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ABSTRACT: Radar rainfall nowcasting has mostly been applied to relatively large (often rural) domains (e.g., river
basins), although rainfall nowcasting in small urban areas is expected to be more challenging. Here, we selected 80 events with
high rainfall intensities (at least one 1-km2 grid cell experiences precipitation .15 mm h21 for 1-h events or 30 mm day21

for 24-h events) in five urban areas (Maastricht, Eindhoven, The Hague, Amsterdam, and Groningen) in the Netherlands.
We evaluated the performance of 9060 probabilistic nowcasts with 20 ensemble members by applying the short-term
ensemble prediction system (STEPS) from Pysteps to every 10-min issue time for the selected events. We found that
nowcast errors increased with decreasing (urban) areas especially when below 100 km2. In addition, at 30-min lead time,
the underestimation of nowcasts was 38% larger and the discrimination ability was 11% lower for 1-h events than for 24-h
events. A set of gridded correction factors for the Netherlands, CARROTS (Climatology-based Adjustments for Radar
Rainfall in an Operational Setting) could adjust the bias in real-time QPE and nowcasts by 70%. Yet, nowcasts were still
found to underestimate rainfall more than 50% above 40-min lead time relative to the reference, which indicates that this
error originates from the nowcasting model itself. Also, CARROTS did not adjust the rainfall spatial distribution in urban
areas much. In summary, radar-based nowcasting for urban areas (between 67 and 213 km2) in the Netherlands exhibits a
short skillful lead time of about 20 min, which can only be used for last-minute warning and preparation.

KEYWORDS: Radars/radar observations; Forecast verification/skill; Nowcasting

1. Introduction

The most recent IPCC report revealed a significant increase
of extreme precipitation in many regions in the world since
the 1950s (IPCC 2021). High-intensity rainfall is expected to in-
crease flooding in Europe and around the globe (IPCC 2012;
Madsen et al. 2014; Ralph et al. 2014; Tabari 2020). Flooding can
harm the environment, economic, and human life by destroying
ecosystems, inundating infrastructures, and disrupting socioeco-
nomic networks (Merz et al. 2010; Allaire 2018; Kasmalkar et al.
2020). Therefore, accurate weather forecasts of high-intensity
rainfall events are important for the environment and human so-
ciety (Alfieri et al. 2012; Imhoff et al. 2022).

Currently, numerical weather prediction (NWP) models
are widely used as operational weather forecasting algorithms
around the world. However, because of its coarse spatial

resolution and relatively low update frequency, NWP is cur-
rently unable to provide accurate and timely (within 6-h lead
time) precipitation forecasts with high temporal-spatial reso-
lution for high-intensity rainfall events (Davolio et al. 2015;
Silvestro et al. 2016). Thus, its ability to forecast rapid rainfall-
induced events like flash floods and pluvial floods is limited.
This limitation is even more pronounced in areas with fast
hydrological responses such as small urban areas.

Because of their higher fraction of impervious surfaces,
urban areas have faster hydrological responses and thus
quicker runoff formation than rural areas (Berne et al. 2004;
Sharif et al. 2006; Tingsanchali 2012; Cristiano et al. 2017).
This leads to shorter anticipation times for flooding events.
Besides, urban areas are usually characterized by more complex
terrains than rural areas, which causes higher small-scale rainfall
variability (Schellart et al. 2014; Cristiano et al. 2017; Maier et al.
2020). Meanwhile, flooding in urban areas often leads to sub-
stantial economic loss and safety concerns (The Guardian 2016;
CNN 2021; Koks et al. 2022). To enhance precipitation forecast
accuracy in urban areas, previous studies found that increasing
forecast lead time and spatial and temporal resolution is crucial
(Kotroni and Lagouvardos 2004; Rafieeinasab et al. 2015;
Ochoa-Rodriguez et al. 2015; Cristiano et al. 2017).

Rainfall nowcasting, the process of (statistically) extrapolat-
ing the real-time quantitative precipitation estimates (QPEs)
from (generally) weather radar(s), has the potential to pro-
vide skillful forecasts up to 3 h in advance (Bowler et al. 2006;
Berenguer et al. 2011; Olsson et al. 2014; Jensen et al. 2015; Shehu
and Haberlandt 2021), as such a form of “very-short-range” rain-
fall forecasting (Golding 1998; Sun et al. 2014). Besides, current
operational QPE products usually have high temporal (5 min)
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and spatial resolution (1 km) (Zhang et al. 2011; Winterrath
et al. 2018; Chang et al. 2021; Overeem et al. 2021). By using
the QPE as input, the resulting nowcasts have the same high
spatial and temporal resolution. However, QPE products are
subject to error and uncertainty (Uijlenhoet and Berne 2008;
Krajewski et al. 2010; Hazenberg et al. 2011; van de Beek et al.
2016), especially during high-intensity rainfall (Schleiss et al. 2020)
and far away from the weather radars (Imhoff et al. 2021). Thus,
verifyingQPE products is critical for radar-based nowcasting tech-
niques, especially when volumes matter, such as for hydrological
purposes. To our knowledge, no previous research has attempted
to distinguish the error in the forecasts caused by the rainfall prod-
uct employed as a basis for the forecast (as compared with a refer-
ence) and those caused by the applied nowcastingmethod.

Motivated by these considerations, extensive research focus-
ing on nowcasting performance in urban areas has been con-
ducted in recent years. However, most research focused only on
a few events (e.g., Achleitner et al. 2009; Berenguer et al. 2011;
Foresti et al. 2016; Thorndahl et al. 2016; Heuvelink et al. 2020)
or nowcasts for large, mostly rural, areas, notably at the country
or continental scale (Berenguer et al. 2011; Kato et al. 2017;
Mejsnar et al. 2018; Ravuri et al. 2021; Shehu and Haberlandt
2021). Imhoff et al. (2020a) conducted the first large-sample anal-
ysis of over 1500 rainfall events to systematically verify nowcasts
for 12 mostly rural catchments (from 6.5 to 957 km2) in the
Netherlands. They showed that nowcasting error is larger for
smaller catchments, summer convective rainfall, and catch-
ments located in the upwind direction. However, they focused
on the catchment scale, so the results may not be directly ap-
plicable to urban areas, especially for the larger catchments
considered.

Urban topography, geometry, heat, and aerosols can modify
rainfall development and evolution (e.g., Schmid and Niyogi
2017; Liu and Niyogi 2019; Lalonde et al. 2023), which may im-
pact nowcasting performance. In addition, remote sensing of
precipitation over urban areas is more challenging because of
1) more obstacles and interference from other reflective sources
relative to rural areas, and 2) most of the rain gauges used to
bias correct the radar are outside of urban areas. Although ra-
dar-based rainfall nowcasts are increasingly being used as inputs
for urban flood and sewer system modeling, the quality of the
rainfall nowcasts remains an important source of uncertainty
(van der Werf et al. 2023) and thus has to be verified by evaluat-
ing more events (Liguori et al. 2012). The aim of this research is
to complement the analysis in Imhoff et al. (2020a) by focusing
on (smaller) urban areas instead of (larger) rural catchments. By
focusing on urban areas, we significantly reduce the spatial scale
of the area of interest, which should affect the quality of now-
casting for the urban area and highlight focus points for future
research. We do so by choosing five major urbanized municipali-
ties in the Netherlands (Amsterdam, the Hague, Groningen,
Maastricht, and Eindhoven). We selected 80 events from the
municipalities and analyzed 9060 probabilistic nowcasts for the
events. These are fewer events than in the study by Imhoff et al.
(2020a) because here we focus on high-intensity rainfall events,
we choose from fewer event durations, and we do not investi-
gate the impacts of seasons, which were already studied exten-
sively. In this study, we try to answer three research questions:

1) What is the performance (in terms of accuracy of forecast
rainfall intensity, skillful lead time, and discrimination) of now-
casting during high-intensity rain over urban areas? 2) What are
the main factors (e.g., precipitation intensity, event duration,
and city size) that influence the nowcasting performance? 3)
What is the effect of the quality of the employed QPE product
on the nowcasting performance, in terms of forecast rainfall
volumes and spatial correspondence?

This paper is structured as follows. The study areas, radar rain-
fall products, and methods are detailed in section 2. The nowcast
results are analyzed in section 3 and discussed in section 4, and
our conclusions can be found in section 5.

