

Delft University of Technology

Training Generative Adversarial Networks via Stochastic Nash Games

Franci, Barbara; Grammatico, Sergio

DOI
10.1109/TNNLS.2021.3105227
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Neural Networks and Learning Systems

Citation (APA)
Franci, B., & Grammatico, S. (2023). Training Generative Adversarial Networks via Stochastic Nash Games.
IEEE Transactions on Neural Networks and Learning Systems, 34(3), 1319-1328.
https://doi.org/10.1109/TNNLS.2021.3105227

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNNLS.2021.3105227
https://doi.org/10.1109/TNNLS.2021.3105227

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 3, MARCH 2023 1319

Training Generative Adversarial Networks
via Stochastic Nash Games

Barbara Franci and Sergio Grammatico , Senior Member, IEEE

Abstract— Generative adversarial networks (GANs) are a class
of generative models with two antagonistic neural networks:
a generator and a discriminator. These two neural networks
compete against each other through an adversarial process that
can be modeled as a stochastic Nash equilibrium problem. Since
the associated training process is challenging, it is fundamen-
tal to design reliable algorithms to compute an equilibrium.
In this article, we propose a stochastic relaxed forward-backward
(SRFB) algorithm for GANs, and we show convergence to an
exact solution when an increasing number of data is available.
We also show convergence of an averaged variant of the SRFB
algorithm to a neighborhood of the solution when only a few
samples are available. In both cases, convergence is guaranteed
when the pseudogradient mapping of the game is monotone.
This assumption is among the weakest known in the literature.
Moreover, we apply our algorithm to the image generation
problem.

Index Terms— Generative adversarial networks (GANs), sto-
chastic Nash equilibrium (SNE) problems (SNEPs), two-player
game, variational inequalities.

I. INTRODUCTION

A. Generative Adversarial Networks

GENERATIVE adversarial networks (GANs) is an exam-
ple of an unsupervised generative model. The basic

idea is that, given some samples drawn from a probability
distribution, the neural network takes a training set and learns
how to obtain an estimate of such distribution. Most of the
literature on GANs focuses on sample generation (especially
image generation), but they can also be designed to explicitly
estimate a probability distribution [1]–[4].

The learning process of the neural networks in GANs
is made via an adversarial process, in which not only the
generative model but also the opponent are simultaneously
trained. Indeed, there are two neural network classes: the
generator that creates data according to a given distribution,
and the discriminator that tries to recognize if the samples
come from the training data or the generator. As an example,
the generator can be considered as a team of counterfeiters,
trying to produce fake currency, while the discriminative
model, i.e., the police, tries to detect the counterfeit money [2].

Manuscript received 18 November 2020; revised 10 May 2021 and 22 July
2021; accepted 12 August 2021. Date of publication 26 August 2021; date
of current version 1 March 2023. This work was supported in part by
NWO through Research Projects OMEGA and P2P-TALES under Grant
613.001.702 and Grant 647.003.003 and in part by the ERC through
Research Project COSMOS under Grant 802348. (Corresponding author:
Barbara Franci.)

The authors are with the Delft Center for System and Control,
TU Delft, Delft 2600AA, The Netherlands (e-mail: b.franci-1@tudelft.nl;
s.grammatico@tudelft.nl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3105227.

Digital Object Identifier 10.1109/TNNLS.2021.3105227

To succeed in this game, the former must learn to reproduce
money that is indistinguishable from the original currency,
while the discriminator must recognize the samples that are
drawn from the same distribution as the training data. Through
the competition, both teams improve their methods until the
counterfeit currency is indistinguishable from the original.

Besides this simplistic interpretation, the subject has been
widely studied in the literature, because it has many and var-
ious applications. In addition to the classic image generation
problem [1], [5], GANs have been applied in medicine, e.g.,
to improve the diagnostic performance of the low-dose com-
puted tomography method [6] and recently to detect pneumo-
nia in potential Covid-19 patients [7]. Moreover, they can be
used for correcting images taken under adverse weather condi-
tions, as rain [8], [9] or fog [10], editing facial attributes [11],
image inpainting [12], [13] as well as Pacman [14].

B. Stochastic Nash Equilibrium Problems

The reason why these networks are called adversarial is
related to the fact that they can be modeled as a game,
where each agent payoff depends on the variables of the other
agent [15], [16]. However, the players in GANs can also be
considered to be cooperative since they share information with
each other [1], [17]. Since there are only the generator and the
discriminator, the problem is an instance of a two-player game
and it can be also cast as a zero-sum game, depending on the
choice of the cost functions. From a more general point of
view, the class of games that suits the GAN problem is that of
stochastic Nash equilibrium (SNE) problems (SNEPs) where
each agent tries to minimize its expected value cost function.
Given their connection with game theory, GANs have received
theoretical attention as well, both on the study of the associated
Nash equilibrium problem [16], [18] and on the design of
algorithms to improve the learning process [18], [19].

Among the available methods to solve a SNEP, an elegant
approach is to recast the problem as a stochastic variational
inequality (SVI) [19]–[21]. The advantage of this approach is
that there are many algorithms available for finding a solution
of an SVI, some of them already applied to GANs [19], [22].
For instance, the most used in machine learning is the
forward-backward (FB) algorithm [23], also known as gradient
descent [24], which has the disadvantage that, to ensure
convergence, the mapping should be cocoercive, i.e., strongly
monotone and Lipschitz continuous. Since the GAN mapping
is often nonconvex [17], [19], one would prefer an algorithm
that is guaranteed to converge for at most monotone map-
pings. In this case, one may consider the extragradient (EG)
algorithm [25]–[27] and the forward-backward-forward (FBF)
algorithm [28] which, however, require two costly evaluations

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8298-0684
https://orcid.org/0000-0002-6021-2350

1320 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 3, MARCH 2023

of the pseudogradient mapping, i.e., they are computationally
expensive. Due to the large-scale problem size, the ideal algo-
rithm should not be computationally demanding and it should
be guaranteed to converge under nonrestrictive assumption on
the pseudogradient mapping.

C. Contribution

Motivated by the need for computationally light iterations
converging under weak assumptions, we propose an algorithm
that requests only one computation of the pseudogradient
mapping per iteration and we show its convergence under mere
monotonicity. Specifically, our contributions are the following.

1) We propose a stochastic relaxed FB (SRFB) algorithm
and a variant with averaging (aSRFB) for the training
process of GANs. The SRFB involves only one evalu-
ation of the pseudogradient mapping at each iteration,
therefore it is computationally cheaper than the EG and
FBF algorithms.

2) We prove its convergence for monotone mappings,
which is considered the “weakest possible” assump-
tion on the pseudogradient mapping [29]. Specifically,
whenever only a finite number of samples are available,
we prove almost sure convergence to a neighborhood
of the solution, while if an increasing set of samples
is available, then the algorithm reaches an equilibrium
almost surely.

3) We apply our algorithm to the image generation problem
and compare it with the EG scheme.

Our SRFB algorithm is inspired by the works [30] and [31],
and a preliminary heuristic application to GAN was presented
in [32]. Therein, we do not prove convergence of the SRFB
algorithm nor of its aSRFB variant. Moreover, in [32], we only
run numerical simulations on synthetic toy examples while in
this article we train the two neural networks for the popular
image generation problem with real benchmark data.

