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Abstract— Emerging technologies in the field of 

automatization meanwhile enable partially and highly automated 

vehicles in the aviation and automotive domains, where the 

human operators are assisted or (partially/temporarily) replaced 

in their tasks by advanced automation systems. Nevertheless due 

to technological limitations and ethical reasons, full autonomous 

vehicles in both domains might not be realizable in the near 

future. Instead system designs, which enable shared and 

cooperative guidance and control of vehicles by human operators 

and automation systems could be more feasible solutions. 

This paper sketches a common framework of shared and 

cooperative control that describes the two concepts not as 

different but as coinciding concepts for the shared intentionality, 

control and cooperation between humans and machines. A brief 

overview off developed shared and cooperative control designs in 

the aviation and ground vehicle domain is given.  

Keywords— human machine systems, human machine 

cooperation, joint action, shared control insert 

I. WHY DO WE NEED MODELS OF HUMAN MACHINE ISSUES? 

Thinking about human machine systems and automation starts 

with good models and methods to design and evaluate those 

systems and to ensure their safety, efficiency and joy of use. 

Human and organizational factors have to be more taken into 

account at the early stage of the design, and focus on these 

human aspects are now highlighted in the national and 

international calls. In France for example, the Ministry of 

Ecology, Sustainable Development and Energy drew up an 

inventory of the technological accidents that occurred in 2014 

[1]. The study mentions that technological accidents are 

primarily caused by material failures (37%) and human errors 

(63%). Regarding human errors, it highlights that “it is 

essential to understand the organizational context that results 

in these primary causes”. We think that the understanding of 

cooperation and the sharing of tasks, between humans, but 

also between humans and machines, are essential for 

improving that situation and to build better human machine 

systems.  

II. INTRODUCTION: FROM SHARED AND COOPERATIVE 

CONTROL OF SITUATIONS TO SHARED AND COOPERATIVE 

CONTROL BETWEEN HUMANS AND MACHINES 

One of the outstanding abilities of homo sapiens is the 
ability to cooperate in complex situations with other members 
of its genus and also with other species [2]. Although other 
species have this ability to a certain degree, their capability of 
cooperativeness is limited to unsophisticated situations [3] 
According to [4] the ability to cooperate for reaching common 
goals, was one of the main reasons for the fast development of 
homo sapiens to the most dominant species on earth, which 
highlights that shared and cooperative control of situations has 
been influencing the development of homo sapiens much 
longer than human-machine systems exist. 

Furthermore, the development of tools affected the human 
society, where the created tools became more and more 
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complex over the centuries. This process enabled humans, first 
to extend their physical power and mobility and afterwards 
their cognitive capability, as tools with cognitive features were 
created, which were able to act automatically in limited 
situations. Due to the latter technological progress, the 
automated tools (machines) could either support the human in 
fulfilling his/her tasks or take over the main task, substituting 
the human.  

Nevertheless, cooperation between the human and the 
automated machine is required in order to benefit from both 
partners’ strengths. [5] structured the complexity of possible 
human-machine cooperation and interaction designs by 
introducing the concept of levels of automation. This concept 
describes a model for the variety of possible task divisions 
between human and machine while acting on the same task 
simultaneously. Moreover, the concept of cooperation in the 
context of human-machine systems was investigated by e.g. 
[6], [7] and [8]. 

In detail, cooperativeness in human machine systems 
represents the accordance of the machine’s and the human’s 
acting, emphasizing that the design of the machine should be 
supplemental to the needs of the human [9]. This requires a 
certain degree of interaction between the human and 
automation for e.g. arbitration in cases of conflicts. 
Furthermore, the goals and skills of the partners have to be 
assessable and understandable for each other [10]. This can be 
achieved by supplemental detection of the environment and 
consistent depiction of information and action. Furthermore, a 
major aspect is that the partners share a common perception of 
the current situation, because cooperation without a similar 
understanding of the present and without the same prediction 
of the future situation might not be possible [11], [12], [13], 
[14].  