2. Material and methods

a. Study area

We selected five urban municipalities with different sizes
and locations spread over the Netherlands, namely Maas-
tricht, Eindhoven, The Hague, Amsterdam, and Groningen,
as shown in Fig. 1. A detailed description of the cities is listed
in Table 1. The municipal data and their boundaries were deter-
mined by the district and neighborhood map 2020, version 2
(Statistics Netherlands 2020).

b. Radar rainfall products

Three high-resolution radar rainfall datasets were used in this
study. These rainfall datasets represent quantitative precipitation
estimates (QPEs). The QPEs are obtained from observed radar

FIG. 1. Locations of the five urban areas (dark red polygons) and the
operational C-band radars from KNMI (blue triangles) employed in
this study. The radar at DeBilt was replaced by the radar at Herwijnen
in 2017. The QPE composites were based on the radar data from Den
Helder and either De Bilt (before 2017) or Herwijnen (after 2017). A
range of 100 km around each radar station is shown. The x and y values
are the coordinates in theKNMI radar projection.
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reflectivity by the two operational C-band weather radars of the
Royal Netherlands Meteorological Institute (KNMI). The reflec-
tivity is converted to rainfall rate using the standard Marshall–
Palmer relationship (Marshall et al. 1955):

Z 5 200R1:6: (1)

Here, Z is the radar reflectivity (mm6 m23) and R is the rain-
fall intensity (mm h21). The obtained rainfall intensities range
from 0.1 to 100 mm h21. The dataset has a temporal resolu-
tion of 5 min and a spatial resolution of 1 km. From 2008 to
January 2017, the data came from two single-polarized C-band
radars in De Bilt and Den Helder. From February 2017 onward,
the radar in De Bilt was replaced by the radar at Herwijnen and
the radar in Den Helder was replaced by a new radar at the
same location. Both new radars are dual-polarized C-band ra-
dars. The radars perform three azimuthal scans around a vertical
axis to construct pseudo constant-altitude plan position indicators
(pseudo CAPPI), which are used for the QPE products. For
more information about the radar rainfall products, readers are
referred to Beekhuis and Holleman (2008), Overeem et al. (2011),
and Beekhuis andMathijssen (2018).

1) CLIMATOLOGICAL QPE

The first dataset consists of quality-controlled 5-min precip-
itation accumulations from the climatological gauge-adjusted
QPE product (Overeem et al. 2009a, 2011; Royal Netherlands
Meteorological Institute 2022a). Doppler and statistical filter-
ing are applied and non-meteorological echoes are removed
applying a satellite cloud mask. Radar reflectivities below
7 dBZ are discarded to avoid noise and reflectivity values
over 55 dBZ are fixed at 55 dBZ to avoid the influences from
hail and strong clutter. An hourly mean-field bias (MFB) ad-
justment using the;32 automatic rain gauges from the opera-
tional KNMI automatic weather station network and a daily
spatial adjustment using the;320 manual rain gauges are per-
formed. Because of the adjustment using quality-controlled
manual rain gauge observations, the dataset is only updated
monthly. Although attenuation, bright-band effect, and rain-
fall advection are not explicitly accounted for in the adjust-
ment, the spatial adjustment corrects for most of the errors
(Overeem et al. 2009a). For a more complete description of
the rainfall radar products and adjustment methods, readers
are referred to Overeem et al. (2009a,b, 2011). The product is
considered the best quantitative precipitation estimate prod-
uct in the Netherlands before January 2023 [a better product
is published from February 2023; see Royal Netherlands

Meteorological Institute (2023)], so this dataset was used as
“true” rainfall and is referred to as climatological QPE here.
By using the climatological QPE product as reference, we
avoid comparing nowcasts with the (unknown) ground truth,
so it also implies that a good verification result in this study
does not guarantee that the ground truth is forecast correctly.

2) REAL-TIME QPE

As the climatological QPE is not available in real-time, it
cannot be used for nowcasting in practice. Instead, a second
QPE product consisting of 5-min nonadjusted real-time pre-
cipitation accumulations (Royal Netherlands Meteorological
Institute 2022b) was used. The dataset has the same temporal
and spatial resolution as the previous dataset, but it is avail-
able in real-time. The dataset is referred to as real-time rain-
fall in this study. Its disadvantage is the errors and uncertainty
with respect to the actual rainfall (Uijlenhoet and Berne 2008;
Krajewski et al. 2010; Hazenberg et al. 2011; van de Beek et al.
2016; Schleiss et al. 2020; Imhoff et al. 2021). The three main
causes of these errors are erroneous reflectivity measure-
ments, wrong conversion of reflectivity to rainfall rate, and
sampling errors (Ochoa-Rodriguez et al. 2019).

3) CARROTS QPE

To mitigate errors in real-time radar QPE, a set of correc-
tion factors, CARROTS (Climatology-based Adjustments for
Radar Rainfall in an Operational Setting), was proposed by
Imhoff et al. (2021). CARROTS was calculated based on a
10-yr comparison between the real-time and climatological
QPE. It covers the entire Netherlands with correction factors
(ranging from 0.7 to 4.6) for each grid cell and each day of the
year. For a more complete description of CARROTS, readers
are referred to Imhoff et al. (2021). The CARROTS-adjusted
real-time QPE is referred to as CARROTS QPE later.

c. Methods

1) RAINFALL EVENT SELECTION AND CHARACTERISTICS

To evaluate the nowcasting performance in each urban
area, high-intensity events were selected for each municipality
using RadarTools (RIONED 2020). RadarTools can list the
rainfall events based on the highest climatological rainfall ac-
cumulation at any grid cell within each municipality in the
Netherlands, from 2008 until present. For the selection crite-
ria, RadarTools sets different thresholds to select rainfall
events of different periods. For example, the selection criteria

TABLE 1. Details of the studied urban areas.

Municipality

Area as the no. of grid cells
(1 km2 each) on the KNMI
radar-projection map (Fig. 1)

Population (Statistics
Netherlands 2021)

Urban surface ratio
(RIONED 2020)

Maastricht 67 120 227 0.70
Eindhoven 96 235 691 0.90
The Hague 96 548 320 0.89
Amsterdam 211 873 338 0.86
Groningen 213 233 273 0.54
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for a 1-h period is that the precipitation sum in any grid cell is
above 15 mm. For a 24-h period, the threshold is 30 mm.
Rainfall is not necessarily continuous during the period. For a
more detailed description of the event selection criteria on
RadarTools, see RIONED (2020).

Event durations of 1 and 24 h were selected because now-
casting skills were found to depend on event durations
(Turner et al. 2004; Berenguer et al. 2011; Liguori et al. 2012;
Olsson et al. 2014; Mejsnar et al. 2018; Imhoff et al. 2020a).
Long durations are usually associated with stratiform rainfall
(lower intensities and less variability), whereas short durations
are typical for convective rainfall (higher intensities andmore var-
iability). We selected the eight highest 1-h and eight highest 24-h
events in each municipality in between 2008 and 2021. When se-
lecting the 24-h events, the events that covered the period of the
previously selected 1-h events were excluded per urban area
to ensure the independence of the events. Thus, the events
considered per city are independent, although the events in
different cities may be caused by the same precipitation sys-
tem. This selection procedure ultimately led to 5 (cities) 3
2 (durations)3 8 (events)5 80 events in this study.

Figure 2 shows the statistics of the selected events. The av-
erage rainfall intensity is 4.9 mm h21 for the 1-h events and
0.7 mm h21 (17.3 mm day21) for the 24-h events, although the
highest grid-cell rainfall for each event is over 15 mm h21 (1-h
events) or 30 mm day21 (24-h events). To compare with extreme
rainfall statistics in the Netherlands, the rainfall intensity for a
half-year return period rainfall event is 10 mm h21 for a 1-h du-
ration and 29 mm day21 for a 24-h duration within a radar area
of approximately 100 km2 (Beersma et al. 2019). Note that the
return values in the five cities should be adjusted based on urban
area sizes (67–213 km2 in this study) and the chosen event dura-
tions (Beersma et al. 2019; Overeem et al. 2010).

