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Abstract 
 
The energy transition requires us to explore all options for generating non-fossil 
energy. Companies are starting to invest in technologies such as offshore floating PV 
systems (OFPV) to avoid congested urban population centres. OFPV structures are 
likely to consist of many small, simple, flexibly connected floaters. The entire structure 
must be able to survive extreme offshore conditions. The OFPV response in various 
sea states is heavily influenced by the connector design.  
 
In this thesis, a 3D boundary element based numerical model is used which was 
developed by Tuitman [2]. The model is expanded to output the forces and moments 
experienced by the compliant connectors which have linear stiffness in 6 degrees of 
freedom. After successful verification and validation, three case studies are presented 
which are a three floater serially connected model and a 3x3 and 4x4 grid connected 
model. Various sea states and wave headings are analysed to show the effect on 
dynamic behaviour of a compliant connector. The time domain-based approach is 
used to capture nonlinear Froude-Krylov and hydrostatic forces. The remaining 
hydrodynamic terms are linearised by solving in the frequency domain. The connector 
response is linearised by using a finite stiffness matrix but the forces are solved in the 
time domain to include the effects from the nonlinear hydrostatic terms. 
 
The results show that the resonant response of the structure and connectors is critical 
in determining the floater motions and loads in the connectors. Additionally, the 
stiffness of the connector influences the natural frequencies of the structure. The 
forces and moments in the connectors of the grid are much more varied than the 
serially connected structure because of the complex interaction of the floater 
hydrodynamics and connector resonance. The floater motions and connector 
response becomes less evenly distributed for oblique seas and when sea states match 
the natural frequency of the structure. The grid experiences bending in multiple 
directions which results in large connector loads at some locations on the structure. 
When expanding to a larger 4x4 grid there is a different distribution of connector 
loading than the 3x3 grid because of the extra degrees of freedom. The aft connectors 
experience lower loads than connectors facing the waves due to a shielding effect. 
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Nomenclature 
 
𝑎  Coefficient for connector model 

𝑎𝑖,𝑗  Added mass matrix relative to VLFS 

𝑎𝑛  Significant wave amplitude in frequency domain 

𝑎𝑝𝑖𝑡𝑐ℎ  Added mass pitch 

𝑎ℎ𝑒𝑎𝑣𝑒  Added mass heave 

𝐴𝑐  Cross section of connector 

𝐴𝑖,𝑗  Infinite frequency added mass matrix 

𝑏𝑖,𝑗  Damping matrix relative to VLFS 

𝑏𝑐  Connector damping value 

𝐵𝑖,𝑗  Infinite frequency damping matrix 

𝐵𝑐  Connector damping matrix 

𝐶𝑖,𝑗  Hydrostatic restoring matrix 

𝐶𝐶  Connector stiffness matrix 

𝐸  Young’s modulus 

𝐸𝑠  Total system energy 

𝑓𝑦  Connector force for stiffness calculation 

𝑓𝐶  Connector excitation frequency 

𝑓𝑖  Displacement dependent forces 

𝐹  Connector force in x, y or z 

𝐹𝑐  Force in connector 

𝐹𝑖  Frequency dependent forces 

𝑔  Gravitational acceleration (9.81 m/s) 

ℎ̂  Complex wave amplitude 

ℎ𝑖  Hydrodynamic mesh size 

𝐻  Water depth 

𝐻𝑠  Significant wave height 

𝐼  Inertia of object 

𝐽  Polar moment of inertia 

𝑘  Wave number 

𝑘𝑎𝑥𝑖𝑎𝑙  Connector axial stiffness 

𝑘𝑐  Connector stiffness 

𝐾𝑖,𝑗  Retardation function 

𝐿  Connector loads (force or moment) 

𝐿𝑐  Length of connector 

𝑚𝑐  Moment in connector 

𝑚0  First order spectral moment 

𝑀  Connector moment in x, y, or z 

𝑀𝑖,𝑗  Mass matrix 

𝑀𝐶  Connector mass matrix 

𝑛  Normal direction to reference surface 

𝑛𝑔  Number of grid cases in uncertainty analysis 

𝑁  Number of samples 

𝑁𝑓𝑟𝑒𝑞  Number of wave frequencies 

𝑝  Velocity between two points 

𝑃  Fluid pressure 
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𝑅  Distance to a body fixed origin 

𝑠  Standard deviation 

𝑆  Uncertainty function 

𝑆𝐵  Wetted surface area 

𝑆(𝜂)  Spectral value for wave spectrum 

𝑡  Time 

𝑇  Kinetic energy 

𝑇𝑝  Wave spectrum peak period 

𝑢𝑖  Connector displacement 

𝑣𝑧  Wave radial velocity 

𝑣  Connector vertical displacement for stiffness calculation 

𝑉  Potential energy  

𝑉𝑐  Connector shear force for stiffness calculation 

𝑉𝑛  Normal velocity potential 

𝑥𝑤  Distance in the wave direction 

𝑥𝑗   Displacement in DOF ‘j’  

𝑥̇𝑗   Velocity in DOF ‘j’ 

𝑥𝑗̈  Acceleration in DOF ‘j’ 

𝑋𝑣𝑎𝑙  Generic data value 

X, Y, Z  Coordinates relative to the global reference system 

x, y, z  Coordinates relative to the local reference system 

𝑍𝐶𝐼  Value based on confidence interval 

𝛼𝜃  Uncertainty constant 

𝛽  Safety factor for uncertainty analysis 

𝜀  Wave phase angle 

𝜖𝜃  Uncertainty error estimate 

𝛾  Peak enhancement factor for JONSWAP wave spectrum 

𝛾𝜃  Order of hydrodynamic mesh convergence 

𝜃𝑖  Rotational displacement or velocity 

𝜃𝑛  Random phase angle for ocean wave 

𝜂𝑛  Wave amplitude in time domain 

𝜆𝑑  Damping constant of proportionality 

𝜇𝑑  Damping constant of proportionality 

𝜌  Density of water 

𝜎𝑜𝑤  Standard width value for JONSWAP wave spectrum 

𝜏  Cummins retardation value 

𝜉𝑐  Connector damping ratio 

𝜉𝑎  Wave elevation 

𝜙  Wave velocity potential 

𝜙𝑐  Rotation of connector for stiffness calculation 

𝜔  Wave frequency 

𝜔𝑝  Circular frequency at spectral peak 

𝜔𝑛,𝑖  Wave natural frequency in DOF ‘i’ 
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1. Introduction 

 Introducing Very Large Floating Structures 

Recent international agreements, such as the Glasgow Climate Agreement [3] are 
pushing the energy industry to expand the use of renewable sources to meet high 
decarbonization goals. In order to achieve this, there is a growing interest in expanding 
current energy production facilities offshore due to the increasing space limitations 
associated with human expansion and limited land around population centres. One 
innovative solution being proposed is to construct floating solar islands, Offshore 
Floating PV (OFPV). To practically contribute to the energy transition these islands 
are likely to become VLFSs (Very Large Floating Structures). 
 
A VLFS is a structure which is not built-up from the seafloor but rather floats so that it 
can be disconnected and transported away. The size is so large that assuming the 
body is one rigid structure is not always valid [4]. A VLFS can be used for many 
purposes, such as: airports, bridges, accommodation, attraction parks, military bases, 
supply or storage facilities, food production facilities and energy hubs, which have all 
gained more attention in the past 20-30 years. Some concept sketches are shown in 
Figure 1. Broadly speaking, a VLFS can be made mat-like which is flexible, has a 
shallow draft, and is usually a constant thickness or it can be constructed by 
connecting larger, modular structures. The second type is referred to as joint VLFS in 
this report. The joint VLFS are usually more elaborate structures which can sustain 
higher environmental loads and are typically intended to be installed offshore. The 
connectors are more important in the structural response of the joint type VLFS 
compared to mat-like structures [5]. 
 
 

 
Figure 1, Concepts for VLFS [6] (clockwise from top left): offshore fuelling station, military base and/or 
floating runway, floating city, aquaculture, floating hotel, solar islands. 
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VLFSs have advantages over land reclamation in that they can be floated to the 
intended area as required [5]; they can be cost effective when in deeper water [7]; they 
can have a smaller impact on the marine ecosystem [8]; and are more immune to 
seismic shocks which can be important in some regions such as in Japan [8]. The joint 
type VLFS are able to be built in sections and then joined on site or brought to a larger 
construction yard to be assembled. There is the additional benefit that they can be 
disconnected and removed from the area for maintenance or decommissioning. An 
OFPV could be installed between offshore wind installations and utilize some of its 
infrastructure such as power transmission stations or seabed mooring locations. 
 
A few large research programs such as the TRAM Megafloat aircraft runway in Japan, 
USA MOB (Mobile Offshore Base), and Chinese MOB projects have all led to 
significant advances in understanding the dynamic behaviour of these specific types 
of structures [4]. In contrast, projects relating to floating solar have seen some interest, 
but there is limited amount of publicly available research. Floating solar structures can 
behave differently to the MOB or runway designs because the motions of the floaters 
are not as restricted. Generally, an OFPV system must be easy and low-cost to build 
and install while surviving harsh ocean conditions. Consequently, they are designed 
to be simple and lightweight. Usually consisting of many individual floaters, there are 
numerous connectors and optimizing the design saves costs for the entire system. An 
efficient design must include reliability, hence the design life should account equally 
for longevity and the ultimate strength. 

 OFPV Connector Design Problem Statement 

Offshore Floating PV (OFPV) is seeing increased importance for connector design 
which is why this thesis identifies, analyses and reports on the challenges faced. In 
offshore conditions, a structure might experience high sea states but also wave 
frequencies which are close to its natural excitation frequency leading to large motions 
and connector loads. A design challenge is that there are usually competing 
requirements between connectors needing sufficient stiffness to avoid certain issues 
(contact for instance) but then also keeping connector forces and moments low. It is 
proposed that a compliant connection may be able to meet these requirements by 
providing stiffness in each degree of freedom. There is a more detailed explanation of 
a compliant connector in Section 2.3. 
 
In the context of this thesis there are two types of structural responses which are 
relevant for an OFPV; a static response which occurs slowly over time and a dynamic 
response. The static responses are dependent on the location and magnitude of the 
load but not how (quickly) the load might be applied. Therefore, they are inertia 
independent. However, for the dynamic case the response is dependent on how the 
load is applied in terms of frequency and speed such that inertial characteristics must 
be considered. Both of these response types may need to be considered when 
considering an OFPV system design because of the wide range of sea states that can 
be encountered during its lifetime. 
 
An OFPV is likely to be constructed using smaller floating modules which are 
mechanically connected in a grid pattern. There are very few publicly available 
research papers related to grid-like connected floating structures. In this thesis a pre-
existing 3D-BEM numerical model was expanded to output the forces and moments 
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at the connectors caused by irregular waves. A serially connector structure is modelled 
and then compared to the response of a grid of floaters. Furthermore, multiple sea 
states are investigated which provide results that are representative of conditions at 
the Hollandse Kust Noord site in the Netherlands. This area is being considered for 
the development of offshore renewable energy.  

 Research Approach 

The problem statement described above highlights the need to investigate the 
connector response for a grid-like VLFS. This Section presents a research question 
which is answered within the scope of this master’s thesis. The research focuses on 
the multibody interaction of rigid floaters with connectors that have compliance in 
multiple degrees of freedom. The primary research question is: 
 
“How do compliant connectors on a multibody VLFS connected in a grid-like pattern 
respond when subjected to wave loading?” 
 
Given the context of the research question, the following sub-questions can be 
generated: 

A. How does wave direction and frequency affect the connector response for grid-
like VLFS? 

B. What is the connector response in irregular waves? 
C. How does connector compliance affect the motions of a VLFS and what are 

forces and moments at the connectors? 
D. How does connector damping affect its loads and the motions of the floaters? 
E. How does the distribution of connector forces and moments vary from a 3x3 to 

a 4x4 grid? 
 
The research sub-questions are selected based on the research gaps found in the 
literature review which are presented in Chapter 2. It is the ambition of this thesis that 
by answering the research question, there will be a greater understanding of the 
interaction between compliant connectors and floaters on a large multi-body floating 
structure in offshore conditions. 
 
A numerical tool is used which was developed by Tuitman [2] and is described in 
Chapter 3. The tool is a 3D-BEM which calculates the hydrodynamic terms and then 
performs a time domain simulation to solve an equation of motion for a multi-body 
structure. The time domain is used because the nonlinear Froude-Krylov and 
hydrostatic forces are captured. In this thesis the model is expanded to extract the 
connector forces and moments. 
 
The methodology is verified and validated in Chapter 4. Verification activities include 
a mesh convergence study, comparing frequency and time domain added mass and 
damping terms, wave spectrum definition, a numerical comparison with a single 
floater, and a 2D semi-analytical comparison. The numerical code was validated by 
Tuitman [2] using an experimental test case with 12 serially connected box shaped 
floaters. In this thesis, additional validation is performed on the motion response of the 
same 12 floater model and also a calculation of the vertical bending moment using the 
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same experimental results by Remy et al. [9]. A comparison is also made with the 
numerical results for a 3x3 grid VLFS presented by Michailides and Angelides [10].  
 
In Chapter 5 the inputs are described for three cases, Case 1 being for a serially 
connected three floater structure, Case 2 is a 3x3 grid, and Case 3 is a 4x4 grid of 
connected floaters. The results and discussions for the cases and also a mooring 
sensitivity study are presented in Chapter 6. The VLFSs are modelled with rigid 
floaters joined by flexible connectors that are compliant in all degrees of freedom. 
Simple mooring lines which have a constant stiffness are used to keep the structures 
in position. The Hollandse Kust Noord site is used as a basis for the wave conditions 
being analysed. Various parametric studies show the effect of modifying connector 
stiffness, sea states, and wave headings on the floater motions and connector loads. 
The distribution of loading for all of the connectors is also presented. In addition, the 
vertical bending response functions are shown all of the cases. Finally, Chapter 7 
outlines the main findings of this thesis, draws conclusions and provides 
recommendations for future scientific work.  
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2. Literature Summary 

 Hydroelastic Behaviour and Modelling Techniques 

This Section describes the background and numerical modelling techniques of a VLFS 
used by previous researchers. There has been a distinction in literature between 
pontoon and semi-submersible structures [5]. The pontoon type is a box-like structure 
with relatively low manufacturing and maintenance costs. There are usually many 
buoyant compartments which are floating on the sea surface. These structures are 
commonly deployed in sheltered waters [5], but some preliminary concepts are 
intended to be deployed offshore [11]. The semi-submersible VLFS are usually more 
elaborately constructed and can be used either in sheltered or open waters. There is 
a buoyant compartment(s) connected using columns, piles, or truss bracing.  
 
Early research into VLFSs found that the response of such a large structure can be 
best predicted using hydroelastic theory. This is true for both semi-submersible types 
[12], [4], and pontoon types [13], [14]. Hydroelasticity is the study of the elastic 
behaviour of a structure in a fluid and was pioneered by Bishop and Price [15] who 
researched the harmonic response of ships using 2D elastic beam theories and 
potential flow hydrodynamic solvers. Before this, a marine structure was idealized as 
a rigid body which was found to be invalid when the natural frequency of the structure 
aligns with the wave excitation frequencies. The theory of hydroelasticity was initially 
expanded to multi-hull ships by Price and Wu [16] and then arbitrary shapes [17] by 
solving using 3D-FEM (Finite Element Method) which opened up the analysis method 
to determine the motions and loads experienced on a VLFS. 
 
The US Navy performed research on VLFS for the purpose of Mobile Offshore Bases 
(MOBs). There was a partnership between the USA (MOB concept) and Japan 
(Megafloat aircraft runway concept) where many joint research projects progressed 
research in the fields of numerical simulation and environmental compliance [5]. More 
recently the MOB concept has been resurrected by Chinese research groups who are 
interested in expanding numerical models to capture novel connector concepts, 
structural and hydrodynamic nonlinearity, and improving experimental validation 
techniques in various water depths and bathymetries [18]. A MOB is particularly 
relevant for this research it is intended to be deployed offshore and designed to have 
multiple interconnected modules. However, a MOB is design is much more complex 
and the relative displacements must be much smaller than an OFPV. There is no 
research made publicly available which explore a grid like joint type OFPV. 

2.1.1. Linear Modelling 

Researchers commonly use linearised methods to investigate the hydroelastic 
response of a VLFS. The fluid and structural response can be linearised to reduce the 
computation time of already very large simulations. The hydroelastic response of a 
VLFS was initially determined using hybrid models which combined 2D 
hydromechanics with a 3D plate response [19]. The hybrid analytical-numerical 
solution can be relatively quick to solve but is limited to specific cases. The numerical 
solutions became more prominent when Struova [20] used 3D BEM (Boundary 
Element Method) model the fluid and FEM (Finite Element Method) to model the 
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structure. These models are more accurate when solving for more complicated 
situations that are discussed in this thesis. 
 
Initially the hydroelastic effect was captured using hybrid analytical methods based on 
elastic plate theories and numerical methods such as strip theory or BEM. The 
Kirchhoff plate theory is suited to structures with small length to depth ratios and 
assumes the VLFS is vibrating on the water surface with free edges [14]. As the 
structural depth increases, it was found that Mindlin first-order shear deformation 
theory is preferable because it also captures the effects of shear deformation [21]. 
There is some literature which idealized the VLFS to be a 2D Timoshenko beam if the 
length to depth ratio becomes small [4]. 
 
