∈VK

[
kα −

1
2Di

][
J ′−1
i (λ) − J ′−1

i (λ∗)
]2

− 2kα
∑

i̸=j,i,j∈VK

[∫ λ

λ∗

(J ′−1
i )′ds

][∫ λ

λ∗

(J ′−1
j )′ds

]
− k

[∑
i∈VK

J ′−1
i (λ) −

∑
i∈VK

J ′−1
i (λ∗)

]2
−

∑
i∈VM∪VF /VK

Diω
2
i

where the equation∑
i∈VM∪VF

Diω
2
i =

∑
i∈VK

Diω
2
i +

∑
i∈VM∪VF \VK

Diω
2
i

is used due to the fact that VK ⊆ VM ∪ VF .
Since Ji(ui) is strictly convex and (J ′−1

i )′ =
1
J ′′ i

> 0, we derive

kα
∑

i̸=j,i,j∈VK

[∫ λ

λ∗

(J ′−1
i )′ds

][∫ λ

λ∗

(J ′−1
j )′ds

]
> 0,

Thus by setting α > 1
kDi

, we obtain V̇ ≤ 0.
Second,we prove that z∗

= (ϕ∗, ω∗

M , η∗, λ∗) is a strictminimum
of V (ϕ, ωM , η, λ) such that ∇V |z∗ = 0 and ∇

2V |z∗ > 0. It can be
easily verified that V |z∗ = 0 and

∇V |z∗ = col(∇ϕV , ∇ωMV , ∇ηV , ∇λV )|z∗ = 0 ∈ Rn+nM+1

where

∇ϕV = ∇ϕU − ∇ϕU∗,

∇ωMV = MωM + M
(
k2(

∑
i∈VM

Miωi + η − η∗)1nM

)
,

∇ηV = k2(
∑
i∈VM

Miωi + η − η∗),

∇λV = α

(∑
i∈VK

J ′−1
i (λ) −

∑
i∈VK

J ′−1
i (λ∗)

)(∑
i∈VK

J ′−1
i (λ)

)′

.

Here k2(
∑

i∈VM
Miωi + η − η∗)1nM is a vector with all components

equal to k2(
∑

i∈VM
Miωi + η − η∗)). The Hessian matrix of V is

∇
2V |z∗ = blkdiag(L,H, Λ),
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which is a block diagonal matrix with block matrices L,H , and Λ. L
is positive definite by (27),

Λ = α

((∑
i∈VK

J ′−1
i (λ∗)

)′
)2

> 0

which is a scalar value, and H is the Hessian matrix of the function

V =
1
2
ωT

MMMωM +
k2

2

(∑
i∈VM

Miωi + η − η∗

)2

which is positive definite for any (ωM , η − η∗), thus H is positive
definite. Hence, we have proven that z∗ is a strict minimum of V .

Finally, we prove that the invariant set{
(ϕ, ωM , η, λ)|V̇ (ϕ, ωM , η, λ) = 0

}
contains only the equilibrium point. V̇ = 0 implies that {ωi =

0, i ∈ VM ∪ VF }. Hence {ϕi, i ∈ V} are constants. By Lemma 1,
there is at most one equilibrium with ϕ ∈ Φ . In this case, z∗ is
the only one equilibrium in the neighborhood of z∗ , i.e., Ψ d

=

{(ϕ, ωM , η, λ)|V (ϕ, ωM , η, λ) ≤ c, ϕ ∈ Φ} for some c > 0. Hence
with any initial state z0 that satisfies the algebraic equations (23d)
and (23f), the trajectory converges to the equilibrium state z∗. □

For the multi-area implementation of PIAC, we choose a Lya-
punov candidate function as

V (ϕ, ωM , η, λ) = V1 +

∑
Ar

(αV2r + V3r ),

where λ = col(λr ) is a column vector consisting of the components
λr , V1 is defined as in (28) and V2r and V3r are defined for area
Ar as

V2r =
1
2

( ∑
i∈VKr

J ′−1
i (λr ) −

∑
i∈VKr

J ′−1
i (λ∗

r )
)
,

V3r =
k2

2

( ∑
i∈VMr

Miωi + ηr − η∗

r

)2
.

Following the proof of Theorem2,we can obtain the locally asymp-
totic stability of PIAC implemented in multi-area control.