D. Related Work

Due to the connection between SNEPs and SVIs, many
algorithms for variational inequalities have been applied to
GANs [19], [21]. The first one is the FB algorithm [23], [33],
also known as gradient descent [24]. It is the most used,
even if in many cases it has been proven to be nonconvergent
[19], [34]. From an operator-theoretic perspective, the FB is
not convergent because the pseudogradient mapping should
be cocoercive [35] and this is almost never the case in GANs.
From an algorithmic perspective, the iterates typically cycle in
a neighborhood of a solution without reaching it [34]. There-
fore, research has focused on the FBF algorithm and on the EG
algorithm that are guaranteed to converge for merely monotone
mappings. The FBF algorithm, first presented in [36] and
extended to the stochastic case in [28], involves two eval-
uations of the pseudogradient mapping. A first attempt to
apply the FBF algorithm for GANs is presented, along with
a relaxed inertial FBF algorithm, in [37]. The EG method
was first proposed in [38] and extended many years later to
the stochastic case in [25] and [26] and to GANs in [19]
and [27]. The EG algorithm requires two evaluations of the

pseudogradient mapping as well, therefore in [19], a variation
is proposed. This involves an extrapolation from the past,
i.e., it uses the evaluation of the mapping at previous time
steps. Gidel et al. [19] propose also the FB and the EG
algorithms with averaging.

The averaging technique was first proposed for VIs in [24]
and studied more recently in [19] and [39]. Yazici et al. [39]
examined two different techniques for averaging: the moving
average, which computes the time-average of the iterates, and
the exponential moving average which computes an exponen-
tially discounted sum. For both the techniques, they show that
despite convergence cannot be proven, the averaging may help
stabilizing the iterates, driving them toward a neighborhood
of the solution. While [39] has mostly a heuristic approach,
theoretical convergence studies are presented in [34] and [40].
Therein, the authors show that the local convergence and
stability properties of GAN training depend on the eigenvalues
of the Jacobian of the associated gradient vector field.

Another theoretical aspect that has not been extensively
addressed yet is the inherent relation between GANs and
game theory. Oliehoek et al. [16] formally introduce GAN
Games, describing (and seeking for) the Nash equilibria of
the zero-sum game as saddle points in mixed strategies. The
study of saddle point problems is also studied, in connection
with GANs, in [22]. Heusel et al. [17], instead, prove that
Adam [41], a second-order method for GANs, converges to a
stationary local Nash equilibrium.

E. Notation

Let R indicate the set of real numbers and let R̄ = R ∪
{+∞}. �·, ·� : Rn × Rn → R denotes the standard inner
product and �·� represents the associated Euclidean norm.
Given N vectors x1, . . . , xN ∈ Rn , x := col(x1, . . . , xN) =�
x	

1 , . . . , x	
N

�	
. For a closed set C ⊆ Rn, the mapping projC :

Rn → C denotes the projection onto C , i.e., projC(x) =
argminy∈C �y − x�.

II. GENERATIVE ADVERSARIAL NETWORKS

The idea behind GANs is to set up an antagonistic training
process between the generator and the discriminator. Typically,
the generator and the discriminator are represented by two
deep neural networks, and accordingly, they are denoted by
two functions, differentiable with respect to their inputs and
parameters. The generator creates samples that aim at resem-
bling the distribution of the training data. hence, it is trained
to fool the discriminator who, in turn, examines the samples
to determine whether they are real or fake. This adversarial
mechanism can be modeled as a game where the generator and
the discriminator represent the players, who want to improve
their payoff [16].

Formally, the generator is a neural network class, repre-
sented by a differentiable function g, with parameters vec-
tor xg ∈ �g ⊆ Rng . Let us denote the (fake) output of
the generator with g(z, xg) ∈ Rq where the input z is a
random noise vector drawn from the data prior distribution,
z ∼ pz [16]. In game-theoretic terms, the strategies of the
generator are the parameters xg that allow g to generate the
fake output.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

FRANCI AND GRAMMATICO: TRAINING GANs VIA STOCHASTIC NASH GAMES 1321

Similarly, the discriminator is a neural network class with
parameter vector xd ∈ �d ⊆ Rnd and a single output
d(v, xd) ∈ [0, 1] that indicates how good is the input v. The
output of the discriminator can be interpreted as the probability
of being real that d assigns to an element v. The strategies
of the discriminator are the parameters xd . Usually [2], [19],
the payoff of the discriminator is given by the function

Jd(xg, xd) = E[φ(d(·, xd))] − E[φ(d(g(·, xg), xd))] (1)

where φ : [0, 1] → R is a measuring function. The typical
choices for φ are the Kullback-Leibler divergence or the
Jensen-Shannon divergence (a logarithm) as in [2] but other
options (such as the Wasserstein distance) are proposed in
the literature [3], [42]. Regardless, the mapping in (1) can be
interpreted as the distance between the fake value and the real
one. The payoff of the generator (Jg) instead, depends on how
we describe the game. In fact, the problem can be modeled
as a two-player game, or as a zero-sum game, depending on
the cost functions. To cast the problem as a zero-sum game,
the functions Jg and Jd should satisfy the following relation:

Jg(xg, xd) = −Jd(xg, xd). (2)

Then, we can rewrite it as a minmax problem, that is,

min
xg

max
xd

Jd(xg, xd). (3)

In other words, (3) means that the generator aims at mini-
mizing the distance between the real value and the fake one,
while the discriminator wants to maximize such a distance,
i.e., d aims at recognizing the generated data. When the gen-
erator has a different payoff function from the discriminator,
e.g., [19]

Jg(xg, xd) = E[φ(d(g(·, xg), xd))], (4)

then the problem is not a zero-sum game.
Since the two-player game with cost functions (1) and (4)

and the zero-sum game with cost function (1) and relation (2)
have the same pseudogradient mapping (defined Section III),
it can be proven that the two equilibria are strategically
equivalent [16, Th. 10].

III. STOCHASTIC NASH EQUILIBRIUM PROBLEMS

In this section, let us describe the GAN game as a generic
SNEP. The two neural network classes are indexed by the
set I = {g, d}. Each agent i ∈ I has a decision variable
xi ∈ �i ⊆ Rni . In general, the local cost function of agent
i ∈ I is defined as

Ji(xi , x j) = Eξ [Ji (xi , x j , ξ(ω))] (5)

for some measurable function Ji : Rn × Rd → R where
n = nd + ng . The cost function Ji of agent i ∈ I depends
on its local variable xi , the decisions of the other player
x j , j �= i , and the random variable ξ : � → Rd that
represent the uncertainty. The latter arises when we do not
know the distribution of the random variable or it is com-
putationally too expansive to compute the expected value.
In practice, this means that we have access only to a finite
number of samples from the data distribution. Given the

probability space (�,F , P), Eξ indicates the mathematical
expectation with respect to the distribution of the random
variable ξ(ω)1; E[Ji (x, ξ)] is well defined for all the feasible
x = col(xg, xd) ∈ � = �g × �d . For our theoretical analysis,
some assumptions on the cost function and the feasible set
should be postulated. The following assumptions are standard
in monotone game theory [43], [44].

Assumption 1: For each i ∈ I, the set �i is nonempty,
compact, and convex.