The most common method of fluid analysis when calculating the hydrodynamic 
response of a floating structure is to use potential flow theory because of the low 
computational effort for high accuracy in many cases. It is assumed that the fluid is 
ideal, incompressible, inviscid and irrotational. The wave steepness is assumed to be 
the mean value of its random probability distribution and only the vertical component 
of the wave is considered. The analysis can be carried out in the frequency or time 
domain. The main advantage of using potential flow code is the relatively fast 
computational time. 
 
Solving in the frequency domain response using linear wave theory is convenient 
because it allows superposition of incoming regular waves to form a wave spectrum 
with significantly less computational effort than solving in the time-domain. The wave 
spectrum can be used to calculate the loading response spectrum. Irregular waves 
can cause peak stresses or deflections due to the uneven loading along the structure 
[22]. However, by solving in the frequency domain requires linearising the 
hydromechanical response which can be inaccurate in certain cases outlined in 
Section 2.1.2. 
 
There are three common approaches used to analyse the hydroelastic problem for 
VLFS: the direct method, modal expansion method, and lumped mass method. These 
methods combine hydroelastic and structural dynamic theories together to determine 
the overall structural response in the frequency domain. 

The direct method requires developing and directly solving an equation which 
captures both the hydromechanical and structural components. The hydromechanics 
are solved from the velocity potentials and the structure using a finite difference 
scheme [23]. There have been variations of the direct method such as proposed by 
Ohkusu & Namba [24] where pure hydromechanics is used by assuming the structure 
is part of the fluid domain but with different characteristics to water. In this way, the 
solution could be obtained using only a boundary element method which could also 
provide results for shallow water. The direct method can be more accurate because 
all of the physics is solved in one equation but then is more complicated because the 
equation of motion must be developed independent of commercial hydrodynamic or 
structural solvers.  

The modal expansion method separates the analysis into the hydrodynamic 
part and a dynamic plate response. The deflection of the plate is calculated for different 
modes. There have been several models used over time such as free-free beam 
modes, vibration of a free plate [25], Green’s functions [26] and B-spline functions [14]. 
The radiation forces due to wave action is then calculated for each mode with unit 
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amplitudes. The Galerkin method is used to determine the amplitude of motion of the 
vibrating plate for the given wave environment. The final deformation is a summation 
of the principal modes. The solution is accurate but can lose accuracy if all the principal 
mode shapes are not captured, in other words if the mass participation is too low [27]. 

Another method of solving the hydroelasticity problem for modular 
constructions is proposed by Lu et al. [28]. The hydrodynamic coefficients are initially 
calculated assuming that the floaters are rigid bodies to determine the 6 DOF motions 
at the modules centre of gravity. The modules are then connected with a mass-less 
equivalent beam with finite stiffness. The assumption is that the structure is a Euler-
Bernoulli such that the forces acting on the beam ends can be related to the 
displacement. The dynamic response can be determined by solving a multibody 
motion equation. Complicated geometries can be modelled by extending this 
approach using FEM to describe the beam element [29]. 
 
It should be mentioned that the fluid-structure interaction for large ice structures can 
be equally applied to describe the response of a VLFS [30]. The pioneering work of 
Meylan & Squires [25], and [31], and [32] on researching ice floes has led to the 
advancement of 3D hydroelastic analyses of structures in waves. This has led to the 
development of analytical methods of predicting floater responses when thickness 
varies along the length. 

2.1.2. Nonlinear Modelling 

There are also nonlinearities present in the hydrodynamic and structural calculations 
that might be significant and these are discussed in this Section. Nonlinearities are 
impossible to capture in the frequency domain which assumes linearity by definition. 
The displacement dependent terms then must be solved in the time domain. The time 
domain response can be solved using the direct time integration method which 
incorporates both the fluid and structural responses [33]. A time integration strategy is 
used in this thesis which is based on a Runge-Kutta method, but this will be explained 
in later Chapters. 
 
The structural dynamics can be solved in the time domain when solving for impacts, 
when the geometry is discontinuous, or there is nonlinear deformation. It was reported 
that geometry nonlinearities can occur when secondary structures become 
discontinuous such as when stiffeners don’t align [34]. This can lead to unexpectedly 
high stresses because some part of the structure is taking more load than is realistic. 
Impact loads (such as aircraft landings or green water loads) are nonlinear because 
they occur very quickly resulting in strong inertia driven structural responses [33]. For 
some nonlinear cases such as for impacts, the hydrodynamics are solved in the 
frequency domain and converted to the time domain using a transfer function to solve 
the structural part [35].  
 
It is possible that VLFSs can be deployed in all depths of water, namely infinite, finite, 
and shallow water. The early studies were performed assuming deep water [12]. 
However, it is found that shallow water can have a substantial impact on the structural 
response because of reflected waves from the seafloor [36]. Furthermore, the 
nonlinearity associated with the hydrodynamics increases significantly as water depth 
decreased due to the viscous effects. 
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It is perhaps logical to expect that nonlinear effects occurring at shallow water are also 
be influenced by the bathymetry and underwater shapes or obstructions. The impact 
of uneven bathymetry on a VLFS response is demonstrated analytically by 
Athanassoulis & Belibassakis [37]. This was later verified using numerical simulations 
in the time domain [38]. The presence of an underwater object alters the hydrodynamic 
response of the VLFS due to the changes in the pressure distribution away from the 
floating object. 
 
There are relatively few research papers where viscous effects are modelled using 
advanced techniques such as the finite volume method with RANS solvers. This is 
because of high computational time when many wave frequencies need to be 
investigated. Fluid viscosity becomes dominant in the calculation of the hydrodynamic 
damping term especially due to the sharp corners on a barge or due to viscous losses 
at the gap between two floating bodies [39]. 
 
Fluid nonlinearity can also be captured using potential flow theory if the equation of 
motion is solved in the time domain. Research has shown that the elastic response of 
waves alters the wave radiation force such that a more flexible structure exhibits a 
more nonlinear the response [40]. The wave radiation can also become nonlinear in 
response to the interaction of multiple floaters which is referred to as gap resonance. 
This increases the hydrodynamic forces as the gap distance decreases [41].  

 Novel Design Concepts 

Novel designs of a VLFS have been proposed which aim to reduce motions or loads 
of the structure and some of these concepts are discussed in this Section. The plan 
shape of the VLFS was traditionally conceived to have a rectangular shape. This 
structure may suit a floating airport or MOB concepts but there are applications such 
as OFPV where other shapes may be more suitable. The most studied alternative 
geometries are circular [42], [32] followed by L, X or T plan shapes [43]. It was 
concluded that if the wave direction is unknown, these shapes may reduce the 
resulting floater motions because obliquely loaded structures experiencing greater 
loads particularly in the connections but this is discussed in further Chapters.  
 
The displacement of a VLFS can either be dampened by means of either installing 
anti-motion structures or by reducing wave loads by installing breakwaters. In many 
cases, it might be necessary to reduce deflections for functionality (e.g., runways), 
safety, maintenance, practicality or to avoid damage. There have been design 
proposals with underwater plates oriented either vertically [44] or horizontally [45] 
which can dissipate some wave energy before it reaches the main structure. The same 
is true for designs with perforated edges [46], additional connected structures [44], 
[47] or moonpools [48]. 

An alternative approach is to construct a nearby breakwater that minimizes 
structural deformations of the VLFS [49]. The motion reduction of a floating breakwater 
was investigated by Tay et al. [50] who was interested in this effect on the motions of 
two floating floaters. A breakwater dissipates the energy of the waves onto an 
alternative structure. A breakwater would only be able to be installed close to shore 
and in relatively shallow water. 
 Another concept being developed is using inflatable floaters which compress 
when the structure deforms from an incoming wave. The compression adds to the 
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restoring coefficient term in the equation of motion which can reduce structural 
stresses and deformations [51], [27]. Similarly, the incorporation of air pockets or ‘gill 
cells’ into sections of the structure is shown to effectively reduce deformations [52]. 
This concept is beneficial for OFPV because it floats with the main structure and so 
water depth is not as important. 

 Behaviour of a Joint VLFS  

The focus of this discussion will now shift towards a joint VLFS which is closer to what 
is envisaged for the future OFPV systems in the Netherlands [53]. The multibody 
hydrodynamic interaction of a joint VLFS requires an understanding of the connections 
between floating modules. An example of possible configurations is shown in Figure 
2. Increasing the connector stiffness generally results in higher stresses but lower 
motions. Thus, there is a dilemma for designers who want to simultaneously reduce 
motions and stresses.  

A joint VLFS has traditionally been categorized as one of four cases: 

• Rigid module, rigid connection 

• Rigid module, flexible connection 

• Flexible module, rigid connection 

• Flexible module, flexible connection 

A connectors can be rigid, free, or compliant. If the connector is rigid it does not allow 

any movement, if there is zero stiffness it is free, and if there is a finite stiffness then 

the connector is compliant. Generally a kinematic joint is defined free or compliant in 

limited (usually one) DOF and then rigid in others. A common example is a hinged 

connection. An OFPV might benefit from a connector with compliance in many DOF 

because of the direction of movement of the floaters in waves. 

 

 
Figure 2, Example of different types of articulated connections [54]. 
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A connectors can be rigid, free, or flexible. If the connector is rigid it doesn’t allow any 

movement, if there is zero stiffness it is free, and compliant if there is a finite stiffness. 

Generally an articulating joint is defined as one which is free in limited (usually one) 

DOF whereas, for an OFPV it might be beneficial to include compliance in many DOF 

because of the direction of movement of the floaters in waves. 

 

The concept of a compliant connector was first developed by NASA [55] and later 

adopted by Derstine and Brown [56] for a MOB. This design (shown in Figure 3) would 

allow small deformations in some degrees of freedom but larger deformations in 

others. This reduced connector loads compared to a pure kinematic hinge joint.  

 

The stiffness characteristics can be used to influence the floater motions and 

connector forces. One extreme case is that the floater is flexible, and connectors are 

rigid which reduces stresses globally in the floater but causes extremely high 

connector stresses which is undesirable [57]. The other extreme is to make the 

connector flexible or even free and the floater rigid. This may cause very high floater 

displacements and cause excessive connector deformations. Alternatively, the 

connection is free but if there is oblique loading this could cause high stresses due to 

bending in two perpendicular directions. The compliant connector which is made 

flexible in all DOF is beneficial because it doesn’t create rigidity in any connector DOF. 

2.3.1. Connector Types 

Various connector types and connection methods are described in this Section. Firstly, 

the connectors can be placed at an upper and lower location of the cross-section so 

that the floaters behave more like one continuous structure. This can be beneficial for 

designs which must be made relatively stiff and reduces the relative motion between 

floaters. The more common design is to have connectors only at an upper location 

and use fenders to prevent damage if there is contact (Figure 2). It is also shown that 

the number and location (in the horizontal plane) of connectors can have an effect on 

the motion response of the structure [58]. 

 

  

Figure 3, Example of 6 DOF compliant connector [56]. 

Cables 
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The connector can be designed as articulating or compliant as explained at the 

beginning of this Chapter. The articulating type can be modelled using a discretized 

stiffness matrix [28] or a stiffness value in a single DOF which means the stiffness is 

linearly interpolated relative to two nodes and doesn’t explicitly account for bending. 

The compliant connector needs to be modelled using a discretized stiffness matrix. 

The compliant connector relies on cables with known stiffness and damping 

characteristics. 

 

Early analyses of the flexible (elastic) floaters with flexibly articulated connected 
structures were performed by determining the flexural modes on an individual section 
assuming the others are rigid and calculating piecewise along the structure [59], [60]. 
Here, the connection stiffness plays an important role in the overall response because 
it influences how loads transfer between floaters. The hydroelastic response of the 
floater could be mimicked by modifying the stiffness of a connectors [61]. This gave 
cause for many researchers to model the floater as rigid and only change the flexibility 
of the connectors thus simplifying the problem considerably [62], [63], [64]. Increasing 
the number of floaters is favourable to reducing the global loads and motions [65]. 
 

The hinge joint has been widely investigated for joint VLFSs where most designs are 

serially connected. The behaviour of hinged floating structures was investigated 

analytically by Newman [66], [67], [68]. The use of a hinged connection effectively 

reduces stresses if the predominant wave direction is known. It was also noted that 

increasing the number of floaters in a serially connected pattern increases the loads 

in the connectors. The disadvantage of a hinge design is that the motion in the free 

DOF or the stresses in the rigid DOFs can become excessive in offshore conditions. 

 
A compliant connector design can simultaneously reduce loads and the relative 
displacement between floating modules if well designed. There is a greater versatility 
in this type of connector because the stiffness can be controlled in each DOF. The first 
compliant connectors were numerically modelled by idealizing as line connections 
[58]. However, in reality introducing compliance can be done by, amongst others, 
springs [56], rubber and cable [69], air cushion and cable [70], or hydraulic, fender and 
elastomer bearing [71] combinations. A compliant connector makes it more difficult to 
accurately predict the system behaviour because of the complex interaction with the 
connectors and the floater response. 
 
The compliant connector can also be developed from a commercial off-the-shelf 
(COTS) solution. The most common example would be a fender with cable 
connectors. Similarly, the use of a semi-flexible rubber or even hydraulics as they are 
used in crane fall arrest systems might be a solution if the floaters are connected with 
cross connections. There are no examples of COTS solutions employed on VLFSs 
with flexible compliant connections.  
 
The connectors of an OFPV system are critical elements of the structural design 
regarding both ultimate strength and fatigue life. A greater understanding of the 
connector response allows a better estimate of loads which influences safety margins 
and design standards. Increasing the knowledge of the margin between loads and 
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structural limits of a connector improves the design, lead to reduced costs for 
maintenance, and provides greater confidence to the industry for investment. 

2.3.2. Connectors Characteristics 

Important connector characteristics such as, the stiffness, damping and DOFs, are 
discussed in this Section. These variables play an important role in the overall 
response of the structure because they influence the floater motions and connector 
loads [4]. Initial designs of a VLFS with rigid connections led to excessive forces 
developing at the connectors which are significantly reduced when there is a flexibility 
introduced [21]. Further studies showed that the motions of the floaters and the forces 
at the connectors are influenced by varying the stiffness of the connectors [62]. 
 
It can be difficult to numerically model the structure’s motion responses because the 
complex multi-body interaction results in convergence issues. The convergence 
issues were shown to be a result of strong geometrical nonlinearity, even if the material 
remains elastic, due to the large connector displacements compared to those of the 
floaters [72]. This was termed the ‘amplitude of death’ because it would result in an 
unstable (resonant) system response in certain sea states. This nonlinearity was 
particularly prominent for compliant connectors because the stiffness in one DOF is 
shown to affect motions in all other DOFs.  
 

Damping is also an important design characteristic of a connector which has been 

largely ignored by many researchers. Damping can reduce connector loads if the 

response is driven by structural dynamics and inertial influences are large. Riggs et 

al. [73] first researched structural damping on the connectors of a VLFS assuming that 

it was a percentage of critical damping. Karperaki et al. [74] proposed that Rayleigh 

damping can be modelled using a spring-mass damper system as shown in Figure 4.  

 

 

Figure 4, spring-mass damper system modelling connectors of 3 module VLFS [75] 

 

The damping is proportional to the linear combination of the mass and stiffness 

matrices (equation 2-1) but varies with the response frequency (equation 2-2). 

 

 𝑏𝑐 = 𝜇𝑑 ∙ 𝑀𝑐 + 𝜆𝑑 ∙ 𝐶𝑐 2-1 

 𝜉𝑐 = 𝜋 (
𝜇𝑑

𝑓𝑐
+ 𝜇𝑑 ∙ 𝑓𝑐) 

2-2 

 
Where 𝐵𝐶 is the damping matrix, and 𝑀𝐶, 𝐶𝐶 are the mass and stiffness matrices 

respectively and 𝜇𝑑 and 𝜆𝑑 are constants of proportionality. Also, the damping ratio is 

expressed as 𝜉𝑐 and 𝑓𝑐 is the excitation frequency. Karperaki et al. [74] deduced that 

the effect of damping diminishes as the stiffness of the connector increases. It is also 
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shown that the effect of damping is only significant at frequencies where the incident 

(Froude-Krylov) wave dominates because this is close to structural resonance [75]. 

2.3.3. Connector Stresses and Deformations 

The stress or deformation of a connector can be predicted if a design already exists. 

However, VLFSs are mostly concept designs and researchers are more concerned 

with the loads generated in a fictitious connector. The study performed by Newman 

was perhaps the first to investigate the shear and bending stresses developed in 

simple hinged connectors of a VLFS because of hydroelastic behaviour [76]. The 

results showed that a hinged connector decreased the internal loads on the flexible 

floater but did develop extremely high stresses in directions out of the main bending 

direction of the hinge.  

 

It was shown by Kim et al. [77] that there are nonlinearities associated with the large 

deformation of the connectors and that they have a meaningful impact on the structural 

response. A time-domain analysis was required to solve the stresses of the connector 

of a two floater VLFS in regular waves. Results also showed that bending forces 

dominated the structural response. Loukogeorgaki et al. [78] conducted experiments 

to investigate the internal forces in the connectors of a three-module floating 

breakwater. The results showed the dependency between the connector loads and 

wave frequency. 