Remark 3. The Assumptions 1–4 are realistic at the same time.
Assumptions 1 and 3 are necessary for the implementation of
PIAC to solve Problems 1 and 2. Assumptions 2 and 4 are general
sufficient conditions for the stability of the nonlinear systems (1)
controlled by PIAC. Assumptions 1 and 4 can be guaranteed by
tertiary control and Assumption 3 by an effective communication
infrastructure. Assumption 2 usually holds for frequently used
convex cost functions, e.g., quadratic cost function, where the
requirement of scale cost functions in Dörfler and Grammatico
(2017, Assumption 1) is not needed.

6. Simulations of the closed-loop system

In this section,we evaluate the performance of the PIACmethod
and compare it with those of the GB, DAI and DecI control laws on
the IEEE New England power grid shown in Fig. 1. The data are
obtained from Athay, Podmore, and Virmani (1979). In the test
system, there are 10 generators, and 39 buses and it serves a total
load of about 6 GW. The voltage at each bus is a constant which is
obtained by power flow calculation with the Power System Analysis
Toolbox (PSAT) (Milano, 2008). In the network, there actually are
49 nodes, i.e., 10 nodes for the generators, 39 nodes for the buses.
Each synchronous machine is connected to a bus and its phase
angle is rigidly tied to the rotor angle of the bus if the voltages of
the system are constants, e.g., the classical model of synchronous

Fig. 1. IEEE New England test power system.

machines (Ilić & Zaborszky, 2000). We simplify the test system to
a system of 39 nodes by considering the generator and the bus as
one node. This is reasonable because the angles of the synchronous
machine and the bus have the same dynamics. The 10 generators
are in the set VM = {30, 31, 32, 33, 34, 35, 36, 37, 38, 39} and the
other buses are in the set VF which are assumed to be frequency
dependent loads. The nodes participating in secondary frequency
control are the 10 generators, thus VK = VM . The inertias of the
generators as stated in Athay et al. (1979) are all divided by 100 in
order to obtain the desired frequency response as in Dörfler and
Grammatico (2017), and Zhao et al. (2015). The buses in VM ∪ VF
and controllers in VK are connected by a communication network.

As in Dörfler andGrammatico (2017), and Zhao et al. (2015), we
set the droop control coefficient Di = 1 (p.u. power/p.u. frequency
deviation) for i ∈ VF ∪ VM under the power base of 100 MVA and
frequency base of 60 Hz with the nominal frequency f ∗

= 60 Hz,
and we choose the quadratic cost function Ji(ui) =

u2i
2ai

, i ∈ VK .
The economic dispatch coefficients ai are generated randomlywith
a uniform distribution on (0, 1). It can be easily verified that the
quadratic cost functions are all strictly convex.

In the simulations, the system is initially at a supply–demand
balanced state with the nominal frequency. At time t = 0.5 s, a
step-wise increase of 33 MW of the loads at each of the buses 4,
12, and 20, amounting to a total power imbalance of 99MW, causes
the frequency to drop below the nominal frequency. The loads at
other nodes do not change.

We conduct the simulations with the open source software
PSAT and use the Euler-Forward method to discretize the ordinary
differential equations and the Newton–Raphson method to solve
the nonlinear system. We first evaluate the performance of PIAC
on the network which is assumed as a single area. We compare
the PIAC method with the GB, DAI and DecI control laws. For
illustrations of the overshoot phenomena of other control laws, we
refer to the simulation results of the literature published recently,
e.g., Li et al. (2016) and Trip et al. (2016). Then we implement the
PIAC method in the network separated into two areas and show
that the control actions of the areas are totally decoupled by PIAC
as described in the Section 4.2.
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Fig. 2. Comparison of the PIAC, GB, DAI, DecI control laws (single area implementation). In (d1–d4), the black dashed lines denote the power imbalance of the network. Only
the marginal costs of the generators {2, 3, 4, 5, 7} are shown in (e3–e4).

6.1. Numerical results of the single-area implementation

In this subsection, the network is seen as a single area. The
parameters for PIAC, GB, DAI and DecI are listed in Table 1. For the
DAI method, the communication network is a weighted network
as shown in Fig. 1 by the black dotted lines. The weight wij for
line (i, j) is set as in Table 1 and wii = −

∑
(i,j)wij. The settings of

these gain coefficients are chosen for a fair comparison in such a

way that the slopes of the total control inputs, which reflect the
required response time of the actuators, show close similarity (see
Fig. 2d1–2d4).

Fig. 2 shows the comparison of the performances between the
four control laws. Fig. 2a–2d show the responses of frequencies
ωi = ωi + f ∗ for all i ∈ VM , virtual abstract frequency ωs =

ωs + f ∗, relative frequency {ωi − ωs, i ∈ VM} and control input
us respectively. The latter three illustrate the three-subprocesses
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Table 1
The control parameters.