For each i, j ∈ I, i �= j , the function Ji(·, x j) is convex
and continuously differentiable. For each i ∈ I, j �= i
and for each ξ ∈ �, the function Ji(·, x j , ξ) is convex,
continuously differentiable and Lipschitz continuous with the
constant �i(x j , ξ) integrable in ξ . The function Ji (xi , x j , ·) is
measurable for each x j , j �= i . �

Given the decision variable of the other agent, the aim of
each agent i is to choose a strategy xi that solves its local
optimization problem, that is

∀i ∈ I : min
xi ∈�i

Ji(xi , x j). (6)

The solution of the coupled optimization problems in (6)
that we are seeking is an SNE [44].

Definition 1: An SNE is a collective strategy
x∗ = col(x∗

g , x∗
d) ∈ � such that for all i ∈ I

Ji(x∗
i , x∗

j) ≤ inf
�
Ji(y, x∗

j) | y ∈ �i
�
.

In other words, an SNE is a pair of strategies where
neither the generator nor the discriminator can decrease its
cost function by unilaterally deviating from its decision.

Although existence of an SNE of the game in (6) is
guaranteed, under Assumption 1 [44, Sect. 3.1], uniqueness
does not hold in general [44, Sect. 3.2].

To seek for a Nash equilibrium, we rewrite the problem as
a SVI. Let us first denote the pseudogradient mapping as

F(x) =
�

E[∇xg Jg(xg, xd)]
E[∇xd Jd(xd, xg)]

�
. (7)

We note that the possibility to exchange the expected value
and the pseudogradient is ensured by Assumption 1 [44].

Then, the associated SVI reads as�
F
	
x∗
, x − x∗� ≥ 0 for all x ∈ �. (8)

Remark 1: If Assumption 1 holds, then x∗ ∈ � is a Nash
equilibrium of the game in (6) if and only if x∗ is a solution
of the SVI in (8) [20, Prop. 1.4.2], [44, Lemma 3.3].

Moreover, under Assumption 1, the solution set of
SVI(�, F) is nonempty and compact, i.e., SOL(�, F) �= ∅

[20, Corollary 2.2.5] and an equilibrium exists. �
In light of Remark 1, we call variational equilibria (v-SNE)

the solution of the SVI(�, F) in (8) where F is as in (7),
i.e., the solution of the SVI that are also SNE.

IV. STOCHASTIC RELAXED FORWARD-
BACKWARD ALGORITHMS

In this section, we propose two algorithms for solving
the SNEP associated with the GANs process: a stochastic
relaxed forward backward (SRFB) algorithm and its variant
with averaging (aSRFB). The iterations read as in Algorithm 1

1From now on, simplicity, we use ξ instead of ξ(ω) and E instead of Eξ .

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

1322 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Algorithm 1 SRFB

1 Initialization: x0
i ∈ �i

2 Iteration k: Agent i receives xk
j for j �= i , then updates:

x̄ k
i = (1 − δ)xk

i + δx̄ k−1
i (11a)

xk+1
i = proj�i

�
x̄ k

i − λi FVR
i

	
xk

i , xk
j , ξ

k
i

�
(11b)

and Algorithm 2, respectively, and they represent the steps for
each agent i ∈ {g, d}.

Algorithms 1 and 2 differ, besides the presence of the
averaging step, on the choice of the approximation used for the
pseudogradient mapping. Moreover, we note that the averaging
step in Algorithm 2, namely,

X K =
�K

k=1 λk xk

SK
, SK =

K

k=1

λk (9)

can be implemented in a first-order fashion as

X K = 	
1 − λ̃K

X K−1 + λ̃K xK (10)

for some λ̃K ∈ [0, 1]. Moreover, let us remark that (10) is
different from (11a) and (14a). Indeed, in Algorithms 1 and 2,
(11a) and (14a) are convex combinations, with a constant
parameter δ, of the two previous iterates xk and x̄k−1, while
the averaging in (10) is a weighted cumulative sum over the
decision variables xk for all the iterations k ∈ {1, . . . , K },
with time–varying weights

�
λ̃k

�K

k=1. The parameter λ̃K can
be tuned to obtain uniform, geometric, or exponential
averaging [19], [39].

Let us now describe the approximation schemes used in the
definitions of the algorithms. In the SVI framework, there are
two main possibilities, depending on the samples available.

Using a finite, fixed number of samples is called stochastic
approximation (SA) [23], and it is widely used in the literature
of SVIs, in conjunction with conditions on the step sizes
to control the stochastic error [26], [45]. In fact, unless the
step size sequence is diminishing, it is only possible to prove
convergence to a neighborhood of a solution. The SA of the
pseudogradient mapping, given one sample of the random
variable reads as

FSA(x, ξ) :=
� ∇xg Jg(xg, xd, ξg)

∇xd Jd(xd, xg, ξd)

�
. (12)

FSA uses one or a finite number, called minibatch, of real-
izations of the random variable.

When a huge number of samples is available, one can
consider using a different approximation scheme, that is,

FVR(x, ξ k) =

⎡
⎢⎢⎢⎢⎣

1
Nk

Nk

s=1

∇xg Ji(xk
g, xk

d , ξ
(s)
g)

1
Nk

Nk

s=1

∇xd Ji(xk
d , xk

g , ξ
(s)
d)

⎤
⎥⎥⎥⎥⎦. (13)

In this case, an increasing number of samples, the batch size
Nk , is taken at each iteration [25]. The superscript VR stands
for variance reduction and it is related to the property of the
approximation error discussed in Remark 2.

Algorithm 2 SRFB With Averaging

1 Initialization: x0
i ∈ �i

2 Iteration k ∈ {1, . . . , K }: Agent i receives xk
j for j �= i ,

then updates:
x̄ k

i = (1 − δ)xk
i + δx̄ k−1

i (14a)

xk+1
i = proj�i

[x̄ k
i − λi FSA

i (xk
i , xk

j , ξ
k
i)] (14b)

3 Iteration K : X K
i =

�K
k=1 λk xk

i�K
k=1 λk

V. CONVERGENCE ANALYSIS

A. Basic Technical Assumptions

With the aim of proving convergence to a solution (or to
its neighborhood) of Algorithms 1 and 2, we start this section
with the assumptions that are common to both algorithms.

The following monotonicity assumption on the pseudogra-
dient mapping is standard for SVI problems [25], [31], also
when applied to GANs [19] and it is the weakest possible to
hope for global convergence.

Assumption 2: F in (7) is monotone, i.e., �F(x) − F(y),
x − y� ≥ 0 for all x, y ∈ �. �

Let us now define the filtration F = {Fk}, that is, a family of
σ -algebras such that F0 = σ(X0), Fk = σ(X0, ξ1, ξ2, . . . , ξk)
for all k ≥ 1, and Fk ⊆ Fk+1 for all k ≥ 0. For all k ≥ 0, let
us also define the stochastic error as

�k = F̂(xk, ξ k) − F(xk) (15)
where F̂ indicates one of the two possible approximation
schemes. In words, �k in (15) is the distance between the
approximation and the exact expected value mapping. Then,
let us postulate that the stochastic error has zero mean and
bounded variance, as usual in SVI [19], [25], [31].

Assumption 3: The stochastic error is such that, for all
k ≥ 0, a.s., E[�k |Fk] = 0 and E[��k�2|Fk] ≤ σ 2. �

B. Convergence of Algorithm 1

We now state the convergence result for Algorithm 1. First,
let us postulate some assumptions functional to our analysis.
We start with the batch size sequence, which should be
increasing to control the stochastic error.

