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ABSTRACT: The applicability of the Wolf method for
calculating electrostatic interactions is verified for simulating
vapor−liquid equilibria of hydrogen sulfide, methanol, and
carbon dioxide. Densities, chemical potentials, and critical
properties are obtained with Monte Carlo simulations using the
Continuous Fractional Component version of the Gibbs
Ensemble. Saturated vapor pressures are obtained from NPT
simulations. Excellent agreement is found between simulation
results and data from literature (simulations using the Ewald
summation). It is also shown how to choose the optimal
parameters for the Wolf method. Even though the Wolf method requires a large simulation box in the gas phase, due to the lack
of screening of electrostatics, one can consider the Wolf method as a suitable alternative to the Ewald summation in VLE
calculations.

■ INTRODUCTION

Vapor−liquid equilibria (VLE) are of great interest in the
chemical industry, in particular for separation processes.1,2 As
an alternative to experiments, molecular simulation is a useful
tool for obtaining VLE data, especially for multicomponent
systems.3−5 Molecular simulation critically relies on a force field
and the geometry of the molecules as input. The force field
describes the interactions between atoms and molecules. The
past decades, there have been many simulation studies on VLE
using force fields that employ a combination of a Lennard-
Jones potential (LJ) and an electrostatic potential.6−10 Different
methods and force fields for describing interactions exist, such
as density functional theory11,12 and polarizable force
fields.13−15 The LJ potential is rather short-ranged, and
calculating the energy is therefore straightforward, that is, by
truncating the LJ potential and using analytic tail corrections.16

However, the electrostatic potential is long-ranged and one has
to take extra care when calculating this energy contribution
because of periodic boundary conditions and the interaction of
the molecule with its mirror images. The Ewald summation17 is
a commonly used method for calculating electrostatics. It
calculates the electrostatic energy by dividing the potential in a
short-range potential that can be calculated directly and a long-
range potential which requires a Fourier transform of the
charge density. The Ewald summation is accurate for a wide
variety of systems and the electrostatic energy is well-
defined.17,18 A disadvantage of the Ewald summation and its
variants is that it is computationally expensive because a Fourier
transform is involved.19,20 Other methods for dealing with
electrostatics exist such as the reaction field method,21,22 the
particle−particle and particle−mesh algorithm23 (a variant to

the Ewald summation), and the Wolf method.24 Here we focus
on the latter. The past few years, the Wolf method has become
quite popular for simulating dense fluids due its simplicity and
efficiency.25 The Wolf method makes use of the (strong)
screening of electrostatic interactions in dense systems. All
interactions are pairwise and there is no Fourier transform of
the charge density involved. Calculations involve two
parameters: the damping parameter α and the cutoff radius
Rc. Unlike the Ewald method, there is no clear criterion for
choosing these parameters. The effectivity of the Wolf method
has already been demonstrated in many applications.26−30

Those simulations take place in dense liquids where there is a
strong screening of the electrostatic interactions. From earlier
studies, we also know that the Wolf method is not very efficient
in zeolites because of less effective screening due to voids in the
zeolite topology.31 As a consequence, a larger cutoff radius for
electrostatic interactions is needed in this case, making the Wolf
method less efficient than one would expect. It is also unclear if
and how the Wolf method influences vapor−liquid equilibria.
Here, we will investigate the accuracy of the Wolf method in
simulating VLE for simple compounds: hydrogen sulfide,
methanol, and carbon dioxide. These compounds were chosen
because of their relevance in industry and applications and
because accurate force fields are available to describe these
compounds. Monte Carlo simulations are performed in the
Continuous Fractional Component (CFC) version of the
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Gibbs Ensemble (GE). In this ensemble, the system is
expanded by a so-called fractional molecule that has scaled
interactions with the surrounding particles.32 The advantages of
this ensemble are that molecule insertions are much more
efficient than in the conventional GE, and one can directly
obtain the chemical potential of the system, even at high
densities. Simulating in the GE makes it possible to choose the
parameters for the Wolf method (α and Rc) in both boxes
(vapor and liquid) independently of each other. This is
important because the Wolf method is based on the screening
of charges which is dependent on the density of the system.
This article is organized as follows. First, the methodology is

described and the (scaled) potentials are defined as well as the
expression for obtaining chemical potentials. Second, the
simulation details, such as the input and force fields are
discussed. Also the procedure on how to choose the optimal
Wolf parameters is explained. Third, the simulation results for
density, chemical potential, vapor pressure, and critical
properties are summarized. We finish with our concluding
remarks about the efficiency and accuracy of the Wolf method
in VLE simulations.

