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Executive summary

Turbofan engine maintenance costs can be significantly reduced if detailed deterioration information is known
a priori. With a thermodynamic gas path analysis (GPA) engine model, the deterioration levels of the indi-
vidual gas turbine components can be analyzed. KLM Engine Services (ES) uses the GPA software package of
the Gas Turbine Simulation Program (GSP) to estimate deterioration. The accuracy of GPA results depends
strongly on the accuracy of the engine models.

KLM ES provides maintenance for multiple engines, including the General Electric GEnx-1B engine. This
is a modern high bypass ratio turbofan engine that is used on the Boeing-787 Dreamliner. The number of gas
path sensors is reduced for modern engines, introducing challenges in developing accurate GPA models. To
compensate for the reduction in gas path sensors, a greater quantity of on-wing performance data is stored
in the Continuous Engine Operating Data (CEOD) database. CEOD contains gas path sensor data as well
as information on the secondary performance parameter settings like variable geometry, bleed flows, active
clearance control and power off-take.

At KLM ES, a GEnx-1B GPA model has been developed. This model accurately matches the GEnx-1B gas
path measurements for take-off conditions. However, the GEnx-1B engine components operate differently at
cruise conditions due to divergent secondary performance parameter settings. Consequently, the secondary
performance parameter effects need to be accounted for to perform accurate GPA at cruise conditions. The
objective of this thesis is to increase the accuracy of the GEnx-1B engine model for cruise conditions by
accounting for secondary performance parameter effects.

To identify the effect of the individual secondary performance parameters, this thesis proposes a method
to determine the relationships between the individual secondary performance parameter settings and the
consequent performance deviations of the components. Combining a differential algorithm optimization
scheme with on-wing engine operating data has resulted in a novel approach to accurately determine these
relationships.

The method has been verified with simulated data from a standard GSP turbofan model. The results
indicate the algorithm can accurately determine the relationships between secondary performance param-
eter settings and component performance deviation, which can be used to increase overall turbofan model
accuracy.

The method has been validated using GEnx-1B on-wing cruise data from a good condition engine. First,
the algorithm has been applied using the baseline GEnx-1B model. However, unrealistic results were ob-
tained. This could be attributed to large deviations in the fan and low pressure compressor (LPC) component
sub-models, so these had to be corrected and made more accurate. With the improved GEnx-1B model, real-
istic relationships between secondary performance and component performance deviation were obtained
that are in line with public data. After embedding these relationships in the improved GEnx-1B model,
the modelling error was reduced by 65%, clearly indicating the validity and accuracy of the relationships.
Applying this new model on performance data from different GEnx-1B engines also resulted in a modelling
error decrease of 61%, implying the applicability of the relationships for all GEnx-1B engines.

With the new model, GPA was performed on historical GEnx-1B engine data and compared with GPA
using the original less accurate model. The new GPA results show better correspondence with known engine
history information such as compressor washes and a turbine blade failure. Also, the root mean square error
of the GPA results was reduced by 8%.

The results presented in this thesis indicate that the algorithm can accurately determine relationships
between secondary performance parameters and component performance deviation at cruise conditions.
Accounting for these relationships in engine models increases model accuracy and consequently GPA accu-
racy, thereby providing more reliable and accurate information for maintenance decision making.
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1
Introduction

Since the introduction of the high bypass turbofan, the commercial air travel market has revolutionised.
Due to its high efficiency and power-to-weight ratio, the high bypass ratio turbofan was able to reduce the
operating costs of airliners and introduce air travel to a larger public. For modern airliners, the competition
is fierce and the reduction of direct operating costs (DOC) is an important driver for a competitive position in
the industry.

A key component of the direct operating costs is the maintenance of the turbofan engines. This mainte-
nance is provided by maintenance, repair, and overhaul (MRO) facilities. The original equipment manufac-
turers (OEM) such as General Electric and Rolls Royce are providers of this service, but also the airliners have
their maintenance divisions. KLM is one of the airlines with a large maintenance department. Together with
Air France, they form Air France Industries KLM Engineering & Maintenance.

Within KLM Engineering Maintenance, Engine Services (ES) is one of the six maintenance divisions.
Engine Services is currently performing overhauls on the KLM fleet engines as well as on engines from other
airlines. The capabilities available within ES are performing maintenance on the large list of aircraft engines,
among which the CF6-80C2, CF6-80E1, CFM-56-7B, GEnx-1B.

In the past, the MRO business performed maintenance on these engines on a scheduled basis. The desire
to lower DOC from the airlines led to a new strategy. Diagnostics for engine performance was introduced.
This strategy is based on the identification of engine failures as well as the monitoring of engine degradation.
The goal is reducing the unscheduled line maintenance as well as impacting the off-wing maintenance by
improved scheduling of maintenance, overhauls, and work-scoping, as this would lead to reduced DOC [56].

1.1. Context & Problem Statement
At KLM Engine Services, engine diagnostics is researched using the Gas Turbine Simulation Program (GSP).
This software enables KLM to perform gas path analysis (GPA) to help determine deterioration levels in
individual components of gas turbines based on performance data. This process is mainly applied to test
cell data for engines with a large number of sensors. In more modern engines, the number of sensors is
reduced by the OEM. This introduces challenges in performing accurate GPA. These engines do however
record Continuous Engine Operating Data (CEOD).

Within KLM, a GEnx-1B GPA model has been developed. Also, a start has been made on engine diagnos-
tics based on on-wing CEOD to circumvent the reduced sensor problem. A hybrid Evolutionary-Algorithm
Multi-Operating Point Gas Path Analysis (MOPA-EA GPA) tool has been developed for the GEnx-1B engine.
This tool uses an analysis at the cruise and take-off operating point to determine the state of the components.
This tool is promising but there is still room for improvement on accuracy. The current underlying GEnx-1B
model does not accurately represent the cruise phase. Since the accuracy of this tool is dependent on the
accuracy of the underlying GEnx-1B model, it is needed to improve the current GEnx-1B model for cruise
phase.

During the cruise phase, the engine performs differently due to deviant secondary performance param-
eter settings. The secondary performance parameters contain information about the bleed flows, active
clearance control, variable geometry and power take-off. This information is present in the CEOD and not
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2 1. Introduction

yet accounted for in the GEnx-1B model. Therefore, it is interesting to research the effect of the secondary
performance parameters at the cruise phase to increase the accuracy of the GEnx-1B model.

1.2. Research objective & Questions
From the previous section can be concluded that the accuracy of the GEnx-1B model is to be increased, to
improve the MOPA-EA GPA tool reliability. Hence, the main objective of this research is:

To increase the GEnx-1B model accuracy for cruise phase, making use of the additional secondary
performance parameter information present in the Continuous Engine Operating Data.

A brief literature study was performed to find key areas of interest to realize the main research objective.
This resulted in the definition of the scope of this thesis. This thesis will combine a machine learning ap-
proach with theory on secondary performance parameters to determine relationships between the secondary
performance parameter effects and the consequent component performance deviation. Combining these
two aspects has not been done before and can provide a useful solution to decrease the GPA uncertainty if
successful. In order to fulfil this research goal, the main research question and related sub-questions are
introduced that will need to be answered. The main research question is:

Can relationships based on secondary performance parameters and determined by an evolutionary
algorithm increase the accuracy of GPA models and consequently GPA accuracy?

The proposed sub-questions are given below:

1. Which secondary performance parameters can cause deviant engine performance at different operat-
ing conditions?

2. What patterns are present in the secondary performance parameters, and what are the differences
between the various operating conditions?

3. How can these differences in secondary performance parameters be compensated for?

4. Does the compensation for secondary performance parameters by using the determined relationships
increase the accuracy of a GPA model?

5. Does the compensation for secondary performance parameters by using the determined relationships
increase the accuracy of GPA results?

This research will be performed with the information and knowledge present at the MRO facility at KLM
Engine Services. Therefore, the validation of the methodology can be performed on actual engine data from
KLM GEnx-1B engines in combination with vast MRO experience.

1.3. Structure report
This report consists out of 9 chapters. Chapter 2 introduces the theoretical framework required to fully
understand this thesis. Chapter 3 introduces the GSP software package, former performed work at KLM and
effects on engine performance. Chapter 4 introduces the methodology to reduce the modelling error based
on the secondary performance parameters. Chapter 5 introduces the GEnx-1B case description. Chapter 6
introduces the results from the method applied on the GEnx-1B engine data. In chapter 7, a gas path analysis
is performed. Chapter 8 discusses the results, after which chapter 9 displays the conclusions and recommen-
dations.
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2
Aero engine gas turbines

Since the introduction of power-by-the-hour, engine health management has become an important part of
the operation of an MRO facility [43]. This new business model introduced by Rolls-Royce meant that instead
of the conventional ’material and time’ based service, a fixed price for engine availability is paid to the MRO
(Maintenance Repair&Overhaul) facility. This stimulated the innovation in engine health management sys-
tems. This research is performed in collaboration with KLM Engine Services. Engine health management plays
an important role in contemporary maintenance practice. This chapter introduces the working of a gas turbine,
the various kinds of gas turbine engine deterioration and the methods to identify them.

2.1. Gas turbine components and operation
Gas turbines make use of the Joule-Brayton cycle to generate thrust. This is done in 4 steps from the inlet of
the gas turbine towards the nozzle. This section will introduce these four steps and the related components.

In Figure 2.1 a schematic representation of a gas turbine is visible. The air enters the inlet, is compressed
in the compressor section. In the combustor, energy is added to the flow. In the turbine, the air is expanded
to extract work from the air. This work is used to drive the compressor that is attached to the same shaft. The
residual energy in the air is used to generate thrust by ejecting it into the environment from the nozzle. For
the Joule-Brayton cycle, these can be set out as four thermodynamic processes:

1. Compression in the compressor.

2. Heat addition in the combustor.

3. Expansion in the turbine.

4. Heat rejection from the nozzle.

Figure 2.1: Schematic representation of a gas turbine

In order to perform engine health management, these thermodynamic processes need to be modelled.
There are four ways of representing a gas turbine ranging from 0-D to 3-D modelling with increasing com-
plexity, accuracy and computational burden [38]:
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6 2. Aero engine gas turbines

• A 0-D model is not taking the spatial domain into account and only calculates the averaged gas prop-
erties at discrete points in the engine.

• A 1-D model does take the axial flow direction into account, thereby representing the averaged gas
properties throughout the engine.

• A 2-D model represents the gas properties at certain stations in the radial direction.

• A 3-D model represents the gas properties at every location throughout the whole engine.

The MRO branch mostly uses 0-D modelling due to its low computational burden and easy implemen-
tation. In order to build a 0-D model, the fundamentals of thermodynamics are used. In modelling, the
distinction is made between design point modelling and off-design modelling. A design point model specifies
the performance of an engine at one operating condition, ambient condition, and power setting. In this
calculation, the pressure ratios, efficiencies and rotational speeds are specified. Therefore, the properties can
be calculated from inlet to outlet in a single calculation. In Appendix B, the fundamentals of thermodynamics
and theory on design point calculation are introduced.

Off-design modelling deals with the performance of the engine when at least one of the operating condi-
tions, ambient conditions or power setting is changed. This analysis involves an iterative calculation scheme
by which a steady-state solution is found that satisfies the conservation equations from subsection 2.2.1.
Since this thesis mostly deals with off-design modelling, the following section will introduce the mathemati-
cal and thermodynamical basis for performing an off-design calculation.

2.2. Off-design calculation
The off-design performance deals with the whole operating range aside from the design point. In contrast
to the design point calculation, this analysis requires an iterative approach to solve steady-state off-design
solutions. This is caused by the fact that compressors and turbines show highly nonlinear behaviour over
their complete operating range regarding their performance and efficiency. To solve such problems, a system
of equations is put together and solved by iteration. This section will introduce the required tools to perform
the off-design analysis. First, the system of equations is introduced, after which the corrected parameter
groups and component maps are discussed.

2.2.1. System of equations
The off-design analysis is based on the following conservation equations:

• Conservation of mass
δ

δt
(ρA)+ δ

δx
(ρAv) = 0 (2.1)

• Conservation of momentum
δ

δt
(ρAv)+ δ

δx

(
ρAv2)+ A

δp

δx
= 0 (2.2)

• Conservation of energy
δ

δt
(ρAu)+ δ

δx
(ρAvh) = 0 (2.3)

By using these principles, the components in the gas turbine can be coupled. In 0-D modelling, the outlet
of a component is coupled to the inlet of the next component. If the conservation equations are satisfied,
thermodynamic feasibility can be assured. By iteration, it is possible to determine a steady-state off-design
solution. However, without information about the separate components in off-design conditions, this is not
possible. Therefore, the following section introduces performance parameters and component maps.

2.2.2. Off-design component performance
In a gas turbine, multiple components all have their own performance over a range of operating conditions.
In this section, the method to evaluate compressor and turbine performance is displayed. To describe the
performance of these components at various conditions, a large set of variables is needed. These variables
are visualised in Table 2.1.
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Symbol Variable Unit

D Characteristic linear dimension [m]

N Rotational speed [rad/s]

m mass flow [kg/s]

p01 Total inlet pressure [Pa]

p02 Total outlet pressure [Pa]

T01 Total inlet temperature [K]

T02 Total outlet temperature [K]

γ Ratio of specific heat [-]

Re Reynolds number [-]

Table 2.1: Parameters describing performance of gas turbine components, adapted from Moorselaar [50]

Since it is undesirable to evaluate the behaviour of the components with 9 variables, the number of
variables can be reduced by using the Buckingham Pi theorem. This is done in various ways resulting in
dimensionless groups, quasidimensionless groups and corrected groups. These parameter groups are intro-
duced briefly.

Parameter groups
The dimensionless parameter groups are constructed following the Buckingham Pi theorem. The relevant
dimensionless parameters describing turbine and compressor performance are given in Table 2.2. Three
sorts of parameter groups are available. They all have their specific use.

The dimensionless parameters are specifically useful if various working fluids need to be considered. Of-
ten, the working fluid and geometry of a single gas turbine do not change over the operating range. Therefore,
quasi dimensionless parameter groups are also used.

The quasidimensionless parameter groups do not contain variables regarding the working fluid or dimen-
sions. In this representation, the R and D and γ are taken out of the equation. The last group of parameters
is the corrected type, this group is proportional to the quasidimensionless group.

As a gas turbine can operate at various conditions, corrected parameters are used. These compensate for
the ambient condition and correct to the International Standard Atmosphere values (ISA). This is done by
dividing the total properties through the ISA values for pressure and temperature, resulting in the corrected
temperature and pressure:

θ = T2

TI S A
, δ= P2

PI S A
(2.4)

The values θ and δ are then used to write the corrected parameters in the form of Equation 2.5. In which
values a and b are the gas turbine parameter corrections. The standard values are a = 0.5 and b = 0 and
a =−0.5 and b = 1 for corrected spool speed and mass flow respectively [57]. These can however differ based
on additional parameters like humidity [57]. These corrections are established based on experimental data.

Xc ≈ X

θaδb
(2.5)

By plotting these parameter groups against each other, the performance of the main gas turbine compo-
nents can be represented by graphs. These graphs are called component maps and are treated in the following
section.

2.2.3. Component maps
As mentioned, the corrected parameter groups can be used to compare and evaluate the compressor and
turbine over their operating range. This is done by using component maps. In this section, the correlations
between the parameter groups in these component maps are explained. Furthermore, the use in off-design
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parameter group
Dimensionless

parameter group
Quasidimensionless

parameter group
Corrected

Mass flow
ṁ
p

RT0i n

D2p0i n
p
γ

ṁ
p

T0i n

p0i n

ṁ
p
θ

δ

Pressure ratio p0out
p0in

p0out
p0in

p0out
p0in

Spool speed N Dp
RT0i n

Np
T0i n

Np
θ

Isentropic efficiency η η η

Table 2.2: Dimensionless parameter groups

modelling is discussed.

Compressor
The function of a compressor is to increase the pressure of the working fluid. To do so, the compressor
can compress a certain corrected mass flow at a certain rotational speed. This happens with an associated
efficiency. The compressor map defines the relationships between the pressure ratio, corrected mass flow, ef-
ficiency and corrected rotational speed of one compressor geometry. The compressor maps consist of curves
that indicate pressure ratio over a corrected mass flow range at a certain corrected spool speed. Additionally,
the constant efficiency contour lines are plotted in the graph, or a separate graph is given to display the
efficiency versus the mass flow. An example of these maps is given in Figure 2.2.

These maps contain important information about the performance of one specific compressor. The
typical characteristics of a compressor map are described below:

• The operating line is indicated. This line is dependent on the compressor and turbine power matching.
If properly done, the line directly relates to the optima of the corrected spool speed lines in the upper
graph in Figure 2.2.

• Constant corrected spool speed lines are indicated by the black lines in Figure 2.2.

• The surge line represents the maximum obtainable pressure ratio for a corrected spool speed, without
surge occurring. Surge can follow from the stall behaviour of the compressor blades in case of a low
corrected mass flow at which the compressor can not withstand the adverse pressure. The stall can lead
to reverse flow which can cause large oscillations in the compressor mass flow and therefore throughout
the whole gas turbine. This is called surge and can be disastrous for the gas turbine. The line at which
this phenomenon can occur is displayed in Figure 2.2.

• The choking area of the compressor map indicates the part of the compressor map where the maximum
mass flow is obtained. This behaviour is visible in Figure 2.2, denoted as choking. No increase in mass
flow is possible if the back pressure is lowered due to choked conditions.

Turbine Map
In line with the compressor maps, turbine maps also display the relation between the parameter groups.
However, for the turbine maps, the efficiency and corrected mass flow are plotted against the pressure ratio.
The turbine maps displayed in Figure 2.3 also contain certain characteristics. These are given below:

• The constant corrected spool speeds are displayed as black lines. At a certain corrected mass flow, the
curves flatten out. This is caused by the choking mechanism of the turbine. If the back pressure is
further reduced, this will not lead to an increase in mass flow.

• The isentropic efficiency is constant over a large range of corrected spool speeds and pressure ratios.
This is caused by the accelerating behaviour of the flow through the turbine, enabling it to operate over
a broad range of incidence angles without a large efficiency loss.

• The gas turbine will mostly operate with a choked turbine since the design point is located in the choked
region.
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Using the component maps, the off-design performance calculation can be performed. This is done by
iterating until the parameter groups of individual components match each other. The following section
describes the calculation strategy.

Figure 2.2: Typical compressor map

Figure 2.3: Typical turbine map
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2.2.4. Off-design calculation scheme
Using the conservation equations, and the component maps, the complete cycle calculation can be per-
formed. For this, the individual components are linked by conservation equations to assure the feasibility of
the off-design solution. Using these conservation equations, an iterative scheme is executed to minimise the
error between the values of thermodynamic states between components. This requires computational power
since computation by hand is too time-consuming. In chapter 3 a software package is introduced that is able
to perform off-design calculations.

2.3. Deterioration modes
Like every piece of machinery, gas turbines are prone to wear and tear during their lifespan. The wear
and tear of the compressors and turbines can lead to drastic changes in thermodynamic performance. The
degradation of a single component influences the behaviour of the complete engine since the individual
components are coupled thermodynamically or/and mechanically. This section introduces the deterioration
effects that can influence the performance of the gas turbine. The existing deterioration effects are [20]:

• Fouling

• Corrosion

• Erosion

• Abrasion

• Foreign object damage

These forms of deterioration can be divided into two categories. The first category is recoverable degra-
dation, this includes any damage that can be restored by on or off-line maintenance. The second group is
non-recoverable damage. This can only be restored by the replacement of parts or an overhaul. The afore-
mentioned deterioration effects are further elaborated upon below. Also, the distinction is made between
recoverable and non-recoverable degradation.

2.3.1. Fouling
Fouling is caused by the build-up of material on the compressor, turbine blades, combustor and annulus
area. The material originates from smoke, oil mists, carbon and sea salt and is mostly smaller than 2-10 µm
[23]. Due to this phenomenon, the surface roughness and (to a certain extend) the shape of the compressor
and turbine blades are affected. This can negatively impact the performance of the compressor and turbine
[21]. This sort of deterioration can partly be remedied by using water washes. This can be done on-line and
is, therefore, recoverable degradation.

2.3.2. Corrosion
The metal surface of the blades in the turbine and compressor are susceptible to corrosion. Corrosion is
caused by the chemical reaction between the blades and contamination of the working fluid and fuel [22]. A
common form of corrosion is oxidation. By the loss of electrons, the metal blades get positively loaded. This
can lead to the formation of a surface metal oxide. Due to the high temperatures, this form of corrosion is
mainly observed in the combustor and turbines. Another type of corrosion is hot corrosion. In addition to
oxygen, hot corrosion needs the presence of another chemical substance. Due to the presence of contamina-
tion in the working fluid and fuel, which can work as a catalyst, oxidation rates can increase. The formation
of metal oxide leads to cracks in the turbine blades and can result in performance deterioration. This kind of
deterioration effects is non-recoverable. To prevent corrosion, coatings are applied to the blades.

2.3.3. Erosion
Erosion is the damage done to the blades by the impact of particles often larger than 10 µm [22]. This
phenomenon can change the profile of the blades and therefore influences the thermodynamic performance
of the gas turbine. This kind of deterioration is non-recoverable.
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2.3.4. Abrasion
A gas turbine has a certain clearance between the rotor blades and the stator casing. During an overhaul
and at the service entry of an engine, the stator casing is coated with an abradable seal. These seals are
used to decrease the clearance between the stator casing and the rotor blades, and thereby increase the
efficiency [14]. Abrasion in gas turbines is the rubbing behaviour of the rotor on the stator casing seals. During
operation, these seals wear out and the clearance between stator casing and rotor increases, decreasing the
efficiency. This is non-recoverable deterioration.

2.3.5. Foreign object damage
The last category of deterioration is Foreign Object Damage (FOD). This is damage done by objects sucked
into the engine or by pieces broken off the engine components themselves. Also, the accumulation of ice in
the inlet can cause damage when sucked into the engine [22]. This is also non-recoverable deterioration.

2.4. Deterioration effect on components
As mentioned, the introduced deterioration modes affect gas turbine performance. How these kinds of
deterioration impact the performance of the gas turbine will be explained in this section.

2.4.1. Compressor deterioration
A compressor performance decrease is caused by all the deterioration modes mentioned in section 2.3. The
changes in the geometry of the compressor blades lead to reduced efficiency, reduced capability of generating
head, and reduced compressor flow capacity [24]. Also, the surge margin can be decreased [44]. These
changes can be displayed in the compressor map. This is visible in Figure 2.4. In this figure, the flow capacity
is decreased as well as the efficiency. By translation of the constant speed lines along the Wc and η axis, it
is possible to change the characteristics of the component to represent the deteriorated component. The
amount by which the lines are translated represents the deterioration level. This opens up the opportunity to
simulate the effect of component deterioration on gas turbine performance. By using two parameter groups
from efficiency, pressure ratio and corrected mass flow the component map can be adapted. The adaption of
the third parameter group follows from the adaption of the selected two parameter groups.