Assumption 4: The batch size sequence (Nk)k≥1 is such
that, for some b, k0, a > 0, Nk ≥ b(k + k0)

a+1. �
Remark 2: Given FVR as in (13), it can be proven that, for

some C > 0

E
���k�2|Fk

� ≤ Cσ 2

Nk

i.e., the error diminishes as the batch size increases. Such result
is, therefore, called variance reduction. More details can be
found in [25, Lemma 3.12] and [33, Lemma 6]. �

In addition to Assumption 2, we postulate that the pseudo-
gradient mapping is Lipschitz continuous.

Assumption 5: F in (7) is �-Lipschitz continuous for � > 0,
i.e., �F(x) − F(y)� ≤ ��x − y� for all x, y ∈ �. �

Using the variance reduced scheme in (13), we can take
a constant step size, as long as it is small enough while the
relaxation parameter should not be too small.

Assumption 6: The step size in Algorithm 1 is such that
λ ∈ (0, 1/(2δ(2� + 1))] where � is the Lipschitz constant
of F in (7) as in Assumption 5. The relaxation parameter in
Algorithm 1 is such that δ ∈ �

2/(1 + √
5), 1

�
. �

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

FRANCI AND GRAMMATICO: TRAINING GANs VIA STOCHASTIC NASH GAMES 1323

Fig. 1. Inception scores reached by the EG, the SRFB and the aSRFB
algorithms.

Fig. 2. Mean to variance ratio corresponding to the average inception scores.

We can finally state our first convergence result.
Theorem 1: Let Assumptions 1–6 hold. Then, the sequence

(xk)k∈N generated by Algorithm 1 with FVR as in (13)
converges a.s. to a SNE of the game in (6).

Proof: See Appendix B. �

C. Convergence of Algorithm 2

In this section, we state the convergence result (and the
required assumptions) for Algorithm 2.

First, the bound on the relaxation parameter is wider in this
case (compared to Assumption 6).

Assumption 7: The relaxation parameter in Algorithm 2 is
such that δ ∈ (0, 1). �

Next, we postulate an assumption on the SA approximation
in (12), reasonable in our game-theoretic framework [19].
We also assume an explicit bound on the feasible set.

Assumption 8: FSA in (12) is bounded, i.e., there exists
B > 0 such that for x ∈ �, E[�FSA(x, ξ)�2|Fk] ≤ B. �

Assumption 9: The local constraint set � is such that
maxx, y∈� �x − y�2 ≤ R2, for some R ≥ 0. �

To measure how close a point is to the solution, let us
introduce the gap function

err(x) = max
x∗∈�

�
F
	
x∗
, x − x∗� (16)

TABLE I

NEURAL NETWORKS USED

which is equal 0 if and only if x is a solution of the (S)VI in
(8) [20, eq. (1.5.2)]. Other possible measure functions can be
found in [19].

We are now ready to state our second convergence result.
Theorem 2: Let Assumptions 1–3 and 7–9 hold. Let X K =

(1/K)
�K

k=1 xk , c = (2 − δ2/1 − δ), B be as in Assumption 8,
R be as in Assumption 9 and σ 2 be as in Assumption 3. Then,
the sequence (xk)k∈N generated by Algorithm 2 with constant
step size and FSA as in (12) is such that

E[err(X K)] = cR
λK + (2B2 + σ 2)λ.

Thus, limK→∞ E[err(X K)] = (2B2 + σ 2)λ.
Proof: See Appendix C. �

Remark 3: The average defined in Theorem 2 is not in
conflict with the definition in (9) because if we consider a
fixed step size, it holds that

X K =
�K

k=1 λk xk�K
k=1 λk

= λ
�K

k=1 xk

Kλ
= 1

K

K

k=1

xk . �

VI. NUMERICAL SIMULATIONS

Let us present some numerical experiments to validate the
analysis. We show how GANs are trained using our SRFB
algorithm and we propose a comparison with one of the
most used algorithms for GANs. Specifically, we compare our
SRFB algorithm with the EG algorithm (Algorithm 3) [19].
We note that, compared to Algorithm 1, Algorithm 3 involves
two projection steps and two evaluations of the pseudogradient
mapping. For the simulations we use Adam (Algorithm 4) [41]
instead of the stochastic gradient [23]. In Algorithm 5 we
propose the Relaxed Adam, i.e., the SRFB algorithm with
Adam; the EG algorithm with Adam can be derived similarly
[19, Algorithm 4]. All the simulations are performed on
MATLAB R2020a with 128 G RAM and 2 * Intel(R) Xeon(R)
Gold 6148 CPU at 2.40 GHz (20 cores each).

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

1324 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 3, MARCH 2023

Fig. 3. Generated images with (a) SRFB algorithm, (b) aSFRB algorithm,
and (c) EG algorithm.

We train two DCGAN architectures [3], [46] (presented
in Table I) on the CIFAR10 dataset [47] with the GAN
objective [1], [2]. We choose the hyperparameters of Adam as

Algorithm 3 EG

1 Initialization: x0
i ∈ �i

2 Iteration k: Agent i
3 Receives xk

j for j �= i , then updates:
yk

i = proj�i
[xk − αk F̂i (xk

i , xk
j , ξ

k
i)]

Receives yk
j for j �= i , then updates:

xk+1
i = proj�i

[xk − αk F̂i (yk
i , yk

j , ξ
k
i)]

Algorithm 4 Adam

Input : Initial parameters x0, x̄0 ∈ �

Exponential decay rates β1, β2 ∈ [0, 1)
Step size α

Output: Parameters xk+1

1 Initialize
2 1st moment vector z0 = 0
3 2nd moment vector y0 = 0
4 Time step k=0
5 for k = 1, . . . , K do
6 ĝk = F̂(xk, ξ k) # update pseudogradient
7 zk = β1zk−1 + (1 − β1)ĝk # update 1st moment
8 yk = β2 yk−1 + (1 − β2)(ĝk)2 # update 2nd moment
9 z̃k = zk

1−βk
1

compute 1st moment estimate

10 ỹk = yk

1−βk
2

compute 2nd moment estimate

11 xk+1 = xk − α z̃k√
ỹk+�

update parameters

12 end
13 return x K+1

β1 = 0.5 and β2 = 0.9. We compute the inception score [48] to
have an objective comparison: the higher the inception score,
the better the image generation. In Fig. 1, we show how the
inception score increases with time; the solid lines represent
a tracking average over the previous and following 50 values
of the inceptions score, which is averaged over 20 runs. The
transparent area indicated the maximum and minimum values
obtained in the 20 runs.