2.3.4. Novel Approaches and Challenges 

There has been some recent progress in the evaluation and design of novel 
connections for the MOB concept. A compound connection is one where there are 
multiple connectors used to satisfy different design requirements. These types of 
connectors might use a combination of compliant connectors and/or various 
articulated joints and offer more flexibility to designers. An example was proposed by 
Shi et al. [79] where the submersible modules are flexibly connected while the deck is 
separated from the main structure and hinged. Lu et al. [80] extended this concept 
such that the main deck sits on inflatable rubber cushions as shown in Figure 5. 
 

 
Figure 5, Design of MOB using multiple connection types [80]. 
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There is a challenge to design a compound joint which can be used for experimental 
studies. Shi et al. [63] used a compound connection of 8 linear springs connected to 
2 central ball joints to model a hinge joint with varying linear stiffness (Figure 6). This 
design can be used to determine the effect of increasing linear stiffness in 3 directions 
on the loads and motions of a floating platform. The results show that increasing 
stiffness to limit the relative motion between floaters resulted in high connector loads. 
 
Most of the studies are performed in regular waves acting in head or beam seas. 
However, when considering a 3D problem there are torsional effects which must be 
considered in oblique or irregular seas [81]. Further complicating the issue is that 
experimental results are difficult to obtain to validate analytical or numerical 
simulations because of challenges when scaling, especially when trying to capture 
nonlinear effects due to large deformations [82]. 
 
Uneven loading due to irregular waves creates peak stresses at certain connector 
locations across the structure. The effect of oblique seas increases connection 
stresses to such an extent that dynamic positioning has been proposed to optimize 
the VLFSs heading relative to the waves [64]. Simple connector models (like a 2D 
hinge) can fail to accurately capture the complex 3D interaction in oblique loading. 
 

 
Figure 6, Combination model representing a hinged joint between two floating modules [63]. 

 
The connection of multiple floating elements in a grid was first considered by Ochi and 
Malakar [83] using simple hinged connections. Michailides et al. [84] performed 
studies on grid-connected structures and aimed to optimize the shape and stiffness of 
semi-rigid articulating connectors in oblique seas (Figure 7). In these studies, the 
floaters are modelled as stiff and the connectors have linear and rotational stiffness in 
one DOF. An interesting development is the use of genomic algorithms to find the 
optimum stiffness of the connectors in such complex multi-body structures [10], [85]. 
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Figure 7, Multi module mat like VLFS [84]. 

 Research Gaps 

The literature study has identified some research gaps which can be addressed within 
the context of this thesis. There has been a wide range of research performed to 
determine the motion and structural response of a VLFS. An extensive range of 
studies have related to problems specific to the MOB or floating airport concepts. 
However, there is less publicly available research performed for an OFPV system 
because they are a relatively new concept but one that is gaining in popularity. These 
systems have less stringent requirements on relative motions between floaters so 
might see more flexibility in the connectors to reduce their loads.  
 
The numerical model used in this thesis assumes a rigid module, flexible connector 
model first proposed by Riggs et. al. [61] thus, assuming the floater behaves like a 
rigid body. As presented in the previous Section, there has been significant amount of 
research using this model for a serially connected joint type VLFS. The grid type 
floating structure is almost non-existent in the literature with the only example with a 
3x3 grid [84]. However, this model uses hinged connectors and also linearises all of 
the hydrodynamics terms while this thesis considers 6 DOF compliant connectors and 
nonlinear Froude-Krylov and hydrostatic forces. Using nonlinear hydrodynamic forces 
provides more accurate results close to the resonant response of the structure. 
 
The connector model that is proposed in this thesis is based on linear beam elements. 
It can be used to determine the maximum and significant wave loads at the 
connectors. A linear beam element connector model with compliance in 6 DOF has 
been published on other serially connected structures [28] but not for a grid structure. 
Furthermore, a discussion of the distribution of the forces and moments across the 
structure has been investigated in this thesis which has not been found in other 
research papers.  
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The hydrodynamic problem is often solved exclusively in the frequency domain 
because of faster solve times. There are very few examples of time domain being used 
to capture nonlinearities with the wave excitation forces. Mostly, these are used to 
capture effects associated shallow water or bathymetry [38], [46]. The numerical 
model used in this thesis solves the equation of motion in the time domain to capture 
the nonlinear Froude-Krylov and hydrostatic wave forces.  

 Gaps For Future Research 

The topics which have been identified as research gaps but are not covered within the 
scope of this thesis are discussed in this Section. Shallow water affects the response 
of a VLFS but there is limited research covering this topic for a grid structure. The 
radiation force and added mass are primarily affected by the shallow water and they 
become nonlinear as the depth decreases. A deep water assumption is also made in 
this thesis but it would benefit the scientific understanding if more research was 
performed for shallow water.  
 
The connector models used by other researchers are generally simplified to linear 
spring constants in a limited number of degrees of freedom. The connector response 
would differ if the stiffness would be nonlinear. There is also a different response if the 
stiffness changes in tension or compression which would be the case for fenders. 
Nonlinear damping might be relevant if a piston type attachment would be incorporated 
into the connector design. Furthermore, there are few compliant connector designs 
presented in research and fewer still which address the stresses and strains in the 
connectors. 
 
Numerical studies found in literature have always assumed the floaters are box 
shaped barge, pontoon or semi-submersible structures. However, there are few 
studies involving other floater designs such as triangular or hexagonal plan shapes. 
The company Solar Duck developed a triangular offshore floating concept which may 
reduce some incompatible connector loads in irregular and multi-directional seas [86] 
but results are not publicly available. While alternative geometries have not been 
studied, it is a recommendation for future work. 
 
There is a lot of research for semi-submersible (MOB) structures but for OFPV 
structures a box shaped barge is always assumed. The response of a semi-
submersible will be very different to a box shaped structure because of the differences 
in waterplane area and mass distribution. Alternative floater designs should be further 
researched as these are not investigated in this thesis. 
 
There have been very limited physical experiments performed which record the 
motions or forces associated with multiple connected floating bodies. Several 
experimental studies present a serially connected MOB type structure [65] or one with 
box shaped barges by Remy et. al. [9]. However, no experimental work is found that 
has a grid shaped VLFS and especially the loads which are generated at the 
connectors. These can be used to validate the numerical models. 
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3. Modelling Approaches 

 Principles of Joint Design 

The OFPV that is used as the basis of this thesis is one that is modular consisting of 
simple floaters joined with connectors. This Section elaborates on the basics of joint 
design that can be used for the model. A kinematic connection (joint) connects two or 
more components together and constrains motion in one or more DOF. Alternatively, 
the compliant connection can be used which is flexible in multiple DOF and offers 
greater versatility for a structure with complex multi-body interaction. 
 
A kinematic connection can be made to offer translational freedom such as a slider 
and/or rotational freedom such as a ball and socket, hinge, or pin. The simplest 
modelling technique is to assume the joint is either rigid or free in one or more 
prescribed DOFs. different types of connections are shown in Figure 8 and can be 
categorized as: 
 
- Hinge/revolute allows one rotational DOF and is rigid in others. 
- Prismatic (sliding/roller) joint allows one translational DOF and is rigid in others. 
- Ball and socket joint allows rotational DOFs but has rigid linear constraints. 
- Fixed (welded or bolted) is rigid in all DOF. 
 
A compliant connector is a special case where there is a finite stiffness in all DOF but 
is usually made more or less stiff in certain DOFs depending on the loading conditions. 
Compliant connectors are springs/cables usually paired with rubber which allow 
movement in multiple DOF. The connector model can be made more complex and 
accurate by including finite stiffness or damping to one or more DOF. 
 

 
Figure 8, Joint types (from left); hinge, prismatic, ball and socket [87], and compliant [56].  

 
The stiffness of a connector can be caused by its material properties, geometry, or 
from springs. For a beam connection, increasing the length while keeping a constant 
cross section will decrease the bending stiffness. Nonlinear stiffness can be 
experienced when certain materials, such as steel, exceeds its elastic limit. There is a 
release of energy from the system which means that it does not return to its initial 
position after the load is removed. Some materials such as rubber have a nonlinear 
stiffness while remaining within their elastic limits. 
 
The stiffness of a joint can be caused by springs which can behave linearly or 
nonlinearly. While many joints might be modelled as springs, this paragraph refers to 
connectors that are partially or fully comprised of physical springs. Linear springs have 
a constant deformation for each unit of force applied which is not the case for nonlinear 
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springs. A compliant connector design is reliant on springs or cables to provide 
stiffness in various DOFs [56]. 
 
Another characteristic of a connection is that it can have damping which is caused by 
friction between contact surfaces, the inherent structural properties, or because of 
energy losses such as viscous losses. Frictional damping is the most common in joints 
and occurs when there is microslip between non-smooth contact surfaces. The 
response becomes nonlinear if the surfaces are non-uniform. The damping of a cable 
connector is also nonlinear due to the rubbing of the individual wire strands [55]. 
 
Then there is the damping contribution which originates from the structure itself and is 
referred to as structural (or material) damping. This type of damping is dependent on 
the geometry, material properties, stress and internal forces, number of cycles, and 
temperature [88]. In the case of connections, this has a lesser effect on the total 
damping than the frictional damping [88].  
 
Finally damping can be caused by kinetic energy dissipating to a fluid through viscous 
effects or radiation [89]. This viscous damping is commonly studied in maritime 
applications because it reduces the motions of a structure in water but has many 
applications in connection design such as a dashpot system. Fluid-related viscous 
damping can be relevant to VLFS if the joint has a large contact area with the ocean 
and velocities are high. Damping is commonly modelled with a spring-mass damper 
system as described in Section 2.3. 
 
There is often a problem with having a detailed FEM model of the connector because 
of the relative scale compared to the VLFS. This can result in simulations which take 
excessively long to solve. Alternatively, the model can be simplified and can be used 
to obtain the forces and moments which can be inputs to a more detailed sub-model. 
The approach taken in this thesis is to simplify the connectors such that they are 
defined by a linear beam element connecting two nodes and then solving an equation 
of motion to obtain the relevant forces and moments. Further analysis of stresses 
would require connector design but this is considered out of scope for this thesis. 

 Overview of Computational Model 

This Section provides an overview of the numerical tool used in this thesis and certain 
concepts will be expanded in later subsections. A legacy model that is developed by 
Tuitman [2] is the basis of the numerical tool. The calculation flow is shown in Figure 
9. In this thesis the model is expanded to obtain the forces and moments of the 
connectors. 
 
Initially a hydrodynamic mesh is generated using the program GMSH, then the 
hydrodynamic coefficients such as the added mass, radiation damping, and the 
diffraction and radiation wave excitation forces are calculated in the frequency domain 
using the boundary element program PRECAL. The influence of all hydrodynamically 
meshed structures is considered in the calculation of these wave forces. 
 
The program HETIME is developed by Tuitman [2] and converts the hydrodynamic 
terms calculated in the frequency domain to the time domain using the Cummins 
equation. These terms are linearised by initially performing these calculations in the 
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frequency domain. The Froude-Krylov (incident wave) and hydrostatic forces are then 
calculated based on the time-dependent position of the floaters to capture 
nonlinearities. Finally, an equation of motion is solved using the hydrodynamic terms 
and user defined linearised constraint terms for mooring lines and connectors. The 
solution to the equation of motion gives the motions, forces and moments for the 
floaters and connectors.  
 
The connectors are modelled with a beam element connecting two nodes on two 
bodies. The connector stiffness is defined using a linearised stiffness matrix and this 
is multiplied by the displacement between nodes to obtain the forces and moments. 
The mooring lines are modelled using a spring mass damper element with a constant 
linear stiffness and damping. 
 
The incoming waves are defined as regular or irregular. If irregular waves are used, a 
JONSWAP sea-spectrum is generated using wave peak period, significant wave 
height, a wave spreading coefficient (𝛾), and a randomized wave frequency as inputs. 
The connector forces and moments are calculated from the stiffness and relative 
displacement of nodes. The ability to extract these connector loads and present their 
distribution across the structure is novel to this thesis. 
 
 

 
Figure 9, Overview of calculation flow used in this thesis. 

 Modelling Assumptions 

There are certain important assumptions made for this numerical model that are 
relevant to mention specifically in this Section. The assumptions that are discussed 
are use of a potential flow 3D-BEM, wave linearisation, solving the equation of motion 
in the time-domain, floaters are rigid bodies, linearised connectors and connector 
stiffness, floater dimensions, and the mooring arrangement.  
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A potential flow based method has been used to determine the frequency dependent 
hydrodynamic coefficients and wave excitation forces. While an analytical description 
of the flow around the floaters can also be accurate for very simple structures the 
complex fluid interaction around multiple floaters means that more advanced methods 
are needed. A comparison has been made between the natural frequency calculated 
using an analytical model and the BEM method in Section 4.1.3. 
 
The potential flow method isn’t able to model the viscous damping, gap resonance, 
and shallow water effects. The sharp corners on a box shaped floater cause 
turbulence and flow separation which increases hydrodynamic damping. The floater 
motions (particularly roll and pitch) could be overpredicted close to resonance. 
 
Another effect which is strongly influenced by viscosity is gap resonance where a large 
amount of fluid energy is dissipated through turbulence caused by viscosity. 
Therefore, an inviscid solution would have higher wave forces at gaps between 
floaters than a viscous solution. The viscous effect becomes smaller as the gap 
becomes larger. 
 
Shallow water can also affect the hydrodynamic radiation force which becomes 
nonlinear because the wave energy is not distributed evenly away from the structure. 
In this thesis a deep water assumption is made. More advanced computational fluid 
dynamics such as the finite volume method are more accurate in this situation because 
they can model viscous effects but then the computational time increases significantly. 
 
The hydrodynamic coefficients and the wave diffraction and radiation potentials are all 
linearised whereas the incident wave (Froude-Krylov) potential and hydrostatic 
pressure are both solved in the time domain hence, nonlinearities are able to be 
captured. The nonlinear effects might increase at wave frequencies close to 
resonance. The wave diffraction and radiation terms are linearized to improve the 
solution times but would ideally also be solved in the time domain. 
 
The hydrodynamic potentials are solved with all meshed bodies considered 
boundaries to the fluid domain because of the no-penetration boundary condition 
(which will be described in Section 3.4.4). What is not included is the connector (or 
mooring line) influence on the dynamic pressure terms. This might result in some 
inaccuracies because of the interaction of the radiation potentials which are caused 
by the motions of the connected floating bodies.  
 
Using numerical methods requires the geometry to be discretised to a hydrodynamic 
mesh which results in some uncertainty. The mesh size is primarily determined by the 
highest frequency being considered and a general rule of thumb is to use 1/6 times 
the shortest wavelength [90]. The mesh should also sufficiently represent the 
geometry however for a simple box this is often not limiting. A mesh convergence 
study should be conducted to identify a mesh size with suitably low uncertainty. 
 
The waves generated in the numerical model are linearised such that the effects of 
wave steepness, shallow water, and wave breaking are all ignored. Nonlinear waves 
are important in engineering due to rogue waves which are extremely large, rare, and 
unpredictable but can result in significant loading on the structure. There is also a 
nonlinearity associated with shallow water due to the reflection of waves from the 
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seabed. This creates much steeper and larger waves which can exacerbate the 
motions and connector loads. These waves have not been modelled in this thesis. 
 
It might also be important to consider the wave breaking on a structure. Wave breaking 
is nonlinear and can cause green water loading which can be important for both fatigue 
and ultimate strength. By linearising the waves, both of these phenomenon are 
ignored. This is because the solution times would be extremely large and the current 
thesis is investigating floater motions and connector loads more generally. Once the 
defining load cases are defined then it would be recommended to investigate these 
nonlinear waves in more detail.  
 
Other wave related assumptions are for the sea states and use of long-crested waves. 
The sea state is assumed to follow of JONSWAP spectrum which is appropriate for 
the Hollandse Kust Noord site. This thesis investigates long-crested waves because 
the wave energy would be more concentrated towards a certain wave heading. 
Therefore, it is assumed that the wave loading would be more extreme and the worst 
case for design. By assuming there is no wave-spreading it is also easier to interpret 
which wave headings contribute more to the structural response.  
 
The equation of motion is solved in the time-domain rather than the frequency domain. 
There is quite a large computational penalty for choosing to solve in the time-domain. 
This is justified because the multi-body interaction is displacement dependent and not 
frequency dependent. The irregular waves are generated with a randomised wave 
height and frequency meaning the structure is hydrodynamically excited in random 
phases. This type of excitation leads to certain resonant responses which are not fully 
captured in the frequency domain. To account for this nonlinearity, the Froude-Krylov 
and hydrostatic terms are solved in the time domain. This allows a better prediction of 
the hydrodynamic interaction when motions are large and there are rapid changes to 
the waterplane area which can occur close to resonance. 
 
The next assumptions are related to the floaters being rigid bodies and their 
dimensions. A rigid body assumption might be significant because it means that the 
wave load is directly transferred through the connectors. If there is elasticity in the 
floaters, some of the wave energy would be transferred to the structure to deform its 
shape. However, it is assumed that because stiffness of the connector is much lower 
than the floaters, there will be no impact on the results. 
 
The floater dimensions are initially estimated from similar OFPV concepts being tested 
in The Netherlands [53]. The box shape is initially selected because of the availability 
of data which could be used for verification and validation. There are some concepts 
such as the SolarDuck, Swimsol, and OceanSun designs [53] which have non-
rectangular floaters but these shapes are not investigated in this thesis. 
 