For the 1-h events, Fig. 2a shows that Eindhoven and Maas-
tricht experience higher rainfall rates than the other three
urban areas, which is partly caused by their smaller domain
sizes, which results in less spatially aggregated rainfall fields
over the urban areas. For the 24-h events, the area-mean rain-
fall rates in all urban areas become lower and more similar, as

shown in Fig. 2b. For a more complete visualization, rainfall
accumulation maps for all events are shown in Fig. S1 in the
online supplemental material. Also, supplemental Figs. S1 and
S2 show that 1-h rainfall events sometimes just cover small parts
of the urban areas. On the other hand, 24-h events cover the en-
tire urban areas, which is typical for stratiform rainfall.

2) NOWCASTING MODEL

Pysteps (Pulkkinen et al. 2019), an open-source Python
nowcasting framework, was used in this study. Pysteps in-
cludes multiple nowcasting methods. In the study, we used
the same setup as in Imhoff et al. (2020a), which consisted of
the STEPS (short-term ensemble prediction system) nowcast-
ing method (Seed 2003; Bowler et al. 2006; Seed et al. 2013)
using a semi-Lagrangian advection method and the Lucas–
Kanade optical flow method (using the QPE from time t 2 3
to t). An autoregressive model of order 2 was used, and eight
cascade levels were set to decompose the rainfall field with
decreasing spatial scale. Nowcasts were run for a 4-h lead
time. For each time, nowcasts were made with 20 ensemble
members to capture the uncertainty related to growth and dis-
sipation of rainfall, as this is not explicitly captured in the
STEPS and most other nowcasting methods.

3) VERIFICATION METRICS

Verification was only performed for the nowcasts within
the rainfall duration and within the borders of the urban
areas. Besides, metrics were only computed for the time
steps at which the observed area-averaged rainfall intensities of
the input QPE products were higher than 0.1 mm h21. We
employed various metrics because there is no one-size-fit-all
metric to quantify nowcast performance, and evaluating
nowcast dependency on different factors require diverse
metrics.

(i) Continuous ranked probability score

To measure the accuracy of probabilistic nowcasts per grid
cell, the continuous ranked probability score (CRPS) (Hersbach
2000) was calculated using

FIG. 2. Rainfall characteristics averaged over the urban areas of all the (a) 1- and (b) 24-h rainfall events in each
urban area. The orange lines are the medians. Each of the boxes ranges from the first quartile to the third quartile of
the data. The whiskers extend to the data that is within 1.53 interquartile range from the first and third quartiles. The
circles are the outliers.
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CRPS 5
1
Nf

∑
Nf

i51

�‘

2‘
[PFi

(x) 2 POi
(x)]2 dx: (2)

Here, Nf is the number of forecasts per lead time, PFi
is the

nonexceedance probability of nowcast rainfall, and POi
is the

counterpart for the observed rainfall. Although originally de-
signed for probabilistic forecasts, Hersbach (2000) introduced
a decomposition of the CRPS for finite ensembles, which is
very widely used nowadays, such as by ECMWF (Leutbecher
and Haiden 2021) and others (Poletti et al. 2019; Imhoff et al.
2020a; Ravuri et al. 2021; Shehu and Haberlandt 2022), to
compare ensemble forecasts with observations. CRPS calcu-
lates the area between the cumulative distribution curves of
the entire ensemble forecast and the observation. That is,
CRPS verify all ensemble members, unlike most of the other
metrics outlined below which were only used to verify the
mean of the ensembles. Small values of CRPS indicate that
the difference between nowcast and observation is small. For
Eulerian persistence (and any other deterministic forecast),
the CRPS reduces to the mean absolute error (MAE). To
compare CRPS across different regions, Reduction CRPS
(RCRPS) is used (Trinh et al. 2013). RCRPS is defined as
CRPS divided by the standard deviation (s) of observed rain-
fall intensity during the event:

RCRPS 5 CRPS/s: (3)

RCRPS is independent of rainfall magnitude, which facilitates
comparison of nowcast accuracy between events and between
regions (Trinh et al. 2013; Ye et al. 2014).

(ii) Relative bias

For (hydrological) applications using the forecast rainfall
amount, the forecast volume generally matters. The relative
bias metric is used to measure the accuracy of nowcast rainfall
volume over the whole area, as

relative bias 5
Fi

Oi

2 1

( )
3 100%: (4)

Here, Fi and Oi are forecast and observed 5-min rainfall sums
over all areas. The closer the relative bias is to 0, the more ac-
curate is the nowcast.

Likewise, bias also exists between real-time QPEr and clima-
tological QPEc as described in section 2b. So, we also define a
relative bias in QPE to measure the accuracy of real-time QPE:

relative biasQPE 5
QPEr

QPEc

2 1

( )
3 100%: (5)

(iii) Fraction skill score

Besides accuracy, skillful lead times were also estimated using
the fraction skill score (FSS) within the urban areas. To compute
the FSS, rainfall fields of both nowcast and observation need to be
converted to binary fields according to a user-defined threshold.
In the study it was set at 1 mm h21 to exclude light rainfall [as the

characterization used in van de Beek et al. (2010) and Cristiano
et al. (2017)] with the aim to analyze nowcast skills for high-
intensity rainfall. Subsequently, a square area surrounding the
grid cell is created containing a number of grid cells that is de-
fined by the length scale. Four length scales (corresponding to
the areas used for verification) were tested in the study: 1, 5, 10,
and 15 km because they represent sizes from an individual grid
cell (1 km2) to the largest urban area in this study (213 km2).
The number of grid cells within the square area that exceed the
thresholds are accumulated for the nowcast rainfall and the ob-
served rainfall separately. Finally, the FSS is calculated as the
mean squared error (MSE) between the two accumulated num-
bers. The skillful lead time of the nowcast is then derived as

FSSskillful $ 0:5 1 (f0/2): (6)

Here, the right-hand side of Eq. (6) is the random forecast
skill (FSSrandom) and f0 is the fraction of grid cells in the obser-
vation that are higher than the threshold. For a more detailed
description of the metric, readers are referred to Roberts and
Lean (2008).

(iv) Pearson correlation

Pearson correlation provides another method to measure
skillful lead time. It is calculated per lead time:

r 5
1
N
∑
N

i51

(Fi 2 mF)(Oi 2 mo)
sFso

: (7)

Here, Fi and Oi denote the ensemble-mean nowcast and ob-
served rainfall at a given grid cell; m is the mean rainfall, and s

is the standard deviation at a given time over the area; N is the
number of grid cells in the area, so the Pearson correlation de-
rived is the average for the area. The e-folding time, 1/e (ffi 0.37),
was used to determine the decorrelation time between nowcast
and observed rainfall. Once the average Pearson’s correlation co-
efficient drops below 0.37, the forecast is not considered skillful
anymore (Mejsnar et al. 2018; Imhoff et al. 2020a; Choi and Kim
2022). We used the Pearson correlation coefficient including sub-
traction of the mean, because Imhoff et al. (2020a) concluded that
without subtracting the mean, as was introduced by Germann and
Zawadzki (2002), the results bias toward (too) long skillful lead
times in theNetherlands (Imhoff et al. 2020a).

(v) Receiver operating characteristic curves

We assessed nowcast discrimination power by using the re-
ceiver operating characteristic (ROC). A ROC curve plots
the hit rate against the false alarm rate. The hit rate (HR) and
false alarm rate (FAR) were calculated for three thresholds
(0.1, 1, and 5 mm h21), as

HR 5
TP

FN 1 TP
, (8)

FAR 5
FP

FP 1 TN
: (9)

Here, FN (false negative), TP (true positive), FP (false positive
forecasts), and TN (true negative forecasts) were calculated
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per grid cell. The choice of the three thresholds was to assess
the nowcasts on their ability to forecast different rainfall inten-
sities. A higher ratio between HR and FAR means higher dis-
crimination power. If the ratio between HR and FAR is below
1, the nowcast is considered to have no skill.

4) EXPERIMENTAL SETUP

To evaluate nowcast quality with lead time, nowcasts were
constructed with Pysteps and issued for every 10 min instead
of 5 min from 4 h before the start of the event up until 10 min
prior to the end of the selected event. In this way, we saved
computational time and storage, and our nowcasts have the
same frequency of issue time as nowcasts operationally pro-
duced by the Dutch water authorities. The nowcasts had a
temporal resolution of 5 min, and a forecast horizon of 4 h.
The experimental setup for a 1-h event is illustrated in Fig. 3.
Only the forecast lead times of the nowcasts that fall within
the event duration are verified. Eulerian persistence was used
as a baseline to evaluate the additional value of nowcasting in
comparison with a “poor man’s forecast.” Eulerian persistence
uses the most recent QPE as forecast for future time steps. For
instance, the Eulerian persistence issued at 1350 UTC uses the
most recent QPE at 1345 UTC as the rainfall forecast for the
next 4 h until 1750 UTC.