■ METHODOLOGY
We simulate vapor−liquid coexistence by Monte Carlo
simulations in the GE using the CFCMC method by
Poursaeidesfahani and co-workers.32 Although the multiple
histogram reweighting method33,34 is a very efficient method
for obtaining VLE, MC simulations in the GE are suitable for
obtaining VLE with a relatively small amount of molecules not
too close to the critical point.35 In the GE two boxes are
present: one for the liquid phase and one for the vapor phase. A
simulation involves displacements and rotations of molecules,
volume changes of the boxes, and molecule transfers between
the boxes. In the CFC version of the GE, one extra molecule
per molecule type is added to the system which we call the
fractional molecule. Interactions of this molecule are scaled by a
parameter λ which ranges from 0 (no interactions with
surrounding molecules) to 1 (full interactions with surrounding
molecules). The fractional molecule can be in either of the
simulation boxes. Besides the standard trial moves for
thermalization: translations, rotations, and volume changes,
there are three additional trial moves to facilitate molecule
transfer between the boxes: (1) a change in the value of the
fractional parameter λ; (2) a swap move which transfers the
fractional molecule from one box to the other; (3) an identity
change move where the fractional molecule turns into a whole
one, and a molecule in the other box turns into a fractional
molecule. For the acceptance rules regarding the trial moves
that facilitate molecule transfers we refer to ref 32. The CFC
version of the GE is more efficient than the standard GE
because of higher acceptance probabilities for the molecule
transfer. It has been shown that the presence of a fractional
molecule has a negligible effect on the thermodynamic
properties of the system.36 The CFCMC simulations require
a (two-dimensional) weightfunction W(λ, i) (i = 1,2 indicates
the box where the fractional molecule is) to flatten the λ-
probability distribution so that all values of λ are equally likely
to occur and the system does not get stuck at a certain value (or
range) of λ. Furthermore, W is used to make the fractional
molecule be equally likely to be found in one of the simulation
boxes. Molecules in the simulations are considered as rigid and
interactions are described by a combination of electrostatic and
LJ potentials.

Electrostatics. Electrostatic interactions are calculated using
the Wolf method:
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where qi is the partial charge of atom i, erfc is the
complementary error function, α is a damping parameter, rij
= |ri⃗ − rj⃗| is the distance between two atoms i and j, Rc is the
cutoff radius, and N is the total number of atoms in the system.
We would like to point out that a modification of the Wolf
method exists25 which has a continuous transition in the
electrostatic force and can therefore be used in Molecular
Dynamics simulations. Since we are here only interested in the
thermodynamics and not the dynamics of the system, we use
the Wolf method in its original form. The values of α and Rc
can be chosen independent in the two boxes in the GE. As
shown later, for calculating the correct electrostatic energy, the
value of α needs to be larger in the box with the liquid phase
than in the box with the gas phase, and the value of Rc is smaller
in the liquid phase than the gas phase. This is related to the fact
that in the liquid phase the effective screening is larger and the
interaction is more short-ranged. The electrostatic interaction
of the fractional molecule is scaled by substituting rij → rij +
A(1 − λ)2 in eq 1 and substituting qi → λqi in eq 1 and eq 2 for
the atoms of the fractional molecule. The term A(1 − λ)2

prevents singularities for very small values of rij. The value of A
is chosen as 1

2
Å.

Lennard-Jones Interaction. For the LJ interactions
(truncated at Rc,LJ):
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where ϵij and σij are the LJ-parameters between atom i and j,
analytic tail corrections are used:16
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where the sum ranges over all atom types in the system, Ni is
the number of atoms of type i (excluding the fractional
molecules), and V is the volume of the simulation box. The
factor 1/2 accounts for double counting interactions. The LJ
interactions of the fractional molecules in the CFCMC method
are scaled according to37,38
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and the fractional molecule contributes to the energy tail
correction by substituting Ni → Ni + λ in eq 4. This ensures
that for λ = 0, the fractional molecule does not contribute to
the tail correction, and for λ = 1 the contribution is equal to
that of a normal molecule in the system.