We note that the SRFB algorithm is computationally less
demanding than the EG algorithm. Specifically, in Fig. 1,
after 24 h (86 400 s), the SRFB has performed approximately
13 0000 iterations while the EG 9 0000. The averaged aSRFB
shows worse performances (after approximately 11 0000 iter-
ations), but this is to be expected since we have convergence
only to a neighborhood of the solution (Theorem 2). In Fig. 2,
we show the mean to variance ratio (average Inception Score
divided by its variance) at each time instant of the three
algorithms. As one can see, from Fig. 1 and 2 the SRFB
algorithm has a similar performance to the EG algorithm
but with a smaller variance (higher ratio). This means that
a new instance of the SRFB algorithm should be closer to the
average performance than the EG, hence our results are more
consistent. Fig. 3 shows a sample of the images generated by
the algorithms.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

FRANCI AND GRAMMATICO: TRAINING GANs VIA STOCHASTIC NASH GAMES 1325

Algorithm 5 Relaxed Adam

Input : Initial parameters x0, x̄0 ∈ �

Exponential decay rates β1, β2 ∈ [0, 1)
Step size α
Relaxing parameter δ ∈ [2

1+√
5
, 1]

Output: Parameters xk+1

1 Initialize
2 1st moment vector z0 = 0
3 2nd moment vector y0 = 0
4 Time step k = 0
5 for k = 1, . . . , K do
6 ĝk = F̂(xk, ξ k) # update pseudogradient
7 x̄ k = (1 − δ)xk + δx̄ k−1 # relaxation step
8 zk = β1zk−1 + (1 − β1)ĝk # update 1st moment
9 yk = β2 yk−1 + (1 − β2)(ĝk)2 # update 2nd moment

10 z̃k = zk

1−βk
1

compute 1st moment estimate

11 ỹk = yk

1−βk
2

compute 2nd moment estimate

12 xk+1 = x̄ k − α z̃k√
ỹk+�

update parameters

13 end
14 return x K

VII. CONCLUSION

The SRFB algorithm is a very promising algorithm for
training GANs. If an increasing number of samples is available
and the pseudogradient mapping of the game is monotone,
convergence to the exact solution holds. Instead, with only a
finite, fixed minibatch and the same monotonicity assumption,
convergence to a neighborhood of the solution can be proven
by using an averaging technique. Our numerical experience
shows a similar performance compared to the EG scheme,
widely used in the literature for GANs.

In the future, it would be interesting to extend the conver-
gence result to an exact solution also in the case of a small
minibatch. Since the cost function associated with GAN is
often nonconvex, it would also be worth finding algorithms
converging under weaker assumptions than monotonicity.

APPENDIX A
PRELIMINARY RESULTS

We here recall some facts about norms and the projection
operator and a preliminary result. Some results find inspiration
from [30] where the algorithm is presented in the deterministic
case. We start with the norms. We use the cosine rule

�x, y� = 1
2

	�x, x� + �y, y� − �x − y�2

(17)

and the following two properties of the norm [49, Corol-
lary 2.15], ∀a, b ∈ E , ∀α ∈ R

�αa+(1−α)b�2 = α�a�2 + (1 − α)�b�2 − α(1 − α)�a − b�2

(18)

�a + b�2 ≤ 2�a�2 + 2�b�2. (19)

Regarding the projection operator, by [49, Prop. 12.26],
it satisfies the following inequality: let C be a nonempty closed
convex set, then, for all x, y ∈ C

x̄ = projC(x) ⇔ �x̄ − x, y − x̄� ≥ 0. (20)

The projection is also firmly nonexpansive [49, Prop. 4.16],
and consequently, quasi firmly nonexpansive [49, Def. 4.1].

The Robbins–Siegmund Lemma is widely used in literature
to prove a.s. convergence of sequences of random variables.

Lemma 1 (Robbins-Siegmund Lemma, [50]): Let F =
(Fk)k∈N be a filtration. Let {αk}k∈N, {θk}k∈N, {ηk}k∈N

and {θk}k∈N be nonnegative sequences such that
�

k ηk < ∞,�
k θk < ∞ and let ∀k ∈ N, E[αk+1|Fk]+θk ≤ (1+θk)αk +ηk

a.s. Then
�

k θk < ∞ and {αk}k∈N converges a.s. to a
nonnegative random variable. �

The next lemma collects some properties that follow the
definition of the SRFB algorithm.

Lemma 2: Given Algorithm 1, the following statements
hold.

1) xk − x̄k−1 = (1/δ)(xk − x̄k).
2) xk+1 − x∗ = (1/1 − δ)

	
x̄k+1 − x∗
−(δ/1 − δ)

	
x̄k − x∗
.

3) δ/(1 − δ)2
��x̄k+1 − xk

��2 = δ
��xk+1 − xk

��2
.

Proof: Straightforward from Algorithm 1 and [30].

APPENDIX B
PROOF OF THEOREM 1

Proof of Theorem 1: Using the property of projection
operator (20) we have�

xk+1 − x̄k + λFVR(xk, ξ k), x∗ − xk+1� ≥ 0 (21)�
xk − x̄k−1 + λFVR(xk−1, ξ k−1), xk+1 − xk

� ≥ 0. (22)

Using Lemma 2.1, (22) becomes�
1
δ
(xk − x̄k) + λFVR(xk−1, ξ k−1), xk+1 − xk

� ≥ 0. (23)

Then, adding (21) and (23) we obtain�
xk+1 − x̄k + λFVR(xk, ξ k), x∗ − xk+1�

+�
1
δ
(xk − x̄k) + λFVR(xk−1, ξ k−1), xk+1 − xk

� ≥ 0. (24)

Now we use the cosine rule (17)�
xk+1 − x̄k, x∗ − xk+1�

= − 1
2

���xk+1 − x̄k
��2 + ��xk+1 − x∗��2 − ��x∗ − x̄k

��2
�

�
1
δ
(xk − x̄k), xk+1 − xk

�
= − 1

2δ

���xk − x̄k
��2 + ��xk − xk+1

��2 − ��xk+1 − x̄k
��2

�
and we note that

λ
�
FVR(xk, ξ k), x∗ − xk+1�
= −λ

�
F(xk), xk − x∗� + �

�k, x∗ − xk
�

+λ
�
F(xk), xk − xk+1

� + �
�k, xk − xk+1

�
.

Then, by reordering and substituting in (24), we obtain

−��xk+1 − x̄k
��2 − ��xk+1 − x∗��2 + ��x∗ − x̄k

��2

+ − 1
δ

��xk − x̄k
��2 − 1

δ

��xk − xk+1
��2 + 1

δ

��xk+1 − x̄k
��2

+ − 2λ
�
F(xk), xk − x∗� + 2λ

�
εk, x∗ − xk

�
+2λ

�
F(xk) − F(xk−1), xk − xk+1

�
+2λ

�
εk − εk−1, xk − xk+1� ≥ 0. (25)

Since F is monotone, it holds that �F(xk), xk − x∗� ≥
�F(x∗), xk − x∗� ≥ 0. By using Lemma 2.2 and 2.3 as

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

1326 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 3, MARCH 2023

in (28), and substituting in (25), grouping and reordering,
we get

1
1−δ

��x̄k+1 − x∗��2 + 1
δ

��xk − xk+1
��2

≤ 	
δ

1−δ
+ 1

��x∗ − x̄k
��2 − 1

δ

��xk − x̄k
��2

+2λ
�
F(xk) − F(xk−1), xk − xk+1�

+2λ
�
εk, x∗ − xk

� + 2λ
�
εk − εk−1, xk − xk+1

�
(26)

where we used Assumption 6. Moreover, by using Lipschitz
continuity of F and Cauchy-Schwartz and Young’s inequality,
it follows that

λ
�
F(xk) − F(xk−1), xk − xk+1

�
≤ �λ

2

���xk − xk−1
��2 + ��xk − xk+1

��2
�
.

Similarly, we can bound the term involving the stochastic
errors

2λ
�
εk − εk−1, xk − xk+1�
≤ 2λ

��εk − εk−1
����xk − xk+1

��
≤ λ

��εk − εk−1
��2 + λ

��xk − xk+1
��2

.