The nowcasts were computed on the supercomputer at
the Delft University of Technology, Delft Blue [Delft High
Performance Computing Centre (DHPC)]. One probabilistic
nowcast (20 ensemble members) of 48 timesteps took about
2.5 min to run on one core on an Intel Xeon Gold 6248R
processor.

In this study, the real-time QPE was used for nowcast gen-
eration and verification in sections 3b and 3c, so the evaluation
of nowcasting performance is not affected by QPE errors. Cli-
matological and CARROTS QPEs were employed for selected
events and analyzed in sections 3a and 3d to verify the “true”
accuracy of nowcasts in an operational setting as compared with
the reference (the climatological QPE). Note that only the 1-h
events before 2020 (23 events) were run with climatological and
CARROTS QPE because the format of the climatological
radar products changed at the end of 2019 that made the
comparison difficult.

To comprehensively verify nowcast performance in the urban
areas, we used all five metrics. Because rainfall intensity and
volume are different for events of different durations, we used
relative bias to analyze the underestimation of nowcast rainfall
volumes and compare the results for 1- and 24-h events. To ana-
lyze nowcast accuracy for urban areas of various sizes, RCRPS
was used because it is calculated at a higher spatial resolution
(namely, for every grid cell) than relative bias (for the entire
area considered). FSS and Pearson correlation were used to
measure the skillful lead time of nowcasts. Finally, we used
ROC to compare the discrimination ability of nowcasts.

Previous studies found that the skillful lead time of now-
casts depends on the size of the region of interest (Pulkkinen
et al. 2019; Heuvelink et al. 2020; Imhoff et al. 2020a). To fur-
ther analyze the effect of city size on nowcasting performance,
six stationary and concentric square subareas of 900, 400, 100,

64, 16, and 4 km2 were defined for all urban areas (see Fig. 4).
Nowcasting results averaged over these square areas were
compared to determine nowcasting dependence on area size.

3. Results

We start by analyzing one rainfall event as an example to
demonstrate the performance and challenges of nowcasting in
section 3a. Following that, all nowcasts are analyzed concern-
ing three main aspects. First, the nowcast model performance
for the five urban areas is compared in section 3b. Second, the
dependency of nowcast model performance on rainfall dura-
tion and area sizes are assessed in section 3c. Third, different
approaches to radar QPE and their corresponding nowcasts
are compared in section 3d.

a. Case study

In Fig. 5, we illustrate a 1-h event that started in the Hague
at 0155 UTC 23 June 2016 to demonstrate the difference in
the QPE products and challenges of nowcasting. The climato-
logical, CARROTS, and real-time QPE and nowcasts (using
the real-time QPE as inputs) at 30-, 60-, and 90-min lead times
are shown in the upper 2 rows in Fig. 5. First, we compare the
three radar rainfall products. In the Hague, the rainfall accu-
mulation using real-time QPE is only 31% of the correspond-
ing value from the climatological QPE. The CARROTS
adjustments improve the ratio to 55%. Although underesti-
mation still exists, CARROTS QPE shows better agreement
with the climatological QPE.

Second, we compare nowcasts at the three lead times. Both
the first ensemble member and ensemble mean correctly iden-
tify the areas of high rainfall intensity (the center-left area).
However, underestimation increases as the lead time increases.
Moreover, nowcasting performance strongly depends on the lo-
cation and size of the target area; for example, rainfall is largely
missed when zooming in to the urban area of the Hague.

The probability of exceedance is plotted by using the 20 en-
semble members of the nowcasts. The bottom 2 rows in Fig. 5
show the rainfall exceedance probability maps according to

FIG. 3. Illustration of the issue time and forecast horizon for the
1-h event starting at 1750 UTC. The blue bars show a forecast hori-
zon of 4 h with 5-min resolution at different issue times. The red
bar shows the event duration. Only the nowcasts that fall within
the event duration are verified with observations.
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thresholds of 1 and 5 mm h21 respectively. In the observed
QPE maps, areas where rainfall is higher than the threshold
are given a probability of 1 while the other regions are given 0.
Similar to previous results, exceedance probability is underesti-
mated as lead time increases for the nowcasts. In addition, the
probability of rainfall over 5 mm h21 is underestimated more
than the probability of lower-intensity rainfall. This suggests
that it is more difficult to nowcast high rainfall intensities
correctly, as also noted by, for example, Liguori et al. (2012),
Foresti et al. (2016), and Imhoff et al. (2020a).

b. Investigating nowcast model performance in the
urban areas

We proceed to the analysis of all 80 events. In this section,
nowcast accuracy and skill for different urban areas are com-
pared and related to the area sizes and rainfall characteristics.
We use real-time QPE as the input and reference for assess-
ing strictly the performance of the nowcast model itself, re-
gardless of the accuracy of the QPE products, which will be
investigated in section 3d.

1) NOWCAST MODEL ACCURACY

We start with comparing the nowcast accuracy for the
urban areas. The average RCRPS of the eight 1-h events in
each urban area is shown in Fig. 6a. Lower forecast accuracy

for both 1- and 24-h events is found in Maastricht and Eind-
hoven, probably due to their smaller sizes. This dependence is
later supported by the strong correlation between RCRPS
and area sizes, as shown in Fig. 12. Although rainfall intensity
is higher in Maastricht and Eindhoven, which increases their
CRPS (Fig. 7a), a comparison of nowcast performance across
regions was made possible by employing RCRPS, which does
not correlate with rainfall magnitude (Fig. 7b).

For 1-h events, the average RCRPS increases strongly be-
tween the lead times from 0 to 30 min ahead. The RCRPS lev-
els off at around 30-min lead time, and the nowcasts show
similar skill as Eulerian persistence when the lead time is be-
yond 60 min. Yet, nowcasts for the 24-h events almost always
show better skill than Eulerian persistence throughout all lead
times from 0 to 4 h. This indicates that nowcasting is more accu-
rate and skillful for a longer time for more persistent events
[similar to the findings in, e.g., Imhoff et al. (2020a)].

2) THE SKILLFUL LEAD TIME OF THE NOWCASTS

Figure 6 shows that nowcast accuracy deteriorates quickly
with increasing lead time, especially for 1-h events. Following
this finding, we further used FSS to compare skillful lead
times in the urban areas. The results are shown in Fig. 8.

Figure 8 shows that the FSS is larger when the length scale
is longer, as expected because rainfall statistics over larger

FIG. 4. Map of the six concentric square subareas from 900 to 4 km2 for each urban area. The gray areas are radar projections of the five
municipal areas from Statistics Netherlands (2020). The x and y values are the coordinates in the KNMI radar projection (see Fig. 1).
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areas are less sensitive to displacement errors in the forecast.
Notably, the increase in FSS is higher from 1 to 5 km than
from 5 to 10 km. A length scale of 10 km already leads to a
spatial scale of 100 km2, which is larger than Maastricht, the
Hague, and Eindhoven. Further upscaling to 15 km does not
enhance FSS much because a spatial resolution of 225 km2 is
larger than all the urban areas selected (Table 1).

The skillful lead times in the urban areas at all length scales
vary between 12 (1-km length scale in Amsterdam) and 26 min

(15-km length scale in Eindhoven). However, the difference in
skillful lead times between the urban areas is marginal when
using the same length scale. Thus, no urban area shows partic-
ularly longer skillful lead times. The FSS at a length scale of
5 km is averaged for each urban area and plotted in the bot-
tom-right figure. It shows that the average skillful lead time
from FSS is just around 18 min, although nowcasts can show
better skills than Eulerian persistence up to a lead time of
more than one hour (Fig. 6a). Changing the threshold of FSS

FIG. 6. Average RCRPS for each urban area for the (a) 1-h events and (b) 24-h events. The RCRPS is resampled
to 10 min. The black lines show the average RCRPS for all nowcasts in all urban areas. The dashed lines show the
average MAE of Eulerian persistence in all urban areas.