For the case studies used in this thesis a square plan shape floater is chosen because 
the OFPV is expected to be deployed in seas with waves coming from multiple 
directions and it will not be able to weathervane. This makes the square the most 
versatile to changes in wave heading compared to other sized rectangles. As 
mentioned, the sharp corner of the box floater may result in an underprediction of 
hydrodynamic damping because viscous effects are not captured. 
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The connectors are also an integral part of this thesis so how they are defined and 
how the connector forces and moments are calculated has important implications to 
the results. The connectors have been modelled assuming linear stiffness and 
damping. It has been mentioned that it might be appropriate to define nonlinear 
stiffness and damping curves but this would need to be validated through experiments. 
However, the design of the connector should first be known which requires knowledge 
of the forces and moments that it might experience. There is also the assumption that 
the material will behave elastically. This is valid for certain materials such as steel 
assuming the yield stress is not exceeded but for rubber this is usually not the case. 
 
The connectors are modelled using linear beam elements assuming a cubic shaping 
function. In this way, the forces and moments are calculated using the relative 
displacement between two nodes (one connected to either floater) and the pre-defined 
stiffness matrix. Linearising the beam element means that higher order effects are 
ignored. These become more significant when deformations are large. The beam 
element also assumes a cubic shaping function which is the exact solution for coupled 
shear and bending. However, there may be more than two DOFs per node which might 
mean another shaping function could be more appropriate. 
 
The mooring design has been assumed in this thesis and has the main objective of 
keeping the structure in position for the simulation. The mooring lines are idealised 
with linear stiffness and without damping which is unlikely to be realistic. Often, the 
mooring stiffness is nonlinear due to the materials used and line length. There is also 
damping due to the rubbing of individual wire strands and viscous effects. 
Furthermore, the mooring pattern is carefully selected to minimise motions in certain 
directions. Regardless, the mooring arrangement is considered acceptable because 
the focus of this thesis is on OFPV connectors and so only relative motions are 
considered. Also, a mooring sensitivity study has been performed in Section 6.1.1.  

 Legacy Numerical Model  

3.4.1. Linear Waves 

The legacy numerical model assumes linear Airy waves which allows the use of linear 
superposition. This means it is possible to apply potential theory to describe the 
seakeeping behaviour of a floating structure in waves. It is assumed that nonlinear 
hydrodynamic behaviour from viscous damping, shallow water effects and/or body 
interaction is small [90]. Superposition means that regular, sinusoidal waves with a 
certain height and phase angle can be combined to form a wave spectrum. The 
structural response can then be obtained by multiplying by the wave spectrum. 
 
The dispersion relation is satisfied for Airy waves such that for finite water. 
 

 
𝑘 ∙ 𝑡𝑎𝑛ℎ(𝑘𝐻) =

𝜔2

𝑔
 

 

3-1 

The wave number is ‘𝑘’, the water depth is ‘𝐻’, the angular frequency is ‘𝜔’ and ‘g’ is 
the gravitational acceleration. In this thesis, it is assumed there is infinite water depth 



23 

so the ‘𝑡𝑎𝑛ℎ’ term becomes equal to 1 and wave potential and velocity (3-2 and 3-3 
respectively) can be simplified to. 
 

 𝜙 = 𝑅𝑒 (−𝑖 ∙
𝜔

𝑘
∙ ℎ̂ ∙ 𝑒−𝑘∙𝐻) 3-2 

 
𝑣𝑧 =

𝑑𝜙

𝑑𝑧
 

3-3 

 
Simplifying the solution by assuming deep water improves the simulation time but it 
doesn’t account for reflected waves from the seabed. This creates a kind of suction 
effect due to the uneven pressure distribution from the sides of the structure to the 
seabed. Furthermore, the added mass calculation is lower in shallow water because 
there simply isn’t the fluid there to accelerate. This shifts the natural frequency of the 
structure to the left. It is recommended that future research is performed which 
investigates the effect of shallow water of a grid structure. 

3.4.2. Wave Spectrum 

A body floating in the ocean is subject to a wide range of irregular waves which need 
to be analysed to determine the motion and structural response. The ocean wave 
spectra can be characterized as wind dominated, swell dominated or a combination of 
the two. The energy distribution of both types of waves follow that the wind-dominated 
waves have greater spreading components both in terms of energy and direction and 
the wavelength is generally shorter. The swell dominated waves are generally more 
uni-directional and the energy density is more concentrated. It is shown that short 
waves adapt more quickly to changes in wind than long waves [90]. 
 
In the North Sea, it is appropriate to use JONSWAP spectrum has been used to define 
the irregular waves. The assumption is that the wind does not have time to fully 
develop the ocean waves [90]. For this thesis, only the long-crested waves are 
analysed hence, there will not be an effect of wave spreading. This is chosen because 
the wave spreading would dissipate the wave energy and the peak response might 
not become as prominent. The JONSWAP spectrum is defined by the function. 
 

 
𝑆𝜂 =

320 ∙ 𝐻𝑠
2

𝑇𝑝
4

∙ 𝜔−5 ∙ exp (−
−1950

𝑇𝑝
4

∙ 𝜔−4)𝛾

exp{−1(

𝜔
𝜔𝑝

−1

𝜎√2
)

2

 } 

 
3-4 

 
Where: 

 𝛾 =

{
 
 
 

 
 
 5                                     for  

𝑇𝑝

√𝐻𝑠

≤ 3.6

exp(5.75 − 1.15
𝑇𝑝

√𝐻𝑠

)   for  3.6 <
𝑇𝑝

√𝐻𝑠

≤ 5

1                                       for      
𝑇𝑝

√𝐻𝑠

> 5 
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And: 

 𝜎 =

{
 
 

 
 0.07 𝑓𝑜𝑟 𝜔 ≤

2𝜋

𝑇𝑝

0.09 𝑓𝑜𝑟 𝜔 >
2𝜋

𝑇𝑝

   

 
The significant wave height is given as ‘𝐻𝑠’ and the wave peak period is ‘𝑇𝑝’. The 

spectral value, ‘𝑆𝜂’ can be used to calculate the wave amplitude using equation 3-5. 

 

 𝑎𝑛 = √2 ∙ 𝑆𝜂(𝜔) ∙ ∆𝜔 3-5 

 
The wave profile in the time domain is calculated using an inverse Fourier transform 
from the spectrum in the frequency domain. If only regular waves are considered, then 
N is equal to 1. 
 

 𝜂𝑛 = ∑𝑎𝑛 ∙ cos(𝜔𝑛𝑡 − 𝑘𝑛𝑥1 + 𝜃𝑛)

𝑁

 3-6 

3.4.3. Potential Flow Theory 

This thesis uses potential flow theory and a 3D-BEM to solve for the frequency 
dependent terms in the equation of motion. The present method assumes that the fluid 
problem is continuous, inviscid, incompressible, non-rotational and initially uniform. In 
this way, the solution is linearized such that the fluid velocity can be described using 
potential theory assuming mass conservation such that the Laplace equation is used 
to solve for the velocity potential (𝜑) shown in equation 3-7. 

 

 Δ𝜑 = 0 3-7 

 
A BEM is powerful because it has reasonably fast computational times and provide a 
good accuracy. Comparing to analytical methods which are faster but more limited in 
situations where they are accurate. Conversely more advanced computational fluid 
dynamic methods (such as finite volume) can capture more physical phenomenon 
than BEM but are computationally more expensive.  
 
Potential flow is less accurate when viscous effects are dominant in the flow because 
viscosity is not modelled. For motion analysis of a VLFS a BEM might underestimate 
hydrodynamic damping leading to an overestimation of the motion response close to 
resonance. Additionally, there is no mechanism to model wave-breaking which can 
result in unrealistically high waves forming if pressure becomes very low. This can 
occur if there is a very narrow gap between the floaters. In this case, a lot of wave 
energy would realistically be dissipated through viscosity and vorticity but this is not 
captured using potential flow. 
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3.4.4. Frequency Domain 

Initially the hydrodynamic coefficients are calculated in the frequency domain using 
the 3D-BEM described by Tuitman [2]. This requires generating a hydrodynamic mesh 
which is reasonably consistent and small enough to capture frequencies up to 3 rad/s. 
The maximum panel size needed to achieve a stable hydrodynamic solution is 
proportional to the wavelength [2]. The mesh requires integrating over the entire 
wetted surface and must be defined up to the still water free surface boundary.  
 
In this thesis the floaters are assumed to behave like rigid bodies. This simplifies the 
solution considerably because the motions are not coupled to the deformation of the 
floaters. The work by Riggs et. al. showed that for a joint type MOB which is serially 
connected, the elasticity of the floater can be represented in the stiffness of the 
connector [61]. The floater structure is usually made very stiff either by using certain 
materials such as concrete or by reinforcing steel structures. This means that the 
connectors are often so much more flexible that assuming the floater is a rigid body is 
considered valid. A significant proportion of the incoming wave force is transferred 
between the floaters through the connectors which means they might experience 
greater loads than if there were flexibility in the floater as well. 
 
The hydrodynamic coefficients describe the fluid motion around the floater and are 
needed to solve the equation of motion. These coefficients are computed in the 
frequency domain to reduce the simulation time, however this means that nonlinear 
hydrodynamic effects are not captured using this method. The added mass and 
hydrodynamic damping are frequency-dependent while the spring stiffness (restoring 
coefficient) is frequency-independent.  
 
The wave potentials which are used to determine the wave excitation force can be 
divided into an incident, diffracted and radiated component such that: 

 

 𝜑 = 𝜑𝐼 + 𝜑𝐷 − 𝑖𝜔∑𝜉𝑎 ∙ 𝜑𝑅𝑗 

𝑁

𝑗=1

 3-8 

 
Where 𝜑 is the total velocity potential, 𝜑𝐼 is the incident potential, 𝜑𝐷 is the diffracted 
potential, 𝜔 is the wave frequency, 𝑁 is the number of degrees of freedom, 𝜉𝑎 is the 

wave elevation, and 𝜑𝑅 is the radiated potential.  
 
The incident potential is displacement dependent is calculated using equation 3-9. 
 

 𝜑𝐼 = −
𝑖𝜉

𝑎
𝑔

𝜔
𝑒𝑘(𝑧−𝑖𝑥𝑤) 3-9 

 
Where 𝑘 is the wave number, 𝑧 is the vertical position of the node, 𝑥𝑤 is the distance 
in the wave direction. 
 
The diffracted and radiation velocity potentials are calculated by solving the Laplace 
problem (from equation 3-7) using the following boundary conditions. 
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{
 
 
 

 
 
 

∆𝜑 = 0

−𝑘𝜑 +
𝜕𝜑

𝜕𝑧
= 0

𝜕𝜑

𝜕𝑛⃗⃗
= 𝑉𝑛

lim [√𝑘𝑅 (
𝜕𝜑

𝜕𝑅
− 𝑖𝑘𝜑)] = 0

 

In the fluid, 
 
𝑧 = 0, 
 
On 𝑆𝑏, 
 

    𝑅 → ∞ 

3-10 

 
Where, 𝑉𝑛 is the normal velocity potential, 𝑘 is the wave number, 𝑧 is the vertical 
distance from the still water line, 𝑆𝑏 is the wetted surface, 𝑛 is a normal vector to the 
surface, 𝑅 is the distance to a body fixed origin. 
 
The first boundary condition ensures conservation of mass and no fluid can escape 
from the domain. The second linearises the free surface such that no fluid can detach 
from the domain (i.e., no wave breaking) because the pressure of the free surface is 
zero which is equal to the ambient pressure. The third condition assumes no fluid 
enters the floating body. The final condition ensures that the diffraction and radiation 
potentials will become equal to zero away from the body. The boundary value problem 
is solved numerically at the centre of the mesh elements using pulsating Green’s 
source functions. 
 
To obtain the frequency dependent forces the pressure can be obtained from the 
potentials using the linearized Bernoulli equation shown in equation 3-11. 
 

 𝑃 = 𝑖𝜔𝜌𝜑 3-11 
 

Where the pressure (P) is calculated for the respective potentials. Here 𝜌 is the water 
density which is assumed constant. The frequency dependent force is then obtained 
by integrating the pressure over the wetted surface. The frequency dependent Froude-
Krylov (incident wave) force (𝐹𝐼) and diffraction force (𝐹D) are calculated using 
equation 3-12 and equation 3-13 respectively. 
 

𝐹𝐼,𝑖 = ∬ 𝑃𝐼
𝑆𝐵

ℎ⃗⃗𝐼 𝑛⃗⃗ 𝑑𝑆 
3-12 

 

𝐹𝐷,𝑖 = ∬ 𝑃𝐷
𝑆𝐵

ℎ⃗⃗𝐼 𝑛⃗⃗ 𝑑𝑆 
3-13 

 
The frequency dependent radiation force is described using added mass and damping 
coefficients as shown in equation 3-14. 
 

 
𝜔𝑒𝐴𝑖𝑗 + 𝑖𝜔𝑒𝐵𝑖𝑗 = ∬ 𝑃𝑅𝑗

𝑆𝐵

ℎ⃗⃗𝐼 𝑛⃗⃗ 𝑑𝑆 
3-14 

 
Where, 𝑃𝑅𝑗

 is the radiation pressure, ℎ𝐼 is the wave amplitude vector, 𝑛 is a vector 

normal to the surface, and 𝐴 and 𝐵 are the frequency dependent hydrodynamic added 
mass and damping terms (respectively).  
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The equation of motion for every (ith) DOF can then be obtained in the frequency 
domain using equation 3-15. 
 

 𝐹𝐼,𝑖
⃗⃗ ⃗⃗⃗⃗ + 𝐹𝐷,𝑖

⃗⃗ ⃗⃗ ⃗⃗⃗ = (𝑀𝑖,𝑗 + 𝐴𝑖,𝑗) ∙ 𝑥𝑖⃗⃗⃗̈⃗ + 𝐵𝑖,𝑗 ∙ 𝑥⃗𝑖
̇ + 𝐶𝑖,𝑗 ∙ 𝑥𝑖⃗⃗⃗⃗  3-15 

 
Where 𝑥𝑖̈ is the acceleration, 𝑥𝑖̇ is the velocity, and 𝑥𝑖 is the displacement of the body. 

3.4.5. Time Domain 

The hydrodynamic terms should be calculated in the time domain rather than the 
frequency domain. The process of obtaining the time domain results is discussed in 
this Section. 
 
Starting with the incident wave force which is also known as the Froude-Krylov force. 
This force is due to the pressure of the undisturbed incoming waves. Both the Froude-
Krylov and the hydrostatic wave force are solved exclusively in the time domain to 
make them displacement dependent. Figure 10 shows how the terms are calculated. 
The pressure cannot be solved using the linearized equation from equation 3-11 but 
rather using the following conditions for the incident wave pressure. 
 

 

{
  
 

  
 

𝑃𝐹𝐾 = ∑ 𝜌𝑔𝜁𝑖(𝑡, 𝑥𝑤, 𝜔)𝑒𝑘(𝜔𝑖)𝑧

𝑁𝑓𝑟𝑒𝑞

𝑖=1

𝑃𝐹𝐾 = 𝜌𝑔𝜁𝑡𝑜𝑡(𝑡, 𝑥𝑤) (1 −
𝑧

𝜁𝑡𝑜𝑡(𝑡, 𝑥𝑤)
)

 
𝑃𝐹𝐾 = 0

 

 

 

𝑧 < min(0, 𝜁𝑡𝑜𝑡(𝑡, 𝑥𝑤)) 

 
𝑧 ≥ 0 and 𝑧 < 𝜁𝑡𝑜𝑡(𝑡, 𝑥𝑤) 
 

𝑧 ≥ 𝜁𝑡𝑜𝑡(𝑡, 𝑥𝑤) 
 

3-16 

The pressure is now dependent on the wave position in space and time. The Froude-
Krylov force must be linearly interpolated above the still water line because the wave 
potential has not been defined yet. 
 
The nonlinear hydrostatic pressure is also calculated based on the wave position. 
 

 {
𝑃𝐻𝑆 = −𝜌𝑔𝑧

 
𝑃𝐻𝑆 = 0

 
𝑧 < min(0, 𝜁𝑡𝑜𝑡(𝑡, 𝑥𝑤)) 
 

𝑧 ≥ 0 or 𝑧 ≥ 𝜁𝑡𝑜𝑡(𝑡, 𝑥𝑤) 
3-17 

 
These terms are combined into one force term (𝑓𝐼) as shown in equation 3-18.  
 

 𝑓I,i = ∬ (𝑃𝐹𝐾 + 𝑃𝐻𝑆)
𝑆𝐵

ℎ⃗⃗𝐼 𝑛⃗⃗ 𝑑𝑆 3-18 

 
The incident wave force has been calculated in the time domain so that it is 
displacement dependent rather than frequency dependent. This allows non-linear 
effects associated with large rigid body mode displacements (e.g., pitch or heave 
motions) to be captured more accurately.  
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Figure 10, Incident (Froude-Krylov) pressure [2]. 

 
The diffraction force is then calculated using the frequency dependent result (𝐹𝐷,𝑖) 

shown in equation 3-12. The time dependent diffraction force (𝑓𝐷,𝑖) is calculated in the 

time domain using equation 3-19. 
 

 𝑓𝐷⃗⃗⃗⃗⃗ = ∑ 𝜁𝑎(𝜔𝑖)

𝑁𝑓𝑟𝑒𝑞

𝑖=1

∙ 𝐹𝐷
⃗⃗ ⃗⃗⃗(𝑖) ∙ cos(𝜔𝑖𝑡 + 𝜀) 3-19 

 
Where 𝜀 is the phase angle of the incoming wave from the frequency domain 
calculation. 
 