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.7b00839
J. Chem. Eng. Data 2018, 63, 1096−1102

1097

http://dx.doi.org/10.1021/acs.jced.7b00839


Chemical Potential. In the CFCMC method the total
chemical potential of a pure-component system in box i can be
calculated according to32
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where Vi, Ni, and pi(λ) are the volume, the number of (whole)
particles, and the probability distribution of λ in box i,
respectively. We use the notation pi(λ ↑ 1) and pi(λ ↓ 0) for the
limit pi(λ) approaching λ = 1 from below and pi(λ) approaching
λ = 0 from above. As pi(λ) can be quite steep, especially near λ
= 1, a quadratic extrapolation is used to obtain those limits. For
convenience, the thermal wavelength Λ is set to 1 Å for all
systems.

■ SIMULATION DETAILS
The VLE of three different pure compounds are simulated:
hydrogen sulfide, methanol, and carbon dioxide. The force field
parameters3,39,40 used to describe the interaction between
molecules are listed in Table 1 and Lorentz−Berthelot rules are
used.16 The molecules are treated as rigid and bond lengths and
angles are listed in Table 2. Periodic boundary conditions are
used.

A MC cycle in the simulations consist of Ntot MC steps,
where Ntot is the total number of molecules in the whole
system. In each MC step, a trial move is selected at random
with the following fixed probabilities: 35% translations, 30%
rotations, 1% volume changes, 17% λ changes, 8.5% swaps of
the fractional molecule, and 8.5% identity changes of the
fractional molecule. Ensemble averages are updated after every
MC cycle. For the fractional molecule, starting from λ = 0, first
the LJ interaction is increased gradually from no interaction to
full interaction with surrounding molecules and after that the

electrostatic interaction is increased from no interaction to full
interaction at λ = 1.41

Each simulation starts with 5 × 103 MC-cycles for
equilibrating, where only translation and rotation moves are
performed. Next, there are 5 × 104 cycles for initializing and
further equilibrating of the system, now using all trial moves. In
this phase, the weightfunction W(λ, i) is being constructed
using the Wang−Landau algorithm.42 During the initializing
and equilibrating phases, the maximum displacement, rotation,
and volume change are modified to achieve an acceptance ratio
of 50% for those trial moves. Finally, there are 5 × 104

production cycles where ensemble averages are taken and the
λ-probability distribution is sampled for which 100 bins are
used for storage.
Multiple simulations for different compounds and different

Wolf parameters at different temperatures are performed. For
all simulations a cutoff radius of 14 Å for LJ interaction is used
in both boxes with tail corrections. The Wolf parameters (α and
Rc) are chosen for each simulation as follows. First, a short
NVT simulation is run at a density close to equilibrium
(estimated from literature39,43,44) above the critical temperature
(so that no phase separation occurs in the simulation box).
Second, for the final configuration of this NVT simulation the
electrostatic energy is calculated with the Ewald summation as
well as for many different Wolf parameters. A plot comparing
the electrostatic energy calculated with the Ewald summation
(which we consider as the exact solution) and the Wolf method
for different parameters is made. Figures 1 and 2 show typical

differences in the electrostatic energy for the liquid and vapor
phase of methanol, respectively. Figure 1 also clearly shows the
effect of a damping parameter that is too small: for α → 0 and
large Rc the lack of screening in the cutoff spheres result in large
energy differences. From those plots, the optimal values for α
and Rc can be determined; that is, the parameters that give an
accurate result compared to the Ewald summation, choosing Rc
as small as possible. We will refer to these values as the optimal
parameter set. It is possible to take multiple configurations and
use the averages of the energy differences to obtain the
parameter sets. However, it is sufficient to take only one
configuration as can be seen for example in Figure 1 where, for
α large enough, the energy differences for different Rc values
converge. We also verified that the optimal parameter set is the