By substituting in (26), we conclude that

1
1−δ

��x̄k+1 − x∗��2 + 1
δ

��xk − xk+1
��2

≤ 1
1−δ

��x∗ − x̄k
��2 − 1

δ

��xk − x̄k
��2

+�λ(
��xk − xk−1

��2 + ��xk − xk+1
��2

)

+λ
��εk − εk−1

��2 + λ
��xk − xk+1

��2

+2λ
�
εk, x∗ − xk

�
. (27)

Now, we consider the residual function of xk

res
	
xk

2 = ��xk − proj
	
xk − λF(xk)

��2

≤ 2
��xk − xk+1

��2 + 2
��x̄k − xk + λεk

��2

≤ 2
��xk − xk+1

��2 + 4
��x̄k − xk

��2 + 4λ2�εk�2

where we added and subtracted xk+1 = proj(x̄k − λFVR(xk))
in the first inequality and used the firmly nonexpansiveness of
the projection and (19). It follows that��x̄k − xk

��2 ≥ 1
4 res

	
xk

2 − 1
2

��xk − xk+1
��2 − λ2�εk�2.

By substituting in (27), we have that

1
1−δ

��x̄k+1 − x∗��2 + 1
δ

��xk − xk+1
��2 ≤ 1

1−δ

��x∗ − x̄k
��2

− 1
δ

�
1
4 res

	
xk

2 − 1
2

��xk − xk+1
��2 − λ2�εk�2

�
+�λ

���xk − xk−1
��2 + ��xk − xk+1

��2
�

+λ
��εk − εk−1

��2 + λ
��xk − xk+1

��2 + 2λ
�
εk, x∗ − xk

�
.

Finally, by taking the expected value, grouping and using
Remark 2 and Assumptions 3 and 6, we have

E

�
1

1−δ

��x̄k+1 − x∗��2|Fk

�
+E

�	
1
2δ

− �λ − λ

��xk − xk+1

��2|Fk

�
≤ 1

1−δ

��x∗ − x̄k
��2 + �λ

��xk − xk−1
��2

+2λCσ

Nk
+ 2λCσ

Nk−1
+ λ

δ

Cσ

Nk

− 1
δ

��xk − x̄k
��2 − 1

4δ
res

	
xk

2
.

To use Lemma 1, let

αk = 1
1−δ

��x∗ − x̄k
��2 + �λ

��xk − xk−1
��2

θk = 1
δ

��xk − x̄k
��2 + 1

4δ
res

	
xk

2

ηk = 2λCσ

Nk
+ 2λCσ

Nk−1
+ λ

δ

Cσ

Nk
.

Applying the Robbins Siegmund Lemma we conclude that
αk converges and that

�
k∈N

θk is summable. This implies that
the sequence (x̄k)k∈N is bounded and that �xk − x̄k� → 0
(otherwise

�
(1/δ)�xk − x̄k�2 = ∞). Therefore (xk)k∈N has

at least one cluster point x̃. Moreover, since
�

k∈N
θk < ∞,

res(xk)2 → 0 and res(x̃k)2 = 0.

APPENDIX C
PROOF OF THEOREM 2

Proof of Theorem 2: We start by using the fact that the
projection is firmly quasinonexpansive��xk+1 − x∗��2

≤ ��x∗ − x̃k + λFSA(xk, ξ k)
��2

−��x̄k − λFSA(xk, ξ k) − xk+1
��2

≤ ��x − x̄k
��2 − ��x̄k − xk+1

��2 + 2λk
�
FSA(xk, ξ k), x∗ − x̄k

�
+2λk

�
FSA(xk, ξ k), x̄k − xk+1

�
= ��x∗ − x̄k

��2−��x̄k − xk+1
��2 + 2λk

�
FSA(xk, ξ k), x̄k −xk+1

�
+2λk

�
FSA(xk, ξ k), x∗ − xk

� + 2λk
�
FSA(xk, ξ k), xk − x̄k

�
.

Now we apply Lemma 2.2 and Lemma 2.3 to
��xk+1 − x∗����xk+1 − x∗��2 = 1

1−δ

��x̄k+1 − x∗��2 − δ
1−δ

��x̄k − x∗��2

+δ
��xk+1 − xk

��2
. (28)

Then, we can rewrite the inequality as

1
1−δ

��x̄k+1 − x∗��2 ≤ 1
1−δ

��x̄k − x∗��2

+2λk
�
FSA(xk, ξ k), x∗ − xk

� + 2λk
�
FSA(xk, ξ k), xk − x̄k

�
+2λk

�
FSA(xk, ξ k), x̄k − xk+1

�−(δ + 1)
��xk+1− x̄k

��2
. (29)

By applying Young’s inequality we obtain

2λk
�
FSA(xk, ξ k), xk − x̄k

�
≤ λ2

k

��FSA(xk, ξ k)
��2 + ��xk − x̄k

��2

2λk
�
FSA(xk, ξ k), x̄k − xk+1�

≤ λ2
k

��FSA(xk, ξ k)
��2 + ��x̄k − xk+1

��2
.

Then, inequality (29) becomes

1
1−δ

��x̄k+1 − x∗��2 ≤ 1
1−δ

��x̄k − x∗��2

+2λk
�
FSA(xk, ξ k), x∗ − xk

�
+2λ2

k

��FSA(xk, ξ k)
��2 − (δ + 1)

��xk+1 − x̄k
��2

+��xk − x̄k
��2 + ��x̄k − xk+1

��2
. (30)

Reordering, adding and subtracting 2λk�F(xk), xk −x∗� and
using Lemma 2, we obtain

1
1−δ

��x̄k+1 − x∗��2 + δ
��xk+1 − x̄k

��2 ≤ 1
1−δ

��x̄k − x∗��2

+2λk
�
F(xk) − FSA(xk, ξ k), xk − x∗� − 2λk

�
F(xk), xk − x∗�

+2λ2
k

��FSA(xk, ξ k)
��2 + δ2

��xk − xk−1
��2

. (31)

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

FRANCI AND GRAMMATICO: TRAINING GANs VIA STOCHASTIC NASH GAMES 1327

Then, by the definition of �k , reordering leads to

2λk
�
F(xk), xk − x∗�

≤ 1
1−δ

(�x̄k − x∗�2 − �x̄k+1 − x∗�2)

+δ(�xk − xk−1�2 − ��xk+1 − x̄k
��2

)

+2λ2
k�FSA(xk, ξ k)�2 + 2λk

�
�k, xk − x∗�. (32)

Next, we sum over all the iterations, hence inequality (32)
becomes

2
K

k=1

λk
�
F(xk), xk − x∗� ≤ 2

K

k=1

λk
�
�k, xk − x∗�

≤ 1
1−δ

K

k=1

(�x̄k − x∗�2 − �x̄k+1 − x∗�2)

+δ

K

k=1

	�xk − xk−1�2 − �xk+1 − x̄k�2

+2
K

k=1

λ2
k�FSA(xk, ξ k)�2. (33)

Using Assumption 2 and resolving the sums, we obtain

2
K

k=1

λk
�
F(x∗), xk − x∗� ≤ 2

K

k=1

λk
�
�k, xk − x∗�

≤ 1
1−δ

��x̄0 − x∗��2 + δ
��x0 − x̄−1

��2

+2
K

k=1

λ2
k

��FSA(xk, ξ k)
��2

. (34)

Now, we note that ��k, xk − x∗� = ��k, xk − uk�+ ��k, uk −
x∗�. We define u0 = x0 and uk+1 = proj(uk − λk�

k), thus

�uk+1 − x∗�2 = ��proj
	
uk − λk�

k

 − x∗��2

≤ ��uk − λk�
k − x∗��2

≤ ��uk − x∗��2 + λk

���k
��2 − 2λk

�
�k, uk − x∗�.