Finally, the radiation force is calculated in the time domain using the Cummins 
equation which is derived from impulse theory [91]. First the radiation force is 
calculated using equation 3-20. 
 

 𝑓𝑅,𝑖 = 𝐵𝑖,𝑗(𝜔∞) ∙ 𝜉𝑎
⃗⃗ ⃗⃗ (𝑡) + ∫ 𝐾𝑖,𝑗(𝑡 − 𝜏) ∙ 𝜉 𝑑𝜏

𝑡

−∞

 3-20 

 
Here a retardation function (𝐾𝑖) is introduced which accounts for the response delay 
of an impulse load over time. This allows the conversion of the added mass and 
damping terms as shown in equation 3-21. 
 

 𝐾𝑖,𝑗(𝜏) =
2

𝜋
∙ ∫ 𝑏𝑖,𝑗(𝜔) ∙ cos(𝜔𝜏) ∙ 𝑑𝜔

∞

0

 3-21 

 
The added mass term becomes. 
 

  𝐴𝑖,𝑗 = 𝑎𝑖,𝑗(𝜔∞) +
1

𝜔∞
∙ ∫ 𝐾𝑖,𝑗(𝜏) ∙ sin(𝜔𝜏) ∙ 𝑑𝜏

∞

0

 3-22 

 
However, given that the expression can be valid for infinite frequencies, the expression 
can be simplified to. 
 

 𝐴𝑖,𝑗 = 𝑎𝑖,𝑗(𝜔∞) 3-23 

 



29 

Careful attention should be paid using the Cummins equation because the result will 
only be valid if the coefficients are calculated at frequencies sufficiently high that the 
response functions tend to zero. For this this analysis that frequency is 5 rad/s. This 
requires a small panel size in the hydrodynamic mesh which might result in extremely 
large computations computational time if the VLFS becomes very large, such as when 
there are many floaters. 
 
The computational time might increase significantly if the hydrodynamic problem is 
solved at such high frequencies. To solve this problem the calculations are performed 
to a sufficiently high frequency (in this case 3 rad/s) and interpolated to an even higher 

frequency using a function with the general form 
𝑎

𝜔𝑒
𝑏 + 𝑐 for higher frequencies [2].  

 

𝑓𝑖 = 𝑓I,i + 𝑓grav + 𝑓beam,i + 𝑓R,i + 𝑓D,i 3-24 

 
Thus, having obtained the hydrodynamic terms in the time domain, the general 
equation of motion can be expressed as. 
 

  ∑{(𝑀𝑖,𝑗 + 𝐴𝑖,𝑗) ∙ 𝑥𝑗⃗⃗⃗̈⃗ (𝑡) + 𝑏𝑖,𝑗(𝜔∞) ∙ 𝑥⃗𝑗
̇

6

𝑗=1

(𝑡) + ⋯  

 …∫ 𝐾𝑖,𝑗

∞

0

(𝑡 − 𝜏) ∙ 𝑥⃗𝑗
̇ 𝑑𝜏 + 𝐶𝑖,𝑗 ∙ 𝑥⃗𝑗(𝑡)} = 𝑓𝑖(𝑡) 3-25 

 
Here, the damping coefficient at infinite frequency cannot be obtained using 3D-BEM; 
hence, the value at the maximum calculated frequency is used. The frequency 
independent terms such as the mass (𝑀) and stiffness matrices (𝐶) remain constant. 
Also, the term (𝑓𝑖) represents by the following force terms.  

 

 𝑓𝑖 = 𝑓I,i + 𝑓grav + 𝑓beam,i + 𝑓R,i + 𝑓D,i 3-26 

 
Where 𝐹𝑖 is the total force in DOF ‘i’, 𝑓I,i is the Froude-Krylov and hydrostatic force 

combined, 𝑓grav is the gravitational force, 𝑓beam is force in the beam element, 𝑓R,i is the 

radiation force, and 𝑓𝐷,𝑖 is the diffraction force. 

 
The equation of motion is solved in the time domain such that the Froude-Krylov, 
hydrostatic, and beam forces are solved exclusively in the time domain and can 
capture any nonlinearities in the hydrodynamics or structural interaction. The 
displacement and its differential terms are solved using a 4th order Runge-Kutta 
numerical time-integration scheme as described in [2]. The integration method uses 
an explicit integration scheme. This means that the solution becomes unstable if the 
time-step is too large. The maximum value for a stable time-step is dependent on the 
maximum frequency and stiffness being analysed. 
 
Ideally the radiation and diffraction forces would be solved in the time domain like the 
Froude-Krylov force. However, this would become too computationally demanding and 
is currently not implemented in this solution. Instead, these forces are converted to the 
time domain using the Cummins equation (radiation force) and equation 3-19 
(diffraction force). There might be some nonlinearities which are not captured using 
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this assumption, especially with the radiation potentials which would be affected by 
the connector and other floaters position in space. If the model would be in shallow 
water, the radiation force also becomes more nonlinear. 

3.4.6. Spring Mass Damper Model 

Another model which is used in the legacy model is a spring mass damper connecting 
two nodes. This is expressed in equation 3-27 and can represent mooring lines which 
for this thesis have zero damping (i.e., 𝑏𝑠 is equal to zero). Alternatively, this can also 
be used to apply linear damping to the connectors between the floaters and in this 
case the stiffness is equal to zero because the beam element represents this (i.e., 𝑘𝑠 
equals zero). The total force in the element is determined based on the relative 
position and velocities of two pre-defined nodes as shown in equation 3-27. These 
nodes can be attached to two bodies or to a single body and a position in space. 
 

 𝑓𝑠𝑑0 = 𝑘𝑠(|∆𝑝| − 𝐿𝐶) + 𝑏𝑠(∆𝑝̇) ∙ 𝑠𝑛 3-27 

 
Here 𝑘𝑐 represents the linearized connector stiffness, ∆𝑝 is the relative displacement 
and ∆𝑝̇ is the relative velocities between two points, 𝐿𝑐 is the original length and 𝑠𝑛 is 
a unit vector in the direction of the element. For both the damping model for the 
connectors and for the mooring line model, the force is linearised and defined by two 
nodes connecting either two bodies or a body with a point in space. 
 
In reality the mooring lines might exhibit nonlinear behaviour both in stiffness and 
damping. The use of a linear damping model for modelling mooring lines has the 
potential to lead to inaccuracies in the overall motions. However, considering the 
thesis is focussed on the connector forces and moments and relative floater motions 
rather than global results this model should be acceptable. 

 Expanded Numerical Model 

The legacy numerical model is able to model the connectors using linear beam 
elements. This thesis expands the model by developing a method of calculating the 
linear stiffness matrix based on Euler-Bernoulli beam equations. Additionally, the 
forces and moments of the connector are output for post-processing. 
 
The connectors for the numerical model are modelled as beam elements with a 
prescribed stiffness matrix. This matrix is initially calculated based on the Euler-
Bernoulli beam equations. There is an axial component as well as a coupled vertical 
bending with vertical shear and a coupled horizontal bending with horizontal shear. 
The axial force component is calculated using equation 3-28. 
 

 𝑘axial =
𝐴𝑐𝐸

𝐿𝑐
 3-28 

 
The coupled bending stiffness is first calculated assuming that the beam deformation 
follows a cubic function as shown in Figure 11. This model can be used for both the 
coupled vertical and horizontal bending and shear coupling. 
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Figure 11, Vertical and horizontal coupled shear and bending. 

 
It is assumed that there is a coupling between the shear and bending components for 
the vertical and horizontal bending. Using this model, the transverse displacement is 
described by a cubic shape function as shown in equation 3-29. The cubic shape 
function is the exact solution for the four DOF. The actual deformed shape is unknown 
without experimental testing so some coupled terms might not be accounted for using 
this idealised model. In this case, the actual connector design would need to be known 
and physical testing could be performed to obtain the exact response.  
 

 
𝑣 = 𝑎1𝑥

3 + 𝑎2𝑥
2 + 𝑎3𝑥 + 𝑎4 3-29 

 
Then the equations for bending and shear are applied as follows. 
 

 𝑚𝑐(𝑥) = 𝐸𝐼 (
𝑑2𝑣

𝑑𝑥2
) 3-30 

 𝑉𝑐(𝑥) = 𝐸𝐼 (
𝑑3𝑣

𝑑𝑥3
) 3-31 

 
And then the stiffness can be solved using the equation. 
 

 {

𝑓1𝑦

𝑚1

𝑓2𝑦

𝑚2

} = 𝑘𝑐 {

𝑣1

𝜙𝐶1
𝑣2

𝜙𝑐2

} 3-32 

 
And the stiffness matrix becomes. 
 

 
𝑘𝑐 =

𝐸𝐼𝑐
𝐿𝑐

[
 
 
 
12 6𝐿𝑐 −12 6𝐿𝑐

6𝐿𝑐 4𝐿𝑐
2 −6𝐿𝑐 2𝐿𝑐

2

−12 −6𝐿𝑐 12 −6𝐿𝑐

6𝐿𝑐 2𝐿𝑐
2 −6𝐿𝑐 4𝐿𝑐

2 ]
 
 
 

 3-33 
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The connector is then modelled using a beam element in the hydrodynamic software 
by assuming linearity between two nodes connected to each body. The relative 
displacement of the two nodes and the prescribed linear stiffness is used to calculate 
the forces and moments in the connector using equation 3-34.  
 

 {𝑓𝑏𝑒𝑎𝑚} = 𝑘𝑐 ∗ {𝑢⃗ 𝑖} 3-34 

 
Where 𝑓𝑏𝑒𝑎𝑚 is the force or moment, 𝑘𝑐 is the stiffness and 𝑢𝑖 is the deformation in a 
prescribed DOF. Assuming beam linearity vastly improves the calculation speed and 
allows the solution to be solved in the equation of motion. If a nonlinear element was 
used, the stiffness could be nonlinear and solve accurately but then at a greater 
computational cost and also the response curve would need to be known before 
running the simulation. This could be done using experiments or a very precise 
parametric FEM analysis. 
 
The beam element assumes a cubic shape function to describe the deformation 
between both nodes. This assumed shape might lead to some inaccuracy in the 
results of the connector forces and moments if the actual deformed shape is very 
different. However, in most cases this would also be nonlinear and could not be 
captured using a linear beam element. The cubic shaping function is the same as in 
equation 3-29. 
 
The connector loads are calculated in the time domain along with the equation of 
motions. For this reason, the current numerical model doesn’t allow the determination 
of the mode shapes of the entire connected structure. Additionally, the response 
functions must be calculated by solving the simulation with regular waves of a certain 
frequency and then manually creating the plot of the frequency response.  
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4. Verification and Validation 

 Verification 

The numerical model has been verified to ensure the solution is being solved correctly. 
There are various types of verification exercises performed such as a mesh 
convergence study, added mass and damping impulse conversion study, and irregular 
sea state confidence study. Furthermore, semi-analytical comparisons are made for 
the natural frequency of a single floater and a 2D three floater model in vertical bending 
using a Lagrangian approach. Finally, motion RAOs on a single floating floater were 
compared to a numerical study performed by Newman [13].  

4.1.1. Mesh Convergence Study 

A mesh convergence study was performed to determine the mesh size for the 
numerical computations. A single box shaped floater with the dimensions 15x15x1m 
(L x B x T) is used for this study. There are no mooring lines or connectors in the 
model. A 100 second simulation is performed in regular waves with a height of 1.0m, 
and a wave period of 2.0 seconds. This wave period requires the smallest mesh size 
to solve the hydrodynamic terms. The mesh sizes analysed are 2.00, 1.00, 0.80 and 
0.35m. A floater with the mesh size of 1.00m is shown in Figure 12. The grid is 
generated such the horizontal (x and y) directions have the specified size but the 
height (i.e., in z-direction) has half of this size. 
 

 
Figure 12, 15x15x1m single floater hydrodynamic mesh with size of 1.00m. 

 
The peak pitch motions are compared in the uncertainty analysis. The least squares 
method with weighted residuals is used following the procedure proposed by Eca and 
Hoekstra [92]. The uncertainty estimate is given by equation 4-1. 
 

 𝑈𝜃 = 𝛽 ∙ 𝜖𝜃 4-1 
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Where 𝛼 is a safety factor calculated based on the trend of the results, and 𝜖𝜃 is the 
error estimate which uses a Richardson extrapolation as shown in equation 4-2.  
 

 𝜖𝜃 = 𝜃𝑖 − 𝜃0 = 𝛼𝜃ℎ𝑖
𝛾𝜃 4-2 

 
Where, 𝜃𝑖 is the calculated value, 𝜃0 is an approximation of the exact solution, 𝛼𝜃 is a 
constant to be calculated, ℎ𝑖 is the mesh unit size, and 𝛾𝜃 is the order of grid 
convergence which can be calculated if unknown. The coefficients can be calculated 
by minimizing a least squares function (𝑆) shown in equation 4-3. The approximate 
solution is found using a nonlinear partial differential equation solver. 
 

 𝑆(𝜃0, 𝛼𝜃, 𝑝) = √∑(𝜃𝑖 − (𝜃0 + 𝛼𝜃ℎ𝑖
𝑝))

2
𝑛𝑔

𝑖=1

 4-3 

 
Where 𝑛𝑔 is the number of grids studied (must be at least 4 grids). The minimum of 𝑆 

can be found by setting its derivative with respect to the coefficient terms equal to 
zero. The standard deviation is then calculated using equation 4-4. 
 

 𝜎𝑈 =
𝑆(𝜃0, 𝛼𝜃, 𝑝)

𝑛𝑔 − 3
 4-4 

 
The factor of safety in the uncertainty estimate is calculated based equation 4-5. 
 

 For 𝜎𝑈 < 𝜃𝑖 − 𝜃𝑖−1 𝛽 = 1.25 
4-5 

 For 𝜎𝑈 > 𝜃𝑖 − 𝜃𝑖−1 𝛽 = 3.00 

 
The results of the uncertainty study are shown in Table 1. The uncertainty value means 
that the calculated motion is within a margin of plus or minus the uncertainty. A mesh 
size of 1.00m is used because the uncertainty is within 5% of the calculated value 
which is recommended by the Eca and Hoekstra [92]. 
 

Table 1, Uncertainty study on mesh size. 

 ms = 2.00m ms = 1.00m ms = 0.80m ms = 0.35m 

Ratio grid size / Finest grid 5.71 2.50 2.00 1.00 

Pitch motion (deg) 0.285 0.260 0.256 0.252 

Uncertainty 0.045 0.013 0.012 0.003 

4.1.2. Motions of Single Floater 

The numerical results for a single box shaped floater are compared against the 
numerical results obtained by Newman [13] and is used to verify the motion response. 
The floater has the length, breadth and draft dimensions of 80m x 10m x 5m 
respectively. Regular wave periods of 5- 12 seconds were analysed for head seas to 
obtain the response amplitude operators (RAOs) in the frequency domain. 
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The motion RAO for a single box shaped barge in waves is compared with the results 
of Newman [13]. The heave and pitch motion RAOs are shown in Figure 13. There is 
almost perfect agreement between the results. This is expected considering that both 
use a boundary element method with similar assumptions. There is a slight 
discrepancy at low wave periods (i.e., high frequencies). It is expected that for the 
simple box shape in using potential flow theory the results would match. 
 

   

 

Figure 13, Motion RAOs for pitch (left) and heave (right) comparing the numerical result from this thesis 
(solid line) against the numerical result obtained by Newman [13] (dashed line). 

4.1.3. Analytical Single Floater 

Various types of 2D analytical and semi-analytical validation were also performed to 
compare with the results obtained using the numerical model. The first is a simple 
calculation of the natural frequencies of a single free box shaped floater. There were 
two cases investigated, a narrow (dimensions 60m x 10m x 10m) and a wider floater 
(dimensions 60m x 15m x 10m). The results for the simple box shape are expected to 
be reasonably similar. 
 
The pitch natural frequency is calculated using equation 4-6 and the heave natural 
frequency using equation 4-7. 

 𝜔𝑛,𝑝𝑖𝑡𝑐ℎ = √
𝜌𝑔𝐴𝑊𝐿

𝑚 + 𝑎𝑝𝑖𝑡𝑐ℎ
 4-6 

 𝜔𝑛,ℎ𝑒𝑎𝑣𝑒 = √
𝜌𝑔∇ ∙ 𝐺𝑀𝐿

𝑚 + 𝑎ℎ𝑒𝑎𝑣𝑒
 4-7 

 
Where 𝜔𝑛 is the analytical natural frequency, 𝜌 is the fluid density, 𝑔 is gravitational 
acceleration, 𝐴𝑊𝐿 is the waterline area, ∇ is the volumetric displacement, 𝐺𝑀𝐿 is the 
longitudinal metacentric height, 𝑚 is the mass of the floater, and 𝑎 is the added mass. 
For pitch, this is calculated using the numerical tool making this calculation semi-
analytical. For heave, the added mass can be estimated using equation 4-8. 

 𝑎ℎ𝑒𝑎𝑣𝑒 = 𝜌𝐶𝐴

𝜋

4
𝑎2𝑏  4-8 

Where 𝐶𝐴 is the coefficient of added mass which is determined based on the 
dimensions of the floater [93]. Then the terms a and b are the length and breadth of 
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the floater respectively. For pitch, the added mass is taken from the numerical model 
because this depends on the instantaneous angular position of the structure which is 
frequency dependent and not a constant term like it is for heave. 
 