2.4.2. Turbine deterioration
The turbine map can be adapted following the same analogy as the compressor map. The turbine can display
the same behaviour as the compressor due to the deterioration effects. The thicker boundary layers on the
turbine blades reduce the mass flow rate for the same pressure ratio. Also, the efficiency will decrease [6].
This is displayed in Figure 2.5 as the set of red lines. However, the turbine can also have an increased flow
capacity through material removal near the nozzle area. The flow capacity is limited by the throat area. If the
throat area is increased due to material removal, a higher flow capacity is reached. This is indicated by the set
of blue lines. This is however also accompanied by a reduced efficiency as it leads to reduced work extraction
[24].
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Figure 2.4: Component map of a deteriorated compressor adapted from [12]

Figure 2.5: Component map of a deteriorated turbine adapted from [12]
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All forms of deterioration have their signature effect on gas turbine components. These effects are dis-
played in Table 2.3 [6]. The next section will introduce methods to estimate these deterioration grades by
means of gas path analysis (GPA).

Physical fault Wc change A η change B Ratio A:B

Compressor fouling ⇓ ⇓ 3-8:1

Turbine nozzle guide vanes fouling ⇓ ⇓ 2:1

Compressor erosion ⇓ ⇓ 2:1

Turbine erosion ⇑ ⇓ 2:1

Compressor corrosion ⇓ ⇓ 2:1

Turbine corrosion ⇑ ⇓ 2:1

Foreign object damage(non severe) ⇕ ⇓ 0.5:1

Abrasion ⇑ ⇓ 0.5:1

Table 2.3: Effect of deterioration on gas turbine performance adapted from [6]
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2.5. Gas path analysis
As explained, gas turbine engines suffer from degradation during service. These physical deterioration phe-
nomena manifest themselves in a change in thermodynamic performance. In turn, the performance change,
causes a deviation in pressures, temperatures, fuel flow and rotational speed. Using this analogy, component
deterioration can be identified by using the engine sensor data to identify component faults. This is called
gas path analysis. Urban [48] was the first to describe these relations. His analogy is visible in Figure 2.6. By
assuming a linear relationship between the difference in measurements and the performance parameters of
the engine, he was able to estimate the performance of the individual components in the gas turbine. Ever
since Urban started the pioneering work on gas path analysis, the industry expanded on finding multiple
ways to relate the measured variables (independent parameters) to the performance parameters (dependent
parameters). These can be divided into two groups. Both model-based techniques, as well as empirical
methods are available.

Figure 2.6: Gas path analysis analogy from Urban [48]

2.5.1. Model-based techniques
The model-based techniques require a model of the gas turbine that has to be analysed. With the engine
model and measurement data, an estimation can be made about the deterioration state of the components.
Possible ways of implementing such a method are discussed below.

Linear GPA
A gas turbine modelling approach has to deal with the highly non-linear relationship between the indepen-
dent(pressure, temperature, thrust and mass flow rate) and dependent (pressure ratio, flow capacity and
efficiency) parameters of the engine. Linear GPA assumes the relationship between these components to be
linear, around a certain operating point. This linear relation is given in Equation 2.6 [62]. In which z̄ consists
of measured parameters and x̄ of the performance parameters. H represents the influence-coefficient matrix
(ICM). The inverse of H is called the Fault-Correction Matrix (FCM). With the FCM the deviation of the engine
component parameters can be calculated. This is a fast and easy method to implement and is able to detect
multiple faults but is only valid close to the model reference point, as the linear relation will not hold any
more at a different power setting [6]. Also, the number of measured parameters is equal to the number of
estimated performance parameters. Modern gas turbines have a reduced number of measurements so this
decreases the applicability of this method [6].

z̄ = H · x̄ (2.6)

∆z̄ = H ·∆x̄ (2.7)

∆x̄ = H−1 ·∆z̄ (2.8)
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Non-linear GPA
Non-linear GPA takes the highly non-linear behaviour of a gas turbine into account. This method implements
a Newton-Raphson calculation scheme which iteratively calculates the ICM by using Equation 2.8. From
which the FCM is calculated. These results are used to construct the new ICM until convergence is reached.
By repeating this process a feasible operating point can be found. This method is implemented by Escher in
Pythia [6].

Adaptive Modelling (AM), first introduced by Lambiris et al. [30], applies this method in combination with
adaptation of the actual engine model by altering the component maps during the analysis. This component
map adaptation is done by applying the analogy from section 2.4. The extent to which the component maps
are adapted, represents the component deterioration. This is done to provide a better fit to the measured
parameters to achieve more accurate results [54].

Both these methods provide a fast way to perform GPA. However, both these methods require as many
measurements as component states that are estimated [6, 54]. Contemporary gas turbine engines have a
reduced number of sensors in the gas path. Therefore, these methods are getting less applicable for modern
gas turbines.

Genetic algorithm
To overcome this issue, another approach can be used. The non-linear model-based GPA with a genetic
algorithm applies machine learning instead of an iterative calculation scheme to produce a feasible set of
engine component deterioration states. A genetic algorithm searches for a solution based on evolution theory
and natural selection [19]. For GPA purposes, the genetic algorithm produces a set of solutions with engine
component states, called a population. Subsequently, the non-linear engine model is run with the estimated
component states from the population. The output results are compared to the engine measurement data
and the ’fitness value’ of the individual solutions is determined. By ’mutation’ and ’crossover’ within the cur-
rent population, a new population is generated mostly from the ’fitter’ solutions. By applying randomisation,
local minima are prevented. Since it does not apply deterministic solving, it is capable of dealing with noise
and having fewer measurements available than component states required [11]. The downside of using a
genetic algorithm is that they require long computation times.

Empirical techniques
Besides model-based methods, empirical methods also exist. These methods do not consider the thermody-
namic behaviour of the gas turbine so no physics model is required. Instead of physics, they are based on a
vast amount of data relating known engine deterioration to measurement deviations. Often used methods
are neural networks, Bayesian belief networks and Expert systems [32]. Their main advantage is that they do
not require a model of the engine. However, to train these empirical models, a large database of gas turbine
incident data is required. This is often not available in the MRO environment.

2.5.2. Optimal GPA solution at KLM
In the brief summary of available GPA methods, the main advantages and drawbacks of the different methods
are explained. The requirements for a GPA analysis tool for on-wing GPA at KLM are given below:

• Able to deal with more component state parameters than measurements available.

• Able to deal with measurement noise.

• Fast for large scale implementation.

• Able to perform accurate GPA for every power setting.

The purely empirical methods have the advantage that they are able to deal with measurement noise and
sensor bias but they require a large dataset of training data with known deterioration states. Since this data is
not available, these have not been implemented at KLM. The two options that are most viable for application
at KLM are the non-linear adaptive modelling and the non-linear model-based GPA combined with a genetic
algorithm. A comparison of their advantages and drawbacks is made:
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Non-linear adaptive modelling

Advantages

• More capable of performing fast analysis.

Drawbacks

• Not able to deal with measurement noise and sensor bias.

• Not able to estimate more component states than measurements available.

Non-linear model-based GPA with genetic-algorithm

Advantages

• Able to estimate more component states than measurements available.

• Able to deal with measurement noise and sensor bias.

Drawbacks

• Higher computational burden.

Both methods have been studied at KLM and are further explained in chapter 3.



3
Engine performance modelling for

diagnostics and prognostics

For an MRO business as KLM, it is of great value to estimate the aforementioned deterioration states of the
engines cost-effectively. Instead of a visual inspection or an overhaul, gas path analysis uses the measurement
data of the gas turbine to estimate the individual component performance. This chapter explains the GPA
software and methods that are used within KLM ES, after which the former performed research at KLM is
introduced. Subsequently, various effects on engine performance are treated.

3.1. GSP
At KLM, the Gas Turbine Simulation Program (GSP) is used to perform gas path analysis. GSP [54] is a non-
linear gas path analysis tool developed at the National Aerospace Laboratory (NLR) in collaboration with the
TU Delft. It is a 0-D non-linear object-oriented gas path simulation tool that is easy to implement because of
its flexibility and ’drag-and-drop interface’ [54]. The inlet, fan, compressors, combustion chamber, turbines
and exhaust are modelled as objects which can be dragged into the graphical user interface to construct an
engine model. A visual representation of an engine model in GSP is displayed in Figure 3.1. Due to its 0-
D form, GSP calculates the flow properties at the inlet and outlet of the different components [54]. GSP is
capable of performing steady-state calculations as well as off-design and transient calculations.

Figure 3.1: Representation of the GEnx-1B engine in GSP

3.1.1. Component models
Most of the components used in GSP are built in the 0-D modelling domain, meaning that they do not
calculate the gas properties along the longitudinal axis in the component itself. Only at discrete points in
the gas turbine, the gas properties are known. Several components are implemented in the 1-D domain,

17
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namely the multi-reactor combustor and the recuperator are modelled this way [54]. The behaviour of the
component is divided into two modelling situations. The on-design and the off-design modelling.

The on-design modelling performance is specified by clicking the component and specifying its charac-
teristics as pressure ratio and isentropic efficiency and areas. Hereby, the design point performance can be
determined for every component and altered to fit any gas turbine from industry.

The off-design performance of the components is captured by the component maps. These component
maps are introduced in subsection 2.2.3. The location in the component map at which the gas turbine is
operating is determined by any two out of the three corrected parameters Wc , PR, Nc . These component
maps are specified in MTU map format with beta lines to assure better iteration stability [26]. This also allows
for easy altering of the maps by using SmoothT and SmoothC [26]. The simpler components as ducts and
exhausts, are modelled with simple relations.

3.1.2. Conservation equations
To link the individual components in GSP, conservation equations are used. The first conservation equation is
the conservation of mass mentioned in section B.2. GSP uses this equation to construct Equation 3.1 [54], in
which Mv is the mass inside the component, and Wi n and Wout are the mass flow in and out of the component
respectively, to describe the mass flow through a component.

d Mv

d t
=Wi n −Wout (3.1)

The relation between the gas properties is given by Equation 3.2, in which Vcomp is the component internal
volume.

d Mv

d t
= Vcomp

γRT
· d p

d t
(3.2)

The conservation of energy is given in Equation 3.3. And in the form of the conservation equation for the
N1 and N2 shafts, Equation 3.4 is used with I as inertial momentum of the spool and Pabs and Pdel power
absorbed and delivered.

d Mv

d t
·u +Mv · du

d t
−Q = wi n ·hi n −wout ·hout +Pabs (3.3)

I · dω

d t
·ω= Pabs +Pdel (3.4)

The last equation is the conservation of momentum given in Equation 3.5.∑(
wi n · ci n + Ai n ·psi n

)+Fx = wout · cout + Aout ·Pout (3.5)

3.1.3. Numerical operation
To describe the operating point of a gas turbine, GSP uses a state vector S̄. The state vector contains state
variables that describe the operating point of single components. Because the components are linked by the
conservation equations or by physical connections, some components share the same state variables. Hence,
it is possible to set up a vector containing error variables describing the error between the operating point of
the components. This error vector is given in Equation 3.6 in case of convergence. An example of such an
error equation is given in Equation 3.7, in which the mass flow through the LPC and HPC is linked by the
conservation of mass. The component operating points are described by the spool speed and pressure ratio,
which can be used to determine the mass flow by the use of component maps. In GSP the state variables and
errors are normalised by dividing them with their design point value for numerical stability [54].

Ē(S̄) = 0 (3.6)

E1 = ṁLPC f (N1,β)−ṁHPC f (N2,β) (3.7)

To reach the solution state vector, the Newton-Raphson numerical method is applied. By linearising
Equation 3.6 around the design point, Equation 3.8 is set up in which J is the jacobian representing the
partial derivatives of the errors over the state variables [54]. This jacobian can be used in combination with
the Newton-Raphson numerical method to approach a solution. The next iteration state vector is given in
Equation 3.10, in which ∆S̄i is given in Equation 3.11 with the inverse of the jacobian.
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∆Ē = J ·∆S̄ (3.8)

Ji , j = ∆ei

∆s j
(i , j = 1. . .n) (3.9)

S̄i+1 = S̄i +∆S̄i (3.10)

∆S̄i = J−1 ·∆Ēi (3.11)

To control the convergence rate and stability, this equation is expanded with f , this factor is partially
automatic and input controlled [54]. This results in Equation 3.12. If an error vector is reached that contains
values inside a certain predefined error tolerance band, GSP assumes convergence.

S̄i+1 = S̄i + f ·∆S̄i (3.12)

Now the basics of GSP are set out, the two implementations used at KLM are introduced. First, adaptive
modelling is explained after which the MOPA-EA GPA method is treated.

3.1.4. Adaptive modelling
In multiple studies, adaptive modelling (AM) is implemented to estimate gas turbine component deteriora-
tion states [50, 52, 55]. Adaptive modelling has the ability to adapt a model inside of the numerical iteration
scheme to measured data. The adaption to models is done by altering the component maps by means of
map modifiers. After the numerical iteration scheme has converged, the adapted component performance
is compared to the original component performance to indicate deterioration level. GSP implements AM
by adding an additional internal set of equations to the gas turbine model. These equations assure that the
model matches with the measurement data by adapting the additional set of condition parameters called the
map modifiers. This implementation is visible in Equation 3.13 [54], which is an extension of Equation 3.8.
The matrix consists of the following equations translated to words by Pieters[35]:

• Basic model error equations on the top left side with the unknown state variables sn .

• Effect of changed component maps on the calculated engine equilibrium on the top right side with the
unknown variables scm as map modifiers.

• Effect of state variables on additional error equations in the bottom left side with the unknown state
variables sn .

• Effect of changed component variables on the additional error equations on the bottom right side with
the unknown variables scm as map modifiers.

For the matrix to be invertible, it has to be a square. The calculation is converged as both sets of error
equations are less than the users set requirement [54]. The convergence speed of such a matrix scheme is high
due to the internal nature of the calculation. After convergence, the map modifiers indicate the deterioration
of the components.

f1 (s1)+ ·· · f1 (sn)+ f1 (sc1)+ ·· · f1 (scm) = ε
...

...
...

...
fn (s1)+ ·· · fn (sn)+ fn (sc1)+ ·· · fn (scm) = ε

fm1 (s1)+ ·· · fm1 (sn)+ fm1 (sc1)+ ·· · fm1 (scm) = εm1
...

...
...

...
fmm (s1)+ ·· · fmm (sn)+ fmm (sc1)+ ·· · fmm (scm) = εmm

(3.13)

The adaptive modelling method is a fast method to determine the deterioration, but its applicability
on noisy data can lead to inaccuracies. Due to its deterministic nature, the output of every evaluation is
determined by the measurement data. If this data contains noise, the Newton-Raphson method can iter-
ate to a non-valid solution to fit the data. Besides, AM can only determine as many component states as
measurement points available [54]. With modern gas turbines, this can limit the applicability because of the
decreasing number of gas path sensors installed.
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3.1.5. Calibration factors
In GSP, a model of an engine is created to match a certain engine type. This model is called the baseline model.
The component deviation calculated between the baseline model and the engine under investigation at the
same ambient conditions and power settings is purely caused by component deterioration, measurement
noise and bias, engine to engine variation and modelling error. These errors can corrupt the component
deterioration evaluation. To reduce these errors, AM implements calibration factors [55]. These calibration
factors match the design point of the baseline model to the operating point of the engine under investigation.
A calibration factor is visible in Equation 3.14. The P is a performance parameter and the subscripts meas
and model indicate the measured and the model parameter set.

fc = Pi meas

Pi model
(3.14)

Such calibration step is visualised in Figure 3.2. The model calibration step is performed by running the
reference model at its design point and dividing all the measured performance parameters by the model
performance parameters. These calibration factors are then used to scale all the performance parameters
before executing the actual AM calculation. This can be problematic when the measured dataset is not taken
at the same power setting. This is visualised in Figure 3.2. The left image represents a calibration step at equal
power settings. The right represents a calibration at an unequal power setting. This leads to the calibration
factor trying to compensate for the different power setting. This is essentially off-design GPA and can lead to
inaccurate deterioration results [52].

Also, the calibration factor is calculated with a certain setting of secondary performance parameters,
which will be introduced in section 3.3. These secondary performance parameters influence the gas turbine
behaviour and if not taken into account, it can affect the GPA results [25].

Figure 3.2: Working principle of calibration factor adapted from [52]

3.1.6. MOPA-EA GPA
As mentioned in subsection 3.1.4, adaptive modelling can only determine as many component states as mea-
surements available. Since modern gas turbines have a reduced number of gas path sensors, the applicability
of AM is limited. An alternative also used at KLM ES is the genetic algorithm in combination with the multi-
operating point analysis. First, the principle of the genetic algorithm is introduced after which the multi-
operating point analysis is explained.

Genetic algorithm
The genetic algorithm is a heuristic optimisation algorithm. The genetic algorithm applies the principle of
natural selection and ’survival of the fittest’ to come to a certain optimised solution. In nature, survival of the
fittest is driven by the individual competition between animals. The fittest animals have the largest chance
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of survival [16]. Consequently, the population of fit animals is able to produces more offspring, and the least
fit produce less offspring. The next population mostly possesses characteristics from the fittest individuals
from the last population. The genetic characteristics of the next population are determined by mutation and
crossover between the individuals from the last population.
This process is mimicked by the genetic algorithm. For an optimisation problem, an objective function can be
defined. An example of an objective function is given in Equation 3.15, with x,y,z as variables. These variables
can all be modelled as scaled binary strings to form an individual from a population. Such representation is
given in Equation 3.16. At initialisation, a population is created from multiple of these individuals. The object
function is evaluated for the whole population and the next generation is created, based on the fitness of the
individuals in the population.

This is done by crossover and mutation. Crossover is combining the binary strings of two individuals to
produce one offspring individual. The individuals from which this next generation is created are based on
their fitness. This makes optimisation possible. Mutation is the principle of randomly changing the binary
values in the matrix as given in Equation 3.16. This randomisation ensures that the algorithm does not get
stuck in local minima. This process is iterated until an acceptable value of the objective function is reached.

ob j = f (x, y, z) (3.15)

Indi vi dual =



1 1 0
0 1 0
1 0 0
0 0 1
0 0 1
1 1 1
1 0 1
1 1 0
1 0 1
0 1 1


(3.16)

From this principle, many variants emerged that use the same principle. One of these variants is the
differential evolution (DE) algorithm introduced by Storn and Rainer [46]. Instead of a binary string, the
variables are coded as floating values. The principles behind DE are similar to the approach used in the
genetic algorithm. This algorithm is applied by Grönstedt [11] in gas path analysis to determine the compo-
nent deterioration states by running the engine model with populations filled with deterioration states and
comparing measurement values to model outputs. His approach will be further introduced in the following
section.

MOPA
In order to perform gas path analysis, Grönstedt [11] combined the DE with multi-operating point (MOPA) gas
path analysis. MOPA uses multiple operating points to evaluate the components degradation for which the
assumption is made that the deterioration states of the components are independent of the operating point.
This was first introduced by Stamatis et al. [45]. He identified the possibility of using multiple operating points
to decrease the component analysis uncertainty. The choice of these operating points is also important for
the results, Sampath et al. suggest that the reliability increases when the two operating points are further
apart [39].

Grönstedt [11], implemented this strategy in combination with the relation proposed by Zedda et al,
Equation 3.17 [64]. This equation is used to relate the measurement set z to the non-linear relation h de-
pendent on x, the deterioration states of the components and w the ambient and operating conditions. v
represents the measurement noise. The resulting, to be minimised, object function is visible in Equation 3.18
[11].

z = h(x, w)+ v (3.17)

f (x) =

√√√√∑n
i=1

∑m
j=1

(
zi , j −hi

(
x,w j

)
zi ,sσi

)2

m ·n
(3.18)
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Equation 3.18 is used to minimise the difference between the measured values z and the outputs of the
model h at operating points n within a dataset of m measurements. σ is used to deal with the noise of the
measurements by increasing or decreasing their influence accordingly.

By using the former mentioned DE, accurate values for component conditions can be found by on-wing
analysis. This is performed by Rootliep [37] at KLM. The following section introduces further research per-
formed at KLM regarding gas path analysis.

3.2. Former performed relevant research at KLM
Within KLM, multiple studies have been performed regarding gas path analysis. In this section, the relevant
studies are set out. These studies involve on-wing analysis, off-design analysis and the modelling of the GEnx-
1B.

3.2.1. On-wing analysis
In order to reduce the costs of maintenance, on-wing condition monitoring has become more interesting for
the MRO business. Verbist, Moorselaar and Rootliep [37, 50, 52] have performed on-wing gas path analysis.
These studies will be introduced in this section.

Gas path analysis for enhanced aero-engine condition monitoring and maintenance
Verbist [52] researched the capabilities of gas path analysis to be more effectively used in the maintenance
process of gas turbines within KLM. His dissertation covered the topics of improving the accuracy and re-
liability of on-wing gas path analysis, measurement uncertainty and the steps required for creating a GPA
framework to involve in an MRO business. Verbist study was applied on the CF6-80C2 by means of AM.

He concluded that the accuracy and reliability of on-wing GPA are influenced by a couple of factors:

• Measurement error: The measurement error in on-wing data is determined by the accuracy of the sen-
sors. Verbist performed a Monte Carlo simulation to display the effect of the measurement uncertainty.
He concluded that measurement noise leads to a component deterioration state deviation of maximum
±0.5%, with the highest standard deviation on the LPC component. This is based on the accuracy of the
CF6-80C2 sensor package [52]. The fact that AM is deterministic aggravates the influence of noise on
the GPA results.

• Missing sensors: As mentioned, missing sensors increase the GPA uncertainty of the corresponding
component. The main difference between the test cell data and on-wing GPA is the missing thrust
sensor. The thrust sensor can be compensated for by using the Ps,14, the fan discharge, as an alternative
for the thrust. This proved to be an accurate replacement. This sensor is however not present on the
GEnx-1B engine.

• Modelling error: Another contributor to inaccurate GPA is the modelling error. These modelling er-
rors stem from a difference in characteristics between the engine on which the model is calibrated
and tuned and the engine that is to be analysed. As mentioned in subsection 3.1.5, this error can
be decreased by using calibration factors. Verbist introduced off-design calibration, which uses the
calibration method from subsection 3.1.5 for every power setting individually. A type of modelling error
that can not be compensated for by calibration factors are the bleed flows. In the CF6-80C2, bleed air is
retracted from the core. Verbist concluded that not incorporating the bleed flows drastically reduces
the reliability of the GPA results. Also, the power off-take that is present on-wing can cause some
inconsistencies between the model and the on-wing situation. These are assumed to be negligible
because the power extraction is limited compared to the total power of the N2 shaft(0.4% of the HPT
power delivery) [52].

• Incorrect component maps: The last source of error can be related to the component maps. The off-
design performance of the model is characterised by the components maps. If off-design gas path
analysis is performed, the errors in the component maps can propagate into the deterioration results.
Verbist used speed line relabeling in combination with AM to tune the component maps. This strategy
is built on the assumption that deterioration values are independent of the corrected spool speeds
[53]. In order to determine speedline values that result in the lower deviations, an iterative process
was performed to decrease the root mean square deviation of the estimated component deterioration
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states. The formerly mentioned modelling error effects also affect the on-wing component map tuning
due to additional uncertainty.

Verbist also suggested a solution to incorporate GPA into the MRO strategy. By creating a framework with en-
gine number specific information on calibration factors, engine performance data, maintenance and workscope
data, and GPA data. Verbist created a framework that displayed promising results for the CF6-80C2 mainte-
nance.