Another model for cooperation in terms of safety critical 
situations, was introduced by [15], [16], [17] which defines 
know-how (to operate) and know-how–to-cooperate via a 
common work space as a model of cooperation. The agent’s 
ability to control the process is defined as the know-how(to 
operate). Know-how-to-cooperate is the capability of the agent 
to cooperate with other agents, who are involved in the control 
of the process, whereby the know-how-to-cooperate is 
partitioned in an external and internal part. The external part is 
the agent’s ability to provide information to other agents and to 
get information from those. The internal part of the know-how-
to-cooperate is the agent’s capability to synthesize a model of 
other agents  

A concept, which is similar to cooperativeness, is the 
concept of shared control. Shared control includes any kind of 
operational action, which has a direct impact on the mutual 
task of the partners. For example, the longitudinal dynamics of 
a vehicle can be controlled jointly by the human driver and the 
automation, whereby the partners are interacting with each 
other via haptic interfaces (e.g. gas/brake pedal) [18]. 
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Figure 1.  Proposed relationship between the Shared control, 

shared and cooperative Guidance and control, 

human-machine cooperation [18] 

In Figure 1 the task is divided into operational, tactical and 
strategic level. On these levels, cooperation between human 
and automation can take place.  As indicated by the inner area 
outlined in Figure 1, tasks included in shared control are 
focused on the operational level [19], [20]. 

Nevertheless, both concepts, cooperative and shared control 
interleave. [18] describe shared control as the “sharp end” of 
human-machine cooperation on the control level, where 
cooperation can happen on the “blunt end” on guidance or 
navigational level as well, without explicit shared control. 
Figure 2 illustrates this relationship by using an example from 
everyday life. Two persons carrying a table are sharing control 
of the table as they both directly influence it’s movements. 
Furthermore they share the guidance or maneuvering of the 
table by moving it around e.g. obstacles. Also the navigation is 
shared by the partners as they move the table to a certain 
destination in the room. If one of the humans is replaced by 
e.g. a robot, this example would illustrate shared and 
cooperative guidance and control for a human-machine-system, 
since the cooperation between the partners is happening on all 
three levels. In case that only the movements of the table are 
influenced and controlled by the partners, whereas a third 
entity commands guidance and navigation, the interaction 
between the carrying partners can be considered as shared 
control due to the limited cooperation on the operational level. 
The interaction between the third entity and the carrying 
partners can be described as shared and cooperative guidance 
and control or as human-machine (human-human) cooperation, 
where cooperation happens on tactical and strategical levels 
[18]. Additional definitions of joint, shared or cooperative 
control are described by e.g. [21]. 

 
Figure 2.  Everyday situation with joint action, shared control 

and human-human cooperation [18] 
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Meanwhile the human society is confronted with an 
increasingly high number of automated machines, whereby the 
cooperative and shared control between humans and machines, 
became a major aspect for using the advantages of automation 
technology. For the air/ground vehicle domains this interaction 
concept was introduced by, e.g. [22], [23]; [24], [25], [26].  

III. SHARED AND COOPERATIVE GUIDANCE AND 

CONTROL IN AIR VEHICLES  

In the aviation domain, the development towards highly 
automated and intelligent aircraft resulted in advantages as a. 
reduction of the (physical) workload. Nonetheless several 
problems like, mode confusion or human-out-of-the-loop 
occurred while using advanced assistant and automation 
systems in aircrafts [27], [28].  

[23] introduced the H-Metaphor as an interaction-concept 
for pilots to reduce these problems in highly automated 
aircraft. The H-Mode is derived from the H-Metaphor, which is 
a design metaphor comparable to the desktop metaphor for 
PCs. It describes that the human and an automated system are 
interacting on different levels of assistance and automation, 
whereas this interaction is comparable to the interaction 
between a rider and a well trained horse. Like the horse that 
can be guided and controlled by loose or tight rein, the vehicle 
can act in some circumstances autonomously, but allows the 
operator to take back control at any point. The implementation 
of the H-mode for aircraft, H-Mode 3D allows to control the 
full range of guidance and control automation systems via a 
single consistent interface system and interaction scheme [29]; 
[30]. This also involves sophisticated maneuvers as takeoffs, 
landings, and automated conflict/hazard avoidance. 

Operators can choose between Loose Rein, where the 
avionic system(s) has a high degree of autonomy, and Tight 
Rein, where the operator has the control on the steerage. In 
Tight Rein the automation supports the pilot only limitedly 
unless it predicts emerging conflicts and danger for the aircraft. 
In case of predicted danger the automation communicates this 
information to the pilot by visual and haptic interface devices. 
In Loose Rein-mode the pilot controls the transitions between 
maneuvers, thus remains in-the-loop while the automation 
achieves the control tasks. Figure 3 shows a potential H-
inspired flight control system 

 

 

Figure 3.  H-inspired flight control system [31] 

 

The H-mode concept is also a part of the Naturalistic flight 
deck concept, which was introduced by [31]. This concept uses 
a complementary automation design where both partners have 
complementary capabilities.  