A comparison of the heave and pitch motions for the analytical and numerical results 
are shown in Table 2. The results are obtained for regular head waves. There is a 
smaller difference between the numerical and analytical results for the narrow floater 
(3% for heave and 4% pitch) than for the wider floater (12% and 16% for pitch). 
Generally the analytical calculation predicts a lower natural frequency than the 
numerical model. 
 
The difference in the natural frequency increases for the wider barge. This could be a 
result of the added mass being calculated in the numerical model being more accurate 
than the analytical approximation. The added mass calculated analytically is 
approximately 10% higher than numerically (at the natural frequency) for both floaters. 
Increasing the added mass will reduce the natural frequency. 
 
Table 2, Analytical and numerical heave and pitch motion for a narrow and wider box shaped floater. 

 Narrow Floater Wider Floater 

 Analytical Numerical Difference Analytical Numerical Difference 

Heave 0.86 rad/s 0.90 rad/s 4% 0.80 rad/s 0.88 rad/s 12% 

Pitch 0.98 rad/s 0.97 rad/s 3% 0.83 rad/s 0.97 rad/s 16% 

4.1.4. Semi-Analytical Serially Connected 

A semi-analytical comparison was made with the natural frequency of the three floater 
model with flexible hinges. Using a Lagrangian energy-based method the problem can 
be simplified to 2D and 3 DOF (i.e., one per floater which can rotate in pitch). The 
kinetic (𝑇) and potential energy (𝑉) are calculated using equations 4-9 and 4-10 
respectively. 
 

 
𝑇 = ∑

1

2
𝐽𝑖𝜃𝑖̇

2
𝑛

𝑖=1

 
4-9 

 𝑉 = ∑
1

2
𝑘𝑖𝜃𝑖

2 +
1

2
𝑘1 +

1

2
𝑘2

𝑛

𝑖=1

 4-10 

 
Such that the total system energy 𝐸𝑠 is. 
 

 
𝐸𝑠(𝑡) = 𝑇 + 𝑉 

4-11 

 
Then finding the natural frequencies can be achieved by assuming harmonic motion 
and solving the eigenvalue problem. 
 

 
−𝜔2[ J ] + [𝐾] ∙ 𝜃 = 0 4-12 
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The floater mass and inertia are taken from the inputs to the three floater model and 
are 230.6 tonnes and 2.66e8 kg/m2 respectively. The added mass for the pitch motion 
is 6.86e6 N which is obtained using BEM at the calculated natural frequency. This 
means there are some iterative steps required to obtain the added mass which makes 
this method semi-analytical. The spring stiffness is 6.96e6 N/m which is the vertical 
bending stiffness for the medium sized connector. The natural frequency of the first 
bending mode is equal to 1.02 rad/s. 

4.1.5. Added Mass and Damping 

This Section provides verification that the added mass and damping terms are 
appropriately converted from the frequency to the time domain. The added mass and 
damping are part of the solution for the equation of motion and also used to calculate 
the wave radiation force. The conversion requires that the maximum frequency is 
sufficiently high so that the impulse function is able to converge to zero. This means 
that enough of the impulse response has been captured that the response at the 
highest frequency can be assumed to be the response at an infinite frequency. A 
comparison is made for the added mass and damping obtained for the centre floater 
of the grid model. The exact details of this model are described in Chapter 5. The 
floaters are all equally sized (15m x 15m x 1m) and equally spaced (2.0m). 
 
The impulse response functions are shown for the cross diagonal terms for heave and 
pitch of the centre floater in Figure 14. The result shows that the impulse function is 
converging to zero which means the frequency range is sufficient for the calculation. 
The result in Figure 15 then compares the frequency domain results for added mass 
and damping for heave (33 33) and pitch (35 35). The result confirms that the terms 
are indeed matching. There is minor instability observed for the pitch plot which is 
caused by the hydrodynamic interaction of the floaters. The trends and peaks 
generally correlate well so this technique is considered to be acceptable. 
 

 
 

 
Figure 14, Impulse functions for the center floater in heave (upper) and pitch (lower). 
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Figure 15, Added mass and damping for the frequency domain (Precal) and time domain (HETime) 
calculation for heave (33 33) and pitch (35 35) of the center floater of the grid model. 

4.1.6. JONSWAP Spectrum 

The irregular wave train used for studying the effect of different sea states is generated 
using a JONSWAP spectrum. The input parameters that define the spectrum are the 
significant wave height, pitch peak period and wave peakedness. A wave train is 
generated using a randomly distributed random wave frequency as input. A sample of 
the time varying wave elevation is shown in Figure 16 for SS-A (Hs 3.5m, Tp 5.0sec) 
and SS-D (Hs 7.6, Tp 11.8sec). The wave heights and frequencies generated over the 
time-period follow a JONSWAP normal distribution. The wave height is smaller and 
occur at a higher frequency for SS-A than SS-D which follows the inputs. 
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Figure 16, Wave elevation for SS-A (solid line) and SS-D (dashed line). 

 
A Fast Fourier Transform (FFT) is used to convert this to the frequency domain and 
the result is compared to the theoretically calculated wave distribution. An example is 
shown in Figure 17 for SS-D showing the time-trace (lower) and then upper plot shows 
the FFT conversion compared to the theoretical distribution. The result shows that 
while the peak period is accurately captured by the FFT, the peak value is about 30% 
lower. This is because the wave energy is distributed at the higher and lower sides of 
the wave spectrum. 
 

 
Figure 17, JONSWAP wave spectrum for sea state D showing time-trace of generated spectrum with 
random wave frequencies over 1000 seconds (lower) and FFT conversion of time signal to frequency 
domain (blue solid line) and the wave distribution (red solid line). 
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The significant wave height (𝐻𝑠) can also be calculated with the area under the 
measured FFT curve (𝑚0) using equation 4-13. 
 

 
𝐻𝑠 = 4√𝑚0 4-13 

The calculated value of Hs is 7.65m rather than the required value of 7.6m. 
Alternatively, the significant wave height can also be determined using the RMS (Root 
Mean Squared) of the time-signal as shown in equation 4-14. Using this method the 
value of Hs is 7.52m. The difference in the two results shows that there is some error 
when converting the time signal to the frequency domain using the FFT. The error 
could reduce when increasing the number of bins when performing the FFT, or 
alternatively the RMS of the time-signal can be used. 
 

 
𝐻𝑠 = 4 ∗ 𝑟𝑚𝑠(𝑋𝑣𝑎𝑙) 4-14 

For this thesis when the results are presented as significant values they are taken as 
the RMS of the time-trace. The difference in the FFT converted signal and the input 
distribution is only 1.1% which is considered acceptable. 

4.1.7. Repeatability Irregular Waves 

A repeatability study has been performed for the grid model in SS-C which is described 
in Chapter 5. The purpose of this study was the ensure the results for the motions and 
connector loads for irregular waves would be consistent within a predefined criteria. 
The irregular waves are generated using a random phase angle which also determines 
the distribution of wave amplitudes (see Section 3.4.2). There is some variability in the 
waves for the same sea state in different runs. To achieve a better match with the 
theoretical distribution the number of wave components in the wave spectrum can be 
increased.  
 
The confidence can be calculated to give a percentage likelihood that the actual value 
is within a certain range. A common confidence interval used is 95% likelihood, that is 
95% of the results are within the calculated range. The confidence band is calculated 
using equation 4-15. 
 

 Xval
̅̅ ̅̅ ̅ ± 𝑍𝐶𝐼

𝑠

√𝑁
 4-15 

 

Where X̅ is the averaged value, 𝑍 is the value based on the confidence interval, 𝑠 is 
the standard deviation, and N is the number of samples. For this study, a 95% 
confidence interval is used which gives a 𝑍 value of 1.950 and the number of samples 
taken is 4. A grid model has been used which is described in Chapter 5 with head 
seas in SS-C (Hs 5.6 and Tp 10.0) and medium stiffness connectors. 
 
The results for the confidence study are shown for relative motions in Table 3 and 
connector forces and moments in Table 4. The relative motions are shown so Y 
represents floaters connected forward and aft while X represents floaters connected 
side by side. There are also separate connectors that join the floaters forward and aft 
(Y) and side by side (X). These are separated because they experience different 
motions and loads. 
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There are some values which are small and perhaps show a larger confidence band 
than is important to consider. For example, there is large confidence band for yaw 
motion which means there is a lower confidence in the average value. However, the 
actual yaw motion is small to this might not be so important for the results. The more 
significant motions are heave and pitch and the more significant forces and moments 
are in vertical shear and bending. For these motions and loads, there is a higher 
confidence in the average value. Therefore, the simulation time of 1000 seconds and 
300 wave components is considered acceptable for this thesis. 
 
Table 3, Significant motions and confidence band of grid-connected structure in SS-C (Hs 5.6, Tp 10.0). 
The percentage of the confidence level over the average value is shown below the values. Y represents 
floaters connected forward and aft while X represents floaters connected side by side (see Figure 40). 

  ux uy uz rx ry rz 

Y 

Value with 
confidence 

2.57 ± 
0.12 

0.31 ± 
0.05 

0.78 ± 
0.03 

2.70 ± 
0.14 

0.28 ± 
0.07 

0.40 ± 
0.14 

% confidence 
over value 

4.5% 17.2% 3.2% 5.3% 27.0% 35.0% 

X 

Value with 
confidence 

0.65 ± 
0.07 

2.70 ± 
0.07 

5.01 ± 
0.03 

0.09 ± 
0.01 

42.57 ± 
0.42 

1.63 ± 
0.22 

% confidence 
over value 

10.9% 2.7% 0.6% 11.9% 1.0% 13.2% 

 

Table 4, Significant connector forces and moments and confidence band of grid-connected structure in 
SS-C (Hs 5.6, Tp 10.0). The percentage of the confidence level over the average value is shown below 
the values. Y represents floaters connected forward and aft while X represents floaters connected side 
by side (see Figure 40). 

  Fx Fy Fz Mx My Mz 

Y 

Value with 
confidence 

741 ± 21 180 ± 22 483 ± 8 108 ± 7 1052 ± 70 117 ± 32 

% confidence 
over value 

2.9% 12.1% 1.7% 6.1% 6.7% 27.2% 

X 

Value with 
confidence 

766 ± 101 185 ± 38 481 ± 16 87 ± 13 
3715 ± 

193 
68 ± 16 

% confidence 
over value 

13.1% 20.8% 3.3% 15.1% 5.2% 24.1% 

 Validation 

There are two validation cases used to ensure that the 3D-BEM numerical model 
accurately captures the physics associated with the motions and connector loads of a 
multiple-body floating structure with box shaped floaters. The first validation case 
compares numerical results with an experiment conducted by Remy et al. [9] on a 12 
floater model connected by two beams. The second case compares to a numerical 
analysis of a 3x3 grid structure which was presented by Michailides and Angelides 
[10].  

4.2.1. Serially Connected VLFS 

The first validation case compares numerical results of this thesis with model scale 
experiments conducted by Remy et al. [9]. There are 12 rigid box barges connected 
by two beams running along the length of the model. The beams had a square cross 
section 10x10mm. The floater motions were tracked using an optical tracking 
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technique of 6 groups of 3 infrared LEDs attached to locations along the structure. The 
connector forces and moments have been determined from the relative displacement 
of the floaters. In the experiment the motion responses are derived from the irregular 
wave time trace at various wave headings. 
 
For this thesis the response functions are generated for head (180 degrees) and beam 
(90 degrees) wave headings using regular waves at multiple wave periods between 
0.8- 1.8 seconds. In the numerical case, the connectors are modelled separately 
between the floaters rather than as two long beams as used in the experiment. This 
allows the connector forces and moments to be extracted as a direct output. The 
stiffness of the beams in the numerical model are shown in Table 5. 
 

Table 5, Stiffness matrix for connectors of the numerical model. 

 x (N/m) y (N/m) z (N/m) rx (N.m/rad) ry (N.m/rad) rz (N.m/rad) 

X 0 0 0 0 0 0 

Y 0 9.35E+04 0 0 0 9.58E+03 

Z 0 0 9.35E+04 0 -9.58E+03 0 

Rx 0 0 0 0 0 0 

Ry 0 0 -9.58E+03 0 1.31E+03 0 

Rz 0 9.58E+03 0 0 0 1.31E+03 

X 0 0 0 0 0 0 

Y 0 -9.35E+04 0 0 0 -9.58E+03 

Z 0 0 -9.35E+04 0 9.58E+03 0 

RX 0 0 0 0 0 0 

RY 0 0 -9.58E+03 0 6.54E+02 0 

RZ 0 9.58E+03 0 0 0 6.54E+02 

 
Table 6, Physical properties of floater in experiment by Remy et al. [9]. 

Length 190 mm 

Breadth 600 mm 

Depth 250 mm 

Draft 120 mm 

Floater gap 15 mm 

 

The results in Figure 18 show the motion response functions for the experimental and 
numerical analyses. The heave, roll and pitch motions are shown. In general, there is 
a good correlation between the numerical prediction and experimental result. The 
trends are captured using the numerical model, especially for the roll natural frequency 
in beam seas. There are some differences in the pitch result, especially the first pitch 
excitation mode is not captured numerically. The numerical result is also much 
smoother across the frequencies.  
 
There is some uncertainty in both the experimental and numerical results which could 
lead to some of the observed discrepancies. The experimentally obtained RAOs are 
retrieved from time signals, using the input wave spectrum. Such process is prone to 
disturbances being picked up. The numerical results have inherent uncertainty due to 
discretization errors and calculating the hydrodynamics using an inviscid solver. The 
RAOs are retrieved from response signals calculated using a numerical wave 
spectrum, hence without disturbances. Nonlinear effects associated with the wave 
radiation force and viscosity are not included, generally resulting in smooth curves. 
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Figure 18, Motion RAOs for heave, roll and pitch with experimental results for head waves (medium 
dashed line) and beam waves (dotted line) and numerical results for head waves (solid line) and beam 
waves (longer dashed line). 

The numerical and experimental results have also been compared for the bending 
moment as shown in Figure 19. The results are calculated for the highest bending 
moment which is at the centre of the 12 floaters (amidships of the entire structure). 
For the numerical result the bending moment in the ‘numerical beam’ case is taken at 
the connectors joining the centre two floaters whereas, for the ‘numerical pitch’ and 
the experimental cases the pitch displacement of the forward and aft floaters are used 
to derive the bending moment assuming a simply supported Euler beam. 
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The numerical results align well with the experiment however, for wave periods 
between 1.1 and 1.6 seconds the numerical result taken at the connector is up to 40% 
lower than calculated in the experiment. The results indicate that the magnitude of the 
bending moment varies depending on how the measurement is taken because the 
difference between the numerical result calculating bending based on floater motions 
is 5% at the peak value. This is then within the numerical uncertainty of the mesh size. 
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Figure 19, Forced response for vertical bending moment at centre of structure. Results numerically 
calculated based on bending at beams (dotted line circles), numerical calculated from pitch 
displacement (solid line dots), and experimental calculated from pitch displacement (dashed line). 

4.2.2. Grid Connected VLFS 

The second validation case compares the floater motions and connector forces for a 
3x3 grid with the result obtained by Michailides and Angelides [10]. In this numerical 
model the floaters are flexible and the modal superposition method is used to combine 
the elastic response with the hydrodynamic response. Initially the dry and wet 
eigenmodes and eigenfrequencies are calculated before a boundary element method 
is used to compute the hydrodynamic coefficients and pressures. Finally, the two 
solutions are combined and solved with the connector constraints using FEM. 
 
The grid layout is similar to that shown in Figure 23 with the floater dimensions shown 
in Table 7. Response functions are generated using regular waves at various 
frequencies between 0.5- 4.5 rad/s. There are two rotational connector stiffnesses 
analysed; 1e3 N.m/rad and 1e5 N.m/rad. The ratio of floater to connector stiffness is 
50 for the low stiffness case and 5000 for the stiffer connector case. The translational 
DOF have stiffnesses of 1e7 N/m.  
 
The model by Michailides and Angelides does not have any gaps between the floaters. 
However, the numerical tool used in this thesis must have a connector length to 
generate a beam element. It was decided to keep the floaters the same size but 
increase the overall VLFS footprint. This is because the floater geometry has a larger 
influence on the motion response at resonance and on the hydrodynamic terms than 
the overall VLFS size. Furthermore, the dimensions of the structure do not become 
significantly greater (10% in width and 2% in length). Finally, a gap size of 0.3m has 
been selected which doesn’t have a large influence on the results but also avoids gap 
resonance which could result in unrealistically high motions.  
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Table 7, Physical properties of floaters in paper by Michailides and Angelides [10]. 

Length 10.0 m 

Breadth 2.0 m 

Depth 1.22 m 

Draft 0.66 m 

Floater gap 0.0 m (0.3 m in this thesis) 

 
The numerical results are generated by obtaining the motions and connector forces 
and moments at certain regular wave frequencies which are solved in the time domain. 
The floater with the maximum peak motion is used to make the comparison as stated 
in the paper however, position of this floater in the grid is not mentioned. The numerical 
result has been calculated assuming the stiff hinged connector stiffness from 
Michailides and Angelides.  
 