Since this thesis contains a case study regarding the GEnx-1B engine, the following studies from Moorse-
laar and Rootliep [37, 50] are also introduced. Moorselaar developed the GEnx-1B model and performed GPA
with the AM tool. Rootliep performed GPA with the same GEnx-1B model by applying the MOPA-EA GPA tool.

Gas Path Analysis on the GEnx-1B at KLM Engine Services
Moorselaar [50] created a model of the GEnx-1B engine in order to perform gas path analysis. The GEnx-1B
engine is a state of the art engine. With regards to gas path analysis, the engine is different from the former
generation of engines because it is equipped with a lower number of sensors. The GEnx-1B lacks a pressure
measurement behind the fan, booster, and high-pressure turbine. This introduced additional uncertainty
into the modelling of the engine. For the design point additional assumptions were made to make the engine
model comply with the measurement data. Also, the component map tuning procedure is affected by the
missing measurements, adding more uncertainty. Moorselaar successfully created an accurate design point
model fitting the measured parameters from the KLM test cell. Furthermore, he tuned the component maps
between take-off and max continuous with acceptable accuracy.

Besides model creation, the missing gas path sensors are limiting the accuracy and applicability of the
AM simulation. As mentioned in subsection 3.1.4, the AM GPA tool is only able to estimate an equal number
of deterioration modes as the available number of sensor measurements. He concluded that the AM tool
is mostly impacted by the missing pressure sensor behind the HPT. The AM tool wrongfully contributes
deterioration on the LPT to the HPT as an efficiency decrease. Also, due to the missing pressure sensor behind
the fan, on-wing analysis of the fan deterioration is not possible. As the fan and the LPT are not as prone to
deterioration, the conclusion was drawn that the GEnx-1B AM tool is useful for determining LPC, HPC and
HPT deterioration from test cell and on-wing analysis.

To improve the model, Moorselaar recommended tuning the component maps for a large spool speed
range. Both in the test cell as on-wing. Tuning for additional power settings in the test cell could lead to a
better-defined fan component map. Besides, the effect of the bleed flows, power off-take, active clearance
control and the variable geometry are not included in the model. Including these effects could reduce the
modelling error [52].

Finally, he recommended finding a way around the limitation of only being able to estimate an equal
number of deterioration modes as the available number of sensor measurements.

Turbofan Condition Monitoring using Evolutionary Algorithm based Gas Path Analysis
Following up on the research performed by Moorselaar[50], Rootliep [37] performed research to develop a
method to determine more deterioration grades than measurements available. Instead of using the deter-
ministic AM strategy, which is prone to noise and not capable of estimating more conditions N than measure-
ments M, an evolutionary algorithm was used in combination with the MOPA approach. The evolutionary
algorithm was used to find the optimum fit for the condition variables. The specific type of evolutionary
algorithm that was used, is the differential algorithm. The approach used by Rootliep is described in subsec-
tion 3.1.6.

It was concluded that the MOPA-EA GPA tool is able to estimate more component conditions than mea-
surements available. An analysis was performed to determine the sensitivity of the system to the condition
parameters. It was concluded that mainly the ps,3, Tt ,49 and the fuel flow are sensitive to component deteri-
oration. The N2, Tt ,25 and Tt ,3 are a lot less sensitive to component conditions. Furthermore, an analysis was
performed to determine the capabilities of the MOPA-EA GPA tool to determine the condition parameters for
individual components. It was concluded that the GEnx-1B core components conditions are best identifiable.

Also, the MOPA operating points have been evaluated to determine the most accurate combination of
power settings. Power settings that differ 5-8% gave the most accurate results. More than two operating
points gave decreasingly accurate results. As a result, the MOPA analysis was run at take-off and a lower N1

spool speed around cruise.
The MOPA-EA GPA tool proved to be capable of estimating condition parameters with sufficient accuracy

for single and multiple deteriorated components on simulated data. In the single and double deteriorated
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component cases, the MOPA-EA tool was able to determine the magnitude of the deterioration. The multiple
deteriorated component analysis, which used the cruise operating point, experienced reduced accuracy but
was still able to determine the trend of the deterioration on the components.

Rootliep validated his tool using in-flight data from a GEnx-1B engine that experienced multiple water
washes and a turbine blade failure. It proved to indicate the expected effects corresponding to compressor
fouling and the turbine blade failure. The source of data for this analysis was the continuous engine oper-
ating data (CEOD). Filtering was applied before the GPA was performed to reduce the scatter and secondary
performance parameter deviations.

Despite the good performance, the MOPA-EA GPA also had a major drawback. Its computational burden
is high due to its heuristic nature.

As recommendations for additional research, Rootliep suggested:

• Improving the GSP computational time by altering the source code of GSP. This should be done in
collaboration with NLR.

• Further investigation of the capabilities of the GEnx-1B model at representing cruise power setting,
which is off-design modelling.

Following recommendations, the off-design performance is further investigated in the following section.

3.2.2. Off-design performance
Within KLM multiple studies have been focused on increasing the off-design capabilities of GPA. Van Dorp
[49] suggested the multi-reference point method and the baseline calibration method for increasing the off-
design capabilities of CF6-80C2 model. Den Haan and Beishuizen [1, 3] increased the off-design gas path
analysis accuracy by tuning the component maps for the CF6-80C2. These methods will be introduced.

Multiple reference point method
The multiple reference point method creates a separate model for every power setting. This eliminates the
use of component maps altogether. By creating multiple models, accurate GPA can be performed at multiple
power settings. The drawback of this method is that if the data point deviates from the exact power setting
the model was created for, the results can have a severely reduced accuracy [3].

Baseline calibration method
Van Dorp [49] used the calibration factors introduced in subsection 3.1.5 to construct a polynomial function
that describes the difference in performance between the model and the actual engine over the whole power
setting range. Such function is visible in Equation 3.19. By applying the function to scale the performance
parameters, off-design gas path analysis was performed without the need for multiple engine models. The
principle is displayed in Figure 3.3.

fi (n1) = Pi, baseline (n1)

Pi, model (n1)
(3.19)

Improving compressor maps
Den Haan[3] applied the third method to perform accurate off-design GPA. First, he created a CF6-80C2
model and subsequently applied component map tuning to increase the off-design accuracy. The main
advantage of component map tuning is that, if accurate component maps are created, only one model is
needed to perform GPA for multiple power settings. Often, accurate component maps are not available
for the MRO facility, only the OEM possesses the component map. Therefore, the component maps have
to be recreated by establishing a fit between the results from the model and the measurement data. Den
Haan concluded that this was a very laborious task if done by hand but managed to achieve an accuracy
of ±0.5% difference between the measured temperatures and pressures at Max Continuous (MC) conditions.
Beishuizen [1] expanded upon the component map tuning by Den Haan because he found a relation between
the deterioration levels and the spool speed if AM was applied. Since the deterioration is assumed to be
independent of the spool speed, this relation was to be removed. The data Beishuizen used to tune the com-
ponent maps were test cell and on-wing data. Beishuizen was successful in removing the relation between
the spool speeds and the deterioration levels for the fan LPC and HPC, the turbine maps were only tuned
with test cell data. He applied speed line form alteration, efficiency alteration and speed line reallocation.
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Figure 3.3: Baseline calibration method [49]

He however noted that the adaptions he made were not in line with physics. Compressor maps resemble
real-world behaviour, and the maps created contained kinks and impossible efficiency islands [1].

As mentioned, Verbist and Moorselaar [50, 52] also tuned the component maps to display better off-
design accuracy. Verbist only used speed line relabeling, whereas Moorselaar used speedline relabeling in
combination with reallocating speedlines. The test cell component map tuning was performed to decrease
the difference between the measurement and the model output. On-wing, they both used the AM tool with
the goal of decreasing the relation between the spool speed and deterioration levels. This is due to the
measurement noise being present on-wing, making it hard to reduce the difference by iteratively changing
the component maps.

3.2.3. Conclusions on former performed research
From former performed research can mainly be concluded that:

• A decrease in sensors decreases the accuracy of the model creation due to the need for additional
assumptions [50, 52].

• On-wing GPA is less accurate compared to test cell GPA due to the decrease in available sensors, mea-
surement noise and unsteady ambient conditions [50, 52].

• The best strategy to perform off-design GPA at KLM is using GSP with component maps. However, the
results depend on the correctness of these maps [1, 3].

• Bleed flows and power off-take effects should be considered in GPA [52].

• The MOPA-EA GPA has reduced accuracy on the GEnx-1B model when the cruise operating point is
included [37].

• The effect of measurement noise on GPA is relatively small compared to the other sources of error [52].

• The AM strategy is becoming less applicable because of the reduced number is sensors available in
contemporary engines [50].

• The MOPA-EA GPA tool is capable of dealing with measurement noise and a reduction of sensors [37].

3.3. Effects on engine performance
From the former performed research, it is clear that the Hybrid MOPA-EA GPA tool has reduced accuracy
when used with on-wing GEnx-1B cruise data. Therefore a study is set out to identify the possible causes for
the reduced accuracy of the GEnx-1B model at the cruise phase. This chapter is divided into three sections.
The first section deals with the gas turbine component related possible causes for inaccuracies. These are
called secondary performance parameters. The second part deals with ambient and flight condition influ-
ences and the third part deals with further uncertainties of on-wing GPA.
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3.3.1. Secondary performance parameters
Modern gas turbines are controlled in an ingenious way to improve the performance. To do so, the engine
adapts certain system setting to the operating condition. The GEnx-1B engine contains four of these systems,
the bleed flows, variable geometry, active clearance control and power off-take. These parameters will be
referred to as secondary performance parameters (SPPs). Since they alter the operation of the engine and are
not included in the current GEnx-1B model, it is interesting to investigate how they work, what their effect is,
and how they could be implemented in model creation. First, the active clearance control for the turbines is
treated. After which the bleed flows, power off-take, and variable geometry are discussed.

Active clearance control and cooling
Gas turbines have a certain clearance between the stator casing and the rotor blades. By means of active clear-
ance control, this clearance can be minimised to increase the efficiency or enlarged to prevent abrasion [31].
Both the engine induced loads as flight loads can cause abrasion. Engine induced loads include centrifugal
forces, thrust, and thermal loads. The flight induced loads include gravitational forces and aerodynamic and
gyroscopic loads [31]. By using thermal control, the tip clearance can be kept at an optimal value in order to
prevent abrasion and keep the efficiency high. A typical active clearance control transient for a flight pattern
is given in Figure 3.4.

Figure 3.4: Typical tip clearance transient vs flight phase, adapted from [33]

To understand how tip clearance can influence the efficiency of turbomachinery components, it is useful
to introduce the mechanisms for entropy creation. Entropy creation is the source of loss in turbomachinery
components. It is created by the following three fluid dynamic processes [4]:

1. Viscous friction in the boundary layer or mixing processes.

2. Heat transfer.

3. Shock waves.

A tip clearance in turbomachinery components can lead to a mass flow from the pressure side of a rotor
blade to the suction side. This leakage flow mixes out above the blade, which inherently will cause a static
pressure rise and entropy production through loss mechanism 1. Also, a vortex at the suction side of the blade
is created. This vortex will eventually also mix with the main stream through the turbomachinery component.
Due to the flow velocity difference, this mixing will also be accompanied by mixing losses [4]. The tip leakage
vortex is visualised in Figure 3.5.

The loss associated with the tip clearance can account for 30% to 45% of the total efficiency loss in the
turbine stage and rotor respectively [42]. The effect of increasing the tip clearance on the turbine efficiency
is studied by Yoon et al. [63]. This research pointed out that the efficiency loss caused by tip clearance is
dependent on the stage loading and whether the turbine is shrouded or not. The results from this study
indicate that for unshrouded turbines with a stage reaction of 50%, an isentropic efficiency loss of 2% is to
be expected for a 1% tip clearance increase (% of span). The results from this study are visible in Figure 3.6.
The flow capacity is also influenced by the tip clearance. However, this is influenced by a smaller magnitude.
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Figure 3.5: Tip leakage vortex [4]

Following Holeski [15], a 1% increase in tip clearance relative to the blade span results in an increase of 0.8%
in flow capacity. This is supported by Escher [6], which relates the relation between the efficiency loss and
flow capacity increase for turbine tip clearance as 2:1.

Figure 3.6: Effect of tip clearance on isentropic efficiency [63]

For engine performance modelling, this can cause difficulties. Since the engine performance is slightly
different for varying tip clearances, every tip clearance might need its own component maps. Modern gas
turbine engines collect data from the active clearance control system. This can be used to find regimes in the
data with similar tip clearance. Also, multiple component maps can be made for multiple tip clearances.

Another option is introducing tip clearance correction factors into the GPA calculation [18]. However, this
is not possible in the current GSP environment.

Bleed Flows
Gas turbines also incorporate bleed flows. Bleed flows subtract air from the core flow to be put to use in
secondary systems or to improve the surge margin of the compressor. The Variable Bleed Valves (VBV) and
Transient Bleed Valves (TBV) are used to improve the operation of the compressors. Often variable bleed
valves are located aft of the booster and interconnect the path of the high-pressure compressor inlet to the
bypass flow. This system is used to prevent stall of the LPC [13]. They discharge in the bypass flow. The
transient bleed valves are located aft of the HPC. The purpose of the system is to unload the compressor
during start-up and acceleration from idle [58]. They discharge in the bypass flow.

To understand how these bleed valves work, the effect of the bleeds on the velocity triangles of the com-
pressor is indicated in Figure 3.7. The red velocity triangle in the figure displays low speed stall. By opening
the bleeds downstream of the compressor, the axial velocity of the flow can be increased to prevent this
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undesired behaviour. Since work is performed on air that is offloaded to the bypass, VBVs and TBVs have
a negative impact on the specific fuel consumption (SFC) [58]. Also, the turbine inlet temperature will rise
due to the air subtraction [7]. Since these bleeds do not alter the compressor geometry, the bleed settings
will not change the compressor map. Only the boundary conditions imposed on the compressor change.
Bleed flows subtracted from the compressor for secondary systems are often inter stage bleeds. Since these
alter the compressor geometry, every bleed valve setting needs a separate compressor map [58]. There are
multiple ways to account for these bleed flows. One option is splitting the compressor at the location of the
bleed flow into multiple compressors [13]. If this is done, the compressor bleeds can be applied at the station
between the compressors. This has the downside that requires multiple compressor maps for the individual
compressors. A second option is assuming that all the bleed leaves the compressor at the exit. The last option
is specifying a d H fraction factor. This specifies the bleed location in the form of how much of the total
enthalpy rise in the compressor is applied to the bleed air. This is method is applied in GSP and does not alter
the component maps [47].

Figure 3.7: Effect of variable bleed valves and variable stator vanes on velocity triangles

In former studies, the VBVs and TBVs are assumed constant because no data was available [50, 52]. If
sufficient data is available, the bleed flows can be incorporated in the GSP models.

Figure 3.8: Effect of variable inlet guide vanes and variable stator vanes on compressor map [58]
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Variable geometry
The Variable Stator Vanes (VSV) and Inlet Guide Vanes (IGV) assure stable operation in off-design condi-
tions. They prevent surging of the compressor by changing their angle relative to the flow. This effect is
also displayed in Figure 3.7. Closing the VSVs/IGVs induces a higher tangential inflow velocity at the rotor
and a reduced axial velocity. This effect results in a decreased pressure ratio and corrected mass flow for the
same corrected spool speed line [58]. The effect of the IGVs and the VSVs on the compressor map is visible in
Figure 3.8. A first estimation of the ratio between the change in pressure ratio and corrected mass flow caused
by the changed VSV position is 1 to 1[27]. The efficiency is a different case. In the case of VSV drift, in which
the VSV angle deviates from the nominal angle, an efficiency decrease can be the result [27]. On the other
hand, VSV positions can be optimised to increase the efficiency of the compressors [61]. The working line
in the compressor map is unchanged by the VSVs/IGVs position, since it is determined by the components
downstream.

Often the IGVs and VSVs are a function of corrected spool speed. This enables capturing their variation
in one compressor map. Additionally, VSV and IGV scheduling can vary for different altitudes and transient
operation. This might be beneficial for the efficiency of the turbine connected to the same spool [58]. The
information about the VSV and IGV scheduling can be used to incorporate in GPA software. Further informa-
tion on how the VSV/IGV schedules can be identified in compressor maps can be found in Otten [34].

Power off-take
The electric system for the cabin air and other auxiliary components of the aircraft needs a power source.
The required power can be subtracted from the N2 shaft. Power extraction from the N2 shaft will lead to
an increase in turbine inlet temperature and a decreased surge margin [40]. In most GPA programs, Power
off-take can be modelled directly.

3.3.2. Flight condition effects
Besides the secondary performance parameter effects that are caused by the engine itself, the on-wing sit-
uation also changes the environmental conditions. These effects are introduced in this section. The effect
considered are the humidity effect, the inlet and the Reynolds number effect.

Humidity effect
In contrast to test cell data, the CEOD do not contain information about the humidity. Gas turbine perfor-
mance is strongly influenced by humidity, since the gas properties R and γ of the working fluid change. From
former research carried out by [36, 51] can be concluded that:

• Due to absolute humidity variation, GPA can lead to incorrect overestimating the compressor isen-
tropic efficiency by 1% and underestimation of 1% for the turbine isentropic efficiency in very humid
conditions.

• For the GE CF-6 engines, the EGTM can vary up to 12 K at take-off altitude due to humidity.

• A thrust loss of 0.6% per 1 w t% resulting in a maximum thrust loss of 2% in very humid conditions.

This indicates that humidity should be considered when performing GPA at take-off. At higher altitudes, this
is not expected because the absolute humidity above 6000m can be neglected [17, 25]. Therefore cruise data
has strong potential for GPA due to less variation of ambient conditions.

Inlet
The inlet bellmouth in the test cell is different compared to the on-wing inlet situation. Whereas the test cell
inlet is focused on providing non-distorted flow for the engine, the on-wing inlet is designed to decrease the
Mach number at the fan face at cruise conditions [29]. Therefore, it acts as a diffuser to decrease the Mach
number from flight Mach number to Mach 0.6-0.7.

The performance of a subsonic inlet is dependent on the throat Mach number and the contraction ratio.
The contraction ratio is the ratio between the ingested stream tube area A0 and the inlet capture area AC .
At take-off, the flight Mach number is low and therefore, the ingested stream tube is larger than the inlet
capture area, A0/AC > 1. This can cause separation at the lip of the inlet and therefore a total pressure loss
and non-uniform flow at the fan face [28]. When the flight Mach number increases, the ingested stream tube
area decreases, A0/AC < 1 and separation is prevented.
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Therefore, the inlet causes a twofold in discrepancies in GPA. Firstly there is a difference between the
on-wing take-off and test cell situation due to a different inlet shape. On-wing take-off conditions deal with
separation and non-uniform inflow. This can lead to the fan operating in multiple parts of the compressor
map, also in suboptimal areas of efficiency [28]. The distorted areas of the fan will operate closer to the surge
margin. This can affect the GPA results.

Secondly, there is also a difference between the on-wing take-off and cruise situation. In cruise, the
contraction ratio is small and no separation is expected. This can cause a difference between cruise and
take-off performance.

Reynolds number effect
The Reynolds number also influences gas turbine performance. Since Reynolds number is dependent on
Mach number and altitude [25], it is important to consider its effect. The variation with altitude and Mach
number is displayed in Figure 3.9. The civil aircraft operating range is given in Figure 3.9.

Schaffler [41] performed an experiment to indicate the effect of Reynolds number and blade roughness
on axial compressors. As is visible in Figure 3.10, the polytropic efficiency increases with increasing Reynolds
number until the critical Reynolds number which is determined by the surface roughness. Also, a decreasing
Reynolds number increases the viscous losses. Therefore increasing the altitude has a detrimental effect on
compressor efficiency. This indicates the importance of considering the Reynolds number in GPA.

Figure 3.9: Effect of altitude and mach number on Reynolds number [41]

3.3.3. Uncertainties
Besides on-wing effects, on-wing data also introduces other uncertainties. The uncertainties discussed are
the measurement error and the steady-state assumption.

Measurement error
The sensors of gas turbine engines all have their accuracy and range. Since the measurement error of these
sensors can propagate through into the GPA results, it is of importance to know their accuracy. By using a
Monte Carlo simulation, these effects can be quantified [50]. This is performed for the GEnx-1B engine. The
conclusion was that the components on the N2 shaft are most prone to sensor noise. The AM Monte Carlo
simulation found a standard deviation of 0.25-0.5% on the component deviations for the HPC and HPT flow
capacity and isentropic efficiency [50]. Since the pressure sensor between the LPC and HPC is not present in
the GEnx-1B, this was deemed a logical result.

Thermal steady-state assumption
For GPA, a certain steady thermal state of the engine is assumed. In the test cell, this thermal state can be
assured by a 10-minute warming up period for the engine. For on-wing take-off analysis, this assumption
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Figure 3.10: Effect of Reynolds number on polytropic efficiency [25]

does not always hold. The research from Röell [36] had shown that this steady-state assumption in take-
off data is not valid. The thermal state of the engine is identified as the main contributor to the standard
deviation of the EGTM for on-wing take-off on the CF-6. Using cruise data, in which thermal stability is
assured, can potentially reduce the uncertainty effects of on-wing GPA.

3.3.4. Conclusion on effects on engine performance
From this section can be concluded that the secondary performance parameters can drastically influence
gas turbine performance, and should therefore be taken into account in GPA. Also, the flight condition effects
and further uncertainties should be included in the GPA analysis. If the setting of the secondary performance
parameters and the ambient conditions differ for cruise and take-off, including these in GPA can potentially
increase the accuracy of the GPA model.
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3.4. Conclusions
A brief literature review uncovered that the cruise operating point is not accurately modelled by the current
GEnx-1B model. As GPA results are influenced by the quality of the engine model, the research objective of
this project is to increase the accuracy of the GEnx-1B model at cruise conditions.

This model is created by Moorselaar [50], and it is capable of accurately representing the take-off oper-
ating point. Also, its component maps have been tuned over a large range of corrected spool speeds. The
main area of potential improvement in order to increase the accuracy of the model for cruise conditions is
the incorporation of the secondary performance parameters. Hence, this thesis will introduce a method to
account for the secondary performance parameters to increase the accuracy of GPA models. The following
section describes the methodology.
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4
Methodology

As indicated by the former chapter, secondary performance parameters influence the gas turbine behaviour.
Since the current GEnx-1B model does not account for these effects, it is interesting to research the possibility of
improving GPA models by taking these effects into account. In this chapter, the methodology is set out. In the
first section, a general introduction to the simulation framework is given. The second section explains methods
to account for the secondary performance parameters, after which the third section introduces the algorithm to
do so. Subsequently, a proof of concept is displayed on simulated data. Lastly, an analysis is performed on the
algorithm settings after which conclusions are drawn.

4.1. GSP
In this section, the GPA software is introduced after which a standard GSP model is displayed. This model
will be used for the proof of concept of the algorithm.

4.1.1. GSP API
For this project, two main software packages are used. GSP and 32-bit Python 3.8 with the Spyder 4.1.5
environment. GSP is a program implemented in the object-oriented Borland Delphi environment. The
specific version used is the GSP Application Programming Interface (API) version. This API version enables
communication with 32-bit Python via a Dynamic-Link Library (DLL), which essentially is a Windows ap-
plication written in C++. 32-bit Python is used instead of the more commonly used 64-bit version due to
compatibility issues with the DLL. This setup enables direct control of the GSP functionalities from the Python
environment.