PIAC GB DAI DecI

k kGB Ci ki wij ki
5 60 1

39 50 −20 50

decomposed from the dynamics of the system (1). Here, the re-
sponses of ωs are obtained from (10) with us as the total amount
of control inputs of the PIAC and GB methods respectively. It can
be observed from Fig. 2a1 and 2a4 that all the control laws can
restore the nominal frequency. However, the frequency deviation
under the PIACmethod ismuch smaller than under the other three
control laws which introduce extra oscillations to the frequency.
This is because the sum of control inputs of the GB, DAI, DecI
methods overshoots the desired value as Fig. 2d2–2d4 show, while
the one of the PIAC method converges exponentially as Fig. 2d1
shows. Because of the overshoot, the GB, DAI and DecI control
laws require a maximum mechanical power input of about 140
MW from the 10 generators after the disturbance while the PIAC
method only requires 99 MW in this simulation. This scenario is
also well reflected in the response of the virtual frequency ωs as
shown in Fig. 2b1–2b4. Note that the convergences of the relative
frequencies {ωi − ωs, i ∈ VM} to zero as shown in Fig. 2c1–2c4
are the main concern of primary frequency control (Dörfler et al.,
2016; Motter et al., 2013). Since the economic power dispatch is
solved on-line, it can be observed in Fig. 2e1–2e2 that the marginal
costs of all the controllers are the same during the transient phase
under the control of PIAC and GB. In contrast with PIAC and GB,
the marginal costs of DAI are not identical during the transient
phase even though they achieve a consensus at the steady state.
Because there are no control coordinations between the controllers
in DecI, the marginal costs are not identical even at the steady
state as shown in Fig. 2e4. Since ui = αiλ, the control inputs of
the PIAC method and the GB method have similar dynamics as
those of their marginal costs as shown in Fig. 2f1–2f2. Note that as
shown in Fig. 2f4, the control inputs of DecI are very close to each
other because of the identical setting of ki and the small differences
between the frequency deviations. As shown in Fig. 2f1–Fig. 2f3, the
control inputs of some generators in the PIAC, GB and DAI control
laws are small due to the high control prices.

We remark that the larger the gain coefficient kGB of the GB
control law the larger are the oscillations of frequency deviations
even though the frequencies converge to the nominal frequency
faster. However, the control inputs of the PIACmethod converge to
the power imbalance faster under larger control gain k, which leads
to smaller frequency deviations. As shown in Fig. 2a1, the frequency
drops about 0.4 Hz which can be even smaller when k is larger.
However, k is related to the response time of the control devices
and hence cannot be infinitely large. If the step-wise increase of
the loads is too big and the gain coefficient k is not large enough,
i.e., the controllers cannot respond quickly enough, the frequency
might become so low that they damage the synchronousmachines.

6.2. Numerical results of the multi-area implementation

In this subsection, the network is separated into two areas by
the red dashed line. All the parameters of the controllers are the
same to the ones in the single-area implementation. There are 3
generators in area A1 and 7 generators in the area A2 i.e., VM1 =

{30, 37, 38},VM2 = {31, 32, 33, 34, 35, 36, 39}. The boundary
lines of area A1 are in EA1 = {(1, 39), (3, 4), (17, 16)}. As in sub-
section 6.1, the secondary frequency controllers are installed at the
nodes of the generators. After the step-wise increase of the loads
at buses 4, 12 and 20 with the total amount of 99 MW in the area
A2, the multi-area implementation of PIAC recovers the nominal

Fig. 3. Multi-area implementation of PIAC.

frequency as shown in Fig. 3a and the power export deviation of
area A1 converges to zero as shown by the black dashed lines in
Fig. 3b. Fig. 3b also shows that as the system converges to a new
state, the power flows in the three line in EA1 are different from
the ones before the step-wise increase of the loads in area A2. A
characteristic of PIAC is that it decouples the control actions of
the areas, which can be observed in Fig. 3c. Since the step-wise
increase of the power loads at the buses 4, 12 and 20 happens in
area A2, the control inputs of area A1 are zero and the power is
balanced by the controllers in the area A2. This shows that with the
PIACmethod, the power can be balanced locally in an area without
influencing to its neighbors. This characteristic of PIAC is attractive
for such a non-cooperative multi-area control of a power system that
different areas might have different amount of renewable energy. It is
fair for the area with a large amount of renewable energy to respond
to the disturbance in its own area. As mentioned in Section 4.2,
this characteristic allows the controllers in different areas control the
system in an asynchronous way at any time according to the power
imbalance within the area.

