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Abstract
This research proposes a novel method to classify
cognitive behavior based on eye-movement data.
Most state-of-the-art approaches use conventional
machine learning techniques needing manual fea-
ture extraction. This experiment explores the pos-
sibility of applying deep learning algorithms to
cognitive activity recognition for feature extraction
and classification of eye-movement data. Convo-
lutional neural networks will be explored in partic-
ular. Two neural networks are proposed and opti-
mized using hyperparameter tuning. This research
shows that convolutional neural networks can in-
deed perform cognitive activity recognition. Some
neural networks significantly outperform the state-
of-the-art methods for known subjects. However,
further research is needed to improve performance
in classifying activities for unknown subjects.

1 Introduction
Human activity recognition (HAR) has become more impor-
tant as the demand for seamless human-computer interaction
has increased [1], [2]. Human activities, from physical to cog-
nitive tasks, can be recognized with different types of sensor
data, like motion data [3] and visual data [1]. This research
focuses on using eye-movement data to predict certain cogni-
tive activities such as reading, writing, and browsing the web.
In other words: Gaze-based activity recognition.

Motivation
In modern cars, new techniques are applied to recognize and
prevent driver fatigue. By using eye-tracking technologies
cars can alarm the driver when attention is lost [2]. This could
make driving safer and prevent avoidable accidents. Improv-
ing and expanding our knowledge about recognizing cogni-
tive context can lead to better and more reliable systems.

Related works and challenges
Related works indicate that there is a correlation between
cognitive tasks and eye movement [4], [5]. Most recogni-
tion techniques are based on conventional machine learning
techniques like support vector machines or hidden Markov
models [5].

As seen in [6, p. 424] one of the challenges with gaze-
based human activity recognition lies in the ”Heterogeneity
in human visual behaviour. Human visual behaviours are het-
erogeneous across subjects, visual stimuli, and eye-tracking
devices.” This makes feature extraction a complex task and
potentially has an impact on accuracy. Another challenge
is the lack of sufficient training data [6]. Collecting eye-
movement data has proven to be difficult due to privacy con-
cerns.

Convolutional neural networks (CNN) could solve the
complex feature extraction issue since CNNs are designed to
learn the features during training. This eliminates the need for
manually made features which often require deep knowledge
of the data. In addition, CNNs have been proposed before for

gaze-based activity recognition [7]. However, a very limited
dataset was used only containing two activities. Moreover,
in other HAR fields CNNs have created accurate results with
small multi-class datasets [8]–[10].

This suggests that CNNs could potentially improve the
state-of-the-art gaze-based activity recognition performances.

Research Question
The question this research aims to answer is:

• Can a convolutional neural network classifier be used for
gaze-based activity recognition?

To tackle this question the following sub-questions have to be
answered.

• What CNN architecture is best suited for gaze-based ac-
tivity recognition?

• Which CNN hyperparameters perform best for gaze-
based activity recognition?

• How do the found CNN performances compare to other
machine learning techniques?

2 Methodology
The following methodology is proposed to answer the re-
search question. First, data is required for training the CNNs.
The three datasets used in this research are described in sec-
tion 2.1. Next, preprocessing: although neural networks can
work with raw data [11] they can benefit from some prepro-
cessing which is discussed in section 2.2. Following is the
search for suitable CNN architectures, the two baseline ar-
chitectures are presented in section 2.3.The two architectures
need tuning to tailor them to the datasets. This process, called
hyperparameter tuning, is discussed in section 2.4. Lastly, to
measure the performance of each set, cross-validation is ap-
plied, see section 2.5.

2.1 Dataset description
The following three datasets are used for training and validat-
ing the neural networks.

• Desktop activity is a dataset consisting of eight subjects
[6]. Four male and four female, between the age of 24
and 35. The performed activities are: browsing the web,
playing a game, reading, using a search engine, watch-
ing a video, and writing an essay. The data has been
collected with the Pupil Core Eyetracker [12].