4.1.2. BIGFAN model
Within the GSP environment, engine models can be created, and simulations can be performed. To describe
the simulation procedure and test the methodology, a standard model from the GSP library is introduced.
Based on this model, the simulation inputs and outputs are displayed.

Since this report contains a case study regarding the high-bypass ratio GEnx-1B turbofan engine, a like-
wise high-bypass ratio engine is used for testing the methodology. GSP contains the standard BIGFAN model
which is a two-spool engine with a bypass ratio of 5. The graphical representation is given in Figure 4.1.

To simulate an engine at various ambient conditions, power settings and deterioration grades, GSP is
controlled by the API block in Figure 4.1, which is linked to python. The ambient conditions are specified by
the ambient pressure, temperature, Mach number and humidity. The power setting can be specified by the
N1 rotational speed or the fuel mass flow. The component deterioration is specified as a delta efficiency ∆η
and delta flow capacity Wc for the individual components. As explained in section 2.4, these delta param-
eters modify the component maps influencing the gas turbine model performance. These are called map
modifiers.

When a simulation is run, GSP calculates various properties at the distinct station numbers following 0-
D simulation practice. For gas path analysis, often pressures temperatures, rotational speeds and fuel mass
flow are measured in the gas path. Therefore these properties are used as output from the engine model to
compare with the measurements.

35
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Figure 4.1: BIGFAN GSP model

4.2. Accounting for secondary performance parameters
As mentioned in section 3.3, most secondary performance parameters influence the gas turbine perfor-
mance. Therefore, if not taken into account by the engine model, they can cause a deviation between the
sensor measurements and the model output. When performing GPA, these deviations can show up as com-
ponent deterioration. Therefore, accounting for these effects by adapting the model prior to performing
GPA can reduce the error in the results. The possible secondary performance effects identified in section 3.3
are the power off-take, the bleed flows, the turbine clearance and the variable geometry. Since the current
GEnx-1B model does not incorporate these effects, it is interesting to research the possibility of incorporating
these parameters in the engine model. A distinction is made between two types of secondary performance
parameters.

• Secondary performance parameters modelled as imposed on the gas turbine as a whole, not changing
the performance of individual components. Also called effects on system performance.

• Secondary performance parameters that influence individual component geometry and, therefore com-
ponent performance. Also called effects on component performance.

In this section, the method of modelling the secondary performance parameters imposed on the gas
turbine is introduced. Subsequently, the method of accounting for the secondary performance parameters
that alter the component geometry is explained. Finally, a method for parametrisation is introduced.

4.2.1. Effects on system performance
This first category consists of secondary performance parameters that are modelled as effects on the system
as a whole. This category contains the power off-take and the bleed flows. These secondary performance
parameters can be modelled directly into the GPA analysis by making use of the GSP functionality.

Power Take-Off
The Power Take-Off can be modelled in GSP by specifying a certain value of kW that is extracted from an axis
[47]. If this power value is known, it can be modelled directly.

Bleed flows
There are two types of bleed flows: inter-stage bleed flows and inter-component bleed flows. For modelling
both types, the GSP functionality can be used. The inter-component bleed flows can be modelled by indi-
cating a fraction of mass flow or corrected mass flow [47]. In the case of available data, this can increase the
accuracy of the model. The inter-stage bleed flows can also be accounted for by the bleed flow functionality
of GSP. With this functionality, the location of the bleed in the component can be specified by setting the d H
fraction [47]. This parameter defines the fraction of the total enthalpy rise already added to the extracted air
before it is bled off.

Since these secondary performance parameters can be modelled directly by using the GSP functionality,
they will not be further analysed in this thesis. The following section will introduce secondary performance
parameters of which the effect cannot be directly modelled.
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4.2.2. Effects on component performance
As indicated in section 3.3, the tip clearance and variable geometry have their distinct effect on component
performance. Since the performance of gas turbine components is mapped in component maps, alteration
of the component maps based on the secondary performance parameter value introduces the possibility to
account for the variation of these secondary performance parameters. To do so, the map modifiers∆η and Wc

can be related to the setting of the secondary performance parameter. The expected effect of the secondary
performance parameters is introduced in the following section.

Tip clearance
As mentioned in section 3.3, the tip clearance affects the performance. An increase in tip clearance in the
turbines leads to a decreased efficiency and an increase in flow capacity. A correction in the component map
can be implemented to account for these performance differences.

Variable geometry
As mentioned in section 3.3, often, the variable stator vane and inlet guide vane position is a function of
corrected spool speed. In case of an additional relationship, this can also be implemented in the compo-
nent maps. Closing the vanes can reduce the flow capacity of the compressor and increase or decrease the
efficiency.

To summarise, these effects are visualised in Table 4.1. In contrast to the effect on system performance,
the exact magnitude of the effect on component performance from these secondary performance parameters
is not clear. Hence their effect needs to be identified. The following section will first introduce a method to
relate a certain secondary performance parameter setting to a ∆Wc or a ∆η.

Secondary performance parameter Wc change η change

Compressor VSV/IGV closing [27] ⇓ ⇕
Turbine clearance decrease [6] ⇓ ⇑

Table 4.1: Effect of secondary performance parameter on component performance map

4.2.3. Secondary performance parameter parameterisation
As indicated in the former section, a method for parameterisation of the tip clearance and variable geometry
effect on component performance is needed. When operating conditions change, secondary performance
parameters (SPPs) adapt to the new conditions. Since a GPA model is calibrated for a certain setting of these
SPPs, another operating condition can deviate in terms of these settings. To capture these differences in the
GPA model, relationships are drawn up between the SPP setting and the map modifiers ∆Wc and ∆η. The
parameterisation function used to define these relationships is visualised in Equation 4.1. In this equation,
the parameters are defined as follows:

• SPPDP is the setting of the SPP in the design point of the model.

• SPPOD , is the SPP setting for various operating points (off-design).

• PD is component performance deviation ∆η or ∆Wc for the component map that is influenced by the
secondary performance parameter.

• Performance deviation coefficients a and b define the magnitude of the relationship.

PDcomponent ,per f or mance devi ati on(a,b) = a

(∣∣∣∣SPPOD −SPPDP

SPPDP

∣∣∣∣)+b

(∣∣∣∣SPPOD −SPPDP

SPPDP

∣∣∣∣)2

(4.1)

One such relationship is shown in Figure 4.2. The shown curve relates the VSV/IGV setting difference between
the calibrated model (DP) and a certain off-design operating point (OD) by defining a ∆η for the HPC. For
example, a relative difference of 0.15 in VSV/IGV angle would result in an efficiency increase of 1% for the
HPC. The relationships always go through the origin because a 0% deviation in SPP setting would mean no
performance difference compared to the SPP setting the model was created for. The larger the difference
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between the SPP setting at which the model is calibrated (design point DP) and the actual SPP setting (off-
design OD), the larger the performance deviations.

Since the exact magnitude of the relationships is unknown, the following section introduces an algorithm
to find the relationships.

Figure 4.2: Example of relationship between SPP deviation and component performance deviation

4.3. Algorithm
As mentioned, gas turbine performance data is influenced by secondary performance parameter settings.
Hence, the output from an engine model deviates from the engine measurements if the model is calibrated
for different SPP settings. This deviation can be used to identify the former mentioned relationships that
capture SPP effects.

In this section, an algorithm is introduced. This algorithm tries to find a set of relationships to create
a better fit between model output and a dataset with measurements that are influenced by the secondary
performance parameter effects. By reverse engineering, relationships can be determined. If accurate rela-
tionships are defined, they can be embedded in the engine model to increase its accuracy. First, the objective
function is introduced, after which the evaluation function and the optimisation algorithm are introduced.

4.3.1. Objective function
The goal of the algorithm is to decrease the deviation between the on-wing measured parameters (Z) that are
influenced by secondary performance parameters and the model output (R). Therefore an objective function
is constructed that evaluates this difference by using a root mean square of this deviation for the number
of operating points evaluated. Multiple operating points are evaluated because the effects of individual
secondary performance parameter effects are not revealed by a single operating point evaluation. This is
essentially application of the MOPA strategy [45] from section subsection 3.1.6.

The objective function is given in Equation 4.2 in which OP is the number of operating points and ME AS
is the number of measurements and model outputs.

f (x) =

√√√√∑OP
t=1

∑ME AS
m=1

(
Zt ,m−Rt ,m

Zt ,m

)2

OP ·ME AS
(4.2)

To evaluate this objective function, the GSP model is run at various operating conditions with a certain set of
relationships. The procedure is specified in the following section.
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4.3.2. GSP code
To evaluate the objective function, a certain function is needed. This function is given in pseudocode in
algorithm 1. This function is able to test a set of performance deviation coefficients on multiple on-wing
operation points. The inputs to the function are:

• Set of performance deviation coefficients ui ,G+1, which is generated by the optimiser. These determine
the shape of the relationships.

• Z On-wing measurement data with number of operating points OP and measurement values MEAS.

• C On-wing ambient and operating condition data with number of operating points OP.

• S SPP information with number of operating points OP and number of secondary performance param-
eters SPP.

To test a set of relationships, GSP is run at multiple operating points with corresponding secondary perfor-
mance parameter settings. For every operating point, the SPP settings are used together with the relationships
to determine the performance deviation ∆Wc and ∆η of the influenced components. With the component
performance deviation implemented in the model, the model is run and the output is compared to measure-
ment data.

A good set of relationships gives a low objective function value because the difference between the model
output and the measurements is small. To optimise the vector of performance deviation coefficients to get the
best fit with the measurement data, a differential algorithm is used. In the following section, this algorithm is
introduced.

Algorithm 1: Evaluation function GSP

Input: ui ,G+1,Z,C,S,
Output: Object function value
Initialization engine model ;
for t=1:OP do

for s=1:SPP do
Calculate performance deviations for the various SPPs S from generated performance

deviation coefficients;

PDs,η(ui ,G+1) = u1,i ,G+1

(∣∣∣ St ,s−SPPDP
SPPDP

∣∣∣)+u2,i ,G+1

(∣∣∣ St ,s−SPPDP
SPPDP

∣∣∣)2

PDs,Wc (ui ,G+1) = u3,i ,G+1

(∣∣∣ St ,s−SPPDP
SPPDP

∣∣∣)+u4,i ,G+1

(∣∣∣ St ,s−SPPDP
SPPDP

∣∣∣)2

end
Run GSP engine model at various conditions with performance deviation for the engine

components to create model output data F;
Ft ,m =GSP (PDη,PDwc ,C j )

end
Evaluate object function which is the root mean square of the difference between the measured

values on-wing and the output of the GSP model f(x)=

√∑OP
t=1

∑ME AS
m=1

(
Zt ,m−Rt ,m

Zt ,m

)2

OP ·ME AS

4.3.3. Differential algorithm
The differential algorithm is a heuristic optimisation algorithm that is able to cope with multiple local minima
and noisy data [46]. It mimics evolution theory as explained in subsection 3.1.6.

Optimising the vector of performance deviation coefficients is a multi-variate problem. Since multiple
SPPs can affect the same output parameter, it is expected that multiple local minima exist. This can cause
problems when using gradient-based optimisers because these can get stuck in local minima. The ability of
heuristic optimisers to deal with a solution space with multiple local minima makes it a suitable algorithm
for this application. Besides, the on-wing data contains noise. Since it is also able to work with noisy data, it
is a solid choice for this optimisation.

The differential algorithm follows the same analogy as the genetic algorithm from subsection 3.1.6. The
algorithm is divided into four steps: initiation, crossover, mutation and selection. These steps are shortly
explained below and also given in the pseudocode in algorithm 2.
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1) Initiation
For the algorithm to be initiated, a population with target vectors xi ,G with i = 1,2,3, ..., N P is generated
covering the entire parameter space. In this application, the target vectors contain sets of performance
deviation coefficients that determine the relationship between the secondary performance parameters and
the performance deviation of the components. With this initial population, algorithm 1 is run one time to get
the objective function values for the target vectors. The second step is mutation.

2) Mutation
In the mutation step, target vectors are combined to create mutant vectors. This is done by the following
procedure. A mutant vector vi ,G+1 is created for every target vector by using Equation 4.3. In this equation
r1,r2,r3 ∈ {1,2, . . . , N P } are random non-equal integers defining the indexes of the individuals that are com-
bined. The selected integers define which three target vectors are combined to construct the values for the
mutant vector. These r values should also be different from i , setting the minimal population size NP at 4. F
is the amplification factor ∈ [0,2] that determines the influence of the mutation. With these mutant vectors,
the crossover is performed.

vi ,G+1 = xr1,G +F · (xr2,G −xr3,G
)

(4.3)

3) Crossover
Crossover is introduced to increase the diversity of the variables for the individuals in the next generation
population. In this step, the mutant vector and the target vectors are combined to form new trial vectors.
These trial vectors are then used to compute the objective function value. The crossover is defined by and
performed on the mutant vector vi ,G+1 and the target vector x j i ,G to form the trial vector u j i ,G+1:

u j i ,G+1 =
(
u1i ,G+1,u2i ,G+1, . . . ,uDi ,G+1

)
(4.4)

In which:

u j i ,G+1 =
{

v j i ,G+1 if (randb( j ) ≤C R) or j = rnbr(i )
x j i ,G if ( rand b( j ) >C R) and j ̸= rnbr(i )

(4.5)

With rand b( j ) as random number generator ∈ [0,1]. CR ∈ [0,1], as the crossover constant to be determined
by the programmer and rnbr(i) as a random index number to assure that u j i ,G + 1 contains at least one
variable from v j i ,G +1. This trial vector u j i ,G +1 is used as input to the GSP code specified in algorithm 1
and has as output the objective function value.

4) Selection
To determine if the trial vector u j i ,G+1 should be included in the next generation x j i ,G+1, the objective func-
tion value is evaluated and compared to the objective function value of current x j i ,G . This is called the greedy
criterion. Only if x j i ,G+1 gives a favorable objective function value, x j i ,G is replaced. This is iterated until the
maximum number of iterations is reached.

As the trial vector will only replace the target vector, if it results in a lower objective function value, the
next generation will exist out of generation with target vectors corresponding to lower objective function
values. The mutation within the next generation will therefore mutate with target vectors that give a better
fit between on-wing and model output data. If this continues throughout the generations, this will result
in optimisation. By this principle, a set of performance deviation coefficients can be found that decreases
the difference between the model and the on-wing data to within satisfactory bounds. By applying this
on a dataset from a new engine from which the information about the SPPs is available, the performance
deviations caused by the SPPs can be identified and captured in relationships for every SPP. A flowchart of the
methodology is given in Figure 4.3.
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Algorithm 2: Differential algorithm for component map adaptation based on SPP setting

Output: Best found solution
1) Initialisation
Generate initial population x0 of performance deviation coefficients[D · NP];
for i=1:NP do

Objfunval=GSP (xi ,0,Z,C,S)
end
while count<Q do

for i=1:NP do
2) Mutation
Generate three random indexes r1, r2 and r3 with r 1 ̸= r 2 ̸= r 3 ̸= i ;
vi ,G+1 = xr 1,G +F · (xr2,G −xr3,G

)
creates the mutant vector;

3) Crossover
A trial vector is created for the target vector and the mutant vector in the crossover;

ui ,G+1 =
(
u1i ,G+1,u2i ,G+1, . . . ,uDi ,G+1

)
In which; u j i ,G+1 =

{
v j i ,G+1 if (randb( j ) ≤C R) or j = rnbr(i )

x j i ,G if ( rand b( j ) >C R) and j ̸= rnbr(i )
Evaluate object function from algorithm 1;
Objfunval=GSP (ui ,G+1,Z,C,S)

end
4) Selection
Based on the object function values the trial vector is evaluated. If the objective function value

from the trial vector ui ,G+1 is lower than the objective function value from the target vector xi ,G ,
ui ,G+1 replaces xi in xi ,G+1

end
;

Figure 4.3: Flowchart of methodology
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4.4. Proof of concept on simulated data
To verify the algorithm, a trial is performed with simulated data based on the BIGFAN model. For this trial,
relationships are determined between the SPP setting and the performance of the HPC, the HPT and the LPT.
These relationships are first introduced, after which the results of the algorithm are clarified. The results
contain an analysis on a model with a complete sensor set, reduced sensor set and an analysis with noisy
data.

4.4.1. Simulated secondary performance parameters
For the compressor and the turbines, two different forms of secondary performance parameters are used in
the trial. For the HPC, closing variable stator vanes are used that reduce the flow capacity and increase the
efficiency slightly. For the HPT and LPT, a clearance decrease is simulated, which causes a reduced flow
capacity and increased efficiency. To quantify these effects, relationships are constructed that link these
properties by using Equation 4.1. Therefore coefficients are chosen. These are visualised in Table 4.2.

performance deviation coefficient value description

a 5 First efficiency coefficient HPC

b 10 Second efficiency coefficient HPC

c -4 First efficiency coefficient HPT

d -7 Second efficiency coefficient HPT

e 8 First efficiency coefficient LPT

f 10 Second efficiency coefficient LPT

g -6 First flow capacity coefficient HPC

h -2 Second flow capacity coefficient HPC

i 3 First flow capacity coefficient HPT

j 6 First flow capacity coefficient HPT

k -8 First flow capacity coefficient LPT

l -6 Second flow capacity coefficient LPT

Table 4.2: Coefficients used to make sample data

With these coefficients, simulated data is created. This is done by creating a dataset with operating points
with varying power setting N1, in combination with randomised SPP settings. The SPP settings are converted
to ∆η and ∆Wc for the HPC, HPT and the LPT by Equation 4.1. The engine model is run, and the model
outputs are saved.

When the model is run without taking the secondary performance parameters into account, the model
output data will deviate from the created dataset. The goal of the algorithm is to be able to find the relation-
ships that were used to create the simulated data.

To test the algorithm, a first analysis is run with a set of model outputs that fully defines the performance
of the HPC, HPT and LPT. This means that the output set contains the pressures and temperatures at the
inlet and outlet of these components. Subsequently, an analysis is performed with reduced measurements
to represent the GEnx-1B engine, which is the subject of the case study. Finally, to test the capabilities of the
algorithm to deal with noise, an analysis is performed on noisy data.

The next section will introduce the results of the algorithm. The results are evaluated in two ways:

• RmsOP , root mean square error of the deviation between the simulated measurement points and the
model output, which is the objective function value.

• Rmscur ves , root mean square error of the deviation between the determined relationships by the algo-
rithm and the simulated relationships.

This is done to see if a low r msOP value of the algorithm also means that the determined relationships are
similar to the simulated relationships (low r mscur ves ).
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4.4.2. Results of algorithm with complete sensor set
To display the working of the algorithm, a run is performed with a measurement set that fully defines the in
and outlet conditions of components that are influenced by the SPPs. The measurement set used contains
values from T T25, T T3, T T4, T T49, T T5, PT25, PT3, PT4, PT49, PT5, W f and N2. The station numbering
follows Standard ARP engine station numbering [58]. A graphical representation is given in Appendix B.

To visualise the performance of the algorithm to reproduce the relationships that are defined by the
coefficients from Table 4.2, the generated relationships are plotted against the simulated relationships in
Figure 4.4.

With the full sensor set, the simulated relationships are reproduced by the algorithm very accurately.
This is also represented by the r msOP value, which is 0.00165. The r mscur ves value is 0.0185. To further
decrease the deviation, the algorithm can be run for a longer time. Due to its heuristic nature, the chances of
a good solution become larger if the algorithm goes through more iterations. Overall, the performance of the
algorithm is very good, and the relationships can be used to increase the accuracy of the engine model.
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(a) ∆η vs HPC VSV/IGV deviation relationships (b) ∆Wc vs HPC VSV/IGV deviation relationships

(c) ∆η vs HPT clearance deviation relationships (d) ∆Wc vs HPT clearance deviation relationships

(e) ∆η vs LPT clearance deviation relationships (f) ∆Wc vs LPT clearance deviation relationships

Figure 4.4: Simulated relationships vs relationships from algorithm with all measurements
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Optimiser results
The results from the optimisation are also displayed in Figure 4.5. In this figure, the r msOP and the perfor-
mance deviation coefficient values are displayed through the iterations. Also, the final vector with perfor-
mance deviation coefficients is displayed here plotted against the simulated values. What is interesting to see
is that the output of the algorithm in terms of performance deviation coefficients is not equal to the input of
the simulated coefficients. This is caused by the fact that the parametrisation of the relationships can have
multiple combinations of the two variables to form an approximately equal curve, as indicated by Figure 4.4.

Figure 4.5: Results from simulation with complete sensor set

4.4.3. Results of the algorithm with reduced sensors
Since the GEnx-1B engine is the subject of the case study presented in this thesis, it is interesting to evaluate
the performance of the algorithm when it is used with the GEnx-1B measurement set. This measurement
set contains the following measurements: T T25, T T3, T T49, PS3, W f and N2. This measurement set does
not completely define the inlet and outlet conditions around the components. To display the ability of the
algorithm to deal with this matter, the results are introduced below.

The results are displayed in Figure 4.6 in the same format as before. The algorithm is clearly capable
of determining the relationships that were used to generate the simulated dataset with a certain degree of
tolerance. However, as is visible in Figure 4.6a, Figure 4.6b, Figure 4.6c, the generated relationships deviate
more from the simulated relationships compared to the case with the complete sensor set. This can be
explained by the phenomenon of smearing.
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(a) ∆η vs HPC VSV/IGV deviation relationships (b) ∆Wc vs HPC VSV/IGV deviation relationships

(c) ∆η vs HPT clearance deviation relationships (d) ∆Wc vs HPT clearance deviation relationships

(e) ∆η vs LPT clearance deviation relationships (f) ∆Wc vs LPT clearance deviation relationships

Figure 4.6: Simulated relationships vs relationships from algorithm with reduced sensors
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Smearing
Smearing means that a certain performance deviation in one component is wrongfully assigned to a different
component. If components are not fully defined, meaning information is missing at the in and/or outlet
of the component, the component performance can not be completely determined. Due to the complex
working of gas turbines, a deviation in LPT performance can influence the measurements around the HPC.
To display this behaviour, a sensitivity analysis is performed and visualised in Figure 4.7. This figure displays
the effect of a 1% increase in flow capacity and efficiency on the measurement set parameters. A negative
value means that the output of the model is decreased by the 1% positive performance deviation.

Figure 4.7: Sensitivity analysis

As is visible, the component performance does not only affect the values at their inlet and outlet condi-
tions. This can explain the fact that a higher ∆η for the HPC can be compensated for by a lower ∆η for the
LPT. Hereby, a low r msOP value can be obtained that is not the global minimum. The amount of smearing
is quantified by the r mscur ves value. In this case the r mscur ves is 0.0313. This is clearly higher than the fully
defined case.

Optimiser results
The results from the algorithm run are visualised in Appendix C in Figure C.1. In this figure, the r msOP from
the objective function and the performance deviation coefficients are plotted against the iteration number.
The final r msOP value is 0.27. This is higher than the case with the full sensor set. This is caused by smearing,
which decreases the ability of the algorithm to approach the simulated relationships.

4.4.4. Results of the algorithm on noisy simulated data
Each sensor in a gas turbine is influenced by noise and bias. Noise is the random deviation of a measurement
from the averaged measured value. This can be modelled as a probability density function. Bias is the
deviation of the averaged measured value from the actual value. This is visualised in Figure 4.8.