7. Conclusion

In this paper, we proposed a secondary frequency control ap-
proach, called PIAC, to restore the nominal frequency of power
systems with a minimized control cost. A main feature of PIAC
is that the estimated power imbalance converges exponentially
with a speed that only depends on a gain coefficient which can
be tuned according to the sensitivity of the control devices. Hence
PIAC eliminates the drawback of the traditional integral control
based secondary frequency control approach, in which large con-
trol gain coefficients lead to an overshoot problem of the control
inputs and small ones result in a large frequency deviation of the
power systems. When implemented in a network with multiple
areas, PIAC decouples the control actions of the areas such that the
power supply and demand of an area can be balanced locally in
the area without any influences to the neighbors. For the power
systems with a large amount of integrated renewable energy, the
large transient frequency deviation can be reduced by PIAC with
advanced control devices and communication networks.

However, in practice, there is usually some noise from the
measurement of frequency and time delays and even informa-
tion losses in the communication. In addition, the resistance of
the transmission lines cannot be neglected in some power net-
works, e.g., distribution grids of power systems or Micro-Grids.
Hence, further investigation on the performance of PIAC on such a
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lossy power network with noisy measurements and time delays is
needed. Further investigation is also required into the performance
of PIAC in the power system with dynamic actuators.
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Appendix. Preliminaries on DAE systems

Consider the followingDifferential Algebraic Equation (DAE) sys-
tems

ẋ = f (x, y), (A.1a)
0 = g(x, y), (A.1b)

where x ∈ Rn are state variables, y ∈ Rm are algebraic variables
and f : Rn

× Rm
→ Rn and g : Rn

× Rm
→ Rm are twice con-

tinuously differentiable functions. (A.1a) and (A.1b) are differential
and algebraic equations respectively. (x(x0, y0, t), y(x0, y0, t)) is the
solution with the admissible initial conditions (x0, y0) satisfying
the algebraic constraints

0 = g(x0, y0) (A.2)

and the maximal domain of a solution of (A.1) is denoted by I ⊂

R≥0 where R≥0 = {t ∈ R|t ≥ 0}.
Before presenting the Lyapunov/LaSalle stability criterion of the

DAE system, we make the following two assumptions.

Assumption A.1. The DAE system possesses an equilibrium state
(x∗, y∗) such that f (x∗, y∗) = 0, g(x∗, y∗) = 0.

Assumption A.2. Let Ω ⊆ Rn
× Rm be an open connected set

containing (x∗, y∗), assume (A.1b) is regular such that the Jacobian
of g with respect to y is a full rank matrix for any (x, y) ∈ Ω , i.e.,

rank(∇yg(x, y)) = m, ∀(x, y) ∈ Ω.

Assumption A.2 ensures the existence and uniqueness of the so-
lutions of (A.1) in Ω over the interval I with the initial condition
(x0, y0) satisfying (A.2).

The following theorem provides a sufficient stability criterion
of the equilibrium of DAE in (A.1).

Theorem A.1 (Lyapunov/LaSalle Stability Criterion (Hill & Mareels,
1990; Schiffer&Dörfler, 2016)). Consider theDAE system in (A.1)with
Assumptions A.1 and A.2, and an equilibrium (x∗, y∗) ∈ ΩH ⊂ Ω .
If there exists a continuously differentiable function H : ΩH → R,
such that (x∗, y∗) is a strict minimum of H i.e., ∇H|(x∗,y∗) = 0 and
∇

2H|(x∗,y∗) > 0, and Ḣ(x, y) ≤ 0, ∀(x, y) ∈ ΩH , then the following
statements hold:

(1) (x∗, y∗) is a stable equilibrium with a local Lyapunov function
V (x, y) = H(x, y) − H(x∗, y∗) ≥ 0 for (x, y) near (x∗, y∗),

(2) Let Ωc = {(x, y) ∈ ΩH |H(x, y) ≤ c} be a compact sub-
level set for some c > H(x∗, y∗). If no solution can stay in {(x, y) ∈

Ωc |Ḣ(x, y) = 0} other than (x∗, y∗), then (x∗, y∗) is asymptotically
stable.

We refer to Hill and Mareels (1990) and Schiffer and Dörfler
(2016) for the proof of Theorem A.1.
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