The resulting response function for pitch motion is shown in Figure 20. The results 
calculated in this thesis for the peak pitch motion are approximately 22% higher for 
the stiff connector and 14% higher for the soft connector compared to the results by 
Michailides and Angelides. The peak motion is also shifted towards a slightly lower 
frequency. The maximum pitch motion occurs on floater number 6 which is located on 
the aft corner. 
 

 
Figure 20, Numerical result of floater maximum pitch motion for 3x3 grid using soft (solid line) and stiff 
hinged connectors (long dashed line) with results obtained by Michailides and Angelides [10] for soft 
(short dashed line) and stiff (dotted line) hinged connectors. 

 
The connector forces and moments have also been calculated and compared with the 
numerical result by Michailides and Angelides [10]. The results in Figure 21 show that 
the axial force and bending moments are higher in this thesis. The connector shear 
force is similar when the connector stiffness is high but then varies significantly for the 
lower stiffness case. 
 
All results are taken for the maximum force or moment which occurs on a beam 
located in the aft corner. The results from this thesis show that the peak forces and 
moments occur at the pitch natural frequency whereas the results Michailides show a 
shift to a higher frequency. The value for the stiff connector shear force is significantly 
higher (approximately 300%) however, the shear force and bending moment are more 
similar at 26% and 45% respectively. 
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There are some differences in the results of the grid structure which are caused by the 
gap between the floaters. The hydrodynamic forces which are occurring in the gap are 
caused by the high pressure region developing. The potential flow code results in 
higher incident wave forces due to the wave resonance. Additionally, there would 
normally be greater hydrodynamic damping caused by turbulence which would also 
reduce the motions and connector loads. Both of these phenomenon might explain 
why the floater motions are found to be larger in this thesis. 
 

  

 

 
Figure 21, Connector axial force (top left), horizontal shear force (top right) and vertical bending moment 
(bottom) for grid model comparing calculated numerical result (dashed line) with result obtained from 
Michailides and Angelides [10] using stiff hinged connections (solid line). 

 
There are some discrepancies in the calculated connector forces and moments. The 
forces being greater could be because of the distance between the floaters. The gap 
between the floater is likely to lead to higher connector forces and moments because 
of the lever arm that develops between connected floaters. While there is a 
discrepancy in the magnitude of the loads, the peaks and trends are usually captured. 
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5. Design and Wave Characteristics 
 
The three case studies are used to explore the effect of connectors on an OFPV and 
the inputs to both of these models are described in this Chapter. The first case study 
is for a three floater model which is serially connected. The second and third are for a 
3x3 grid and 4x4 grid of floaters respectively. The physical dimensions and parameters 
of the floaters and the environmental boundary conditions are described further.  

 Case 1 – Three Floater Model 

The three floater model is an OFPV which consists of three serially connected identical 
box shaped floaters as shown in Figure 22. The floater size is indicative based on pilot 
offshore floating solar projects. The floater dimensions and properties are given in 
Table 8. The distance between floaters will have an influence on the hydrodynamics. 
It is important to avoid making the gap too small because the gap resonance might 
artificially increase the magnitude of the results. The length of the connector is 
accounted for in the calculation of the stiffness matrix.  
 
A water density of 1025 kg/m3 is used for the fluid domain. The hydrodynamic mesh 
was generated with a mesh size of 1.0 m using the open-source program GMSH. The 
mesh size has been determined through a grid refinement study as described in 
Section 4.1.1. 
 
There are 4 mooring lines attached to the forward and aft floater. The purpose of the 
mooring lines is to prevent the structure from drifting away but should avoid interfering 
with the motion of the structure. This will avoid the structure from responding to wave 
headings which are outside of the case being analysed. A constant stiffness value of 
1e4 N/m was selected based on a mooring sensitivity study performed in Section 
6.1.1. Using a linear mooring stiffness is considered appropriate because its influence 
on the relative floater motions is minimal. If the overall motions were to be investigated, 
a more accurate mooring model should be used. The mooring lines are fixed to some 
arbitrary location at sea level approximately 200 m away from the structure. 
 

 
Figure 22, Three floater OFPV arrangement (plan view). NOT TO SCALE. 
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Table 8, Physical properties of single floater. 

Length 15.0 m 

Breadth 15.0 m 

Depth 2.0 m 

Draft 1.0 m 

Floater gap 2.0 m 

Ixx 8.65e6 kg.m2 

Iyy 4.34e6 kg.m2 

Izz 4.34e6 kg.m2 

 Case 2 – 3x3 Grid Model  

The 3x3 grid structure is modelled with the same individual floaters as the three floater 
model with the dimensions and physical properties given in Table 8. The plan shape 
is shown in Figure 23. Where there is a floater adjacent to another, two connectors 
are used to restrain them. The structure is moored at locations surrounding the 
structure, there are 2 lines per side and also two lines at every corner. The mooring 
line stiffness is 1e4 N/m, the same as for the three floater model. The mooring line 
length is approximately 200m and attached at the still waterline away from the 
structure.  
 

 

Figure 23, The 3x3 grid model OFPV arrangement (plan view). NOT TO SCALE. 
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 Case 3 – 4x4 Grid Model 

The 4x4 grid structure is modelled very similar to the 3x3 grid model because the 
floaters have the same properties as presented in Table 8. The plan shape is shown 
in Figure 23. Where there is a floater adjacent to another, two connectors are used to 
restrain them. The structure is moored at locations surrounding the structure, there 
are 2 lines per side and also two lines at every corner. The mooring line stiffness is 
slightly higher in the larger grid and is 4e4 N/m. The mooring line length is 
approximately 200m and attached at the still waterline away from the structure.  
 

 

Figure 24, The 4x4 grid model OFPV arrangement (plan view). NOT TO SCALE. 

 Connectors 

The connectors are idealized as extremely large solid circular beams, having axial and 
bending stiffness. There are two connectors between each of the floaters at the 
waterline and there is a span of 2m to cover the gap. Stiffness values are derived from 
equations for Euler beams in bending and compression or tension for an arbitrary solid 
steel rod of diameter 180, 260, and 300mm. The stiffness of the compliant connectors 
is defined assuming a 12x6 stiffness matrix as shown in Table 9 for a medium 
(nominal) stiffness connector. 
 
The analysis is performed initially using data for the 1- and 100-year extreme wave 
conditions in the Hollandse Kust Noord location, which has been selected for offshore 
energy development by the Dutch Government. The significant wave height (Hs), 
wave peak period (Tp), and gamma have been obtained online [94]. In addition to the 
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two initial sea states, two are selected which approximately match the pitch natural 
frequency for the three floater model (SS-A) and the grid model (SS-B). These sea 
states are shown in Table 10. 
 
Table 9, Stiffness matrix for nominal stiffness (260mm diameter solid steel rod) compliant connectors. 

 x (N/m) y (N/m) z (N/m) rx (N.m/rad) ry (N.m/rad) rz (N.m/rad) 

X 1.33E+09 0 0 0 0 0 

Y 0 6.73E+07 0 0 0 6.73E+07 

Z 0 0 6.73E+07 0 6.73E+07 0 

Rx 0 0 0 6.73E+07 0 0 

Ry 0 0 6.73E+07 0 8.97E+07 0 

Rz 0 6.73E+07 0 0 0 8.97E+07 

X -1.33E+09 0 0 0 0 0 

Y 0 -6.73E+07 0 0 0 -6.73E+07 

Z 0 0 -6.73E+07 0 -6.73E+07 0 

RX 0 0 0 -6.73E+07 0 0 

RY 0 0 6.73E+07 0 4.49E+07 0 

RZ 0 6.73E+07 0 0 0 4.49E+07 

 

The VLFS headings are 90 (beam seas), 120 (beam oblique), 150 (bow oblique) and 
180 degrees (head seas). For the grid model, only the wave headings 150 and 180 
degrees were analysed due to symmetry. A time trace representing the sea state has 
been generated using the JONSWAP formulation of the spectrum to represent ocean 
conditions for 1000 seconds, which is approximately one return period for 300 wave 
components. This value is chosen because it ensures repeatability when analysing 
the statistical results. A repeatability study was performed in Section 4.1.2 for the grid 
model in head seas for SS-C.  

 

Table 10, Input JONSWAP irregular wave conditions. 

  Three Floater 
(SS-A) 

Grid Model 
(SS-B) 

1 Yr. Extreme 
(SS-C) 

100 Yr. Extreme 
(SS-D) 

Significant wave height (m) 𝐻𝑠 3.5 4.5 5.6 7.6 

Wave peak period (sec) 𝑇𝑝 5.0 6.3 10.0 11.8 

Gamma (-) 𝛾 3.3 3.3 3.3 3.3 

 
There has been a parametric study performed to determine the effect of damping. The 
values are selected based on the critical damping value of 1.09e6 Ns/m which is 
calculated in equation 5-1. The damping constants of 1e3 and 1e5 Ns/m represent 
approximately 0.1 and 10% of critical damping. The connector stiffness (𝑘𝑐) is 1.44e9 
N/m which is the vertical bending stiffness of the nominal connector. 

 𝑏𝑐 = 2√𝑘𝑐 ∙ 𝑚𝑐 5-1 

The results by Wang et al. found the appropriate damping ratio for a spring-mass 
damped system varies with excitation frequency and the damping constants of 
proportionality [75]. The percentage of critical damping increases with frequency. For 
the range of sea states being investigated in this thesis, the maximum damping ratio 
should range from 10- 15% of critical damping. There would be an advantage into 
researching the effects of different damping ratios and models. 
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6. Results 

 Case 1 – Three Floater Model 

The three floater VLFS described in Chapter 5 was numerically modelled, and motions 
calculated in the time-domain using 3D-BEM. Figure 25 shows the time-varying pitch 
motion of the middle floater in SS-C and SS-D for the three floater model with nominal 
connector stiffness.  

 
Figure 25, Pitch motion of mid floater through time for SS-C (solid line) and SS-D (dashed line). 

6.1.1. Mooring Sensitivity Study 

A mooring sensitivity study was performed for the three floater model that is presented 
in Figure 26. The study is used to determine the ideal mooring stiffness that has the 
least impact on the 6 DOF motion of the floaters. Results are shown for four mooring 
stiffnesses (1e2 N/m, 1e3 N/m, 1e4 N/m, and 1e5 N/m) and relative motions between 
adjacent floaters. The results show that the value for the mooring stiffness affects the 
motions of the floater, particularly in pitch. There is an average of 3% and 8% 
difference between the pitch motion for the lowest and low mooring stiffness 
(respectively) while there is a 53% difference to the highest stiffness. There is less 
than 10% difference from the high mooring stiffness to the lower stiffness for the other 
motion DOF. 
 
The connector forces and moments are also presented for the three floater model in 
Figure 27 for the 4 mooring stiffness configurations. Similar to the motion results, the 
stiffness of the mooring also influences the forces and moments of the connectors. 
The lowest and low stiffness cases are more similar in heave (1%) than the high (16%) 
and higher (29%) stiffness result. The vertical bending is also very similar for the lower 
and low stiffness (3%) compared to the high (7%) and higher stiffness (50%) cases.  
 
The highest stiffness case has much higher connector loads than the other cases. The 
mooring lines are interacting with the structure which increases the motion for this 
case. The extremely high mooring line stiffness is undesirable because this will not 
provide meaningful results for the connector structure interaction. 
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Figure 26, Mooring sensitivity study showing relative significant motions in surge, heave for head seas 
in SS-C (Hs 5.6m, Tp 10.0). Stiffness varies between 1e2 N/m (lower), 1e3 N/m (low), 1e4 N/m (high), 
1e5 N/m (higher). 

 

  

 

 
Figure 27, Mooring sensitivity study showing significant connector axial and vertical shear forces and 
bending moments for head seas in SS-C (Hs 5.6m, Tp 10.0). Stiffness is 1e2 N/m (lower), 1e3 N/m 
(low), 1e4 N/m (high), 1e5 N/m (higher). 
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The mooring lines should also keep the structure in the same position. The global 
surge motion is presented in Figure 28. A sample of the time-trace is shown. It is clear 
the lowest mooring case is drifting considerably and is not desirable for the simulation. 
The lowest mooring stiffness configuration that doesn’t result in drift is the high 
stiffness case (1e4 N/m) so this value is used for further calculations. 
 

 

Figure 28, Time trace of the global surge motion of the aft barge in SS-C (Hs 5.6m, Tp 10.0). Four 
mooring stiffness configurations are shown with values 1e2 N/m (lower), 1e3 N/m (low), 1e4 N/m (high), 
1e5 N/m (higher). 

6.1.2. Effect of Connector Stiffness in Sea States 

The effect of connector stiffness on the resulting motions and connector loads has 
been investigated for 3 sea states and 4 wave headings from 90– 180 degrees. The 
significant values are presented in SS-A, SS-C, SS-D in Figure 29, Figure 30, and 
Figure 31 respectively. The results are averages and error bars are used to show the 
maximum and minimum values for the three connector stiffnesses represented by the 
solid steel rods (180, 260, 300mm diameter). The motions are relative as they are 
calculated at the position of the connector node. 
 
The maximum relative floater motions are experienced when the stiffness of the 
connector is the lowest and conversely the motions are lower when the stiffness is 
greater. The differences in the floater motions are quite large for sway and pitch. 
Especially in pitch the difference can be up to 60% of the averaged value. The variation 
in the maximum and minimum results also increases from SS-A to SS-B and SS-C. 
The magnitude of the motions is generally larger in SS-A and SS-D than SS-B.  
 
The relation between the floater motions and connector forces and moments also 
presented. The maximum and minimum connector forces vary especially for Fx and 
Fy depending on the wave heading and sea state. The force in vertical shear (Fz) 
tends to be higher for stiffer connections and is largest for SS-A. The moment was 
generally larger for the stiffer connectors and the vertical bending moment is always 
significantly greater than the other moments and is largest in SS-A. There is very small 
variation between the connector moments even for the oblique sea headings. There 
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is much more variability in the connector translational forces between the connector 
stiffness cases than for the moments. The connector stiffness has a greater effect on 
the forces and moments in SS-D. 
 

  

  

 
Figure 29, Floater relative motions and connector forces and moments for SS-A (Hs 3.5m, Tp 5.0sec) 
with wave headings (90, 120, 150, and 180 degrees). Connector rod diameter varied from 180-, 260-, 
and 300-mm and error bars show minimum and maximum values from three stiffness cases. The 
maximum motions occur with the least stiff connectors and lowest motion has the stiffest. For Fx and 
Fy the maximum varies without any trends, but Fz is generally maximum for stiff connectors. For the 
moments the maximum is the stiffest connection and lowest is least stiff. 
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Figure 30, Floater relative motions and connector forces and moments for SS-C (Hs 5.6m, Tp 10.0sec) 
with wave headings (90, 120, 150, and 180 degrees). Connector rod diameter varied from 180-, 260-, 
and 300-mm and error bars show minimum and maximum values from three stiffness cases. The 
maximum motions occur with the least stiff connectors and lowest motion has the stiffest. For Fx and 
Fy the maximum varies without any trends, but Fz is generally maximum for stiff connectors. For the 
moments the maximum is the stiffest connection and lowest is least stiff. 
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Figure 31, Floater relative motions and connector forces and moments for SS-D (Hs 7.6m, Tp 11.8sec) 
with wave headings (90, 120, 150, and 180 degrees). Connector rod diameter varied from 180-, 260-, 
and 300-mm and error bars show minimum and maximum values from three stiffness cases. The 
maximum motions occur with the least stiff connectors and lowest motion has the stiffest. For Fx and 
Fy the maximum varies without any trends, but Fz is generally maximum for stiff connectors. For the 
moments the maximum is the stiffest connection and lowest is least stiff. 

 
The results presented show that the sea state has an influence on the motions of the 
floaters which then also influences the connector forces and moments. The main 
parameters which are used as inputs to the JONSWAP sea-spectrum are the peak 
period and wave height. Increasing the wave height can increase the motions of the 
floater because of the larger excitation force. The peak period is significant because 
the wave energy distribution is concentrated around a certain wave frequency. The 
peak period is more important when considering dynamics because certain wave 
frequencies cause resonance with the structure. This is clearly demonstrated when 
observing the results at SS-A which has a much smaller wave height but the floater 
motions and connector loads are generally higher. 

6.1.3. Effect of Varying Connector Stiffness DOF 

The effect of varying the connector stiffness has been varied individually in the axial, 
vertical shear and vertical bending directions in SS-C. The individual stiffness has 
been investigated as a sensitivity into how critical each stiffness DOF is on the floater 
motions and connector loads. The stiffness is varied by a factor of 5 times small/larger 
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for every DOF including coupled terms. This means that all the stiffness terms in the 
vertical or horizontal directions of the matrix are affected. Results are presented as an 
average of significant values for wave headings of 180, 150, and 120 degrees in Figure 
32, Figure 33, and Figure 34 respectively. Error bars show the maximum and minimum 
value for the three connector stiffnesses modified for each of the three DOF. 
 
The maximum values for motions generally occur for the least stiff connectors and 
there is a large variation in the results when modifying individual stiffnesses for vertical 
shear and bending and a lesser variation when modifying axial stiffness. The variation 
is also greatest for bow oblique waves (i.e., wave heading 150 degrees). Modifying 
the axial stiffness has a very small effect on the motions. In contrast, varying the 
vertical shear and vertical bending stiffness has a very large effect on the motions of 
up to 70%. 
 