The algorithm adapts its relationships to minimise the difference between the model output and the
measured values. Therefore, if the measurement values are off due to noise and bias, this influences the
algorithm output. This section will perform an analysis to evaluate the capability of the algorithm to deal
with this issue. First, the method for noise simulation is introduced, after which the results are discussed.

Noise simulation
The severity of the noise coming from the sensors is determined by the accuracy of the sensor set. To perform
a representative analysis, the simulated noise is based on the sensor set of the GEnx-1B engine. The GEnx-
1B engine sensor set with its corresponding accuracy is displayed in Table 4.3. To simulate the accuracy of
the sensors, a probability density function is constructed for every measurement. The standard deviation is
chosen such that 2σ equals the accuracy of the sensor. This means that approximately 95.5% of the simulated
noise falls within the sensors specified accuracy.
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Figure 4.8: Probability density function

The bias of the sensor set is unknown, which can influence the results of the algorithm. However, if the
relationships are created for the same engine that is to be trended, this does not pose a large problem. This
is caused by the fact that the bias of the sensors is constant. Therefore, the bias is excluded from this analysis
and only the noise is simulated.

Sensor Accuracy Units

N1,N2 ±0.12 RPM

W f ±3.5% of measurement pph

Tt ,12,Tt ,25,Tt ,3,Tt ,49 ±0.4% of measurement ◦C

Pt ,2 ±0.01 psia

Ps,3 ±0.36 psia

Table 4.3: Accuracy of sensor set GEnx-1B engine [9, 10]

Results noisy data
In Appendix C in Figure C.2, the results from the algorithm on noisy data are displayed. The algorithm is
capable of reproducing the three flow capacity ∆WC relationships very accurately. Also, the HPT ∆η curve
is corresponding with the simulated relationship. Again, the ∆η relationships for the LPT and HPC are not
accurate. This is caused by smearing, leading to an overestimation of the LPT efficiency and underestimation
of the HPC efficiency. The noise does not seem to affect the relationships when compared to the non-noisy
data.

Optimiser results
The optimiser results are given in Appendix C in Figure C.3. The r msOP value is a factor 10 higher compared
to the r msOP from the noise-free analysis. This is caused by the noise itself, inherently causing a deviation
between the model and the measurement points. Since the generated curves show the same shape as the
simulated curves, the algorithm is deemed capable of working with noisy data. This is also represented by
the r mscur ves which is 0.0212, which is even lower than the non-noisy case.

4.5. Algorithm settings
The former section has shown that the algorithm is capable of identifying simulated SPP effects. Now it is
interesting to see what the influence of the algorithm settings is on the results. In this section, the conclusions
from a sensitivity analysis on the algorithm settings are displayed. Subsequently, the effect of varying the
algorithm bounds is identified.
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4.5.1. Differential algorithm settings
As indicated, the algorithm features parameters that can be tuned to the specific application. The settings that
can be varied are the population size NP, maximum iterations Q, crossover constant CR, the amplification
factor F and the number of evaluated operating points OP. To indicate the effect of varying the algorithm
settings, a sensitivity analysis is performed. In this analysis, one algorithm parameter is changed, and the
other parameters are kept constant. The whole sensitivity analysis, including all the parameter definitions, is
displayed in Appendix D. The conclusion from the analysis is displayed below. The algorithm settings that
will be used are:

• CR=0.5

• F=[0.5,1]

• Q=10

• OP=30

• NP=5

These parameters are chosen because of the criteria of limited running time and optimal r mscur ves .

4.5.2. Bounding algorithm
The performance deviation coefficients from the algorithm can also be bounded. Since information is known
from literature, the bounds can be chosen in a way that the flow capacity and the efficiency are increased or
decreased in line with what to expect from the secondary performance parameter. In the former sections, this
is done such that the efficiency coefficients are positive ∈ [0,12] and the mass flow coefficients are negative ∈
[−12,0]. In this section, the effect of enlarging the bounds is explored. Both the flow capacity as the efficiency
performance deviation coefficient bounds are taken as ∈ [−12,12]. The results from the broader bounds are
given in Appendix C in Figure C.4 and Figure C.5. This analysis indicates that some coefficients are negative
instead of positive. However, this does not result in wrong relationships as is displayed in Figure C.4. Due to
the parametrisation, some curves are only concave instead of convex. The r mscur ves is 0.0319, which is in
the same order as the unbounded runs. Therefore, unbounding the algorithm does not have a major impact
on the results of the algorithm.

4.6. Conclusions methodology
From the proof of concept can be concluded that:

• The algorithm is capable of identifying relationships between SPPs and performance deviations.

• Reducing the number of measurements increases the chance of smearing.

• The algorithm is capable of working with noisy data.

• A low r msOP does not necessarily mean a low r mscur ves , due to smearing effects.

• Broader bounds do not drastically decrease the algorithms ability to re-create the simulated relation-
ships.

It is concluded that the algorithm can be used on the GEnx-1B case study to identify the SPP effects. The
next chapter will introduce this case study.
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5
Preparation case study GEnx-1B engine

This chapter provides the preparation to apply the methodology from Part II on the GEnx-1B case study. This
chapter is divided into 6 sections. The first section introduces the GEnx-1B engine and the research hypothesis.
The second section presents the available data and displays the corrected rotational spool speeds at take-off
and cruise. The third section introduces the secondary performance parameters. The fourth section introduces
the bounding of the algorithm. The fifth section explains the reference engine selection. In the last section, the
current GEnx-1B model is presented.

5.1. GEnx-1B engine
For this case study, the GEnx-1B engine is used. This is a high-bypass ratio double spool turbofan engine that
is used to power the Boeing-787 Dreamliner. The GEnx-1B has an overall pressure ratio of 46.3, and a bypass
ratio of 9.1 at take-off. It features highly curved composite fan blades to reduce the weight and increase the
efficiency by 15% with respect to its predecessor, the GE CF-6 [8].

The engine is displayed in Figure 5.1 with the corresponding station numbers specified in Table 5.1.
This follows the standard ARP engine station numbering and nomenclature [58]. KLM operates this engine
on its Boeing 787-9 aircraft, hence sensor data is available from the operation of the GEnx-1B. Moorselaar
[50] created an engine model for the GEnx-1B in order to perform GPA. This engine model has the take-off
power setting as the design point and is capable of representing the measurements at this power setting with
good accuracy. When this engine model is used for cruise conditions, the output deviates from the engine
measurements. The hypothesis in this thesis is:

The modelling error for the cruise power setting can be reduced by accounting for the secondary
performance parameters with relationships determined by an evolutionary algorithm.

To assess the validity of this hypothesis, the following sections will further introduce the case study. First, the
available data is introduced.

Figure 5.1: GEnx-1B station numbering [9]
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Station number Station Station number Station

2 Fan hub inlet 4 Combustor outlet

12 Fan tip inlet 49 HPT outlet

21 LPC inlet 18 Bypass Nozzle throat

14 Bypass stream 5 LPT outlet

25 HPC inlet 7 Core nozzle inlet

3 HPC outlet 8 Core nozzle throat

Table 5.1: Standard ARP engine station numbering [58]

5.2. On-wing data
On-wing data from the GEnx-1B engine is available to KLM as continuous engine operating data (CEOD).
This section introduces the data format, as well as the GEnx-1B corrected spool speeds during operation.

5.2.1. Continuous engine operating data
Modern gas turbines have a reduced number of gas path sensors compared to their predecessors. For the
GEnx-1B, multiple pressure and temperature measurements are missing throughout the engine, which makes
gas path analysis more complicated. To compensate for these missing sensors, CEOD is introduced. CEOD is
one of the improvements that came with the introduction of the GEnx-1B engine. CEOD constantly captures
the value of over 300 parameters stemming from the GEnx-1B engine [2]. In addition to the gas path sensors,
the CEOD contains information about the secondary performance parameters. The CEOD parameters are
visible in Table 5.2. These require some introduction. The primary parameters are the gas path sensors. They
display the pressures, temperatures, rotational speeds, and fuel flow. The secondary performance parameters
display the setting for the bleed flow valves, Total Engine Horsepower extraction (power off-take), variable
geometry and information about the active clearance control and clearances in the turbines. In former
performed research at KLM, the variation of these parameters have not been included in the GEnx-1B GSP
model. Since these parameters influence the performance characteristics of the engine, the CEOD is of great
value for accurate GPA. The following section will display the operational corrected spool speeds of the GEnx-
1B engine after which the data from the secondary performance parameters is introduced. Information on
the data pre-processing and the input from this data to GSP is available in Appendix E.

5.2.2. GEnx-1B corrected spool speeds
The corrected rotational speeds disclose much about the operation of the GEnx-1B engine. They are dis-
played for both the N1 as the N2 spool in Figure 5.2a and Figure 5.2b respectively. As is clear, the corrected N1

rotational speed at cruise is similar to the rotational speed at take-off. The corrected rotational speeds of the
corrected N2 spool are higher at cruise compared to take-off.

(a) Corrected fan speed (b) Corrected core speed

Figure 5.2: GEnx-1B corrected spool speeds
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Table 5.2: CEOD data parameters GEnx [9]

Parameter description Unit Refresh rate

Tt ,2 Total fan inlet temperature [°C] 60ms

Tt ,25 Total HPC inlet temperature [°C] 60ms

Tt ,3 Total HPC outlet temperature [°C] 60ms

Tt ,49 Exhaust gas temperature [°C] 60ms

Pt ,2 Total fan inlet pressure [psia] 60ms

PS,3 Static HPC outlet pressure [psia] 60ms

N1 Fan rotational speed [rpm] 60ms

N2 Core rotational speed [rpm] 60ms

W f Fuel mass flow [pph] 60ms

HPTACCVpos Selected HP Turbine Active Clearance Control Valve Position [%] 60ms

LPTACCVpos Selected LP Turbine Active Clearance Control Valve Position [%] 60ms

CCCVpos Selected Core Compartment Cooling Valve Position [%] 60ms

VBVpos Selected Variable Bleed Valve Position [%] 60ms

TBVpos Selected Transient Bleed Valve Position [%] 60ms

VSVpos Selected Stator Vane Position [%] 60ms

PTO Total Engine Horsepower Extraction [hp] 960ms

BAIpos Selected BAI(Booster Anti-Ice) Bleed Valve [-] 60ms

W25 Calculated core airflow [pps] 60ms

∆N 2 Core speed rate of change [% N2/s] 60ms

AHPTC Actual HP Turbine Clearance (calculated) [in] 60ms

5.3. Secondary performance parameters
The additional information in the CEOD can be used to improve the accuracy of the GSP model. In this
section, the additional information from the secondary performance parameters is introduced, after which
the patterns in the data are explained. This is done by displaying the SPP settings for the take-off and cruise
operating point in normalised histograms. Subsequently, the parameterisation method of the SPPs is ex-
plained that will be used in the algorithm. This is done for every secondary performance parameter. First, the
bleed flows are treated, after which the power off-take, active clearance control for the turbines and variable
geometry are discussed.

5.3.1. Bleed Flows
The GEnx-1B also incorporates bleed flows. Bleed flows subtract air from the core flow to be put to use in
secondary systems or to improve the surge margin of the compressor. In the GEnx-1B engine, four sets of
bleed valves are present. The variable bleed valves (VBV), transient bleed valves (TBV), booster-anti ice bleed
(BAI) and the cowling anti-ice bleeds (CAI). From the VBVs and the TBVs, the valve positions are known but
are only opened at firing up the engine or in rare cases during cruise. Since these cases are easily filtered out,
the choice is made not to consider them in the algorithm.

The booster-anti ice bleeds retract air from the 7th stage of the HPC. This air is used to heat the booster
for anti-ice purposes. A maximum value of 2% of the core flow is extracted. The CEOD data contains two
metrics regarding this setting. One value gives the operating mode indicating on or off. The other value gives
the pressure in the duct leading to the booster. This pressure is used by the EEC to estimate the amount of
bleed that is extracted. From this information, it is visible that the pressure in the duct only spikes at limited
moments, meaning the valve is mostly closed. Therefore it is filtered out and also not used in the analysis.
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(a) HPTACC valve position at cruise and take-off (b) HPT actual clearance at cruise and take-off

Figure 5.3: Data on HPT active clearance control

The CAI can subtract up to 3.3% of the total core flow at stage 7. The bleed setting is given in values 0, 1 or
2. At KLM no information is available on the specific meaning of these settings. During cruise, it is assumed
to be turned off due to the low humidity at that altitude. For model development, data was used in which the
bleeds were also assumed to be turned off [50]. Therefore, it is not considered for adapting the model.

5.3.2. Power off-take
The electric system for the cabin air and other auxiliary components of the aircraft needs a power source. The
required power is subtracted from the N2 shaft by the Variable Frequency Starter Generators(VFSG) with an
assumed efficiency of 92.8%. The horsepower extraction is given in the CEOD. This information is used in the
GSP model to simulate the load on the N2 spool. This is implemented in all engine models used in the case
study.

5.3.3. Active clearance control
In the GEnx-1B engine, the high pressure turbine active clearance control valve (HPTACCV) and low pressure
turbine active clearance control valve (LPTACCV) regulate the clearance between the casing and rotor blades
for reasons mentioned in section 3.3. By using thermal control, the clearance can be kept at an optimal
value. The HPTACCV and LPTACCV control these systems for the HPT and LPT. These valves are controlled
by the EEC. Their positions are specified in percentages. For the HPT, GE also provides a calculated clearance
(AHPTC). To understand how GE designed the GEnx-1B engine, it is interesting to analyse the behaviour of
these SPPs in various conditions. First, the HPTACC is analysed, after which the LPTACC is treated. Besides
the HPTACC and the LPTACC, the core compartment cooling valve (CCCV) regulates the air to cool the under-
cowl environment. In contrast to the LPTACCV and HPTACCV, the valve setting is only known in open or
closed conditions. This flow leaves the engine through the core engine vent. The influence of the CCC is
not expected to be as influential since it does not change the tip clearances. Therefore, it will not be further
treated.

Data patterns HPTACC
The HPTACC is designed to increase the efficiency of the turbines. How this system operates is different for
various operating conditions. Multiple interesting relations can be found in the flight data. The first relation
is found between the HPTACCV and the operating condition. This is visualised in Figure 5.3a. As is visible,
the valve is opened further at cruise condition. In search of a pattern of the valve position with another
parameter, no unambiguous relation was found, although it is clear that it reacts on the N2 spool speed, Tt ,49

and the ambient temperature. This is also logical because the air temperatures influence the expansion of
the blade and casing, and the rotational speed influences the blade length. Therefore, it seems that GE uses a
multivariable control system to steer the valve position.

Since the actual calculated HPT clearance is also available, it is possible to visualise the resulting differ-
ence in clearance at take-off and cruise. Figure 5.3b shows the calculated clearance at cruise and take-off. As
is visible, the clearance at take-off is kept higher, which will probably result in a lower HPT efficiency. This is
likely done to avoid the risk of abrasion in the transient condition during take-off.
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Data patterns LPTACC
The LPTACC control valve position has no complicated control system. The LPTACC control valve position
has a clear relation with the operating condition. This relation is visualised in Figure 5.4a. This figure displays
the relation between the LPTACC valve position and the altitude. At higher altitudes, the valve is more open.
This distinct pattern is also visible in Figure 5.4b, which displays the normalised histogram of the LPTACC
valve positions in multiple flights. The blue pillars represent the various cruise altitudes.

(a) LPTACC valve position versus altitude (b) LPT actual clearance at cruise and take-off

Figure 5.4: Data on LPT active clearance control

Parametrisation of the active clearance control
To compensate for the effect of the active clearance control, this additional data is used as independent
variables in the algorithm. For the compensation of the clearance of the HPT, the actual calculated clearance
is used. This variable has the most direct relationship with the HPT performance since the performance is
dependent on the clearance. For the LPT, the ACCLPT valve position is used, as no more accurate variable is
available. Since the ACCLPT valve position varies with altitude, the algorithm will indirectly compensate for
altitude. Since the direct relation between the ACCLPT valve condition and the actual clearance is unknown,
no direct relation will be constructed between the clearance and the performance deviation. This limits the
possibility to compare the performance increase with literature. However, it still enables the algorithm to
find a relation between the operating condition and the LPT performance. For both the AHPTC as well as the
LPTACC valve position, the difference between the average value at take-off and the value at cruise is taken
as the independent variable for the algorithm.

5.3.4. Variable geometry
The Variable Stator Vanes (VSV) and Inlet Guide Vanes (IGV) assure stable operation in off-design conditions.
They prevent surging of the compressor by changing their angle relative to the flow. In the GEnx-1B engine,
these are present as IGVs at the HPC inlet and stages 1-4 VSVs in the HPC. Their position is determined
by the EEC and it is given in percentage. They are actuated by the same lever arm, this means that their
position relative to each other is scheduled. The schedule of the VSVs and IGVs is given in Figure 5.5. A
higher percentage means that the VSVs/IGVs are more open. As is visible, the VSV/IGV position is a function
of corrected core speed and the flight altitude. The points on the top left with the higher VSV/IGV position
represent the take-off condition and the region in which the aircraft climbs at cruise altitude. It is clear that
these operating modes are not identical to the steady-state cruise operating mode.

Therefore, the relationships from the algorithm should be able to account for this difference.

Parametrisation of variable geometry
The two parameters that seem to determine the VSV/IGV position are the corrected core speed and the alti-
tude. The relation with corrected core speed is mapped in the compressor maps of the model, but the relation
with the altitude is not. Since the relation with the corrected core speed is mapped in the compressor map,
the algorithm should only compensate for the difference in VSV/IGV position versus the altitude. Therefore
the performance deviations are dependent on the deviation of VSV/IGV angle between the design point of
the model and the cruise operating point, which is in turn dependent on altitude.

To summarise, the variable geometry and active clearance control are parameterised for the algorithm by
the following parameters:
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Figure 5.5: VSV/IGV position versus the corrected core speed and altitude

• HPC variable geometry is parameterised as the VSV/IGV position which has a relationship with the
flight altitude.

• HPT clearance is parametrised as the actual calculated HPT clearance.

• LPT clearance is parameterised by the ACCHPT valve position.

The power off-take is simulated directly into GSP, and the bleed flows are not considered because not enough
data is available.

5.4. Bounding the algorithm
With the parametrisation in place, this section defines the bounds for the algorithm. Since the effect of these
secondary performance parameters should fall within a certain limit, the algorithm is bound. The bounds
are defined as a maximum and minimum performance deviation for the most deviating SPP setting. They are
displayed in Table 5.3. By keeping the bounds large, it is possible for the algorithm to determine relationships
that contradict the expected effect of the secondary performance parameters. If the algorithm is capable of
finding patterns that comply with the literature, this would be a successful result.

SPP Upper bound performance deviation[%] Lower bound performance deviation [%]

HPC VSV/IGV ∆Wc 4 -20

HPC VSV/IGV ∆η 3.5 -2

HPT clearance ∆Wc 2 -3.5

HPT clearance ∆η 3.5 -2

ACCLPT valve position ∆Wc 2 -3.5

ACCLPT valve position ∆η 3.5 -2

Table 5.3: Bounds for the algorithm

5.5. Engine selection
With the data pre-processing in order, a reference engine should be selected to run the algorithm on. KLM
operates multiple Boeing 787-9 aircraft, meaning a choice can be made on which engine to use. For model
creation, a well-performing engine should be used, since the deterioration should be determined with respect
to a ’new’ engine.
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Which engine to choose is based on the exhaust gas temperature margin hot day (EGTMHD), which is a
good indicator of engine state. Also, the algorithm is run on CEOD. Therefore, it is important that CEOD is
available for that particular motor. The CEOD becomes available for KLM after a certain number of cycles
(the number of cycles can not be disclosed due to confidentiality). This poses a problem because the engines
do not perform as well as an engine in ’new’ state after that certain amount of cycles. However, one GEnx-
1B engine suffered from an HPT blade burndown. This resulted in the need for a full overhaul of the engine
and restoring good engine performance. The CEOD from re-entry of service is available for KLM. Therefore,
this engine is chosen as reference engine and based on the data from this engine, the algorithm will produce
relationships to account for the secondary performance parameters. Due to confidentiality, the engine serial
number (ESN) can not be disclosed. It will be referred to as ESN956XXXA.

To test if the determined relationships also work on other engines, multiple engines are selected that fea-
ture approximately the same EGTMHD as the ESN956XXXA. These engines will be referred to as ESN956XXXB
to ESN956XXXF. For illustration, the EGTMHD for both ESN956XXXA and ESN956XXXB is displayed in Fig-
ure 5.6. The two vertical lines indicate the time period from which the CEOD data is gathered. For the
ESN956XXXA, it is clear that the period is just after the long overhaul. The jumps in the EGTMHD are caused
by the water washes. In the next section, an analysis is performed on the data from ESN956XXXA, to indicate
the performance of the current GEnx-1B model.

Figure 5.6: EGTMHD for the reference engines

5.6. Current state GEnx-1B model
The current GEnx-1B model developed by Moorselaar [50] accurately represents the take-off operating con-
dition. The model reference point is based on the take-off condition and calibrated with test cell data. The
component maps are tuned with on-wing take-off data. In this section, the baseline model is introduced as
well as an improved model with a modified LPC and fan component. For both models, the level of accuracy
will be introduced.

5.6.1. Baseline model
The baseline model shows a good average representation of the take-off condition measurements. In Ta-
ble 5.4 the performance is set out. A negative value means that the model overestimates the parameter value.
Both for cruise and take-off conditions, the average error for the various measurements is displayed. Also, the
standard deviation of the error is shown. This metric is important because it indicates the spread of the error.
The spread of the error indicates effects that are not modelled. Since the secondary performance parameters
are currently not accounted for, this parameter is important to evaluate the results of the algorithm.

To come to these values, the model was run for 100 take-off and cruise on-wing operating points from the
time periods mentioned in section 5.5. Afterwards, the output data was compared to the on-wing measure-
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ments. As is clear, the cruise operating point is drastically less accurate.
To compensate for the secondary performance parameter effects, the algorithm is run in section 6.1.

However, based on the results from section 6.1, it was identified that the secondary performance parameters
are not the only factor that causes the deviation between the cruise and take-off deviation.

Therefore, the need for an improved model was identified to display the capabilities of the algorithm. This
improved model is needed since the baseline model deviates too much from the on-wing data with regards
to the fan and LPC from now on referred to as low pressure system (LPS). This model will be introduced in
the following section.

Measurement Avg error at cruise[%] σer r or cr ui se Avg error at take-off[%] σer r or t ake−o f f

N2 1.40 0.52 -0.19 0.18

W f -15.25 1.42 -1.45 1.18

Tt ,25 1.21 0.56 0.52 0.36

Tt ,3 -1.59 0.81 -0.76 0.87

Tt ,49 -8.93 1.13 0.21 0.71

Ps,3 -4.53 0.79 -0.88 0.47

Table 5.4: Baseline model accuracy

5.6.2. Improved GEnx-1B model with adjusted low pressure system
The results from section 6.1 will indicate the need for an adapted model because the deviation can not fully
be decreased by accounting for the secondary performance parameters. This improved model contains a
modifier for the fan and the low pressure compressor mass flow capacity and efficiency.