• Sedentary activity is data collected from 24 subjects
where 16 participants are male and 8 female [13]. All
participants are between the age of 24 and 48. The
performed cognitive activities are reading, watching a
movie, browsing the web, using a search engine, playing
a game, writing code, debugging code, and interpreting
code output. The data has been collected with the Tobii
Pro X2 [14].

• Japanese Document is the last dataset used for this re-
search, consisting of eight subjects [15]. Four males and
four females ageing between 21 and 32. The activities
are reading five different types of reading materials: a
novel, a fashion magazine, a manga, a newspaper, and



a textbook. The data has been collected with the SMI
wearable eye-tracking glasses [16].

All data has been recorded with a rate of 30Hz and is shaped
as a 2xN array where each sample N contains an X and Y
coordinate of the gaze.

2.2 Preprocessing
Preprocessing of the data is depicted in figure 1. It starts with
removing outliers. This is done by taking the mean of the sig-
nal and removing data points that are further than two times
the standard deviation from the mean.

Next, the data is normalized per subject per activity. Nor-
malization shifts and scales the signal such that the small-
est data point equals 0 and the largest equals 1. This can be
achieved by subtracting all values with the minimum of the
signal and dividing all resulting values by the resulting maxi-
mum.

Then, the normalized data is turned into fixed-length
frames using a sliding window. The sliding window also
helps in generating more data, the length of the window is
a controlled hyperparameter which will be determined in the
hyperparameter tuning part of the research. A stride of 30
samples is applied, i.e. the sliding window moves in steps of
1 second.

When training a 2-dimensional CNN the frames are turned
into 2D black and white images, where the X and Y coor-
dinates are drawn on a black canvas and the gaze points are
connected to incorporate the saccades. A visual example is
depicted in figure 2. The resolution of this input image and
the width of the line connecting the points, are as well con-
trolled hyperparameters.

During this preprocessing step the time component is lost:
the relative angle between two saccades is made clear but
the absolute direction is not. To overcome this, the connect-
ing lines on the canvas increase in intensity over time. This
feature can be enabled or disabled by the tuning algorithm,
which makes it a Boolean hyperparameter.

2.3 CNN Architectures
A convolutional neural network is designed by chaining spe-
cific layers, these are the building blocks of a CNN archi-
tecture. The design process of this research started with two
known architectures. Variations are created by adding and
removing layers. The best-performing architectures are se-
lected through training and validation.

The building blocks for a CNN
The neural network layers used in this research to build CNNs
are explained below.

• Convolution layers: These layers use learnable convo-
lution kernels to recognize patterns in the input [11]. It
produces a feature map per kernel. Together with the
max-pooling layer, it represents the feature extraction
part of the network.

• Max pooling layers: These layers devide their input in
regions of the pool size and pick the maximum value in
each region, reducing dimensionality and allowing for
more abstract pattern recognition [11].

Figure 1: Preprocessing for 1D CNNs has three steps: removing out-
liers, normalization and a sliding window. A 2D CNN requires one
additional preprocessing step: drawing the gaze on an image. The
sliding window and gaze drawing are controlled by hyperparame-
ters.

Figure 2: For a 2D CNN, the gaze points are drawn and connected
on a black and white image. The line thickness and image resolution
are variable and optimized in the hyperparameter tuning part of this
research.



Figure 3: This CNN uses one-dimensional convolution to extract
features in X and Y movements separately. After convolving and
pooling the data once, the features are merged and used as input for
the first fully connected layer. Next, the data flows through a smaller
fully connected layer. Lastly, the input is classified using a soft-max
classifier.

• Dropout layers: These layers are often applied after the
activation function of a fully connected or convolutional
layer. Dropout layers prevent overfitting by randomly
disabling neurons during training [17].

• Fully connected layers: Each neuron in a fully con-
nected layer is connected to all neurons from the previ-
ous layer [11]. These layers are used for classification.