(35)

Therefore, 2λk��k, xk − x∗� = 2λk��k, xk − uk� +��uk − x∗��2 + λk

���k
��2 − ��uk+1 − x∗��2

. By including this in
(34) and by doing the sum, we obtain

2
K

k=1

λk
�
F(x∗), xk − x∗�

≤ 1
1−δ

��x̄0 − x∗��2 + δ
��x0 − x̄−1

��2

+2
K

k=1

λ2
k

��FSA(xk, ξ k)
��2 +

K

k=1

λ2
k

���k
��2

+��u0 − x∗��2 + 2
K

k=1

λk
�
�k, xk − uk

�
. (36)

By definition,
��u0 − x∗��2 = ��x0 − x∗��2

. Then, by taking
the expected value in (36) and using Assumption 3, we con-
clude that

2
K

k=1

λk
�
F(x∗), xk − x∗�

≤ (1
1−δ

+ 1)�x̄0 − x∗�2 + δ�x0 − x̄−1�2

+2
K

k=1

λ2
kE

��FSA(xk, ξ k)�2|Fk
�

+
K

k=1

λ2
kE

���k�2|Fk
�
. (37)

Let us define S = �K
k=1 λk , X K = 	�K

k=1 λk xk

/	�K

k=1 λk

 = (1/S)

�K
k=1 λk xk . Then,

2S
�
F(x∗), X K − x∗� ≤ 2−δ

1−δ
�x̄0 − x∗�2 + δ�x0 − x̄−1�2

+2
K

k=1

λ2
kE

��FSA(xk, ξ k)�2|Fk
�

+
K

k=1

λ2
kE

���k�2|Fk
�

≤ 2−δ2

1−δ
R + 	

2B2 + σ 2
 K

k=1

λk . (38)

Finally, it holds that if λk is constant, S = Kλ and�K
k=1 λ2

k = Kλ2

�
F
	
x∗
, X K − x∗� ≤ cR

Kλ
+ 	

2B2 + σ 2
λ.

�

REFERENCES

[1] I. Goodfellow, “NIPS 2016 tutorial: Generative adversarial net-
works,” 2017, arXiv:1701.00160. [Online]. Available: http://arxiv.
org/abs/1701.00160

[2] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[3] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks
in computer vision: A survey and taxonomy,” 2019, arXiv:1906.01529.
[Online]. Available: http://arxiv.org/abs/1906.01529

[4] Q. Kang, S. Yao, M. Zhou, K. Zhang, and A. Abusorrah, “Effective
visual domain adaptation via generative adversarial distribution match-
ing,” IEEE Trans. Neural Netw. Learn. Syst., early access, Sep. 10, 2020,
doi: 10.1109/TNNLS.2020.3016180.

[5] X. Song, Y. Chen, Z.-H. Feng, G. Hu, D.-J. Yu, and X.-J. Wu, “SP-GAN:
Self-growing and pruning generative adversarial networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 6, pp. 2458–2469, Jun. 2021.

[6] Q. Yang et al., “Low-dose CT image denoising using a generative
adversarial network with Wasserstein distance and perceptual loss,”
IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1348–1357, Jun. 2018.

[7] N. Eldeen M. Khalifa, M. Hamed N. Taha, A. E. Hassanien, and
S. Elghamrawy, “Detection of coronavirus (COVID-19) associated
pneumonia based on generative adversarial networks and a fine-
tuned deep transfer learning model using chest X-ray dataset,” 2020,
arXiv:2004.01184. [Online]. Available: http://arxiv.org/abs/2004.01184

[8] H. Zhang, V. Sindagi, and V. M. Patel, “Image de-raining using a
conditional generative adversarial network,” IEEE Trans. Circuits Syst.
Video Technol., vol. 30, no. 11, pp. 3943–3956, Nov. 2020.

[9] P. Xiang, L. Wang, F. Wu, J. Cheng, and M. Zhou, “Single-image de-
raining with feature-supervised generative adversarial network,” IEEE
Signal Process. Lett., vol. 26, no. 5, pp. 650–654, May 2019.

[10] K. Liu, Z. Ye, H. Guo, D. Cao, L. Chen, and F.-Y. Wang, “FISS GAN: A
generative adversarial network for foggy image semantic segmentation,”
IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1428–1439, Aug. 2021.

[11] K. Zhang, Y. Su, X. Guo, L. Qi, and Z. Zhao, “MU-GAN: Facial
attribute editing based on multi-attention mechanism,” IEEE/CAA J.
Autom. Sinica, vol. 8, no. 9, pp. 1614–1626, Sep. 2021.

[12] Y. Chen et al., “Research on image inpainting algorithm of improved
GAN based on two-discriminations networks,” Appl. Intell., vol. 51,
no. 6, pp. 3460–3474, 2021.

[13] Y. Chen et al., “The improved image inpainting algorithm via encoder
and similarity constraint,” Vis. Comput., vol. 37, pp. 1691–1705,
Jul. 2021.

[14] S. W. Kim, Y. Zhou, J. Philion, A. Torralba, and S. Fidler, “Learning to
simulate dynamic environments with GameGAN,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2020, pp. 1231–1240.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2020.3016180

1328 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 3, MARCH 2023

[15] S. R. Bulò, B. Biggio, I. Pillai, M. Pelillo, and F. Roli, “Randomized
prediction games for adversarial machine learning,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 11, pp. 2466–2478, Nov. 2017.

[16] F. A. Oliehoek, R. Savani, J. Gallego-Posada, E. van der Pol,
E. D. de Jong, and R. Gross, “GANGs: Generative adversarial net-
work games,” 2017, arXiv:1712.00679. [Online]. Available: http://arxiv.
org/abs/1712.00679

[17] M. Heusel et al., “GANs trained by a two time-scale update rule
converge to a local Nash equilibrium,” in Proc. Adv. Neural Inf. Process.
Syst., 2017, pp. 6626–6637.

[18] E. Mazumdar, L. J. Ratliff, and S. S. Sastry, “On gradient-based
learning in continuous games,” SIAM J. Math. Data Sci., vol. 2, no. 1,
pp. 103–131, Jan. 2020.

[19] G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien,
“A variational inequality perspective on generative adversarial net-
works,” 2018, arXiv:1802.10551. [Online]. Available: http://arxiv.
org/abs/1802.10551

[20] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities
and Complementarity Problems. New York, NY, USA: Springer, 2007.

[21] Q. Tao, Q.-K. Gao, D.-J. Chu, and G.-W. Wu, “Stochastic learning via
optimizing the variational inequalities,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 10, pp. 1769–1778, Oct. 2014.

[22] P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chandrasekhar,
and G. Piliouras, “Optimistic mirror descent in saddle-point problems:
Going the extra (gradient) mile,” 2018, arXiv:1807.02629. [Online].
Available: http://arxiv.org/abs/1807.02629

[23] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 22, no. 3, pp. 400–407, 1951.