The ∆Wc for the fan and LPC are -3 and -1, respectively. The ∆η modifiers for the fan and LPC are 3.8
and 2.8. This choice is made because the cruise operating point in the fan and LPC map does not change
appropriately compared to what is expected at cruise conditions. At cruise the LPC and fan efficiency is
reduced severely, causing the measurement deviations that are displayed in Table 5.4. Therefore the efficiency
of the fan is increased up to the design efficiency to compensate for the wrong operating region. Also, the
mass flow capacity is adapted such that the error in Tt ,25 is reduced.

The deviations of the improved model with the adapted low pressure system are displayed in Table 5.5.
Again, a negative value means that the model overestimates the parameter value. To be able to analyse the
results, the specifics of the model components are given in the following section, after which a sensitivity
analysis is performed.

Measurement Avg error at cruise[%] σer r or cr ui se

N2 2.73 0.30

W f -2.67 1.51

Tt ,25 -0.93 0.43

Tt ,3 0.71 0.32

Tt ,49 -3.91 0.68

Ps,3 1.89 0.94

Table 5.5: Accuracy of improved GEnx-1B model with adapted low pressure system

5.6.3. Analysis GEnx-1B model
For a proper evaluation of the results, it is important to know the specifics of the current models. As explained,
off-design GPA relies on component maps to specify component performance. This section will display the
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(a) Fan bypass map (b) LPC map

(c) HPC map

Figure 5.7: Compressor maps GEnx-1B model

component maps used in the models in combination with the reference points used in the model. Also, the
reference point nozzle information is displayed.

Compressor maps
In the GEnx-1B models, three compressor maps are present. The first map is the fan bypass map displayed
in Figure 5.7a. The black point denotes the reference point of the model. In the case of the GEnx-1B model,
this is the take-off point. In the current models, the reference point is chosen with a large surge margin. The
second map is the LPC map. This map is used for simulating the fan core and the booster. This is possible
because they are connected to the same axis. For the fan core map, a smaller surge margin is chosen as
reference point. The same holds for the HPC map. The design efficiencies of the fan bypass, LPC and HPC are
0.92 0.90 and 0.87, respectively. This information will be used to interpret the results.

Turbine maps
The turbine maps are less complicated because the turbines mostly operate in one operating point since
their design operating point is located in the choking condition. Therefore, their operating efficiency is 0.93
and 0.94 for the HPT and LPT, respectively, which does not change much under the influence of different
operating conditions.

Nozzle design parameters
The nozzle Mach numbers at take-off condition are 0.74 and 0.87 for the bypass and core nozzle, respectively.
The nozzle velocity coefficients are 0.915 and 0.9 for the bypass and core nozzle, respectively.

5.6.4. Sensitivity analysis GEnx-1B model
To indicate the effect of certain component performance deviations on the measured parameters, a sensitiv-
ity analysis is performed on the GEnx-1B engine baseline model. The results from the improved model are
approximately the same. Hence, they are not given.

The results are displayed in Figure 5.8. On the x-axis, the performance deviations are displayed, which
are increased by 1%. On the y-axis, the difference in model output value is displayed where a positive value
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Figure 5.8: Sensitivity analysis GEnx-1B engine

indicates that the model output was increased. This gives valuable insight into the behaviour of the model,
and can be used to interpret results. As is clear, the engine follows standard deterioration behaviour for a twin
spool turbofan. The following chapter will display the results of the case study.
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Results case study on GEnx-1B engine

In this chapter, the algorithm is run on the on-wing cruise data from the ESN956XXXA engine. As mentioned,
the secondary performance parameters that are included are the power off-take, HPC variable geometry, HP-
TACC and LPTACC. The power off-take is modelled directly into GSP, and therefore not further treated. The
HPC variable geometry, HPTACC and LPTACC are compensated for by the algorithm. The following section
will introduce the results from the algorithm on both models. First, the results achieved by the algorithm
on the baseline model will be displayed and discussed. Subsequently, the results from the algorithm on the
improved model are evaluated. Finally, the determined relationships will be used on datasets from other GEnx-
1B engines.

6.1. Results algorithm on baseline model
In this section, the algorithm is run on the baseline model. First, the accuracy increase achieved with the
determined relationships is introduced, after which the effect of the individual secondary performance pa-
rameters is discussed.

6.1.1. Accuracy increase
In Figure 6.1, the results from the algorithm in terms of accuracy increase are displayed. The blue columns
denote the deviation between the current baseline GEnx-1B model output and the GEnx-1B cruise measure-
ment data. The orange columns display the results when the determined relationships from the algorithm
are used to account for the active clearance control and the variable geometry. Figure 6.2 shows 300 mea-
surement points and their individual deviation from the model output. In both these graphs, a negative value
means that the model output is higher than the on-wing measurement. These measurements are taken from
the ESN956XXXA engine dataset during the time period indicated in section 5.5.

Absolute deviation
The absolute deviation between the model and the on-wing cruise data is decreased by the determined
relationships from the algorithm. However, the difference is not decreased towards zero percentage. The Tt ,49

and W f deviations are decreased by the largest amount. The deviation in N2, Tt ,25 and Ps,3 is not decreased
by a large margin.

To understand why this is happening, it is useful to recall how the objective function was defined. It
is defined as the root mean square of the deviation between the model output and the on-wing data. As the
initial deviations for the Tt ,49 and W f are the largest, the lowest objective function value is achieved by driving
these errors down by a large margin. This can come at the cost of the other parameters. Therefore, the rest of
the deviations is not decreased by a large margin.

As will become apparent in the following section, the determined relationships for efficiency are all ap-
proximately against the bounds towards enhancing the performance of the component, resulting in unreal-
istic high efficiencies.

This indicates that the engines mass flow and efficiencies of the fan and the LPC (the low pressure system
LPS) at cruise conditions are not correct. The too-high fuel mass flow can be caused by the fact that the model

63
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has to use to much power to rotate the N1 spool at a certain rotational speed. This can also cause the Ps,3 value
to be overestimated by the model, because the N2 axis also has to account for this additional required power.

The algorithm compensates for the suspected incorrect mass flows and wrong LPS efficiencies with the
relationships, as will be apparent from the results of the individual relationships. What is also interesting
to see is that Tt ,25 is barely influenced by the relationships. This is supported by the sensitivity analysis
from subsection 5.6.4 and is a consequence of the fact that no upstream influence is present in the model.
The N1 rotational speed is the controlled parameter in the model. As Tt ,25 is the temperature measurement
downstream of the LPC, and the combination of the fan and LPC performance determine the LPC operating
point, this value is dependent on the performance of the fan and LPC.

Since none of the SPPs affect the LPC or the fan, Tt ,25 is barely influenced.

Figure 6.1: Algorithm deviation results between model output and on-wing measurements for standard GEnx-1B model

Standard deviation of error
The standard deviation of the error is an important parameter to judge the working of the algorithm. Since the
setting of the secondary performance parameter determines the performance deviation of the component,
only a difference in SPP setting can change the component performance. So if the standard deviation of
the error is decreased, a certain degree of uncertainty is taken away from the model that was caused by
the secondary performance parameter. As can be seen from Figure 6.1, the standard deviation of the error
between the model and the on-wing data points is increased drastically. This is also shown in Figure 6.2. This
is caused by the fact that the algorithm needs to compensate for too-large differences causing the algorithm
to approach the bounds of the coefficients. This will further be elaborated on in the following sections. Again,
only Tt ,25 is not influenced by the algorithm.
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(a) N2 deviation from baseline GEnx-1B model accounting and not
accounting for relationships

(b) W f deviation from baseline GEnx-1B model accounting and
not accounting for relationships

(c) Tt ,25 deviation from baseline GEnx-1B model accounting and
not accounting for relationships

(d) Tt ,3 deviation from baseline GEnx-1B model accounting and
not accounting for relationships

(e) Ps,3 deviation from baseline GEnx-1B model accounting and
not accounting for relationships

(f) Tt ,49 deviation from standard GEnx-1B model accounting and
not accounting for relationships

Figure 6.2: Deviation of parameters for baseline GEnx-1B model accounting and not accounting for relationships

6.1.2. Individual relationships
In this section, the resulting relationships are displayed. This is done by displaying the difference between
take-off and cruise in SPP setting on the x-axis and the corresponding performance deviation on the y-axis.
First, the HPC variable geometry relationships are displayed, after which the active clearance control for the
HPT and LPT are treated.

HPC variable geometry
In Figure 6.3, the performance deviations based on the VSV/IGV position setting are set out. The x-axis
displays the difference between the VSV/IGV setting at cruise (OD) versus the setting at take-off (DP). The
VSV/IGV position is opening more along the x-axis. The y-axis displays the performance deviation that is
used in the algorithm based on the SPP setting. Figure 6.3c displays the deviation between the model output
and the on-wing data versus the altitude, which determines the VSV/IGV angle deviation.

At cruise, the VSVs/IGVs are more closed compared to take-off. The curves found by the algorithm in-
dicate that the efficiency goes up based on the VSV/IGV difference. Also, the mass flow capacity goes down
with closing the vanes. This is in line with what is expected, as described in Figure 3.3.1. Since the same
power output is still required to maintain a certain N1 speed, the N2 spool speed will increase. This is also
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displayed by the slightly decreasing N2 deviation in Figure 6.1. The efficiency is increased to compensate for
the operating point shifting to an area of lower efficiency. However, from Figure 6.3c can be seen that the
dependency of the N2 deviation on the altitude and is not decreased. As the altitude determines the VSV/IGV
angle deviation between cruise and take-off, the algorithm should erase this dependency.

As explained in the former section, the algorithm can decrease the objective function more by decreasing
the W f and the Tt ,49 deviation. This is also indicated by the magnitude of the flow capacity modifier for the
closing of the VSVs/IGVs, which is low. Therefore, the algorithm did not adapt the dependency of the N2

deviation on the altitude.

(a) HPC VSV/IGV position versus efficiency deviation relationship
(b) HPC VSV/IGV position versus flow capacity deviation relation-
ship

(c) N2 deviation versus altitude

Figure 6.3: HPC VSV/IGV relationships determined by algorithm on baseline GEnx-1B model

HPT active clearance control
In Figure 6.4, the determined relationships for the HPT performance are displayed. The lower x-axis displays
the actual calculated HPT clearance at cruise minus the clearance at take-off in mm. The upper x-axis
displays this difference divided by the blade average HPT blade length to be able to put it in perspective
with literature. The y-axis displays the performance deviation. Figure 6.4c displays the relation between the
tt ,49 deviation and the actual HPT clearance. The direction of the relationships that are determined follow
literature. Decreasing the clearance increases the efficiency and decreases the flow capacity. The extent to
which the performance is increased or decreased is high compared to literature. Yoon From [63] follows,
a decrease of 1% clearance of the span difference for an unshrouded turbine can result in a 2 % increase in
efficiency. The results are not in line with literature, as a 0.5 % clearance decrease relative to blade span results
in a 2.5% increase in efficiency. Again, this is caused by the fact that the algorithm benefits from decreasing
the Tt ,49 deviation. Since the HPT performance strongly influences this value, and the model output value
for Tt ,49 too high by a large margin, the algorithm goes to the bounds to decrease this error. That is what is
seen in Figure 6.4c. The relationship between the clearance and the deviation is completely changed. The
trend now follows the curve from Figure 6.4a. This is caused by the fact that the algorithm can not reach 0%
deviation.

The flow capacity relationship is also high compared to theory. Following Holeski [15], a 1% relative
clearance decrease can result in a 0.5% in flow capacity reduction. This is not in accordance with the results
from the algorithm, as a 0.5% of relative clearance decrease is linked to a 1% in flow capacity reduction.
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(a) HPT clearance versus efficiency deviation relationship (b) HPT clearance versus flow capacity deviation relationship

(c) Tt ,49 deviation versus the actual calculated clearance

Figure 6.4: HPT clearance relationships determined by algorithm on baseline GEnx-1B model

LPT active clearance control
In Figure 6.5, the results from the algorithm for the LPT are displayed. The x-axis displays the valve position
at cruise (OD) minus the valve position at take-off (DP). Figure 6.5c shows the dependency of Ps,3 and the
ACCHPT valve position. At cruise, the valve is more open. Since the valve is scheduled based on altitude, the
algorithm essentially compensates for performance change with altitude.

As is clear, the determined relationships are against the pre-set bounds. The algorithm getting stuck
against its bounds indicates that, to obtain a lower objective function value, larger performance deviations
were required. This effect also has another consequence. When looking at Figure 6.2e, it is clear that the
Ps,3 error has two areas of deviation levels. As the LPT performance deviations strongly influence the Ps,3

measurement, operating points with a low LPTACC value would experience a smaller influence on the Ps,3

compared to an operating point with a high LPTACC value. This effect divides the deviation of Ps,3 in Fig-
ure 6.2e, in two levels. The two groups are also clearly visible in Figure 6.5c, in the high and low valve
position difference. As no information is known about the actual clearance, a comparison with literature
is not possible.
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(a) LPTACC valve position versus efficiency deviation relationship
(b) LPTACC valve position versus flow capacity deviation relation-
ship

(c) Ps,3 versus the LPTACC valve position

Figure 6.5: LPTACC relationships determined by algorithm on baseline GEnx-1B model

6.1.3. Performance of engine components
As discussed, these results raise the question if the mass flow and efficiency of the LPS are correct. To further
analyse the results, this section displays the actual efficiency at which the components operated.

The efficiency is dependent on both the operating position in the component map as well as the per-
formance deviation induced by the algorithm. As the LPS is not influenced by the SPPs, only the operating
condition determines its performance. Figure 6.6 shows three efficiencies:

• The average efficiency of the baseline GEnx-1B model not accounting for relationships at take-off.

• The average efficiency of the baseline GEnx-1B model not accounting for relationships at cruise.

• The average efficiency of the baseline GEnx-1B model accounting for relationships at cruise.

The comparison with the take-off condition is useful to put the results into context because those effi-
ciencies represent the design point of the model.

As is visible, the efficiencies for the baseline model not accounting for the relationships at cruise are
lower than the efficiencies at take-off. This is caused by the fact that the operating points in the component
maps change when changing operating conditions. This effect causes the model to operate less efficiently,
contributing to the deviation between the on-wing measurements and the model output.

As can be seen from the results of the baseline model that accounts for the relationships, the algorithm
correctly increases the efficiency of the HPC, HPT and LPT. Yet, the efficiencies of the turbines are higher
than expected for modern turbofan engines. Also, a 2.5% average efficiency increase is not expected from the
reduction in clearance. From this analysis can be concluded that the algorithm is not capable of determining
relationships for models with modelling error that is not caused by the secondary performance parameters.
This is essentially caused by smearing and aggravated by the reduction of measurement sensors.

Therefore, the following section will display the results from the improved model with the adapted low
pressure system.
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Figure 6.6: Average component efficiencies baseline GEnx-1B model
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6.2. Results algorithm on improved model
In this section, the algorithm is run on the improved model with the modified low pressure system. This
improved model features a ∆η and ∆Wc for the fan and LPC. This is done to increase the accordance of the
model with the on-wing data since the results from section 6.1 indicate that the fan and LPC efficiencies are
too low and the mass flows are incorrect.

The results in terms of accuracy increase are displayed in the first part, after which the individual influence
of the secondary performance parameters is discussed.

6.2.1. Accuracy increase
In Figure 6.7, the results from the algorithm in terms of accuracy increase are displayed. The blue columns
display the accuracy of the improved model. The orange columns display the results when the relationships
from the algorithm are used in the improved model. Figure 6.8 shows the individual deviation from the
measured value. As mentioned before, a negative value means that the model output is higher than the
on-wing measurement.

Absolute deviation
As is clearly visible, the algorithm is capable of decreasing the deviation between the model and the on-wing
data. For most measurements, a decrease in deviation is achieved. The N2 average deviation is reduced by
a large margin. The model’s N2 speed is increased, which is in line with the closing of the VSVs/IGVs. The
decrease in fuel flow is in line with increasing the efficiencies, with the direct consequence of reducing the
Tt ,49. Again, the Tt ,25 is barely influenced. The Ps,3 is increased strongly. This is probably due to the LPT
performance increase, as the LPT has a strong influence on the Ps,3. The average modelling error is reduced
by 65%.

Altogether, the algorithm is capable of decreasing the deviation between the on-wing measurements and
the model output based on the secondary performance parameters.

Figure 6.7: Algorithm deviation results between model output and on-wing measurements for improved GEnx-1B model

Standard deviation of error
As already mentioned, the standard deviation of the error is an important parameter to judge the working of
the algorithm. In contrast to the results from the algorithm on the baseline model, the algorithm is capable
of decreasing the standard deviation of the error for the improved model.
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This is visible in Figure 6.7 and Figure 6.8. The N2, Tt ,49 and Ps,3 standard deviation is decreased. This
indicates that the dependency of the measurement deviation and the secondary performance parameter is
removed. Hence compensating for the SPP is successful. This can also be further explained by the fact that
the performance of the HPC, HPT and LPT mainly influence the N2, Tt ,49 and the Ps,3 values.

From Figure 6.8 can also be concluded that there are still dependencies of measurement deviations on
the corrected N1 speed, that are not reduced. These dependencies are still present due to inaccuracies in the
component maps. This, in combination with the sensor noise, keeps the standard deviation of the error at a
certain minimum level.

(a) N2 deviation from improved GEnx-1B model accounting and
not accounting for relationships

(b) W f deviation from improved GEnx-1B model accounting and
not accounting for relationships

(c) Tt ,25 deviation from improved GEnx-1B model accounting and
not accounting for relationships

(d) Tt ,3 deviation from improved GEnx-1B model accounting and
not accounting for relationships

(e) Ps,3 deviation from improved GEnx-1B model accounting and
not accounting for relationships

(f) Tt ,49 deviation from improved GEnx-1B model accounting and
not accounting for relationships

Figure 6.8: Deviation of parameters for improved GEnx-1B model accounting and not accounting for relationships

6.2.2. Individual relationships
In this section the relationships are displayed that were determined for the improved GEnx-1B model.

HPC variable geometry
In Figure 6.9, the determined relationships are displayed. Also, the dependency of the N2 deviation on the
altitude is displayed. The flow capacity is decreased largely with the closing of the IGVs/VSVs. This is a large
contributor to the increase in N2 speed. This is again in line with theory as explained in subsection 6.1.2. Also,
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the efficiency is increased by a maximum of 1.2%. This is done to keep the efficiency at an acceptable level
since the mass flow capacity deviation reduces the efficiency by moving the operating point further away from
the surge line to an area of lower efficiency. So basically, the compressor will operate at approximately the
same efficiency and corrected mass flow, only with a higher corrected spool speed. This will be substantiated
by subsection 6.2.3, in which the operating efficiencies are displayed. The effect of this deviation is clearly
visible in the results from Figure 6.8a. The standard deviation of the N2 error is reduced significantly. This
is also clear from Figure 6.9c, in which it is visible that the dependency of the N2 deviation on the altitude is
reduced. The reduction of the slope of a linear regression through the points is 27%. The VSV/IGV difference
between cruise and take-off is dependent on the altitude. So the reduction of the dependency of the N2

deviation on the altitude indicates that this model accounts for the secondary performance parameter of
variable geometry.

(a) HPC VSV/IGV position versus efficiency deviation relationship
(b) HPC VSV/IGV position versus flow capacity deviation relation-
ships

(c) N2 deviation versus altitude

Figure 6.9: HPC VSV/IGV relationships determined by algorithm on improved GEnx-1B model

HPT active clearance control
In Figure 6.10, the determined relationships for the HPT clearance are set out. Again, two x-axes are defined
for the actual clearance decrease and the clearance decrease relative to the turbine blade length. Clearly, the
corrected mass flow is reduced. This is what is expected when the clearance is reduced. Also, the efficiency
in increased. The comparison with literature results in the conclusion that the algorithm overestimates
the effect of the clearance on the efficiency. As mentioned before, the expected performance increase for
unshrouded blades amounts up to 2% per 1% clearance decrease relative to the turbine blade length. The
clearance decrease relative to the blade span is maximum 0.5%, which should add up to a 1% efficiency
increase. From the analysis, a maximum of 2.5% is found. This can be caused by other modelling errors, for
which the HPT performance increase compensates. The flow capacity is only reduced slightly, this is better
in line with literature. A maximum of 0.33% in flow capacity reduction is linked to a 0.5% of relative clearance
decrease. Following Holeski [15], a 1% relative clearance decrease results in a flow capacity reduction of 0.5%.

From Figure 6.10c can be concluded that the absolute Tt ,49 error is decreased. Also, the dependency of
the Tt ,49 deviation on the actual calculated HPT clearance is slightly reduced. The reduction of the slope of a
linear regression through the points is 16%. This indicates the working of the algorithm.
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(a) HPT clearance versus efficiency deviation relationship (b) HPT clearance versus flow capacity deviation relationship

(c) Tt ,49 deviation versus the actual calculated clearance

Figure 6.10: HPT clearance relationships determined by algorithm on GEnx-1B model with modified LPS

LPT active clearance control
In Figure 6.11, the relationships for performance deviation of the LPT are displayed. The algorithm deter-
mined relationships that reduce the flow capacity and increase the efficiency for increasing the position of
the ACCLPT valve. As indicated before, the valve is scheduled with altitude. It essentially accounts for the
performance increase with altitude. Since no further information is known about the actual clearance, the
magnitude of the performance deviation can not be compared to literature. However, it is expected that the
turbines operate more efficiently during cruise, since the engines are designed to operate at their optimal
efficiency during cruise. Therefore, this is a successful result for compensating for operating conditions.
From Figure 6.11c can also be concluded that the algorithm reduced the dependency of the Ps,3 measurement
deviation and the valve position. The reduction of the slope of a linear regression through the points is 43%.
This is important because the Ps,3 value is strongly influenced by the LPT performance.

6.2.3. Performance of engine components
Again, the model can be analysed further by visualising the efficiencies at which the components operate.
Figure 6.12 shows three efficiencies:

• The efficiency of the baseline GEnx-1B model at take-off.

• The efficiency of the improved GEnx-1B model not accounting for relationships at cruise.

• The efficiency of the improved GEnx-1B model accounting for relationships at cruise.

As is visible, the efficiencies of the LPS are increased to their design values. This is an even higher effi-
ciency than the efficiency at which the baseline model operates during take-off conditions. This is logical
because it is expected that the operating efficiency during cruise is higher than during take-off.
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(a) LPTACC valve position versus efficiency deviation relationship
(b) LPTACC valve position versus flow capacity deviation relation-
ship

(c) Ps,3 versus the LPTACC valve position

Figure 6.11: LPTACC relationships determined by algorithm on improved GEnx-1B model

From Figure 6.12, is clear that the HPC, HPT efficiencies for the non adapted model with LPS modification
at cruise are lower than the efficiencies at take-off for the standard model. As can be seen from the results of
the adapted model, the algorithm correctly increases the efficiency of the HPC, HPT and LPT.

The efficiency of the HPC is corrected by the relationships for the HPC variable geometry. However, the
efficiency increase is lower than the relationship from the HPC suggest. This is caused by the fact that the
operating point in the compressor map is changed by the ∆Wc to a lower efficiency region, meaning the ∆η
also has to compensate for this efficiency loss. Altogether, these running efficiencies are closer to what is
expected from modern gas turbines compared to the analysis on the baseline model.