Baseline architectures
This research has two CNN architectures as starting points.
The first architecture, shown in figure 3, uses one-
dimensional convolutions and is based on the network used
in [9]. This network has been applied to accelerometer data
consisting of multiple 1D signals, being very similar to eye-
movement data. It extracts features separately from each sig-
nal (X, Y and Z) by applying one convolution layer and one
max pooling layer. Following, it classifies with two consecu-
tive fully connected layers and a soft max classifier. This has
proven to be effective in human activity recognition.

The second architecture, shown in figure 4, is based on the
LeNet-5 network which is used for gaze-based activity recog-
nition in [7]. Additionally, the LeNet-5 network is proven to
be very accurate in predicting handwritten characters by ex-
tracting patterns from black and white images [18] similar to
the preprocessed data shown in figure 2. This network ex-
tracts features by sequencing three blocks, where each block
has a convolution and a pooling layer. Classification is done
by one fully connected layer and a soft max classifier.

2.4 Hyperparameter optimization
The layers and preprocessing steps have hyperparameters that
can potentially influence the performance of a CNN. Differ-

Figure 4: This 2D CNN requires black and white images as input,
this input is generated during an extra preprocessing step depicted
in figure 2. Feature extraction is done by alternating convolution
and pooling layers three times. Classification is done by one fully
connected layer and a soft-max classifier.

ent datasets with different classes and sizes potentially have
different needs. One requires more filter kernels the other a
deeper network. Consequently, a hyperparameter search has
to be performed for all three datasets. Classification can be
done for new or known subjects, these different use cases
might need different hyperparameters as well. All these fac-
tors (2 baseline architectures, 3 datasets, 2 use cases) result in
2 ∗ 3 ∗ 2 = 12 sets of hyperparameters that need to be found.
Searching for these parameters is done by trying all or a sub-
set of parameter combinations and comparing performance.
Since the size of the search space (set of all combinations)
grows exponentially with each parameter it is often not feasi-
ble to try the complete search space. To overcome this prob-
lem smart search algorithms are used to approach the optimal
solution in limited time.

Hyperparameters
The searched hyperparameters are:

• Framelength is the size of the sliding window used dur-
ing preprocessing. See section 2.2.

• Image resolution is the size of the image generated dur-
ing preprocessing for the 2D CNN. See figure 2.

• Line thickness is the width of the line connecting the
gaze points on the image during preprocessing step. See
figure 2.

• Filter count is the number of filters applied in a convo-
lution layers.

• Kernel size is the size of a convolution filter.
• Dropout rate is the ratio of randomly disabled neurons

in a dropout layer.
• Sizes of the fully connected layers.
• Layers can be enabled or disabled to incorporate differ-

ent architectures in the search space.
• Gradient can be enabled or disabled during preprocess-

ing.



Figure 5: The search space exploration loop. Each trial contains
three executions of different randomly picked train and validation
data. The accuracies are averaged out.

Defining the search space

Often a hyperparameter is a number which can theoretically
be infinitely large. For example, a convolution layer can have
three or a million filters. However, three is too small, and
a million requires too much memory. To make a search for
hyperparameters feasible, a set of sensible values to choose
from is required.

An initial search space is defined, by taking inspiration
from existing networks such as [7], [18]. Next, a fast tun-
ing algorithm is used to quickly explore the search space.
This algorithm, called Hyperband optimization, is discussed
in more detail in the Optimization algorithms section. If the
best performing networks have hyperparameters which are on
the edge of the search space a new search space is created.
After a few iterations, a search space is determined that can
be explored more thoroughly.

Exploring the search space

After determining the search space it is explored using
bayesian optimization. Each iteration (trial), the bayesian op-
timization algorithm provides hyperparameters. These hyper-
parameters influence preprocessing and shape the neural net-
work. The newly preprocessed data is used to train and val-
idate the newly generated network. The resulting accuracy
updates the bayesian optimization algorithm and is stored to-
gether with the hyperparameters for evaluation. See figure
5.

Since this research mainly uses small datasets the cut of
train and validation data significantly influences the accuracy.
To solve this issue, the cut is made three times randomly.
Each cut is trained and validated and the accuracies are av-
eraged. This way the chance of a (dis)fortunate cut is much
smaller.