Table 1. Force Field Parameters of Hydrogen Sulfide,39

Methanol,40 and Carbon Dioxide.3 M is a Dummy Site, CH3
Is Described as United Atom

atom ϵ/kB/K σ/Å q/e

H2S S 122.0 3.60 0
H 50.0 2.50 0.21
M 0 0 −0.42

CH3OH CH3 110.45 3.6499 0.1546
O 97.775 3.1659 −0.6544
H 0 0 0.4998

CO2 C 27.0 2.800 0.700
O 79.0 3.050 −0.350

Table 2. Geometries of Hydrogen Sulfide,39 Methanol,40 and
Carbon Dioxide3

atoms bond length/angle

H2S bond S−H 1.34 Å
bond S−M 0.30 Å
angle H−S−H 92°
angle H−S-M 46°

CH3OH bond CH3−O 1.43 Å
bond O−H 0.945 Å
angle CH3−O−H 108.5°

CO2 bond C−O 1.16 Å
angle O−C−O 180°

Figure 1. Relative difference in electrostatic energy between the Wolf
method and Ewald summation for different values of Rc as a function
of α. The parameters for the Ewald summation are chosen such that a
relative precision of 10−6 is achieved. The energy is calculated for
methanol at a (typical liquid) density of 692 kg/m3 at 600 K. The
optimal value of α is in the range from 0.10 Å−1 to 0.14 Å−1.
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same as when we would have taken a configuration from a GE
simulation after equilibrating and follow the same procedure.
As choosing the best values for α and Rc can be quite some
work we also run simulations for different (easier) choices of
the parameters to show the dependence of the results on the
values of the Wolf parameters. We consider the following sets
of Wolf parameters:

Set 1: optimal (as described in the text)
Set 2: α = 0.12 Å−1 and Rc = 14 Å (16 Å for CO2) in both

boxes
Set 3: α = 0.10 Å−1 in both boxes and the same Rc as in the

optimal set
Set 4: α = 0.06 Å−1 in both boxes and the same Rc as in the

optimal set

The second set is chosen because it should give accurate results
in the liquid phase of each compound (according to the optimal
set). The third set is chosen with a slightly smaller α such that it
should be more accurate for the gas phase and is a value in the
range that is typically chosen.25,26,31 The fourth set is chosen
such that it should be even more accurate for the gas phase. In
the optimal parameter set for very low densities an α of 0 is
found with a very large cutoff radius. This corresponds to
calculating the electrostatic energy directly, ignoring any
interaction between a molecule and its mirror images.
Each simulation starts with different initial configurations

(how the molecules are distributed over the two boxes and the
size of the boxes) which can be found in the Supporting
Information. In the SI also the optimal Wolf parameter sets can
be found for each system.
After obtaining the densities at equilibrium, critical properties

and the saturated vapor pressures Pvap are determined. The
critical properties are calculated from the VLE-curves using the
method described by Dinpajooh and co-workers35 as well as in
the book by Frenkel and Smit.45 The saturated vapor pressures
are determined in the following way. We estimate the pressure
(for example from the ideal gas law) and set up multiple NPT
simulations at different pressures P in a range around the
estimated one. From each simulation we calculate the density
and from those results a (P,ρ)-diagram can be constructed. Pvap
can then be determined (by interpolating) at the equilibrium
vapor density ρv.
All simulations were performed with an in-house code,

optimized for VLE simulations. It was verified to produce the

same results as the RASPA software package46,47 with the
Ewald summation. The reported uncertainties in the results are
standard deviations obtained from results from six independent
simulations.

■ RESULTS
The densities at different temperatures can be found in Figure 3
for hydrogen sulfide, Figure 4 for methanol, and Figure 5 for

carbon dioxide. Our simulation results are in excellent
agreement with the comparing data (simulations using the
Ewald method) for almost all Wolf parameter sets. Only at high
densities does the density deviate a bit for the set where α =
0.06 Å−1 in both boxes. This is caused by the fact that at high
density there is a large effective screening of charges. This
means that either a larger value of α should be used (see also
Figure 1). Closer to the critical temperatures small deviations in
the results are found.
The total chemical potential of hydrogen sulfide, methanol,

and carbon dioxide can be found in Figures 6, 7, and 8,
respectively, as calculated from eq 6. From this data it can
immediately be seen that the vapor and liquid are in chemical
equilibrium because the chemical potential is equal in both

Figure 2. Relative difference in electrostatic energy between the Wolf
method and Ewald summation for different values of Rc as a function
of α. The parameters for the Ewald summation are chosen such that a
relative precision of 10−6 is achieved. The energy is calculated for
methanol at a (typical gas) density of 2.66 kg/m3 at 600 K. The
optimal value of α is in the range from 0 to 0.03 Å−1.

Figure 3. Density−temperature plot for the vapor−liquid equilibrium
of hydrogen sulfide. Different symbols indicate different parameters for
the Wolf method, compared to simulation results from Shah39 using
the Ewald summation (solid line). Tabulated data together with the
uncertainties can be found in the Supporting Information (Table S4).