FIG. 5. Climatological, CARROTS-adjusted, and real-time radar QPE and nowcasts with 30-, 60-, and 90-min lead time for the rainfall
event in the Hague from 0155 to 0255 UTC 23 Jun 2016. (top),(top middle) Rainfall intensity, showing the average intensity during the
1-h event. Nowcast rainfall intensity is averaged from the nowcasts with the indicated lead times prior to the observation. Nowcasts in the
top row use individual ensemble member number 1. The second row shows the nowcasts as ensemble mean. (bottom middle),(bottom)
Rainfall exceedance probability for thresholds of 1.0 and 5.0 mm day21, respectively, using the full ensemble. The black borders indicate
the Hague, and the gray borders show the Dutch coastline.

J OURNAL OF HYDROMETEOROLOGY VOLUME 25660

Brought to you by TU DELFT | Unauthenticated | Downloaded 07/10/24 02:53 PM UTC



calculation to 0.1 mm h21 does not extend the skillful lead
time much (Fig. S3 in the online supplemental material), prob-
ably because FSSrandom increases when a lower threshold is
used.

3) NOWCAST DISCRIMINATION ABILITY

After measuring the accuracy and skillful lead time of now-
casts, we continue to quantify the discrimination ability. The

ROC curve of each urban area for the 1- and 24-h events is
shown in Fig. 9. We chose to analyze the ROC curve at
30-min lead time because this lead time is a challenge for
nowcasting high-intensity rainfall and/or for nowcasting in
urban areas (Olsson et al. 2014; Foresti et al. 2016; Mejsnar
et al. 2018; Imhoff et al. 2020a; Shehu and Haberlandt 2021).
We noticed that AUC sometimes tends to be higher when the
observed rainfall (and nowcast) covers larger areas (relative

FIG. 7. ECRPS and RCRPS (average between 5- and 30-min lead time) against mean rainfall intensity and rainfall
spatial standard deviation in the five urban areas during the 1-h events. Each dot is the result from one rainfall event.

FIG. 8. (a)–(e) Fraction skill score for the 1-h events in each urban area. (f) The average FSS of all five urban areas at a length scale of
5 km (black line). The horizontal gray dashed line shows the random fraction skill score in each urban area [Eq. (6)]. Values of FSS lower
than the gray horizontal lines imply that nowcasts are not skillful anymore.
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to the size of the urban areas), probably by reducing the false
positive rate [Eq. (9)] to very close to zero. Thus, smaller cities
like Eindhoven and Maastricht have higher AUC for some
rainfall events (Fig. S4 in the online supplemental material)
and on average higher AUC than the other cities (Fig. 9). For
Amsterdam and Groningen, parts of the urban areas are not
covered by some of the rainfall events (as shown in Fig. S1 in
the online supplemental material), so wrong forecast rainfall
in those areas reduces AUC.

Besides, the AUC is smaller for shorter events or when the
threshold is higher, indicating nowcasts have poorer discrimi-
nation under such conditions. The is discussed in more detail
in section 3c(1).

To summarize nowcast performance in the five urban areas,
first, urban areas with higher rainfall intensity and spatial vari-
ation have lower nowcast accuracy. Second, discrimination for
forecasting low rainfall (0.1–1 mm h21) is generally higher in
Eindhoven and Maastricht probably because their higher rain-
fall spatial coverage causes higher hit rates and reduces false
alarm rates. Finally, although differences are discovered in
nowcast accuracy and discrimination ability, FSS-based skillful
lead times are similar in the urban areas (about 20 min).

c. Factors that affect the nowcast model accuracy

Section 3b shows that nowcast model accuracy and skills
vary between the urban areas. Here, we continue with the
analysis to test some rainfall and environmental characteristics
that could explain the differences between the urban areas.

1) RAINFALL DURATION

The average relative biases between nowcast rainfall and real-
time QPE are shown in Fig. 10a. For the 1-h events, relative
biases of area-mean rainfall drop below 250% within 30-min
lead time. Nowcasts reduce the overestimation of Eulerian per-
sistence within 30-min lead time. Eulerian persistence often leads
to overestimating rainfall in some grid cells, which can increase
the relative bias significantly if the grid cells are within the verifi-
cation area (Fig. S3 in the online supplemental material). Despite
this improvement at short lead times, nowcasts show similar rela-
tive bias as Eulerian persistence at lead times beyond 50 min.

Unlike the large underestimation of the 1-h events, now-
casts show a better estimation of rainfall volume for the 24-h
events. Figure 10b shows that nowcasts can estimate the total
rainfall volume accurately (relative bias between 20%) with a

FIG. 9. ROC curve of the (a)–(c) 1-h and (d)–(f) 24-h events for each urban area at three thresholds: (left) 0.1, (center) 1, and (right)
5 mm h21. Hit rate and false alarm rates are averaged from nowcasts at 30-min lead time. The black lines are the averages of the five
urban areas. AUC is the area under the black curve. The gray line means hit rate is equal to false alarm rate, below which nowcasts are
not skillful. Higher above the line means better discrimination skill. There are nine dots on each line indicating the forecast probability of
exceeding the threshold from 0.1 (rightmost) to 0.9 (leftmost).
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lead time up to 2.5 h for the 24-h events. Such performance
also surpasses Eulerian persistence, which constantly overesti-
mates rainfall intensity.

Figure 8 shows that the FSS-based skillful lead time of now-
casts for 1-h events at a length scale of 5 km is about 18 min.
Here, we apply Pearson correlation to compare skillful lead
time of nowcasts for different urban areas and event dura-
tions. The average Pearson correlation coefficient between
nowcast and observed rainfall in each urban area is shown in
Fig. 11. The urban areas have similar skillful lead times for
both event durations. The average skillful lead times for both
event durations are very close: 20 min (1-h events) and 24 min
(24-h events). Therefore, nowcast skillful lead times appear to
be quite independent of the tested event durations. Although

the skillful lead time seems limited, it is 2 times the skillful
lead time given by Eulerian persistence. The skillful lead time
is compared with other previous research in section 4a, and its
application is discussed in section 4b.

Following the result in section 3b(3) that nowcast discrimina-
tion ability varies per city, we further compare the discrimina-
tion for events of different durations. Figure 9 shows that the
ROC curves for the 24-h events display better discrimination
than the 1-h events for all three thresholds. The reason is that
more persistent events tend to have higher autocorrelations, so
a nowcasting model can forecast rainfall more correctly from
previous time steps. At low threshold (0.1 mm), the difference
between their areas under the ROC curves is larger (15%),
whereas the difference is smaller at high thresholds (10% at

FIG. 10. Average relative bias of nowcasts for (a) all 40 1-h events and (b) all 40 24-h events. The relative bias is re-
sampled to 10 min. The solid line and the dashed line are the average relative bias of nowcasts and Eulerian persis-
tence, respectively.

FIG. 11. Pearson correlation coefficient averaged by the eight (a) 1- or (b) 24-h events for each urban area. The hor-
izontal gray dashed line marks a correlation of 0.37 (1/e) below which nowcasts are considered as not skillful. The
solid black line and the gray dashed line are the average Pearson correlation of nowcasts and Eulerian persistence,
respectively.
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1 mm and 7% at 5 mm). In fact, for both event durations,
the AUC drops to values close to the random forecast skill
for a threshold above 5 mm h21. This finding agrees
with the poor prediction of high-intensity rainfall shown in
Fig. 5.

Concluding, we found that nowcasts improve the underesti-
mation of total rainfall volume for 24-h events relative to Eu-
lerian persistence, whereas the improvement is not apparent
for the 1-h events. In addition, the discrimination ability of
nowcasts is higher for 24-h events. Despite these differences,
skillful lead times do not differ much between 1- and 24-h
event durations for the urban areas considered.

2) URBAN SIZES

After analyzing the nowcast for different rainfall durations,
we analyze its dependency on the area size by using the
square subareas defined in section 2c. Figure 12 indicates that
smaller areas tend to have a higher RCRPS, meaning a larger
nowcast error. In all urban areas considered, the RCRPS in-
creases nonlinearly as the area reduces from 900 to 4 km2. Es-
pecially when the size reduces to under 100 km2, the error
increases significantly. The enlarging error with reducing
areas shows the difficulty of accurately nowcasting rainfall in
small urban areas. Note that, although area-mean rainfall
generally reduces as the square subareas increase, RCRPS is
independent of rainfall magnitude. Skillful lead time also
slightly prolongs when area size increases. Pearson correlation
of nowcasts over the six subareas around Groningen along
with lead time is shown as an example (Fig. S5 in the online
supplemental material).