The pilot is involved in tasks and decisions with significant 
consequences on the overall mission and safety and is less 
involved in operations, which are relatively deterministic and 
require precision in time-critical situations. The tasks and their 
supporting interfaces are divided in two partitions, Actual and 
Notional system, in order to avoid mode confusion and to 
support situation awareness. 

The pilot uses the Actual system to get tactical information 
e.g. safety of flight and to control all operations that “cause 
physical or external responses by the aircraft or its systems” 
[31]. The Notional System includes information and tasks for 
longer-range decision making such as flight planning and in-
flight strategic decision making. The design of the Actual 
system is based on the H-mode, whereas the Notional system is 
based on the metaphor of an electrical assistant such as a flight 
dispatcher. 

[32] applied the shared control concept for the teleoperation 
of unmanned aerial vehicles (UAV). Since there is a lack of 
sensory information in teleoperations, the guidance of UAVs 
via the control inceptor might be confusing. On the other hand 
additional information is provided to the operators using visual 
modalities, which can cause an overload of the visual channel. 
Haptic feedback has the potential to unload the visual channel 
and can compensate the lack of other modalities by 
communicating potential collisions. Therefore the automation 
creates an artificial force field, which maps environmental 
constraints. The haptic feedback increases proportional to the 
artificial force field if the operator guides the UAV to a 
potential collision zone. The operator shares the control of the 
UAV with the automation using this kind of haptic coupling, 
for collision avoidance. 

Extension of shared and cooperative control between pilot 
and auto-pilot has also been proposed in fighting aircraft 
towards a reinforcement of cooperative decision making 
between a pilot and a weapon system officer who share the 
same environment, but also between a pilot and an AWACS 
officer who is in a different environment [33].  

IV. SHARED AND COOPERATIVE GUIDANCE AND CONTROL IN 

GROUND VEHICLES 

An analogical development to the aviation domain, shared 
control and cooperative assistance and automation is emerging 
in the ground vehicle domain lately e.g., [34], [35], [30]. Since 
a cooperative human-machine system can have various 
configurations, in terms of e.g. responsibility, authority and 
capability of the partners, standard categorizations of vehicle 
automatization were created [36], [37]. These standards were 
mainly derived from the thought that assistance and automation 
can be placed on the same scale or spectrum of control 
distribution, at first described by [23].This assistance and 
automation scale was influenced by the long discussed levels 
of automation [5], [38], [8], [39], [40], that led to the definition 
of assisted, partially, highly and fully automated vehicles. 
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Figure 4.  Levels of assistance and automation with H-mode 

automation levels [42] 

As described in chapter 2, the H-Mode can be seen as a 
specific implementation of shared and cooperative guidance 
and control, which was introduced in the ground vehicle 
domain subsequently [41].  

Applied to this domain, H-Mode enables the haptic-
multimodal interaction and execution of the driving task by the 
human and the automation [42]. It includes complex technical 
functions in a way that enables three different modes, which 
can be switched intuitively for assisted, partially and highly 
automated vehicle guidance and control [43]. 

Figure 4 illustrates the simplified distribution of control 

between the driver and the automation by a scale of assistance 

and automation. By choosing the “Tight Rein” mode, the 

human driver is assisted while driving the vehicle. 

Furthermore, suggestions via haptic signals on the control 

device are communicated to the driver. In the “Loose Reign” 

mode, partially automated driving is conducted, where the 

automation takes the lead of the vehicle control and the human 

is coupled by a haptic interface to the automation and vehicle 

for initializing driving maneuvers. In the “Secured Reign”-

mode (highly automated driving) the automation temporarily 

has full control over the vehicle, whereas the driver has to 

observe the traffic situation. Other implementations of 

partially and highly automated driving in the truck domain 

focus on platooning and highly automated truck convoys, e.g. 

[44], [45].  
 

Another implementation of shared and cooperative 
guidance and control in the vehicle domain is the concept of 
conduct-by-wire (CbW). Within this concept, a maneuver-
based guidance and control of highly automated vehicles is 
realized [46], [47].The implemented human-machine-interface 
enables the selection of possible maneuvers for the human 
driver, whereas the control of the vehicle’s longitudinal and 
lateral dynamics is conducted by an automation system. 
Moreover, the driver can enter mission parameters and select 
route data. 

In the CbW approach, the division of the driving task 
between the human driver and the automation is realized by a 
static and hierarchical role distribution. An additional fallback 
mode is realized for system boundaries, where the driver has to 
take over the control of the vehicle’s dynamics. 