Optimization algorithms
The two proposed tuning algorithms are hyperband optimiza-
tion [19] and bayesian optimization [20], [21].

The hyperband algorithm starts with a random search, thus
randomly picking parameter combinations, and trains each
network for a small number of epochs. The best-performing
networks are selected to be further trained with more epochs.
This selecting and training continues until one best network
remains. [19]

Bayesian optimization treats a neural network as a black
box function where the hyperparameter values are the input
and the network accuracy is the output. It starts with a ran-
dom search to sample the search space. When having reached
a predetermined amount of samples the optimizer starts to
search iteratively for the minimum. Each iteration it fits the
black box function using a gaussian process regressor. An ac-
quisition function chooses a point which has potentially the
minimum value within its uncertainty. This point represents
a hyperparameter combination and can be evaluated by train-
ing the network. The evaluated point is added to the sampled
points and a new iteration starts. This algorithm runs for a
predetermined number of trials, based on time and cost con-
straints [20], [21].

Finalizing hyperparameters
Even when averaging the results of three random splits, there
exists a chance of three consecutive lucky picks. Alterna-
tively, multiple different hyperparameter sets can have sim-
ilar scores. Therefore, the ”best” scoring hyperparameters
might not be the best after cross-validation or the best in terms
of network size. Hence, the final hyperparameters are cho-
sen heuristically from the top 20 best-performing networks.
Taking value frequencies, averages and network size into ac-
count.

2.5 Validation
To determine the performance of a CNN the data is split into
a training and testing set. Splitting data can be done before
combining the subjects or after.

Data that is split before combining, results in a subject level
cut, meaning that all data of each subject is either in the test
or train set but not both. This cut measures performance in
the classification of new subjects. A split after combining
requires a random shuffle to represent all subjects equally in
test and train.

The performance can vary significantly depending on the
subject or subset used for testing, k-fold cross-validation is
applied to overcome this problem. 10 folds are chosen for
a frame cut and 8 for a subject cut. The 10 folds value is
heuristically picked and aims to be a balance between com-
puting time and performance. The 8 folds value cannot be
larger since the smallest dataset only has 8 subjects. The per-
formance metric used is the accuracy for classifying activities
in the test set.

3 Experimental Setup and Results
3.1 Frameworks and tools
All processing and training has been done with python and
the following libraries. Numpy, pandas and opencv are used



to handle and preprocess data. Tensorflow and keras are used
to design, train, and validate CNNs. Keras-tuner is used for
hyperband and bayesian optimization. Hyperparameters of
the 2D network have been optimized using the DelftBlue su-
percomputer [22].

3.2 Implementation details
Model details
After all neural layers (Convolution and Dense) the Rectified
Linear Unit activation function is used. The loss function of
the models is Categorical Crossentropy. The Adam optimizer
is used for gradient descent. Parameters of the Adam opti-
mizer are left at the Keras default [23]. The input size of the
pooling layers should be a multiple of the pooling size. How-
ever, that cannot be guaranteed during hyperparameter tuning
and therefore padding is applied to the pooling layers.

Training details
The batch size for 1D networks is set to 64 when training
on a local machine with an Nvidia Quadro P1000 GPU (4
GB VRAM). And for 2D networks a batch size of 32 or 16
is used, depending on the input resolution. When training
the 1D networks on the DelftBlue (1x Nvidia Tesla V100S
32GB) a batch size of 256 is applied. 2D networks trained
on the DelftBlue have a batch size of 256. These batches
are split into 4 batches of 64 and trained distributedly on 4
Nvidia Tesla GPUs. Distributed training with data parallelism
is achieved with the Keras mirrored strategy [24].

Custom tuning loop
Some hyperparameter combinations may generate an invalid
network or require excessive amounts of memory. These is-
sues can result in an error and will halt the Keras tuning loop.
The Keras tuning framework cannot recover after an error and
a restart is required which results in searching search space
from the beginning and thus losing time. Due to time con-
straints, a custom tuner class is created to catch these errors
and give negative feedback to the search algorithms by re-
turning a loss of 100 for this trial.