In summary, nowcasts show lower RCRPS and higher
spatial correlation to the observed rainfall with increasing
(urban) area size. In other words, rainfall at coarser scales
(or bigger areas) is nowcasted better than at finer scales.
This is probably because larger areas are less prone to rain-
fall misplacement error, large-scale precipitation features

are more persistent (Surcel et al. 2015), and their predict-
ability is higher than small-scale rainfall events (Grecu and
Krajewski 2000).

d. Dependency of nowcast skills on radar QPE products

As explained in section 2b, the real-time radar QPE can
deviate strongly from actual rainfall under certain circumstan-
ces, which can result in an additional error source when radar
QPE and QPF are used in for instance hydrological applica-
tions. Here, we assess the accuracy of the real-time QPE
products by using the climatological QPE as “true” rainfall.
Second, we evaluate the nowcasts produced from the three
different radar rainfall products by comparing them with the
climatological QPE as reference.

1) COMPARING THE QPE PRODUCTS

The area-mean rainfall from the three QPE products and
the average relative QPE bias during the events before 2020
in each urban area are shown in Fig. 13. It shows that real-
time rainfall volumes in all urban areas are lower than in the
climatological QPE. The largest underestimation exists in
Maastricht (269%), which is the furthest from the weather
radars (Fig. 1). This result is similar to the finding in Imhoff
et al. (2021). Note that the 24-h events have larger relative
QPE bias in all cities because the rainfall rate is lower so the
relative difference between real-time and climatological QPE
becomes larger, although the actual underestimation is larger
for the 1-h events (4 mm h21 on average) than for the 24-h
events (1 mm h21 on average).

Figures 13c and 13d show that CARROTS improves the
real-time QPE in terms of rainfall volume. The relative bias
of real-time QPE improves from 269% to within 236% in
the five urban areas after adjusting with CARROTS. Overall,
CARROTS QPE is on average 77% (1-h events) and 92%
(24-h events) higher than the real-time QPE. Hence, Using
CARROTS QPE to run nowcasts should yield higher rainfall,

FIG. 12. Average RCRPS (averaged over nowcasts between 5- and 30-min lead times) of the eight 1-h events in each
urban area against verification areas from 4 to 900 km2.
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which is closer to the true rainfall amount, than using unad-
justed real-time QPE.

2) EFFECT OF THE QPE PRODUCTS ON THE RESULTING

NOWCASTS

The difference in QPE products results in different nowcast
outputs. Figure 14 shows the relative bias of area-mean rain-
fall between nowcasts using the three QPE products and the
reference product. It shows that nowcasts using real-time
QPE give the largest underestimation in all the urban areas.
CARROTS increases the nowcast rainfall volume by 70% on
average relative to nowcasts using the real-time QPE.

CARROTS adjusts the nowcast rainfall by correcting the
observed rainfall, but it cannot adjust the error caused by the
nowcast model. Thus, Fig. 14 shows that nowcasts underesti-
mate rainfall more than 50% above 1-h lead time no matter
which radar product is used. Another error is that CARROTS
nowcasts sometimes overestimate the rainfall, particularly in
Eindhoven and Maastricht within 30-min lead time. This im-
plies that the CARROTS factors are slightly too high in these
areas (as also seen in Figs. 13c,d).

Averaging over the five urban areas (Fig. 14f), it may seem
like CARROTS QPE is the best input product to use, but this

is because the overestimation of the CARROTS QPE (partic-
ularly in Eindhoven and Maastricht) compensates for the
underestimation resulting from the nowcast model (i.e., better
results for the wrong reasons).

CARROTS only corrects the rainfall volumes and not the
rainfall spatial distribution. From an analysis of nowcast skill
using Pearson correlation (see Fig. S6 in the online supplemental
material), we see that the correlation does not change for the
three tested products. This indicates that the shape and location
of the rainfall fields is hardly altered by the three different QPE
products, while the volume is.

In summary, using CARROTS increases the real-time QPE
and nowcast rainfall volume by more than 70%, showing bet-
ter correspondence to climatological QPE. Yet, underestima-
tion of nowcast is still larger than 50% above 40-min lead
time. In addition, CARROTS does not improve the spatial
correlation of nowcasts with climatological observations.

4. Discussion

In this study, we systematically verified nowcasts of high-
intensity rainfall for different urban areas, rainfall characteris-
tics, area sizes, and QPE inputs. In section 4a, we compare the
results in the study with previous research. Then, we explain

FIG. 13. Average rainfall intensity over the urban areas for (a) 1-h events and (b) 24-h events. Also shown is
average relative bias between climatological and real-time radar QPE with and without adjustment by the CARROTS
factors for (c) 1-h events and (d) 24-h events. Only the 23 1-h events happening before 2020 are considered.
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the application of the results for operational radar rainfall
nowcasting in section 4b. Last, we summarize future improve-
ment possibilities in section 4c.

a. Relation to previous work

We found that the skillful lead time for 1-h high-intensity events
over urban areas is on average about 20 min [section 3c(1)],
which is similar to previous studies at both urban and rural
catchment scales. For instance, skillful lead times are shorter
than 20 min at a catchment scale in Germany (Shehu and
Haberlandt 2022). The 20-min skillful lead time we found is
nearly the same as the 25-min skillful lead time for 384 1-h
events in 12 catchments in the Netherlands (Imhoff et al.
2020a). Therefore, radar-based nowcasts have limited skillful
lead time to forecast short high-intensity events, for both
urban and rural catchment areas. However, note that different
methods to derive the decorrelation time, particularly the choice
of whether to subtract the mean when calculating the Pearson
correlation coefficient [Eq. (7)], can lead to divergence in the re-
sultant skillful lead time (Mejsnar et al. 2018).

We also showed that nowcast discrimination ability reduces
as rainfall duration shortens or the threshold of interest rises
[section 3b(3)]. Our result is similar to several previous stud-
ies. For instance, a study in Belgium showed that nowcast dis-
crimination ability is higher for a threshold of 0.5 mm h21

than for 5 mm h21 (Foresti et al. 2016). Since nowcast discrim-
ination power is generally poorer for more intensive rainfall,
nowcasts should be judged meticulously before applying to
uses such as issuing flood early warnings.

Unlike previous studies showing that skillful lead time
prolongs with rainfall duration, for example, 116 min for
24-h events [derived with the same equation as Eq. (7)]
(Imhoff et al. 2020a), the skillful lead time barely changes in
this study. The skillful lead time for 24-h events averaged
across the five urban areas is only 24 min. There are three
main reasons causing the skillful lead time for 24-h events to
be almost the same for 1-h events. First, the urban areas in
the study are small (67–213 km2). As shown in sections 3a
and 3c, verification of nowcasts in smaller areas is more sen-
sitive to displacement errors of forecast rainfall, so their
Pearson correlation becomes lower. Second, this study con-
siders events only based on the highest rainfall accumula-
tion in any grid cell. So, the events in this study have high
spatial variability because parts of the areas do not experi-
ence rainfall during the events (as shown in Fig. S1 in the
online supplemental material). Third, most events in this
study are from summers (70 of 80 events are between May
and September), so they are generally more convective than
the rainfall events chosen by Imhoff et al. (2020a), which re-
duces the skillful lead time of nowcasts.

FIG. 14. Relative bias of the nowcasts run with climatological, CARROTS, and real-time radar rainfall from the 23 1-h events before
2020. The relative bias is resampled to 10 min. The relative bias is calculated between the nowcasts and the reference product (the climato-
logical QPE).
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b. Operational radar rainfall nowcasting for urban areas

In an operational setting, nowcasts can provide effective
early warning insights for (small) urban areas even if their
skillful lead time is only around 20 min. The short lead time
might be too late to evacuate people, but it can inform people
to adopt better shelter-in-place strategies to reduce casualties
(Haynes et al. 2009). It can identify areas of hazardous rainfall
intensity and warn the community by disseminating real-time
warning information on webpages, mobile applications, and
social media (Acosta-Coll et al. 2018). Also, warning mes-
sages can be sent to local authorities (for instance the fire bri-
gade) to better prepare for emergency actions. In addition,
urban discharge takes time to respond to rainfall [e.g., Cristiano
et al. (2017) reviews the literature on hydrological response times
and Berne et al. (2004) found the response times range between
11.5 and 57 min for six French urban catchments of 0.38 to
104 km2], which extends the skillful lead time of nowcasts for
flow estimation (Sharif et al. 2006; van der Werf et al. 2023).
Therefore, nowcasting can still be a timely and useful early warn-
ing tool for urban applications.