In contrast to CbW, an interaction concept based on shared 
control was introduced by [20], [48], [49] and [50]. As 
described in the first section the cooperation between the 
partners in shared control takes place on the operational level 
and is realized by haptic interaction between partners. In the 

vehicle domain this includes the control of lateral and 
longitudinal vehicle dynamics as well as haptic interfaces like 
steering wheel and gas/brake pedal to manipulate the vehicle’s 
dynamics. Thus [20] introduced a gas pedal with haptic 
feedback, where the automation adapts the haptic properties 
e.g. stiffness of the pedal according to the traffic situation and 
neuromuscular responses of the driver. This flexibility enables 
faster and more precise manipulation of the vehicle’s speed. 
Additionally, the concept of a steering wheel with haptic 
feedback and adaptation was introduced by [51]. This should 
support the driver controlling the vehicle’s lateral dynamics, 
comparable to the above mentioned pedal concept. The 
stiffness of the steering wheel is adapted and steering torques 
are added by the automation in order to successfully achieve 
the required driving manoeuvers. [52] showed that haptic 
guidance is helpful to maintain performance of steering 
maneuver for fatigued drivers.  

Recently, Saito and Raksincharoensak have proposed a 
detailed design of haptic feedback on a steering wheel [53], 
[54]. Based on the fact that expert drivers can perceive many 
more structural details and potential hazards in driving 
environment and quickly adapt to changing environments, the 
developed assistance system activates risk-predictive braking 
control for the slowing down task to increase his/her safety 
margins at a location including a blind area. Thus, the slowing 
down task at the tactical and the operational levels is shared 
between the human and the assistance system, and the human 
driver is guided to “a referenced speed" through a haptic gas-
pedal interface [54] or a brake-intervention manner [53]; the 
assistance system can cope with the potential risk arising due 
to a pedestrian who initiates a road crossing from the driver’s 
blind area. 

In order to realize effective shared and cooperative control, 
it is a vital issue to evaluate cooperative status between human 
and automation in the haptic shared control. Nishimura et al. 
[55] introduced a definition of “cooperative status” from the 
viewpoints of the intent consistency between human and the 
automation and initiative-holder and it was applied to the 
adaptive gain-tuning method of the haptic shared control, 
which achieved smooth transition from lane keeping assist 
manual lane-changing. The haptic shared control and the gain-
tuning method have been applied to the shared authority mode 
connecting the automated driving to manual driving for smooth 
authority transfer by gradual changes of control strength and by 
encouraging the driver to engage in the control [56], [57].  

Another concept using a steering wheel with haptic 
feedback for shared control was introduced by [58], [59]. The 
developed assistant system for forward obstacle avoidance, 
intervenes into the lateral control of the vehicle by adding 
steering torque, which amplifies the steering torque of the 
driver. If the driver doesn’t react in appropriate time, the 
assistant system intervenes also into the longitudinal dynamics 
of the vehicle by conducting an emergency brake. Nevertheless 
if the time to collision is critical and the driver doesn’t steer the 
vehicle, the assistant system may turn the steering wheel by 
itself to avoid the collision. Thus, in less critical situations the 
assistant system and the human driver share the lateral control 
of the vehicle in order to avoid a collision but in high critical 
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situations the assistant system has the autonomy to manipulate 
the vehicle’s dynamics by braking and steering. 

In shared and cooperative control, improving human skill is 
also a vital issue because a guidance system may fail. [60] 
demonstrated that the haptic shared control has an effect of 
improving driver’s skill as well as reducing his/her workload 
with its guidance with the example of backward parking of an 
automobile.  

In railway domain, and especially for tram system, haptic 
control is a useful way to support cooperation between tram-
driver and controller for eco-driving [61]. Eco-driving 
command takes into account tram and tram-driver models, as 
well as their interaction in order to optimize motion, energy 
consumption and driver acceptability. 

V. OUTLOOK: TOWARDS A UNIVERSAL LANGUAGE 

FOR SHARED AND COOPERATIVE GUIDANCE AND 

CONTROL OF MOVEMENT 

With the emerging field of uninhabited air & ground 
Systems, UAS/UGS, the domains of air and ground vehicles 
are coming much closer together, with operators switching 
back and forth between different vehicles and domains more 
often. One of the longer reaching dreams with cooperative 
guidance and control is to have a common language to 
cooperate on movement, independent from the numbers of 
controlled dimension. This multimodal language could not 
only applied to cars and airplanes, but also to UAV’s, UAS, 
robots, spaceships etc., everything that moves and is 
cooperatively controlled by a human and an automation. But 
before a standardization, the design spaces of cooperative 
guidance and control should be explored not only with single 
breakthrough implementations, but also with systematic 
explorations and mapping of the design space. 
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