[24] R. E. Bruck, Jr., “On the weak convergence of an ergodic iteration for
the solution of variational inequalities for monotone operators in Hilbert
space,” J. Math. Anal. Appl., vol. 61, no. 1, pp. 159–164, Nov. 1977.

[25] A. N. Iusem, A. Jofré, R. I. Oliveira, and P. Thompson, “Extragradient
method with variance reduction for stochastic variational inequalities,”
SIAM J. Optim., vol. 27, no. 2, pp. 686–724, Jan. 2017.

[26] F. Yousefian, A. Nedić, and U. V. Shanbhag, “Optimal robust smoothing
extragradient algorithms for stochastic variational inequality problems,”
in Proc. 53rd IEEE Conf. Decis. Control, Dec. 2014, pp. 5831–5836.

[27] K. Mishchenko, D. Kovalev, E. Shulgin, P. Richtarik, and Y. Malitsky,
“Revisiting stochastic extragradient,” in Proc. Int. Conf. Artif. Intell.
Statist., 2020, pp. 4573–4582.

[28] R. I. Boţ, P. Mertikopoulos, M. Staudigl, and P. T. Vuong, “Minibatch
forward-backward-forward methods for solving stochastic variational
inequalities,” Stochastic Syst., vol. 11, no. 2, pp. 112–139, Jun. 2021.

[29] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,”
Ann. Oper. Res., vol. 175, no. 1, pp. 177–211, 2010.

[30] Y. Malitsky, “Golden ratio algorithms for variational inequalities,” Math.
Program., vol. 184, nos. 1–2, pp. 383–410, Nov. 2020, doi: 10.1007/
s10107-019-01416-w.

[31] B. Franci and S. Grammatico, “Stochastic generalized Nash equilibrium
seeking in merely monotone games,” 2020, arXiv:2002.08318. [Online].
Available: http://arxiv.org/abs/2002.08318

[32] B. Franci and S. Grammatico, “A game–theoretic approach for gener-
ative adversarial networks,” in Proc. 59th IEEE Conf. Decis. Control
(CDC), Dec. 2020, pp. 1646–1651.

[33] B. Franci and S. Grammatico, “A distributed forward-backward algo-
rithm for stochastic generalized Nash equilibrium seeking,” IEEE
Trans. Autom. Control, early access, Dec. 25, 2020, doi: 10.1109/TAC.
2020.3047369.

[34] L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods
for GANs do actually converge?” 2018, arXiv:1801.04406. [Online].
Available: http://arxiv.org/abs/1801.04406

[35] S. Grammatico, “Comments on ‘distributed robust adaptive equilibrium
computation for generalized convex games’ [automatica 63 (2016)
82–91],” Automatica, vol. 97, pp. 186–188, Nov. 2018.

[36] P. Tseng, “A modified forward-backward splitting method for maxi-
mal monotone mappings,” SIAM J. Control Optim., vol. 38, no. 2,
pp. 431–446, 2000.

[37] R. I. Bot, M. Sedlmayer, and P. T. Vuong, “A relaxed inertial forward-
backward-forward algorithm for solving monotone inclusions with
application to GANs,” 2020, arXiv:2003.07886. [Online]. Available:
http://arxiv.org/abs/2003.07886

[38] G. Korpelevich, “The extragradient method for finding saddle points and
other problems,” Matecon, vol. 12, no. 4, pp. 747–756, 1976.

[39] Y. Yazıcı, C.-S. Foo, S. Winkler, K.-H. Yap, G. Piliouras, and
V. Chandrasekhar, “The unusual effectiveness of averaging in GAN
training,” 2018, arXiv:1806.04498. [Online]. Available: http://arxiv.
org/abs/1806.04498

[40] L. Mescheder, S. Nowozin, and A. Geiger, “The numerics of GANs,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1825–1835.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

[42] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,”
2017, arXiv:1701.07875. [Online]. Available: http://arxiv.org/abs/1701.
07875

[43] F. Facchinei, A. Fischer, and V. Piccialli, “On generalized Nash
games and variational inequalities,” Oper. Res. Lett., vol. 35, no. 2,
pp. 159–164, 2007.

[44] U. Ravat and U. V. Shanbhag, “On the characterization of solution sets of
smooth and nonsmooth convex stochastic Nash games,” SIAM J. Optim.,
vol. 21, no. 3, pp. 1168–1199, Jul. 2011.

[45] J. Koshal, A. Nedic, and U. V. Shanbhag, “Regularized iterative
stochastic approximation methods for stochastic variational inequality
problems,” IEEE Trans. Autom. Control, vol. 58, no. 3, pp. 594–609,
Mar. 2013.

[46] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
2015, arXiv:1511.06434. [Online]. Available: http://arxiv.org/abs/
1511.06434

[47] ’A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” M.S. thesis, Univ. Toronto, Toronto, ON, Canada, 2009.

[48] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 2234–2242.

[49] H. H. Bauschke et al., Convex Analysis and Monotone Operator
Theory in Hilbert Spaces, vol. 408. New York, NY, USA: Springer,
2011.

[50] H. Robbins and D. Siegmund, “A convergence theorem for non neg-
ative almost supermartingales and some applications,” in Optimizing
Methods in Statistics. Amsterdam, The Netherlands: Elsevier, 1971,
pp. 233–257.

Barbara Franci received the bachelor’s and mas-
ter’s degrees in mathematics from the University of
Siena, Siena, Italy, in 2012 and 2014, respectively,
and the Ph.D. degree from the Politecnico of Turin
and University of Turin, Turin, Italy, in 2018.

From September to December 2016, she visited the
Department of Mechanical Engineering, University
of California, Santa Barbara, CA, USA. She is
currently a Post-Doctoral Researcher with the Delft
Center for Systems and Control, Delft University
of Technology, Delft, The Netherlands. Her current

research interests are on game theory and its applications.
Dr. Franci was awarded the Ph.D. Quality Award by the Academic Board

of Politecnico di Torino, in 2017.

Sergio Grammatico (Senior Member, IEEE) was
born in Italy in 1987. He received the bachelor’s
degree (summa cum laude) in computer engineering,
the master’s degree (summa cum laude) in auto-
matic control engineering, and the Ph.D. degree
in automatic control from the University of Pisa,
Pisa, Italy, in February 2008, October 2009, and
March 2013, respectively, and the master’s degree
(summa cum laude) in engineering science from the
Sant’Anna School of Advanced Studies, Pisa, Italy,
in November 2011.

From February to April 2010 and November to December 2011, he visited
the Department of Mathematics, University of Hawaii at Manoa, USA. From
January to July 2012, he visited the Department of Electrical and Computer
Engineering, University of California at Santa Barbara, Santa Barbara, CA,
USA. From 2013 to 2015, he was a Post-Doctoral Research Fellow with
the Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland. From
2015 to 2018, he was an Assistant Professor with the Department of Electrical
Engineering, Control Systems, TU Eindhoven, The Netherlands, and with the
Delft Center for Systems and Control, TU Delft, Delft, The Netherlands.
He is currently an Associate Professor with the Delft Center for Systems and
Control, Delft University of Technology, Delft.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 09,2023 at 14:35:05 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/s10107-019-01416-w
http://dx.doi.org/10.1007/s10107-019-01416-w
http://dx.doi.org/10.1109/TAC.2020.3047369
http://dx.doi.org/10.1109/TAC.2020.3047369

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