Early stopping
A hyperparameter tuning algorithm runs as long as the time
budget allows. By decreasing the duration of the trials, more
hyperparameter combinations can be evaluated. A trial (train-
ing one network) takes in principle 30 epochs. However, the
accuracy often reaches its optimum earlier. Continuing train-
ing for the remaining epochs is a waste of time and can often
cause overfitting [25].

An early stopping callback is implemented to stop training
whenever the loss value doesn’t significantly decrease. The
difference threshold is 1e-4 with a patience of 2 epochs. Pa-
tience is the number of epochs that is waited for the loss to
further decrease.

3.3 Results
Tables 1 and 2 present the results for 1D CNNs and 2D CNNs
respectively. The tables contain three elements: the deter-
mined search space by hyperband optimization, the found
optimal hyperparameters for each dataset by subject cut

and frame cut, and the evaluated accuracies during cross-
validation.

The search space is defined as a set of values per hyper pa-
rameter. Each hyperparameter can take a value from Min to
Max with Step being the distance between each value. Exp
takes exponential steps. The hyperparameters in the Subject
split columns are tuned while splitting data on subject. Sim-
ilarly, in the Frame split columns are hyperparameters found
with splitting data on frame level.

Each set of hyperparameters is validated on both subject
and frame split even if it has been tuned using only one of the
two. The bold accuracies are validated using the split it was
tuned with.

A clear explanation of all hyperparameters can be found in
section 2.4. A graphical representation of a 1D and 2D CNN
can be found in figure 6a and 6b respectively.

3.4 Discussion
Accuracy analysis
From the accuracy section in both tables it is clear that split-
ting train and test on frame, results in significantly better
scores. That could be expected considering the heterogeneity
of visual behaviour of the test subjects. Meaning that the neu-
ral networks perform better when tested with known subjects.
Strikingly, neural networks tuned with subject split perform
better on frame split as well.

The 1D networks tuned and trained on the Sedentary
dataset perform better on frame split but with a smaller mar-
gin. This might be due to the variability in signal length in
the sedentary dataset.

In general, while measuring performance using subject
split, the better performing networks are networks tuned with
subject split. However, the difference in performance com-
pared to networks tuned with frame split is small. The same
holds for networks tuned and validated with frame split. One
exception is the 2D networks tuned on the Reading dataset. A
significant performance gain can be found in both directions.

The 2D networks validated with frame splitting have ex-
ceptionally high performances. This is probably due to the
sliding window. During this preprocessing step a small stride
is used (30 samples) which is helpful in creating more data
from small signals, a side effect is that data frames are quite
similar, especially when using large window sizes (up to
4096). After shuffling and splitting, the test set contains
windows with very similar frames. For the 2D networks,
these frames are drawn as patterns on an image for which
the LeNet5 network is proven to be very effective [18].

The most important takeaway is that there is no one size
fits all.

Hyperparameter analysis
When comparing hyperparameters between datasets and
splitting strategy, it is notable that there are a lot of varia-
tions and consequently again no size fits all. However there
are some parameters the networks unanimously agree upon,
for example all 1D networks perform better with a second
convolution layer in place. Or that all 2D networks prefer a
gradient in the drawn gaze.



(a) A 1-dimensional CNN found by hyperparameter tuning us-
ing the reading activity dataset. All underlined values are hy-
perparameters found during tuning. These and hyperparameters
for other datasets are presented in table 1. The dashed layers are
optional layers which can be enabled or disabled during tuning.

(b) A 2-dimensional CNN found by hyperparameter tuning us-
ing the reading activity dataset. All underlined values are hyper-
parameters found during tuning. These and hyperparameters for
other datasets are presented in table 2.

Figure 6: 1D and 2D CNNs for the Reading dataset using subject split.