Figure 4. Density−temperature plot for the vapor−liquid equilibrium
of methanol. Different symbols indicate different parameters for the
Wolf method, compared to experimental results from Goodwin43

(solid line) and simulations from Gonzalez−Salgado40 using the Ewald
summation (dashed line). Tabulated data together with the
uncertainties can be found in the Supporting Information (Table S5).
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boxes. For methanol there is a slight difference between the
chemical potential in the liquid and the gas phase, but this is

still within the error bars. Furthermore, for methanol at T = 180
K and T = 230 K, no chemical potential could be calculated
directly because of the very low density of the gas phase.
Although it would be possible to calculate the chemical
potential for the gas phase directly by considering it as an ideal
gas, we do not do that here because of the large error bars for
the density.
Critical temperatures and densities are determined from the

VLE-curves. The obtained critical points of hydrogen sulfide,
methanol, and carbon dioxide are listed in Table 3. For
hydrogen sulfide and carbon dioxide acceptable critical points
are obtained. Only for the Wolf parameter set with α = 0.06
Å−1 in both boxes a larger deviation is found. This can again be
explained by the fact that this parameter set fails to give an
accurate description of the VLE (Figure 5). For methanol, the
critical temperatures are higher than expected and the error
bars are relatively high compared to that for hydrogen sulfide
and carbon dioxide. This is most likely caused by the difference
in the shape of the VLE-curve, compared to that of hydrogen
sulfide and carbon dioxide, and the method used to extract the
critical point.
Finally, from NPT simulations the vapor pressures at

equilibrium are determined. Only the optimal Wolf parameter
sets were used. A Clausius−Clapeyron plot (Figure 9)
summarizes the resulting vapor pressures. We were not able
to determine the vapor pressure from a NPT simulation at T =
200 K because no density corresponding to ρv was obtained.
Also, at T = 360 K we were not able to obtain the pressure
because the temperature is close to the critical point. For the
same reason we were not able to obtain the vapor pressure for
carbon dioxide at T = 300 K.
The optimal set of Wolf parameters produces results in

agreement with VLE data from literature and can therefore be
considered as an accurate alternative to the Ewald method. Also
note that the other parameter sets produce acceptable results as
well, especially Set 2. This is most likely caused by the fact that
it is more important to describe interactions in the liquid phase
more accurately than it is in the vapor phase (which is close to
behaving like an ideal gas). This is a useful result if one does
not have data available for determining the optimal parameters
α and Rc but still wants to perform simulations using the Wolf
method. Simulations using the Wolf method are found to be at

Figure 5. Density−temperature plot for the vapor−liquid equilibrium
of carbon dioxide. Different symbols indicate different parameters for
the Wolf method, compared to experimental results and equation of
state from Duschek50 (solid line) and simulations from the NIST
database44 using the Ewald summation (dashed line). Tabulated data
together with the uncertainties can be found in the Supporting
Information (Table S6).

Figure 6. Total chemical potential as a function of temperature of
hydrogen sulfide. Values are obtained with eq 6 where Λ = 1 Å.
Tabulated data together with the uncertainties can be found in the
Supporting Information (Table S7).

Figure 7. Total chemical potential as a function of temperature of
methanol. Values are obtained with eq 6 where Λ = 1 Å. Tabulated
data together with the uncertainties can be found in the Supporting
Information (Table S8).

Figure 8. Total chemical potential as a function of temperature of
carbon dioxide. Values are obtained with eq 6 where Λ = 1 Å.
Tabulated data together with the uncertainties can be found in the
Supporting Information (Table S9).
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least twice as fast in terms of CPU time compared to the Ewald
method.

■ CONCLUSION
We tested the applicability of the Wolf method for electrostatic
interactions in MC simulations. By performing simulations in
the GE with the CFCMC method, we were able to obtain
accurate densities, chemical potentials, critical points, and vapor
pressures at VLE for different compounds and different Wolf
parameter sets. We showed that the damping parameter α in
the liquid phase should be chosen larger than α in the vapor
phase, corresponding to a more effective screening of charges in
the liquid phase. The cutoff radius Rc can be chosen smaller in
the liquid phase than Rc in the gas phase, because of the higher
value of α in the liquid. Moreover, we showed that a simple
estimation of the Wolf parameters can already produce accurate
results for VLE.
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