There are two sources causing underestimation of nowcast
rainfall and the resulting short skillful lead time. The first
source is the underestimation in the real-time QPE products,
as shown in section 3d. Previous studies show that further
increasing the resolution of QPE (e.g., to 1 min in time
and 200 m in space) enhances the accuracy of the QPE
product (Nielsen et al. 2014; Thorndahl et al. 2016), and so
the corresponding nowcasts for urban hydrological applica-
tions (Thorndahl et al. 2016). Alternative sources such as
the QPE converted from signal level data of commercial
microwave links outperformed real-time QPE as inputs for
nowcasts for high rainfall rates (Imhoff et al. 2020b). In this
study, we used a climatology-based adjustment of the QPE
and showed that it reduces the QPE error in operational
radar rainfall nowcasting (section 3d). However, although
correcting the rainfall volumes, these adjustments do not
change the spatial distribution of the forecast rainfall fields
much. The average CARROTS factor in the considered
urban areas during the 1-h events before 2020 was 1.73 (unit-
less), but their average spatial standard deviation within the
urban areas was only 0.04 (about 2% of the average CARROTS
factor). Thus, although the CARROTS factors are provided at a
high resolution of 1 km2, they are basically the same for the
whole (small) urban area. As a result, the rainfall spatial struc-
ture and Pearson correlation remain mostly unchanged, so skill-
ful lead time is not improved (section 3d), only the total rainfall
volumes are.

The second source is the nowcasting model itself. From
sections 3a to 3d, we identified the challenging rainfall charac-
teristics for the STEPS model: intensive and/or short-lived
events occurring over small areas. Similar limitations of oper-
ational rainfall nowcasting are also found in other regions
in the world. The nowcast model developed by the Czech
Hydrometeorological Institute, COTREC (Novák et al. 2009),
show skillful lead time shorter than 25 min for local convective
storms (Mejsnar et al. 2018). In the Netherlands, NWP can out-
perform nowcasts after a lead time of 1–2 h for high-intensity

convective rainfall events (Imhoff et al. 2023). Likewise, the
nowcasting system in Hong Kong (SWIRLS) was also found to
have trouble forecasting the growth and decay of rainfall at lon-
ger lead times well (Woo and Wong 2017). PIAF, the nowcast-
ing system in France (Moisselin et al. 2019), shows that the
quality of nowcasts in France deteriorates quickly and becomes
lower than NWP within a lead time of 75 to 90 min for the
same reason (Lovat et al. 2022). Comparing nowcast perfor-
mance with NWP as a function of lead time for rainfall in urban
areas would be of interest for future work, because most previ-
ous studies focused on national or catchment scales (e.g., Kober
et al. 2012. Poletti et al. 2019).

Furthermore, identifying the dominant type of error (i.e.,
false alarms, misplacement of rainfall, underestimation/over-
estimation of rainfall volume) based on event type, duration,
intensity, and urban area would be an insightful aspect for fu-
ture work. One main reason for underestimating intensive
events is that localized convective rainfall can develop in tens
of minutes (Germann et al. 2006; Mejsnar et al. 2018). Most
radar-based nowcasts do not take the growth of new rainfall
into account (Bowler et al. 2006; James et al. 2018; Pulkkinen
et al. 2019; Shehu and Haberlandt 2021) because they do not
consider information on atmospheric stability, such as convec-
tive available potential energy (CAPE) and moisture conver-
gence, which can lead to convective rainfall (Steinheimer and
Haiden 2007; Sun et al. 2014). Thus, small-area and short-
lived rainfall that is not represented in the original QPE can-
not be forecast by current radar-based nowcasting models
and, as a result, underestimation of rainfall in the forecast is
unavoidable.

c. Future perspectives

Some innovative nowcasting procedures outlined below
have been proposed to tackle the mentioned current limits
of operational rainfall nowcasting. However, it is still not
clear whether they will lead to dramatic improvements dur-
ing strong and convective events that are intrinsically cha-
otic. Last, more analysis that can supplement this research is
proposed.

1) RECENT DEVELOPMENT IN NOWCASTING

TECHNIQUES

Because of the difficulty to parameterize the nonlinear
growth and decay of extreme rainfall, recent research has
started to integrate machine learning techniques into precipi-
tation nowcasting (Marrocu and Massidda 2020; Li et al. 2021;
Ravuri et al. 2021; Ehsani et al. 2022). They show that nowcast-
ing models based on machine learning outperform traditional
optical-flow methods from certain perspectives. Machine learn-
ing models forecast rainfall evolution by training on previous
events and avoid the heavy reliance on the advection equations
used in optical flow methods. Thus, they have potential to fore-
cast convective growth which is not considered by deterministic
nowcasting models that assume a constant rainfall rate. With
the above literature, machine learning methods are proven to
be valuable tools in extreme rainfall nowcasting and should be
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considered in future work on enhancing nowcasting skills for
urban areas.

Blending numerical weather prediction (NWP) with now-
casting models is also shown to improve nowcasting skills.
NWP numerically solves atmospheric processes, so blending
NWP with radar-based nowcasts can improve the forecast on
rainfall evolution that cannot be achieved solely by radar-
based nowcasting models (Kober et al. 2012; Kato et al. 2017;
Poletti et al. 2019; Sideris et al. 2020; Imhoff et al. 2023). With
the significantly improved efficiency in computation and reso-
lution of NWP in the last decade, blending NWP in the now-
casting process has a lot of potential to advance nowcast skills
(Sun et al. 2014; Poletti et al. 2019). Thus, using the STEPS
procedure that blends QPE extrapolation and NWP might be
a potential next step for advancing nowcasting skill (Bowler
et al. 2006; Seed et al. 2013).

Another potential method to better simulate rainfall growth
is three-dimensional nowcasting. 3D scanned temperature, hu-
midity, and wind data can be used to indicate convective stabil-
ity to complement radar-based nowcasting results (Steinheimer
and Haiden 2007). Using 3D reflectivity, it is possible to now-
cast extreme convective events like thunderstorms even with a
lifetime below 60 min (Yoshikawa et al. 2012; Ushio et al.
2015). In essence, extrapolating 3D radar reflectivity outper-
forms 2D nowcasting because it better recognizes the vertical
motion of rainfall convection (Otsuka et al. 2016; Sun et al.
2022). Furthermore, combining a convolutional neural network
with 3D radar reflectivity may further improve nowcast quality
(Kim et al. 2021).

2) EFFECTS OF URBAN FEATURES ON

NOWCASTING ACCURACY

This study discusses nowcasting accuracy in different urban
areas, by focusing on rainfall characteristics as well as sizes
and locations of the urban areas. However, other urban fea-
tures may change nowcast accuracy as well. For instance, the
five urban areas considered have different land use and build-
ing structures, which might impose additional uncertainty to
nowcasts. Urban roughness can create flow anomalies by
changing the intensity and position of moisture convergence
(Yang et al. 2021). Also, urban heat and aerosols can modify
rainfall in and around the cities (Shepherd 2005; Schmid and
Niyogi 2017; Sarangi et al. 2018), with precipitation amounts
that can be 16% higher above a city (Liu and Niyogi 2019).
Furthermore, city shapes are also found to have notable influ-
ences on rainfall accumulation (Zhang et al. 2022). Such phe-
nomena may add higher difficulty to precipitation nowcasting
around urban areas than in rural regions. Therefore, future
analysis could systematically compare nowcast performance
for urban and rural areas while controlling other variables
like domain sizes and distances to the nearest weather radar.

5. Conclusions

With this study, we aim to provide insight into the potential
of radar nowcasting for rainfall warnings in small urban areas.
We analyzed the quality of ensemble radar rainfall nowcasting
at the urban scale using the short-term ensemble prediction

system (STEPS) from Pysteps. We chose 80 high-intensity
rainfall events in five urban areas in the Netherlands. We ana-
lyzed the corresponding 9060 nowcasts (with a lead time of 4 h
and 20 ensemble members) and focused on nowcast perfor-
mance for different urban areas, the factors that affect nowcast
performance, and the effects of using different QPE products.