Table 1: This table presents the search space, found hyperparameters and accuracies for 1D CNNs. Each row represents one hyperparameter.

1D CNN Search space Tuned with subject split Tuned with frame split
Hyperparameter Min Max Step Reading Sedentary Desktop Reading Sedentary Desktop
Frame length 256 4096 64 3256 512 4096 4096 256 4096
Conv 1: filter count 32 256 8 32 256 256 32 96 32
Conv 1: kernel size 3 25 2 17 3 3 25 25 25
Conv 1: drop out 0.0 0.5 0.1 0.3 0.3 0.0 0.3 0.0 0.0
Conv 1: max pool 2 16 Exp 2 2 16 16 16 16
Enable Conv 2 - - - True True True True True True
Conv 2: filter count 32 256 8 48 216 256 256 88 80
Conv 2: kernel size 3 25 2 19 25 3 3 3 3
Conv 2: drop out 0.0 0.5 0.1 0.5 0.5 0.5 0.0 0.3 0.0
Conv 2: max pool 2 64 Exp 64 8 64 64 2 64
Dense 1: size 60 340 20 320 340 220 340 340 340
Dense 1: drop out 0.0 0.5 0.1 0.5 0.3 0.3 0.0 0.1 0.0
Enable Dense 2 - - - True False False False False False
Dense 2: size 60 200 20 80 - - - - -
Dense 2: drop out 0.0 0.5 0.1 0.2 - - - - -

Subject score - - - 0.667 0.687 0.382 0.646 0.623 0.394
Frame score - - - 0.972 0.725 0.971 0.998 0.658 0.989

Table 2: This table presents the search space, found hyperparameters and accuracies for 2D CNNs. Each row represents one hyperparameter.

2D CNN Search space Tuned with subject split Tuned with frame split
Hyperparameter Min Max Step Reading Sedentary Desktop Reading Sedentary Desktop
Frame length 512 4096 64 512 1024 4096 4096 1024 4096
Resolution 64 320 64 64 320 320 128 320 320
Line width 1 4 1 1 1 4 4 1 4
Gradient - - - True True True True True True
Conv 1: filter count 8 128 8 8 8 8 8 8 8
Conv 1: kernel size 3 17 2 15 17 17 17 17 3
Conv 1: drop out 0.0 0.5 0.1 0.0 0.0 0.5 0.5 0.0 0.5
Conv 1: max pool 2 16 Exp 2 2 16 2 2 4
Conv 2: filter count 8 128 8 8 8 8 72 104 128
Conv 2: kernel size 3 17 2 3 3 7 17 17 17
Conv 2: drop out 0.0 0.5 0.1 0.5 0.5 0.2 0.5 0.0 0.4
Conv 2: max pool 2 16 Exp 8 2 2 16 2 16
Conv 3: filter count 8 128 8 8 80 88 96 8 8
Conv 3: kernel size 3 17 2 5 3 17 3 3 3
Conv 3: drop out 0.0 0.5 0.1 0.3 0.3 0.1 0.0 0.5 0.0
Conv 3: max pool 2 16 Exp 8 16 2 2 2 2
Dense: size 20 140 20 20 140 120 140 20 140
Dense: drop out 0.0 0.5 0.1 0.0 0.0 0.0 0.5 0.5 0.5

Subject score - - - 0.525 0.682 0.372 0.328 0.432 0.369
Frame score - - - 0.662 0.997 0.9995 0.9990 0.9997 0.979



Table 3: Best performing results compared to conventional machine
learning techniques: random forest (RF), support vector machine
(SVM), k nearest neighbours (k-NN). And compared to a different
deep learning technique: long short-term memory (LSTM).

Algorithm Reading Sedentary Desktop
RF 0.67 0.65 0.58
SVM 0.75 0.52 0.60
k-NN 0.71 0.48 0.54
LSTM 0.31 0.67 0.32
CNN 0.67 0.69 0.40

Table 4: Best performing results compared to conventional machine
learning techniques: random forest (RF), support vector machine
(SVM), k nearest neighbours (k-NN). And compared to a different
deep learning technique: long short-term memory (LSTM).