From these results can be concluded that the algorithm is capable of reducing the error between the
model and the on-wing measurements. This is all done on the basis of the secondary performance param-
eters. The following section will display the results of the application of these determined relationships on
different GEnx-1B engines.

6.3. Application of relationships on various GEnx-1B engines
To understand if the relationships are only suitable for one engine, this section displays the results of using the
determined relationships from the algorithm in combination with the improved model for different GEnx-1B
engines. For this analysis, five datasets with 300 operating points from engine ESN956XXXB to ESN956XXXF
are evaluated. In Figure 6.13, the average errors are given for the five GEnx-1B engine datasets with approxi-
mately the same EGTMHD. Both the results from the improved model and the improved model that accounts
for the relationships are displayed. As is clear from the figures, the improved model that accounts for the
relationships has a lower error between the model and the on-wing data for the other GEnx-1B engines.
The average modelling error is decreased from 1.8% to 0.7%. This is a decrease of 61%. The maximum
remaining error is 2% for the Ps,3 measurement from engine D. This error is probably caused by engine-
to-engine differences.

Figure 6.14 displays the standard deviation of the errors between the model output and on-wing mea-
surements. The standard deviations are mostly decreased. The average decrease in standard deviation is
7%. This substantiates the belief that the algorithm is capable of finding relationships that compensate for
the secondary performance parameters, as they also work when applied to different GEnx-1B engines. This
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Figure 6.12: Average component efficiencies GEnx-1B model with LPS modification

means that the determined relationships can be used to perform GPA on different engines as well, and no
overfitting to the 956XXXA engine dataset has occurred.

6.4. Conclusion
This section evaluated the results from the algorithm for the two models and the application of the rela-
tionships on different GEnx-1B engines. It is concluded that the algorithm does not operate properly on
the baseline model due to the fact that it has to overcome too large a performance difference. The results
from the algorithm on the improved model are promising. The N2, W f , ps,3, tt ,3 and the Tt ,49 errors are
reduced significantly. This was also true when applying the determined relationships on different engines.
Therefore, the algorithm can be used to decrease the modelling error caused by secondary performance pa-
rameters: VSVs/IGVs for the HPC and active clearance control for the HPT and LPT. Also, the direction of the
relationships based on the secondary performance parameters was consistent with literature. However, the
magnitude of the relationships is large compared to expectations. This will further be discussed in chapter 8.
The following chapter will perform an on-wing gas path analysis with both the improved GEnx-1B model not
accounting for the relationships and the improved GEnx-1B model with embedded relationships.
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Figure 6.13: Deviation results between model output and on-wing measurements with relationships applied on multiple
GEnx-1B engine datasets
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Figure 6.14: Standard deviation results between model output and on-wing measurements with relationships applied on
multiple GEnx-1B engine datasets





7
Gas Path Analysis on GEnx-1B on-wing

data

In this chapter, a gas path analysis is performed with the improved GEnx-1B model with the relationships
embedded and compared to the GPA results from the improved model without embedded relationships. This
chapter is divided into four sections. The first section introduces the background of the engine and the case on
which the working of the determined relationships is validated. The second section explains the GPA method-
ology. The third section displays the GPA results. Finally, conclusions are drawn.

7.1. Engine background
The engine that is used to validate the working of the determined relationships is the ESN956XXXA. This is
also the engine for which the relationships were determined. As already mentioned, this engine suffered an
EGT redline exceedance. Such an event requires instant engine removal for inspection. The cause of the
redline exceedance was an HPT stage 1 blade burn-down. This burn-down also damaged the LPT through
impact damage. As GPA should identify this failure, this is an ideal case to validate the increased accuracy of
the gas path analysis caused by accounting for the relationships. Aside from the redline exceedance event,
water washes are also identified. A water wash is a procedure by which the fouling on the engine compressor
blades is removed, enhancing the performance of the compressors. This should be clear from the GPA results.

7.2. GPA methodology
The GPA methodology that is used is described in subsection 3.1.6 and further specified by Rootliep [37]. The
performed analysis is a single operating point analysis for cruise conditions using the EA-GPA tool and the
variable bounds method [37]. Two analyses are performed:

• An analysis with the improved GEnx-1B model that does not account for the relationships.

• An analysis with the improved GEnx-1B model that does account for the relationships.

Both models feature the modified low pressure system. A comparison will be made on how well it identifies
the water wash and HPT blade burn-down. Also, the spread of the GPA results will be quantified as a root
mean square error of the GPA evaluations.

7.3. GPA results
In this section, the results from the gas path analysis are displayed. First, the results from the individual
components are displayed. In the graphs, the red area specifies the time frame of the overhaul after the
HPT blade burn-down. The vertical black lines indicate the water washes. The time is anonymised due to
confidentiality. The total time duration is 4 years. In the second section, the root mean square error of the
GPA results is quantified.
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7.3.1. Fan
In Figure 7.1, the GPA results from the fan are displayed. As is visible, no clear difference between the two
models is present. The GPA results are fairly constant over the whole time period. This is in line with the
expectations because the fan module does not suffer from severe deterioration. The small variation is also
partly due to the variable bounds method restricting the fan deterioration. Around the water washes, a small
peak in flow capacity and efficiency can be noted. This is in line with what is expected. The HPT blade failure
is also notable in the efficiency and flow capacity, which is not desired as the fan did not experience any
damage. This is probably caused by smearing. Accounting for the relationships does not seem to influence
the fan GPA results.

(a) Improved model not accounting for relationships (b) Improved model accounting for relationships

(c) Improved model not accounting for relationships (d) Improved model accounting for relationships

Figure 7.1: Fan GPA results
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7.3.2. LPC
In Figure 7.2, the GPA results from the LPC are displayed. As is clear, there is a noticeable difference between
the model that accounts for the SPPs and the model that does not. The efficiency and flow capacity peaks
after the water washes are more apparent for the model that does account for the SPPs. This is probably
caused by the accounting for the SPPs which takes away uncertainties in the GPA analysis leading to better
identification of deterioration. The HPT blade failure does not show up in the LPC flow capacity and efficiency
for both models, which is expected as this component did not suffer from the failure.

(a) Improved model not accounting for relationships (b) Improved model accounting for relationships

(c) Improved model not accounting for relationships (d) Improved model accounting for relationships

Figure 7.2: LPC GPA results
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7.3.3. HPC
In Figure 7.3, the results from the two models are displayed. As is clearly visible from Figure 7.3a and Fig-
ure 7.3b, the water washes are clearly visible in the efficiency graphs for both models. In Figure 7.3c and
Figure 7.3d, the flow capacity of the HPC is displayed. It is visible that the HPC flow capacity shift caused
by the water wash is more distinct for the model that accounts for the relationships. This is also expected
because of the large influence of the VSVs/IGVs on the HPC flow capacity. For both models, the HPT blade
failure does not show up as HPC deterioration. This is desirable since the HPC was not affected by the failure.
However, the overhaul has a strong effect on the flow capacity, which is not expected as no maintenance is
performed on this component. This phenomenon can have two explanations. One possible cause is the re-
rigging of the variable stator vanes leading to a different setting of VSV/IGV angles than the algorithm was
run for. The second cause can be a water wash that is performed during the test cell run, enhancing the
performance of the compressor.

(a) Improved model not accounting for relationships (b) Improved model accounting for relationships

(c) Improved model not accounting for relationships (d) Improved model accounting for relationships

Figure 7.3: HPC GPA results
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7.3.4. HPT
In Figure 7.4, the results from the HPT are displayed. As is clear, a slight HPT efficiency and flow capacity
change is visible after a water wash for both models. As the goal of a water wash is to decrease the compressor
fouling, no impact is expected on the HPT. This is probably caused by smearing. Besides, the indication of
the HPT blade burn-down is clearly visible. The efficiency is decreased, and the flow capacity is increased
before the actual HPT blade failure. Both these trends are in line with what is expected. The actual HPT blade
burn-down event is clear from the efficiency and flow capacity deviation of -4% and +2%, respectively. Also,
the performance restoration is clear after the overhaul. No difference in identifiability of the HPT blade burn-
down is seen between the two models. The difference between the two models is visible in the spread of the
HPT GPA results. The scatter of the flow capacity is lower for the model that accounts for the relationships,
which indicates the working of the algorithm. This is also confirmed by subsection 7.3.6.

(a) Improved model not accounting for relationships (b) Improved model accounting for relationships

(c) Improved model not accounting for relationships (d) Improved model accounting for relationships

Figure 7.4: HPT GPA results
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7.3.5. LPT
In Figure 7.5, the results from the LPT are displayed. As in line with theory, both models do not indicate a large
performance increase caused by a water wash. As mentioned, the HPT blade failure also damaged the LPT
component. The performance decrease is clearly indicated by both models in the decrease in efficiency. The
increase in flow capacity is better represented by the model that accounts for the relationships. Furthermore,
the model that accounts for the relationships features a reduction in scatter for the flow capacity GPA results.
This will also be confirmed in subsection 7.3.6. The following section will further discuss the scatter of the
GPA results.

(a) Improved model not accounting for relationships (b) Improved model accounting for relationships

(c) Improved model not accounting for relationships (d) Improved model accounting for relationships

Figure 7.5: LPT GPA results
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7.3.6. GPA root mean square error
In Figure 7.6, the root mean square error (RMSE) from the GPA evaluations is given for both models. This
is done to quantify the scatter of the GPA evaluations. This value is determined by calculating the RMSE of
the individual GPA evaluations with respect to a linear regression that is constructed between the individual
water washes and the HPT failure event. This is an important metric because it quantifies the unmodelled
effects. Hence, a lower RMSE means a more accurate GPA assessment. As expected, the RMSE for most com-
ponent evaluations is reduced. The average RMSE overall engine health parameter evaluations is reduced by
8%. This is a successful result and also indicates the working of the algorithm.

7.4. Conclusion
From the results in this chapter is concluded that accounting for secondary performance parameters by using
the determined relationships increases GPA accuracy. The model that accounts for the relationships shows
better correspondence with known engine history information. Also, the GPA results scatter is decreased.
The following chapter will discuss the results of this thesis.

Figure 7.6: RMSE of GPA evaluations
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Discussion

This chapter will put the findings of this thesis into context and will discuss their relevance and limitations.
First, the major findings are summarised, after which the results from the algorithm on the baseline model are
discussed. Afterwards, the results from the improved model are discussed. Subsequently, the results of using the
relationships on different engines are treated. Lastly, the GPA results are discussed.

8.1. Major findings
The main research question of this thesis was: can relationships based on secondary performance param-
eters and determined by an evolutionary algorithm increase the accuracy of GPA engine models for various
operating conditions? To answer this question, this research identified the following major findings.
The results from the verification of the algorithm on simulated data indicate that the algorithm can accurately
identify secondary performance parameter effects. The validation of the algorithm using GEnx-1B on-wing
data and the baseline engine model resulted in unrealistic relationships. The validation using the improved
engine model suggests that the algorithm can identify relationships between secondary performance param-
eter effects and the consequent component performance deviation that are in line with literature. Accounting
for these relations increased model accuracy and consequently GPA accuracy. The following section will
discuss the results from the algorithm in the baseline GEnx-1B model.

8.2. Results baseline model
As indicated in section 6.1, the application of the algorithm on the baseline model resulted in the algorithm
failing to determine relationships that were in line with literature. Since the deviation between the model
output and the on-wing measurements was too large, the relationships could not reduce the deviation to
zero percentage. Mainly the fuel flow and the exhaust gas temperature deviated by a large margin. This is
likely caused by an incorrect operating point in the fan and LPC map at cruise conditions.

Following Kurzke, [29] the operating point in the fan map moves away from the surge line when going
from take-off to cruise due to the nozzle getting choked during cruise conditions. This is accompanied
by the operating point shifting to an area of higher corrected flow and efficiency and lower pressure ratio.
However, this does not happen in the current model. An analysis indicated that this behaviour was caused by
an incorrect velocity coefficient in the bypass nozzle of the design point model. This caused a large residual
modelling error.

As mentioned, the algorithm tries to reduce the difference between the on-wing measurements and the
model output to zero percentage. Therefore, the algorithm compensates for the large residual modelling
errors by overestimating the magnitude of the secondary performance parameter effects. This effect is ag-
gravated by the reduction of gas path sensors in modern turbofan engines. However, Stamatis [45] indicated
that using multiple operating points in the algorithm can mitigate the reduced sensor problem. The multi-
operating point method is also used in the proposed algorithm. The results indicate that using this method
did not mitigate the reduced sensor problem in this application.

It is determined that the algorithm is not able to accurately separate the effect of residual modelling error
from secondary performance parameter effects.

87



88 8. Discussion

8.3. Results improved model with modified low pressure system
As mentioned, the results from the baseline model suffer from incorrect mass flows through the fan and LPC.
Therefore, an improved model is introduced, which is the baseline model modified by decreasing the mass
flow through the fan and the LPC and increasing the efficiency towards their design efficiency. However, a
reduction in fan and LPC corrected mass flow goes against the expected engine behaviour when going from
take-off to cruise operating conditions.

As explained, the corrected mass flow through the fan should increase when going from take-off to cruise
for large bypass turbofan engines. In the current models, this does not happen as explained in the previous
section. To increase the engine model accuracy, the work required by the fan is decreased. This can be done
in two ways, decreasing the pressure ratio or the mass flow. For this analysis, the mass flow is decreased
to reduce the large error in Tt ,25, fuel mass flow and exhaust gas temperature to a reasonable level. The
modifications made influence the results of the algorithm and thereby the generalisability of the results.

The results from the algorithm on the improved model provide insight into the ability to reduce the
modelling error by determining relationships based on secondary performance parameter settings.

From literature follows that the closing of the IGVs/VSVs of the HPC mainly changes the relationship
between the corrected flow and rotational speed. Closing the vanes should result in lower corrected flow
associated with the corrected speed lines [27]. This should increase the N2 rotational speed for constant N1

speed [29]. The results from using the relationships are in accordance with literature as the corrected flow is
decreased and the N2 speed is increased. Decreasing the turbine clearance should increase the efficiency and
decrease the flow capacity [6, 63]. The algorithm determined relationships that increased the efficiency for
smaller clearances and decreased the flow capacity. The direction of the relationships is in line with literature.
However, the magnitude of the efficiency increase is large [63]. This can still be caused by residual errors in
the low pressure system. Also, the literature is only a reference value. The exact influence of the clearance
can vary for different turbines. The LPTACC relationships have a small magnitude but managed to reduce the
dependency of the Ps,3 deviation on the ACCLPT valve position. This is a successful result for compensating
for the LPT performance difference at various operating conditions. However, it can not be compared to
literature because no actual clearance is known.

These results indicate correct compensation for the secondary performance parameters regarding the
direction of the performance deviation captured in the relationships. Accounting for these relationships in
the engine model reduces modelling error. This is a satisfactory result.

As mentioned, the results of the algorithm are influenced by the quality of the model used in the case
study. Therefore, to validate the algorithms ability to identify the secondary performance parameter effect
with more certainty, a higher accuracy engine model is required.

8.4. Application of relationships on multiple engines
For the multi-engine analysis from section 6.3, five engines are chosen with an approximately equal EGT
margin hot day. The determined relationships are tested on multiple GEnx-1B engines. From the results
can be concluded that the error is strongly decreased, indicating that severe overfitting on ESN956XXXA has
not occurred. Still, some errors are present. This can be explained by the fact that the various engines may
have the same EGT margin but not the exact same deterioration grade of the engine. The differences may be
present due to engine-to-engine differences. Another possible explanation can be that the training dataset of
the algorithm contained data points from flights with a different EGTMHD compared to the selected 5 GEnx-
1B engines, as the data points are randomly selected from the time period specified in section 5.5. In this
time period, the EGTMHD varies slightly. If the relationships could be calibrated using a set of engines, the
relationships would be created for the absolute baseline performance of the average GEnx-1B engine. This
might be possible when the first GEnx-1B engines start receiving full shop visits.

8.5. Gas path analysis on GEnx-1B on-wing data
With the improved model that accounts for the relationships, a gas path analysis is performed. The results are
compared to the GPA analysis from the improved model that does not account for the relationships. Overall,
a decrease in RMSE of the GPA evaluations is achieved by accounting for the relationships. Besides, using the
relationships resulted in better identification of the water washes and the turbine blade failure. However, the
RMSE of the GPA evaluations is still high. This is probably caused by errors in the LPC and fan map. Therefore,
the LPC and fan component maps should be tuned for more accurate results. Besides, as already explained,
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the effect of the velocity coefficient in the nozzles from the model should be investigated to achieve better
results.





9
Conclusions & recommendations

Based on the results in this report, the main conclusions are drawn, and an answer is given to the research
question: Can relationships based on secondary performance parameters and determined by an evolutionary
algorithm increase GPA model accuracy and consequently GPA accuracy? Also, recommendations are provided
for further research.

9.1. Conclusions
The goal of this thesis is to research the possibility to increase the accuracy of the GEnx-1B model at cruise
conditions based on the additional information on the secondary performance parameters. The main areas
of interest are GEnx-1B engine data, secondary performance parameters, GPA model development, and al-
gorithm development. Combining these concepts led to the development of an algorithm that determines
relationships between secondary performance parameters and component performance deviation based on
on-wing performance data. This thesis investigates if accounting for these relationships increases engine
model accuracy and consequently GPA accuracy. The conclusions from this research are displayed below:

• Secondary performance parameters: Engine performance is influenced by secondary performance
parameters like variable geometry, bleed flows, clearance control and the power off-take. Modern
turbofan engines collect Continuous Engine Operating Data (CEOD), in which information on the
secondary performance parameter settings is stored. From CEOD analysis, it is concluded that the
secondary performance parameter settings are significantly different at cruise conditions compared to
take-off conditions.

• Methodology: The proposed method uses a differential algorithm, which is a sub-form of the evolu-
tionary algorithm class, combined with on-wing performance data to determine relationships between
secondary performance parameter settings and the consequent performance deviation of the compo-
nent. The differential algorithm is used as optimiser because of its ability to deal with noisy data and
local minima. On-wing performance data is used because of the great amount of information on the
secondary performance parameters.

• Verification of method: The introduced method is verified using simulated data from the standard
BIGFAN GSP model. The algorithm proved capable of accurately identifying the effects of secondary
performance parameters on three components using 12 engine measurements. Reducing the number
of available measurements to 6 makes the identification of individual secondary performance param-
eter effects more prone to error. Overall, it is concluded that the algorithm can determine relationships
that reduce modelling error if accounted for in engine models.

• Validation of method using baseline GEnx-1B model: The method is validated using on-wing cruise
data from the ESN956XXXA GEnx-1B engine and the baseline GEnx-1B model created by Moorselaar
[50]. The results from the algorithm on the baseline model show that the algorithm is not able to
determine relationships that are in line with literature. This is caused by smearing, which is wrongfully
attributing performance deviation caused by one component to another component. The modelling
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error in the LPC and fan component is attributed to secondary performance parameter effects that
influence the HPC, HPT and the LPT. It is concluded that the algorithm is not able to accurately separate
residual modelling errors from the secondary performance parameter effects.

• Validation of method using improved GEnx-1B model: Further validation is performed using on-
wing cruise data from the ESN956XXXA GEnx-1B engine and the improved GEnx-1B model, which
has a modified fan and LPC component. The results from the algorithm with the improved GEnx-
1B model display relationships between the secondary performance parameters and the component
performance deviation that are in line with literature. Embedding these relationships in the improved
GEnx-1B model reduced the modelling error to within a margin of 1%. The average modelling error is
reduced by 65%.

• Relationships from algorithm applied on other GEnx-1B engines: The determined relationships are
generated by the algorithm for ESN956XXXA engine data. These relationships were embedded in the
improved GEnx-1B model. This model is tested using CEOD datasets from 5 different GEnx-1B engines
with equal EGTMHD. For these engines, the deviation between on-wing data and model output is
decreased to within a maximum of 2%. The average modelling error is reduced by 61%. It is concluded
that accounting for the relationships also reduces modelling error when applied to data from different
GEnx-1B engines.

• GPA accounting for relationships: Using the improved GEnx-1B model with the relationships embed-
ded, a gas path analysis is performed on historical on-wing data and compared to GPA results from the
model without embedded relationships. The GPA results from the GEnx-1B model with the embedded
relationships better correspond with known engine history information such as water washes and a
turbine blade failure. Also, the root mean square error of the GPA results, which is an indicator of the
scatter, is decreased by 8%. It is concluded that accounting for the relationships increases GPA accuracy.

• Main conclusion: The main conclusion from this research is that the introduced algorithm can de-
termine relationships between secondary performance parameters and component performance de-
viation that are in line with literature. Accounting for these relationships in engine models increases
model accuracy for cruise conditions. Consequently, the gas path analysis accuracy is improved.

9.2. Recommendations
The algorithm has shown promising results. Still, improvements can be made. In this section, the recom-
mendations for KLM ES and further research are listed.

• In this research, the assumption was made that the difference between the on-wing measurements and
the GEnx-1B model output was mainly caused by the secondary performance parameters. This turned
out to be an invalid assumption. For further validation of the algorithm, an engine model is required
that does not contain additional modelling error.

• From the results of this thesis was concluded that the baseline GEnx-1B model does not accurately
represent the cruise operating point. An analysis of the GEnx-1B model pointed out that this might
be caused by the velocity coefficient in the nozzle being too low. However, further research should be
performed to validate this claim.

• The objective function used in this thesis aims to decrease the deviation between on-wing measure-
ments and model output. To increase the chance of the algorithm resulting in relationships that are
in line with literature, multi-objective optimisation can be performed. By implementing an objective
function that contains a penalty for a solution that is not in line with literature, better results might be
obtained.

• For KLM ES it is advised to improve the GEnx-1B model’s compressor maps. By verifying the physicality
of implemented compressor maps, the model accuracy can be increased. For instance, component
map tuning can be performed by taking compressor physics into account to make sure they are in line
with physical behaviour.

• In this research, the algorithm is run on an engine that does not fully represent the engine new state. In
the future, Performance Restoration Shop Visits will take place for the GEnx-1B engines. These engines
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will better represent the new state of the GEnx-1B engine. This enables the algorithm to determine rela-
tionships that are not influenced by deterioration. Also, the algorithm could be run on a dataset created
with data from various GEnx-1B engines. This could prevent overfitting on one engine altogether.
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A
Gas path analysis on next-generation

turbofan engines at KLM ES

MSc Assignment for Michiel Ottens, Propulsion Power (FPP), Faculty of Aerospace Engineering

Introduction
KLM Engine Services (ES) is part of Air France Industries KLM Engineering Maintenance Group, overhauling
approximately 200 aircraft engines annually. The overhaul shop visit ends with a standardized performance
test, to assess compliance to certification rules and customer contracts, before it is released for operation
on-wing. At two different locations, the following turbofan engine types are tested:

• CFM56-7B KLM EM Testcell / Schiphol-Oost

• CF6-80E1 KLM EM Testcell / Schiphol-Oost

• CF6-80C2 KLM EM Testcell / Schiphol-Oost

• GEnx-1B Zephyr Testcell / Charles de Gaulle Airport, Paris

• CFMI LEAP-1A -1B (in gradual introduction)

Over the years KLM ES Engineering has used GSP (Gas turbine Simulation Program) as a supporting tool
to analyze and evaluate engine performance data. Gas Path Analysis (GPA) techniques are used to translate
engine performance data into component condition information. For optimal performance analysis accu-
racy, parameter inputs from all gas path sensors at the various engine stations are required. With new engine
types such as the GEnx and the LEAP, the OEM does no longer provide the ability to install the additional
sensors at the various engine stations, hence data input is limited, resulting in reduced potential to accurately
analyze performance. This issue has been overcome by implementing a Multiple Operating Point Analysis
(MOPA) in a GSP performance model, solved with a Evolutionary Algorithm (EA) optimizing routine.