Overall, the nowcast accuracy varied in the five urban areas
mainly due to different area sizes. We found nowcast RCRPS
increases nonlinearly when (urban) area size decreases from
900 to 4 km2, because smaller areas are more sensitive to mis-
placed rainfall in the forecast. Because of the nonlinear rela-
tionship, nowcast errors increase more strongly for areas
below 100 km2. These findings imply the limitation on spatial
accuracy for the employed STEPS method and radar resolu-
tion (1 km and 5 min).

Nowcasting performance also depended on the rainfall duration.
The rainfall underestimation of the nowcasts was more severe for
1-h events than for 24-h events. Nowcasts estimated the total rain-
fall volume accurately (error within 20%) with a lead time up to
2.5 h for the 24-h events, but the error was larger than 50% within
30-min lead time for the 1-h events. The discrimination skill of
nowcasts at 30-min lead time was also higher for 24-h events than
for 1-h events by 11% (threshold5 0.1 mm). For both event dura-
tions, AUC reduced as the threshold of interest increased.

To also distinguish the nowcasts error from the QPE errors
in an operational setting, different quantitative precipitation
estimates (QPEs) in the Netherlands were compared and run
with STEPS. We found that real-time QPE underestimates
the climatological QPE (best reference in the Netherlands) by
17%–69% depending on the regions and rainfall duration.
Climatology-based Adjustments for Radar Rainfall in an Op-
erational Setting (CARROTS) reduced the error in real-time
QPE to within 36%. Accordingly, using CARROTS-adjusted
QPE to run nowcasts also reduced the rainfall underestima-
tion of real-time nowcasts by 70%, relative to the real-time
QPE product, during the 4-h lead time tested. Yet, underesti-
mation of rainfall is still above 50% when lead times are lon-
ger than 40 min, which can be attributed to the error in the
forecast from the nowcasting model. Besides, the average
skillful lead time found for the 1-h events was limited to
20 min regardless of the QPE product used. The reason is that
CARROTS adjusts the rainfall volume but does not alter the
spatial distribution of the rainfall fields much in small areas.

This study shows that radar-based nowcasting techniques
based on optical flow methods can provide skillful forecasts for
very short lead times of up to 24 min in urban areas, which can
be precious for emergency responses. Such a lead time is a com-
mon obstacle that many operational nowcasting models are
challenged with when forecasting high-intensity rainfall in urban
areas. To advance nowcasting skills, it is recommended to use
higher-quality QPE products (e.g., via real-time adjustments or
higher resolution) and employ machine learning, 3D nowcast-
ing, or blending nowcasts with numerical weather prediction
(NWP) to better model the growth and dissipation of rainfall.
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Novák, P., L. Březková, and P. Frolı́k, 2009: Quantitative precipi-
tation forecast using radar echo extrapolation. Atmos. Res.,
93, 328–334, https://doi.org/10.1016/j.atmosres.2008.10.014.

Ochoa-Rodriguez, S., and Coauthors, 2015: Impact of spatial and
temporal resolution of rainfall inputs on urban hydrodynamic
modelling outputs: A multi-catchment investigation. J.
Hydrol., 531, 389–407, https://doi.org/10.1016/j.jhydrol.
2015.05.035.

}}, L. P. Wang, P. Willems, and C. Onof, 2019: A review of radar-
rain gauge data merging methods and their potential for urban
hydrological applications. Water Resour. Res., 55, 6356–6391,
https://doi.org/10.1029/2018WR023332.

Olsson, J., L. Simonsson, and M. Ridal, 2014: Rainfall nowcasting:
Predictability of short-term extremes in Sweden. Urban Water
J., 11, 605–615, https://doi.org/10.1080/1573062X.2013.847465.

Otsuka, S., and Coauthors, 2016: Precipitation nowcasting with
three-dimensional space–time extrapolation of dense and fre-
quent phased-array weather radar observations. Wea. Forecast-
ing, 31, 329–340, https://doi.org/10.1175/WAF-D-15-0063.1.

Overeem, A., I. Holleman, and A. Buishand, 2009a: Derivation of
a 10-year radar-based climatology of rainfall. J. Appl.
Meteor. Climatol., 48, 1448–1463, https://doi.org/10.1175/
2009JAMC1954.1.

}}, T. A. Buishand, and I. Holleman, 2009b: Extreme rainfall
analysis and estimation of depth-duration-frequency curves
using weather radar. Water Resour. Res., 45, W10424, https://
doi.org/10.1029/2009WR007869.

}}, }}, }}, and R. Uijlenhoet, 2010: Extreme value model-
ing of areal rainfall from weather radar. Water Resour. Res.,
46, W09514, https://doi.org/10.1029/2009WR008517.

}}, H. Leijnse, and R. Uijlenhoet, 2011: Measuring urban rain-
fall using microwave links from commercial cellular commu-
nication networks. Water Resour. Res., 47, W12505, https://
doi.org/10.1029/2010WR010350.

}}, H. de Vries, H. Al Sakka, R. Uijlenhoet, and H. Leijnse,
2021: Rainfall-induced attenuation correction for two opera-
tional dual-polarization C-band radars in the Netherlands. J.
Atmos. Oceanic Technol., 38, 1125–1142, https://doi.org/10.
1175/JTECH-D-20-0113.1.

Poletti, M. L., F. Silvestro, S. Davolio, F. Pignone, and N. Rebora,
2019: Using nowcasting technique and data assimilation in a
meteorological model to improve very short range hydro-
logical forecasts. Hydrol. Earth Syst. Sci., 23, 3823–3841,
https://doi.org/10.5194/hess-23-3823-2019.

Pulkkinen, S., D. Nerini, A. A. Pérez Hortal, C. Velasco-Forero,
A. Seed, U. Germann, and L. Foresti, 2019: Pysteps: An
open-source Python library for probabilistic precipitation
nowcasting (v1.0). Geosci. Model Dev., 12, 4185–4219, https://
doi.org/10.5194/gmd-12-4185-2019.

Rafieeinasab, A., and Coauthors, 2015: Toward high-resolution
flash flood prediction in large urban areas–Analysis of sensi-
tivity to spatiotemporal resolution of rainfall input and hy-
drologic model. J. Hydrol., 531, 370–388, https://doi.org/10.
1016/j.jhydrol.2015.08.045.

Ralph, F. M., and Coauthors, 2014: A vision for future observa-
tions for western US extreme precipitation and flooding. J.
Contemp. Water Res. Educ., 153, 16–32, https://doi.org/10.
1111/j.1936-704X.2014.03176.x.

Ravuri, S., and Coauthors, 2021: Skilful precipitation nowcasting
using deep generative models of radar. Nature, 597, 672–677,
https://doi.org/10.1038/s41586-021-03854-z.

RIONED, 2020: RadarTools. Accessed 10 March 2022, https://
radartools.nl.

Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification
of rainfall accumulations from high-resolution forecasts of
convective events. Mon. Wea. Rev., 136, 78–97, https://doi.
org/10.1175/2007MWR2123.1.

Royal Netherlands Meteorological Institute, 2022a: Precipitation}
5 minute precipitation accumulations from climatological gauge-
adjusted radar dataset for The Netherlands (1 km, extended
mask) in KNMI HDF5 format, version 2.0. KNMI, accessed
1 May 2022, https://dataplatform.knmi.nl/dataset/rad-nl25-rac-
mfbs-em-5min-2-0.

}}, 2022b: Precipitation}radar/gauge 5 minute real-time accu-
mulations over the Netherlands, version 1.0. KNMI, accessed
1 May 2022, https://dataplatform.knmi.nl/dataset/nl-rdr-data-
rtcor-5m-1-0.

}}, 2023: Precipitation}radar/gauge 5 minute final reanalysis
accumulations over the Netherlands, version 1.0. KNMI,
accessed 4 November 2023, https://dataplatform.knmi.nl/
dataset/nl-rdr-data-rfcor-5m-1-0.

Sarangi, C., S. N. Tripathi, Y. Qian, S. Kumar, and L. Ruby
Leung, 2018: Aerosol and urban land use effect on rainfall
around cities in Indo-Gangetic Basin from observations and
cloud resolving model simulations. J. Geophys. Res. Atmos.,
123, 3645–3667, https://doi.org/10.1002/2017JD028004.

Schellart, A., S. Liguori, S. Krämer, A. Saul, and M. A. Rico-
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