Algorithm Reading Sedentary Desktop
RF 0.96 0.94 0.92
SVM 0.85 0.86 0.95
k-NN 0.91 0.77 0.84
LSTM 0.98 0.98 0.95
CNN 1.00 1.00 0.99

Additionally, larger frame lengths are preferred by most.
With an exception of the networks tuned on the Sedentary
dataset. This has a practical reason, namely that the dataset
contains signals of variable length where the shortest signal
is only 1700 samples long.

Comparing performance
Performances for subject split and frame split are compared
against other machine learning techniques in table 3 and 4 re-
spectively. The scores of the other techniques are the results
of other experiments within the same research group. Fea-
ture extraction for random forest, k nearest neighbours and
support vector machine have been done manually per dataset.
Long short-term memory has been developed separately, sim-
ilar to this experiment.

For subject split, the support vector machine performs best
for Reading and Desktop datasets. However, for Sedentary
CNN performs best. For frame split, CNN outperforms all
other techniques.

Again, no one size fits all.

4 Responsible Research
4.1 Biases
The datasets used in this research are small and often col-
lected from a group of similar people in terms of ethnicity
and age. This could potentially lead to heavy biased CNNs
in terms of performance. For example, the Japanese doc-
ument dataset consists of subjects reading Japanese docu-
ments. These documents are read vertically instead of hor-
izontally which is the case for most western documents.
Therefore the neural network trained on this dataset might

not be able to correctly classify subjects reading western doc-
uments.

Even though the proposed neural networks should not be
used for commercial purposes they are applicable in the con-
text of this research: proving whether CNNs can be used for
cognitive activity recognition.

To responsibly build neural networks for cognitive activity
recognition, dataset size and diversity should be taken into
consideration. This holds for training and for hyperparameter
tuning since classifying a more diverse dataset might need a
more complex network.

4.2 Reproducibility
Based on the implementation details and methodology it
should be possible to reproduce the accuracies found for each
set of hyperparameters. Due to the non-deterministic nature
of neural networks, it is possible the scores slightly differ but
not significantly.

For the hyperparameter search, the search spaces and
pipelines are defined and should be reproducible as well.
However, since bayesian optimization is a probabilistic pro-
cess and every trial only has three executions, different hy-
perparameters may end up in the top-performing sets.

Final hyperparameter results can differ as well since they
are heuristically picked. Nonetheless, the top 20 parame-
ter sets used for heuristical picking all have similar perfor-
mances. Thus picking slightly different hyperparameters in
the same top 20 should not significantly impact performance.

Finally, some 2D neural networks have such a size that val-
idation was only possible on the DelftBlue. Therefore, part
of this research is only reproducible when having access to a
high-performance computing cluster.

When reproducing this research, the same conclusion
should be reached. Namely, answering if CNNs are suitable
for gaze-based activity recognition.

5 Conclusions and Future Work
5.1 Conclusion
This research has proven that CNNs indeed are capable of
classifying cognitive activities based on eye-movement data.
For classifying known subjects it outperforms state-of-the-art
conventional machine learning techniques and outperforms a
different novel deep learning approach (LSTM). For classi-
fying unknown subjects old machine learning techniques are
still more powerful.

The best architectures for known subjects are CNNs based
on 2-dimensional convolution, whereas 1-dimensional archi-
tectures are better for unknown subjects.

5.2 Future work
An interesting experiment to further explore the capabilities
of CNNs for cognitive activity recognition is combining 1D
and 2D convolution and merging the results either at the clas-
sification layer or at the flatten layer. This could potentially
lead to a CNN which can both classify unknown and known
subjects.

To improve performance for unknown subjects in general,
it might be interesting to experiment with transfer learning by



first training a network on a large dataset and then calibrating
it with a few data frames of a new subject.

Lastly, this research has focussed on relatively shallow
deep learning. Adding more convolution and/ or dens layers
might improve performance as well.
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