The other feature that distinguishes next-generation turbofan engines from their older counterparts is the
introduction of Continuous Engine Operating Data (CEOD). CEOD include data required for detailed analysis
of in-flight engine performance. By selecting specific points representing operating conditions suitable for
accurate performance and GPA analysis, accurate assessment of engine component health can be made.

The objective of the assignment is to develop the MOPA-EA method into an on-wing condition monitor-
ing tool for the GEnx-1B engine to be used for work scope decision support.

Key objectives

• Develop a system that automatically extracts and processes CEOD data for MOPA-EA.

• Improve the hybrid MOPA-EA GPA tool to decrease runtime and increase component health assess-
ment accuracy.

101



102 A. Gas path analysis on next-generation turbofan engines at KLM ES

Assignment
Your work will include the following elements:

1. A literature study on turbofan engine performance modelling and test analysis, including GPA with
reduced number of measured of parameters.

2. Introduction to current KLM performance and EGTM condition monitoring practice and relation to
the maintenance concept.

3. Introduction to GSP (test analysis and gas path analysis models) as applied to KLM engines.

4. Familiarization with current MOPA-EA GPA tool.

5. Develop a concept how to integrate the tool into the maintenance process as a work scope decision
support tool.

Report
Results of the work must be reported in English, with a copy of this assignment and an executive summary.

Coaching
The work will be performed in close collaboration with KLM Engine Services (Michel Nollet/Juan Regueiro)
Date 19 November 2019

Professor, Delft University supervisor, Supervisor at KLM

Prof. dr. ir. P. Colonna Dr. ir. W.P.J. Visser Juan Regueiro



B
Thermodynamics of gas turbine theory

In this appendix, the theoretical framework for this research is introduced. First, the ideal Joule-Brayton cycle
and its corresponding thermodynamic laws are discussed. Secondly, the real Joule-Brayton cycle is explained.
Lastly, the modelling and calculation methods for design point are given.

B.1. Ideal Joule-Brayton cycle
As introduced in chapter 2, the gas turbine works following the ideal Joule-Brayton cycle. These steps can
also be visualised in an h-s diagram as in Figure B.1.

• Step 0-2 Ideal expansion in the inlet.

• Step 2-3 Isentropic compression in the compressor.

• Step 3-4 Isobaric heat addition in the combustor.

• Step 4-g g Isentropic expansion in the turbine.

• Step 5-0 Isobaric heat rejection from the nozzle.

For this ideal cycle the following assumptions are made:

1. The airflow through the gas turbine is a perfect gas.

2. The compression and expansion process is adiabatic and reversible.

3. No pressure loss occurs in the ducting, inlet, combustion chamber and nozzle.

4. Kinetic energy changes between the components can be neglected.

As is visible in Figure B.1, the compression and expansion is isentropic. The g g point in the graph is
denoting the location in the turbine at which all the work needed to drive the compressor, is extracted.
To calculate the properties of temperature and pressure throughout the gas turbine, fundamental laws of
thermodynamics are introduced in the following section.

B.2. Fundamental laws
To theoretical framework of turbomachinery is based on basic physical laws of fluid mechanics and thermo-
dynamics. The introduction of these laws is necessary to derive relations between the various components in
the gas turbine. The following laws and equations will be discussed:

• The continuity equation

• The first law of thermodynamics

• The second law of thermodynamics
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Figure B.1: Entropy-enthalpy graph of a gas turbine

B.2.1. The continuity equation
The continuity equation states that the rate of the mass that flows into the system is equal to the rate at which
mass leaves the system plus the rate of mass accumulation in the system. This law is visible in Equation B.1,
in which c is the velocity, ṁ is the mass flow rate, ρ the density and An the area perpendicular to the flow di-
rection. With regards to steady-state turbomachinery, this equation can be rewritten to Equation B.2 because
no accumulation of mass occurs in the individual components and the control volumes are often ducts or
passages. In this equation, the subscripts 1 and 2 denote the inlet and outlet of the component.

dṁ = dm

dt
= ρcd An (B.1)

ṁ = ρ1c1 An1 = ρ2c2 An2 (B.2)

B.2.2. The first law of thermodynamics
The first law of thermodynamics states that energy can neither be created nor destroyed[59]. In the case of a
gas turbine, this law can be applied to form the steady flow energy equation visible in Equation B.3 [5].

Q̇ −Ẇ = ṁ

[
(h2 −h1)+ 1

2

(
c2

2 − c2
1

)]
(B.3)

This equation can be further simplified by using the total enthalpy. The total enthalpy is the combination
of the specific enthalpy and the kinetic energy given in Equation B.4. This results in Equation B.8. Since for
a perfect gas, the cp does not vary with temperature, the total enthalpy can also be given as in Equation B.5.
The use of working with total properties is that the kinetic energy in the flow can be taken into account by
forcing the flow to stagnation adiabatically. Using this result, properties in gas turbines can be measured by
pitot tubes and the flow velocity can be taken into account without measuring it. This same analogy holds for
the total temperature and pressure visible in Equation B.6 and Equation B.7 respectively.

h0 = h + 1

2
c2 (B.4)
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h0 = cp ·T0 = h + 1

2
c2 (B.5)

T0 = T + c2/2cp (B.6)

p0

p
=

(
T0

T

)γ/(γ−1)

(B.7)

Consequently, Equation B.3 can be rewritten as Equation B.8. Because the property calculations for var-
ious gas turbine components can be derived from it, this relation is of great importance for turbomachinery
analysis.

Q −W = (h02 −h01) = cp (T02 −T01) (B.8)

For a component which causes an adiabatic compression, Q = 0 and Equation B.9 is applicable.

W =−cp (T02 −T01) (B.9)

Similarly for a component in which heat is added and no work is done, W = 0 and Equation B.10 is applicable.

Q = cp (T02 −T01) (B.10)

Also Equation B.7 can be used to derive the relation for an isentropic compression between the inlet and
outlet of a component by using Equation B.11

p02

p01
=

(
T02

T01

)γ/(γ−1)

(B.11)

These relation described are relations for isentropic processes. However, in practice, the behaviour of com-
ponents is not ideal. The second law of thermodynamics deals with this matter and is introduced in the
subsequent section.

B.2.3. Second law of thermodynamics
The second law of thermodynamics deals with entropy. Entropy is described as a measure of the microscopic
randomization, disorder and unpredictability of a certain medium [60]. Contrary to ideal processes which are
isentropic, in real processes entropy is generated. Entropy production can never be negative. The entropy
generated in gas turbines can be seen as a loss of energy available to do work. The quantity of entropy
generated relative to the potential ideal energy can be described by efficiencies of gas turbine components.
The following section will deal with the calculation of the real cycle.

B.3. Real cycle
To relate the ideal thermodynamic process to actual performance, isentropic efficiencies are defined. By
means of these efficiencies, the ideal equations from section B.2 can be adapted to be applied on real ther-
modynamic cycles. Apart from the thermodynamic efficiencies, several other efficiencies are of importance
for gas turbine cycle calculations. The other considered efficiencies are:

• Combustion efficiency

• Mechanical efficiency

• inlet efficiency

• Nozzle efficiency

Besides the efficiencies, the real cycle also works with a non-ideal gas. Although it behaves close to ideal,
the Cp and γ value vary with gas composition, pressure and temperature for a non-ideal gas. Often these are
assumed constant, as is done for the following real cycle analysis.
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B.3.1. Isentropic efficiency
As states in subsection B.2.3, real thermodynamic processes are inherent to entropy generation and are
therefore not isentropic. The extent to which these processes are not isentropic is determined by the ratio
between actual work and ideal work, also called isentropic efficiency. For the compressor and turbine, these
equations are defined as follows.

For the compressor, the isentropic efficiency is defined as in Equation B.12 and Equation B.13.

ηcomp = T ′
02 −T01

T02 −T01
(B.12) ηi s,comp =

(
p02
p01

) γ−1
γ −1

T02
T01

−1
(B.13)

For the compressor, the isentropic efficiency is defined as in Equation B.14 and Equation B.15.

ηtur b = W

W ′ =
T03 −T04

T03 −T ′
04

(B.14)
ηi s,tur b =

1− T04
T03

1−
(

p04
p03

) γ−1
γ

(B.15)

B.3.2. Combustor efficiency
The last relevant thermodynamic efficiency for gas turbine modelling is the combustor efficiency. The com-
bustor efficiency is defined as the actual extracted energy over the maximum potential energy available in the
fuel. This efficiency can be calculated following Equation B.16 in which LHV is the lower heating value of the
fuel. ṁ f is the fuel mass flow and ṁ is the air mass flow.

ηcc =
ṁ · cpg as

(
T0,4 −T0,3

)
m f ·LHV f

(B.16)

B.3.3. Mechanical efficiency
Since the compressor and turbine are mechanically coupled by a shaft, there is a mechanical loss present in
the form of a bearing friction loss.

ηmech = cp (T02 −T01)

Wturb
(B.17)

B.3.4. Inlet efficiency
The inlet of a turbofan engine is a slightly diverging duct to decrease the Mach number at the fan face below
M=0.6 and increase the pressure. Since the aircraft is moving at a certain velocity, the ambient air can be
seen relative to the airplane as approaching the aircraft with a certain Mach number. Recalling Equation B.6,
Equation B.7, and the isentropic efficiency of the inlet Equation B.18, Equation B.19 can be constructed in
which T ′

01 is the temperature that would be reached in case of isentropic compression.

ηi =
T ′

01 −Tamb

T01 −Tamb
(B.18) T ′

01 −Tamb = ηi
c2

amb

2cp
(B.19)

With the fact that M = c/(cp (γ− 1)T )1/2 this equation can be rewritten as a function of the flight mach
number in Equation B.20.

p01

pamb
=

[
1+ηi

γ−1

2
M 2

amb

]γ/(γ−1)

(B.20)
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B.3.5. Nozzle efficiency
For the calculations regarding the nozzle, two variants are available. For the case of an unchocked and choked
nozzle. For both cases, an equation will be given. To determine if the nozzle is choked, Equation B.21 is
established. If this equation surpasses the value of the critical pressure ratio, the nozzle is choked. If not, the
nozzle is not choked and the flow can expand to the ambient pressure.

cr i t i cal pr essur e r ati o = p07

pcritical
=

[
1− 1

η j

(
γ−1

γ+1

)]( −γ
γ−1

)
(B.21)

Unchoked
As stated, the unchoked nozzle results in an outlet pressure that is equal to the ambient pressure. For the
outlet temperature, Equation B.22 can be used. In which η j is defined as in Equation B.23.

Tin

Tout
= 1

1−η j

(
1− pamb

p07

γ−1
γ

) (B.22)
η j = T07 −T08

T07 −T ′
08

(B.23)

Choked
For a choked nozzle, the pressure ratio is constrained by the critical pressure ratio, and the temperature by
the critical temperature ratio. Since the Mach number is equal to 1 in the throat of the nozzle, the mass flow
can not be increased by decreasing the ambient pressure. The relation for the critical temperature ratio is
given in Equation B.24.

T Rcrit = T0i n

Tcr i t
= γ+1

2
(B.24)

The relation for the critical pressure for a choked nozzle is defined as in Equation B.21.
With these relations, a real cycle design point calculation can be performed. The following section de-

scribes the calculation scheme.

B.4. Real cycle design point calculation
In this section, a real engine design point calculation is performed by making use of the above-mentioned
equations. A design point is a region for which the gas turbine is designed and will operate the majority of
its lifespan. Since the real cycle incorporates efficiencies, the h-S diagram of the Joule-Brayton cycle is also
different from the ideal cycle diagram. The real cycle diagram is visible in Figure B.2.

In Figure B.2, station numbers are used. These station numbers are defined as in Figure B.3 and Table B.1.
This follows the standard ARP engine station numbering and nomenclature [58]. This standard will be used
throughout this whole research to indicate the station numbers for high bypass gas turbines. In the following
section, an design point engine calculation is performed from inlet to outlet.

Station number Station Station number Station
2 Fan hub inlet 4 Combustor outlet
12 Fan tip inlet 49 HPT outlet
21 LPC inlet 18 Bypass Nozzle throat
14 Bypass stream 5 LPT outlet
25 HPC inlet 7 Core nozzle inlet
3 HPC outlet 8 Core nozzle throat

Table B.1: Standard ARP engine station numbering [58]

B.4.1. Inlet
The first component the air passes through is the inlet, to calculate the total pressure and temperature in
the inlet, Equation B.20 and Equation B.18 are used respectively. This means that the ambient conditions,
efficiencies and flight Mach number are inputs for the calculation.
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Figure B.2: Entropy-specific enthalpy graph of a real gas turbine cycle

Figure B.3: GEnx-1B station numbering [9]

B.4.2. Fan, low-pressure and high-pressure compressor

The fan, low-pressure and high-pressure compressor all work as a compressor and therefore the relation
between the inlet and outlet pressure is given by the pressure ratio. The pressure ratio is often defined for
these turbomachinery components. From the given pressure ratios and efficiencies, the total temperature
ratios over these components can be calculated using Equation B.13. For this equation, the input isentropic
efficiency is defined.
Right behind the fan, the airflow is divided into the bypass flow and core flow. The relation between the
bypass ratio and the mass flows is given by Equation B.25.

BPR = ṁby pass

ṁcor e
(B.25)
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B.4.3. Combustor
The combustor is modelled by using the relation given in Equation B.16, for which the combustor efficiency
is given. In the combustor, pressure losses also occur. These pressure losses are defined as in Equation B.26,
in which the pressure ratio is defined.

pt ,4 = PRcombustor ∗pt ,3 (B.26)

B.4.4. Low-pressure and high-pressure turbine
The calculated properties at the outlet of the low and high-pressure turbine are determined based on the work
performed in the compressors. The fan and low-pressure compressor are coupled via the N1 axis, to the low-
pressure turbine. Also the high-pressure compressor is coupled to the high-pressure turbine via the N2 axis.
The energy extracted in the turbines multiplied by the mechanical efficiency is equal to the work performed
in the compressors and fan. This relation is given in Equation B.17. By using the relation from Equation B.15,
the outlet pressure of the components can also be calculated. Note that the isentropic efficiency is an input
to the calculation.

B.4.5. Nozzles
The last station at which the air exits the gas turbine is the nozzle. For both the core and bypass nozzle,
the chocked and unchoked case exist. These scenarios are discussed below. The criteria for which the
flow is chocked is given in Equation B.21. The resulting thrust that the gas turbine generates is given in
Equation B.27.

FN = Fcore +Fbypass (B.27)

Unchoked
For the unchoked scenario, the thrust for the core and the bypass nozzle is given by Equation B.28 and Equa-
tion B.29 respectively. The temperature of the exit flow is determined by Equation B.22 and the pressure is
determined by the ambient pressure. By using the outlet temperature, the outlet v8 and v18 can be calculated
to perform the real thrust computation. To approximate the boundary layer losses in the nozzles, a nozzle
isentropic efficiency is used.

Fcore = ṁcor e (v8 − v∞) (B.28)

Fbypass = ṁby pass (v18 − v∞) (B.29)

Choked
In the choked scenario, the nozzle flow can not fully expand and the thrust equation includes a pressure
component. The temperature of the exit flow is determined by Equation B.24 and the pressure is determined
by the critical pressure ratio as in Equation B.21 in which the nozzle losses are included. Using the equation
for the speed of sound from Equation B.32 the nozzle exit velocity can be calculated.

Fcore = ṁcor e (v8 − v∞)+ A8
(
p8 −pa

)
(B.30)

Fbypass = ṁby pass (v18 − v∞)+ A18
(
p18 −pa

)
(B.31)

vnozzle exi t =
√
γg RTnozzle exi t (B.32)

Combining the by using the conservation equation of mass and the perfect gas law, the pressure thrust
component can be determined following Equation B.33, Equation B.34 and finally Equation B.30. This con-
cludes the cycle calculation.

ρ8 = p8

R ·T8
(B.33)

A8 = ṁ

ρ8v8
(B.34)





C
Additional figures methodology

C.1. Results reduced sensors
In this appendix, the additional results from the proof of concept are displayed.

Figure C.1: Results from simulation with reduced sensors
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C.2. Results noise methodology

(a) ∆η vs HPC IGV/VSV relationships (b) ∆Wc vs HPC IGV/VSV relationships

(c) ∆η vs HPT clearance relationships (d) ∆Wc vs HPT clearance relationships

(e) ∆η vs LPT clearance relationships (f) ∆Wc vs LPT clearance relationships

Figure C.2: Simulated relationships vs relationships from algorithm with noise
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Figure C.3: Results from simulation with noise
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C.3. Bounded results methodology

(a) ∆η vs HPC IGV/VSV relationships (b) ∆Wc vs HPC IGV/VSV relationships

(c) ∆η vs HPT clearance relationships (d) ∆Wc vs HPT clearance relationships

(e) ∆η vs LPT clearance relationships (f) ∆Wc vs LPT clearance relationships

Figure C.4: Simulated relationships vs relationships from algorithm with larger bounds
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Figure C.5: Optimiser results from unbounded algorithm





D
Sensitivity analysis algorithm

To indicate the effect of varying the algorithm settings, this appendix contains a sensitivity analysis. In this
analysis, one parameter is changed and the other parameters are kept constant.

The constant baseline values are displayed below:

• CR=0.7

• F=[0.5,1]

• NP=5

• Q=10

• OP=30

The results are judged by capturing the r msOP and the r mscur ves of the last iteration. Also, the running
time is evaluated. The results from this analysis are displayed in Figure D.1. The results are plotted against
the changed algorithm parameter.

Crossover constant
The crossover constant CR determines the chance that a variable from the target vector is replaced by the
variable from the mutant vector to form the trial vector. A large CR decreases the number of generations it
takes for the algorithm to converge but will decrease the variety in the populations. A small CR will lead to
slower convergence but will therefore enhance the search in a wide solution space to prevent local minima
convergence. As changing CR does not change the running time of the algorithm, the best performing value
can be chosen without compromising on run duration. The lowest r msOP value is found for a CR of 0.5.
However, the lowest r mscur ves is found for a CR of 0.9. Since r mscur ves is the measure of the actual ability of
the algorithm to reproduce the SPP relations, this is the leading variable to judge the performance. So a CR
of 0.9 is the most logical choice. But, the difference in r mscur ves between the two CR values is small and a
higher CR increases the chance of getting stuck in a local minimum. Therefore, the choice is made to favour
the CR of 0.5 over 0.9. Accordingly, this value will be used during the case study.

Amplification factor
The amplification factor F determines the strength of the mutations. With a low amplification factor, fast
convergence takes place. A high amplification factor slows down convergence but increases the searching
radius. F is a value between 0 and 2 and is specified in the algorithm as a range between two values. The
algorithm randomly selects a value in the specified range to use as the amplification factor for a certain
generation.

As F = [1,1.5] yields the lowest r mscur ves , this seems the logical choice. But the corresponding r msOP is
very high indicating that the algorithm has not converged. Therefore, this r mscur ves value is not expected
again if the algorithm was run again. So, the choice is made to use F = [0.5,1], which is accompanied by a low
r msOP and r mscur ves .
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Maximum iterations
The maximum number of iterations Q influences the running time almost linearly, this is visible in Figure D.1.
The effect on r msOP when going from Q=5 to Q=10 is most pronounced. The effect of going from Q=10 to
Q=15 is negligible. The effect of Q on r mscur ves is clear, more iterations means a lower r mscur ves . However,
additional iterations cost more time. Therefore, Q is kept at 10.

Operating points
The number of operating points OP at which the difference between the measurements and the model output
is calculated, is also specified by the user. Again the algorithm running time is influenced by the number of
evaluated operating points. There is no clear relation between r msOP and the number of operating points.
Also, there is a positive relation between r mscur ves and increasing OP. Therefore it is kept at 30.

Population size
The population size NP determines the number of target, trial and mutant vectors created. More vectors
enlarge the searching space within one iteration but will come at the cost of a longer computational time.
Storn [46] suggest using 5 to 10 times the number of variables in the optimisation. Again there is no clear
relation between NP and the r msOP and r mscur ves . Therefore, the choice has been made to use 5 times the
number of variables. So for optimisation of 12 variables, 5 ·12 = 60 trial vectors will be tested per generation.

Figure D.1: Final rms value and running time from sensitivity analysis



E
GSP input & data pre-processing

This appendix explains how is dealt with further on-wing effects and data pre-processing.

E.1. Input parameters in GSP
The on-wing situation changes the environmental conditions. How these effects are treated, is introduced in
this section. The effect considered are: the humidity effect and the inlet.

E.1.1. Humidity effect
As mentioned in subsection 3.3.2 the humidity plays a role in GPA. Since the cruise altitude is above 6000m,
the absolute humidity at cruise is taken as 10%.

E.1.2. Inlet
The inlet bellmouth in the test cell is different compared to the on-wing inlet situation. This can lead to less
accurate GPA results from on-wing data because the test cell model is calibrated with test cell data. However,
as input to the model, Pt ,2 is used. This parameter takes the different inlet into account since it measures the
total pressure at the fan face.

E.2. Data pre-processing
Besides on-wing effects, on-wing data also introduces other uncertainties. The uncertainties discussed are
the measurement error, operational steady-state assumption and thermal steady state assumption. To over-
come them, data pre-processing is required. How this is performed, will be discussed in this section.

E.2.1. Measurement error
The sensors of the GEnx-1B engine all have their accuracy and range. Since the measurement error of these
sensors can propagate through into the GPA results, it is of interest to know their accuracy. The range of the
sensors en accuracy is visible in Table E.1. In section 4.4, an analysis was performed with noisy data. The
algorithm proved capable of working with noisy data. Therefore, no sort of filtering is applied.

Sensor Accuracy Units

N1,N2 ±0.12 RPM

W f ±3.5% of measurement pph

Tt ,12,Tt ,25,Tt ,3,Tt ,49 ±0.4% of measurement ◦C

Pt ,2 ±0.01 psia

Ps,3 ±0.36 psia

Table E.1: Accuracy of sensor set GEnx-1B engine [9, 10]
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E.2.2. Operational steady-state
A steady-state point is needed to perform the GPA. In the on-wing situation, the snapshots already provide a
near steady-state point, but the CEOD also contains lots of transient data. To perform a thrust worthy steady-
state analysis, the data point should be free of the transient effects. This is done by filtering for values of a low
∆N2, as this data is available in the CEOD. A value of ±0.05%∆N2 is used to filter out the transient points.

E.2.3. Thermal steady state assumption
As mentioned in subsection 3.3.3 GPA assumes a certain steady thermal state of the engine. During on-wing
take-off, this assumption does not always hold. As CEOD offers the possibility to use mid-flight cruise data,
thermal stabilisation can be assured. A thermal steady-state point is satisfied by filtering out operating points
that are within one hour from take-off.
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