  

  

 
Figure 32, Wave heading 180 degrees floater relative motions and connector forces and moments for 
varying individually connector stiffness for DOF (soft, medium, and stiff) in axial, vertical shear and 
vertical bending. Values are averaged for the three floaters and error bars show maximum and minimum 
values. For motions the least stiff connector is generally the maximum and most stiff is the minimum. 
For forces and moments, the maximum is generally the stiffest connector and minimum is the least stiff. 
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The results shown in Figure 33 for oblique seas shows that modifying vertical bending 
has the large effect on the surge motion. This seems counterintuitive because there is 
no axial coupling with the vertical bending stiffness. However, in the oblique seas case 
this could be caused by the structure experiencing more motion overall with softer 
connectors. 
 

  

  

 
Figure 33, Wave heading 150 degrees floater relative motions and connector forces and moments for 
varying individually connector stiffness for DOF (soft, medium, and stiff) in axial, vertical shear and 
vertical bending. Values are averaged for the three floaters and error bars show maximum and minimum 
values. For motions the least stiff connector is maximum and most stiff is the minimum. For forces the 
maximum and minimum varies for different stiffnesses. For moments when varying surge and heave 
the maximum and minimum varies but when varying pitch, the maximum is for stiff connections and 
minimum for least stiff. 
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Figure 34, Wave heading 120 degrees floater relative motions and connector forces and moments for 
varying individually connector stiffness for DOF (soft, medium, and stiff) in axial, vertical shear and 
vertical bending. Values are averaged for the three floaters and error bars show maximum and minimum 
values. For motions the least stiff connector is generally the maximum and most stiff is the minimum. 
For forces and moments, the maximum is generally the stiffest connector and minimum is the least stiff. 

 
There is a clear relation between the connector stiffness and the floater motions and 
connector forces and moments. The results show that connector stiffness is a critical 
parameter for determine the VLFS response. This was expected because the 
connectors have more resistance to motion when the stiffness is greater. When there 
is more resistance, the connectors experience higher loads. The effect of stiffness is 
largest for vertical shear and bending. The stiffness in these DOFs are much lower 
than in the axial direction. There is also a coupling between these stiffnesses so that 
modifying one stiffness results in changes to the motions and connector loads in other 
DOF.  
 
There is small variation in the maximum connector forces and moments for all 4 
connectors for all wave headings. This means that in the three floater model the loads 
are reasonably well distributed over the structure. The connectors aft generally 
experienced smaller loads than those in the front. This is due to a screening effect 
from the forward floater which experiences the full wave forces and dissipates some 
energy away from the structure. The small variation in the forces and moments is 
probably because the structure not being so large compared to the waves. 
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6.1.4. Effect of Damping 

The effect of damping was also investigated for the three floater model in irregular 
head waves. There is a noticeable reduction in motions and connector forces and 
moments for SS-A (Figure 35) whereas, there is a very little effect when modifying 
damping for SS-C shown in Figure 36. The effectiveness of damping is larger in 
reducing the vertical shear forces and bending moments than for the axial forces. Even 
by applying a very low percentage of critical damping the bending moment (My) 
reduced by a considerable amount. 
 
 

  

  

 
Figure 35, Sea state A, floater relative motions and connector forces and moments for no damping, 
lower damping (1e3 kg/s) and larger damping (1e5 kg/s). The results are an average of the three floaters 
in wave heading 180 degrees.  
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Figure 36, Sea state C, floater relative motions and connector forces and moments for no damping, 
lower damping (1e3 kg/s) and larger damping (1e5 kg/s). The results are an average of the three floaters 
in wave heading 180 degrees. 

 
The resulting trend shows that damping reduces the motions and connector loads 
when the wave peak period of the sea state is close to the natural frequency of the 
structure. The effectiveness of damping diminishes away from the structures natural 
frequency as is shown for SS-C where the effects from damping are negligible. In SS-
C there is less wave energy distributed close to the natural frequency of the structure 
while for SS-A there is much more. Since damping works to reduce the dynamic 
response the results are expected. The energy dispelled from the connector 
movement is dispelled into a fluid for both cases (i.e., Rayleigh damping). The ratio of 
Rayleigh damping to critical damping is estimated to be between 2-15% [75], [95]. 

6.1.5. Distribution of Loading 

The distribution of the loading of the connectors on the serially connected structure is 
shown in this Section. The results are compared for the SS-A (Hs 3.5m, Tp 5.0 sec) 
in oblique and head seas. The maximum forces and moments are shown in Table 11. 
The normalized distribution of loads are presented for the oblique sea case in Figure 
37 and the head sea case in Figure 38. 
 
There is little variation in the connector loads across the structure. The oblique seas 
result in slight differences which is greatest for the vertical shear force which is 35-
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40% less on one side of the structure. The forward connectors experience 10-20% 
lower vertical bending moment (My) loads compared to the aft connectors. 
 

Table 11, Maximum connector loads for wave headings 150 and 180 degrees in SS-A (Hs 3.5m, Tp 
5.0 sec). 

Wave Fx (kN) Fy (kN) Fz (kN) Mx (kN.m) My (kN.m) Mz (kN.m) 

150 304 112 527 1200 3286 114 

180 304 1 505 0 4051 1 

 

Connector Forces Fx (Max 304 kN) Connector Moments Mx (Max 1200 kN.m) 

  

  

Connector Forces Fy (Max 112 kN) Connector Moments My (Max 3289 kN.m) 

  

  

Connector Forces Fz (Max 527 kN) Connector Moments Mz (Max 114 kN.m) 

  

         

Figure 37, Distribution of connector forces and moments for SS-B for wave heading 150 degrees. 
Results relative to the maximum force or moment in the structure. Percentage of maximum load shown 
in color scale below. Arrow shows wave direction (bottom right). 

 

Connector Forces Fx (Max 304 kN) Connector Moments Mx (Max 0 kN.m) 

  

  

Connector Forces Fy (Max 1 kN) Connector Moments My (Max 4051 kN.m) 

  

  

Connector Forces Fz (Max 505 kN) Connector Moments Mz (Max 1 kN.m) 

  

         

Figure 38, Distribution of connector forces and moments for SS-B for wave heading 180 degrees. 
Results relative to the maximum force or moment in the structure. Percentage of maximum load shown 
in color scale below. Arrow shows wave direction (bottom right). 
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6.1.6. Frequency Response Functions 

The pitch frequency response function for the three floater model with nominal 
stiffness connectors is presented in Figure 39. The average motion is shown and the 
shaded areas represent the maximum and minimum values of the three floaters. The 
response function is obtained by calculating the maximum pitch motion in nine regular 
head wave frequencies. The peak motion at 1.2 rad/s signifies that this is a natural 
frequency and the structural response is excited at this frequency. The pitch motion 
for 1m waves is 1.5 degrees at this wave frequency. 
 

The connector model VLFS has been compared with a case where there are three 
free floaters with no connections, and one continuous rigid structure which is equal in 
length to the three floater model and gaps. The result shows that the addition of 
connectors shifts the natural frequency of the structure and magnitude of the peak 
motion to somewhere in between the free and continuous case (1.67 rad/s and 0.92 
rad/s respectively).  
 
The variation for the motion response for the connector model is quite small for lower 
frequencies, within 5% at the peak but then deviates up to 34% at higher frequencies. 
However, the variation when the floaters are not connected is much smaller over the 
entire range of frequencies. 

 

 
Figure 39, Pitch motion response calculated in regular 1m wave height head waves for the three floater 
model (average shown where applicable) with one continuous structure (dashed line), no connectors 
(solid line), and nominal stiffness connectors (dotted line). Shaded zones represent the minimum and 
maximum values. 

 
The frequency response results give insight into why there is a large motion at sea 
states with lower significant wave heights. The resonant frequency of the structure is 
towards the lower frequency range while a free floating structure has a higher 
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frequency. The inputs to SS-A were chosen to match with the bending natural 
frequency from Figure 39. The response function explains why the response of SS-A 
is larger even if the significant wave height is much lower than the other two sea states. 
There is more wave energy directed at the same frequency as the natural frequency 
of the structure. The conditions of SS-A are taken from the wave scatter plot of the 
Hollandse Kust Noord site [94], meaning this structure experiences resonant motions 
and higher connector loads. 
 
It is demonstrated in this thesis that the connector stiffness determines the natural 
excitation frequency of the entire structure. The peak motion shifts from a lower 
frequency to a higher frequency as the structure behaves more like independent 
floaters. This is due to the connectors influencing the floater motions because the 
individual (three) free floaters have higher natural frequencies. By separating the 
structure into multiple smaller floaters with connectors, the resonant frequency is 
shifted away from the wave spectral peaks of SS-C and SS-D (0.62- and 0.49 rad/s 
respectively) but also the magnitude of the peak is reduced for a structure that has the 
same surface area. Reducing the size of the floaters and making them more 
independent would reduce the motion response for the analysed sea location. 
 
The pitch natural frequency of the three floater structure is approximately 1.2 rad/s. 
This compares with the analytical result presented in Section 4.1.4 where the natural 
frequency is calculated as 1.02 rad/s. The peak pitch motion is 18% higher in the 
numerical case compared to the semi-analytical prediction. The stiffness of the 
structure could be slightly higher in the numerical case because of the coupled heave 
and pitch DOF in the stiffness matrix. The higher stiffness would mean the numerical 
model has a higher natural frequency. 

 Case 2 – 3x3 Grid Model 

There were two parametric studies performed on the 3x3 grid structure described in 
Chapter 5. The first assumes a fixed (nominal) connector stiffness and then analysing 
the response of the structure for wave headings of 180 degrees and 150 degrees in 
sea states A, B, C, and D. The second explores the effect of individually modifying the 
connector stiffness per DOF for a wave heading of 150 degrees and in sea states B 
and D. The full results are shown in Appendix A. 
 
The floater motions are taken as relative to the adjacent floater in Y (red) or X (green) 
at the connector node as shown in Figure 40. The connector loads are similarly 
separated into a connector in the Y (red) and X (green) directions. The results are 
shown as significant value of the time-signal and then averaged for all floater relative 
motions or connector loads. Results are discussed in the following subsections. 
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Figure 40, Grid model VLFS marking Y connectors (left) and X connectors (right). NOT TO SCALE.  

6.2.1. Effect of Wave Heading 

The results in Table 12 show the maximum values for both 150- and 180 degree wave 
headings in SS-B (Hs 4.5m, Tp 6.3 sec). The motions and connector loads are 
compared for all 6 DOFs and results show the maximum significant values from the 
entire structure. The pitch and surge motions are larger for head seas, but the motions 
in the other DOFs are greater for oblique seas. In many cases, the maximum motions 
for pitch and surge are also larger in oblique seas. There is a very large pitch motion 
(40- 55 degrees) which occurs when the floaters are bending out of phase in a hinged 
type of motion (shown in Figure 44). The roll and sway motion in the head sea case is 
caused by the coupling of the floaters.  
 
There can be a large variability in the floater motions and connector loads across the 
grid structure. This is also shown in Table 12 when comparing the standard deviation 
of the results for the individual floaters or connectors in head and oblique seas. The 
variation becomes greater in SS-B which has a peak period close to the natural 
frequency in bending. The largest motions occur at the corner(s) of the structure which 
can be up to 60% greater than the averages. Meanwhile, the minimum motions or 
connector loads which occur at the centre of the structure are not more than 35% of 
the averaged value. 
 
The floater motions in head and oblique seas are shown in Figure 44 and Figure 45. 
These also show the corner floaters experiencing larger motion than the centremost 
floater. The floaters experiment movement in three distinct rows for head seas (Figure 
44) compared to oblique seas when the structure experiences vertical bending in 
multiple bending directions which causes large connector loads (Figure 45). The 
motion is greater at the corner because it is less constrained and the system is in 
resonance with the wave loading. The underprediction of both the hydrodynamic and 
connector damping might lead to exaggerated motions at resonance. 
 
The maximum values of the averaged forces and moments are then shown in Table 
13 for SS-B (Hs 4.5m, Tp 6.3 sec). The forces in the axial direction (Fx) and the vertical 
shear (Fz) are larger in oblique seas than head seas but then smaller in the other 
degrees of freedom. There is generally more variability in the forces and moments for 
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oblique seas as shown in Figure 16. This is because the wave load excites different 
mode shapes in oblique waves than in head seas. The connectors respond to the 
floater motions by restraining the larger motion of the outer floaters which causes high 
loads. 
 
Table 12, Relative floater motions for head seas (180 deg) and oblique seas (150 deg) in all DOF. 
Results are maximums of significant values and standard deviation in SS-B (Hs 4.5m, Tp 6.3sec). 

Wave 
Heading 

 Surge 
(m) 

Sway 
(m) 

Heave 
(m) 

Roll 
(deg) 

Pitch 
(deg) 

Yaw 
(deg) 

180 deg 
Motion 2.8 2.5 1.4 3.9 55.8 1.0 

Std Dev 0.0 0.1 0.3 0.4 7.6 0.3 

150 deg 
Motion 2.3 4.0 2.6 13.0 42.4 1.6 

Std Dev 0.0 0.7 0.5 0.5 1.2 0.2 

 
Table 13, Forces and moments for head seas (180 deg) and oblique seas (150 deg) in all DOF. 
Results are maximums of the significant values and standard deviations in SS-B (Hs 4.5m, Tp 6.3sec). 

Wave 
Heading 

 Fx 
(kN) 

Fy 
(kN) 

Fz 
(kN) 

Mx 
(kN.m) 

My 
(kN.m) 

Mz 
(kN.m) 

180 deg 
Max 1545 1083 2262 491 7280 597 

Std Dev 266 129 346 63 928 90 

150 deg 
Max 2738 571 3522 407 5640 474 

Std Dev 242 12 782 72 207 133 

6.2.2. Effect of Sea State 

The sea state is influential in the motion and connector response for the grid structure. 
Results are presented for head seas for the X-facing relative floater motions and 
connectors in Figure 41. The floater motions are large in surge (ux), heave (uz) and 
pitch (ry). The connector vertical shear force (Fz) and the vertical bending moments 
(My) are both large. There is a vertical bending natural frequency close to SS-B (Hs 
4.5m, Tp 6.3sec) and the motions and connector responses are higher for this sea 
state even if the significant wave height might be lower (i.e., SS-C, and SS-D).  
 
There is also a greater spread in the floater motions and connector loads at a sea 
state close to the structural natural frequency (SS-B). This is primarily caused by the 
floaters and connectors acting in resonance with the waves. Resonance can play an 
important role in the motion and connector response so the sea state is a critical 
parameter when considering the design of an OFPV system. 
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Figure 41, Relative motions in X (see Figure 40) and connector forces and moments with average of 
significant values. Results presented for SS-A, SS-B, SS-C, and SS-D with the wave heading 180 
degrees. Error bars show the maximum and minimums. 

6.2.3. Effect of Connector Stiffness 

Another study was performed to determine the effect of connector stiffness on floater 
motions and connector loads in a grid structure. The stiffness is varied individually per 
DOF in vertical shear (translation) and vertical bending (hinge-type rotation). Table 14 
and Table 15 show the relative motions and connector loads in SS-B (Hs 4.5m Tp 
6.3sec) and the standard deviation of the soft, medium and stiff connector cases. The 
full results are shown in Appendix A. Modifying the stiffness per DOF allows the 
importance of each individual DOF to be identified more easily. 
 
The case where the vertical stiffness is modified has a larger difference in the floater 
motions compared to changing the bending stiffness. The trend is the opposite when 
comparing for connector loads where the vertical bending has a much larger effect. 
There doesn’t seem to be a large impact on the variation in the results (i.e., how 
different the floater motions or connector loads would be) as this is more affected by 
the value of the stiffness. 
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Table 14, Average of significant relative floater motions and standard deviations for three connector 
stiffness configurations when varying vertical bending and vertical shear stiffness individually. Results 
in all DOF for SS-B (Hs 4.5m, Tp 6.3sec). 

Stiffness DOF 
Varied 

 Surge 
(m) 

Sway 
(m) 

Heave 
(m) 

Roll 
(deg) 

Pitch 
(deg) 

Yaw 
(deg) 

Vertical Bending 
Average 4.3 4.0 2.2 15.1 44.0 1.5 

Std Dev 0.1 0.1 0.1 4.7 4.4 0.2 

Vertical Shear 
Average 4.5 4.2 2.1 12.5 40.1 1.3 

Std Dev 0.6 0.5 0.1 0.4 0.8 0.0 

 
Table 15, Average of significant forces and moments and standard deviations for three connector 
stiffness configurations when varying vertical bending and vertical shear stiffness individually. Results 
in all DOF for SS-B (Hs 4.5m, Tp 6.3sec). 

Stiffness DOF 
Varied 

 Fx 
(kN) 

Fy 
(kN) 

Fz 
(kN) 

Mx 
(kN.m) 

My 
(kN.m) 

Mz 
(kN.m) 

Vertical Bending 
Average 3048 786 3240 359 6392 380 

Std Dev 853 330 834 88 2848 115 

Vertical Shear 
Average 2186 529 2515 297 5111 270 

Std Dev 122 35 75 101 442 10 

6.2.4. Grid Distribution of Loading 

The distribution of the loading on the connectors for the grid structure is discussed in 
this Section. The maximum connector forces and moments are initially presented in 
Table 16. Then, the connector forces and moments are shown on the grid model 
relative to the maximum load in SS-B (Hs 4.5m, Tp 6.3sec). The oblique sea case is 
shown in Figure 42 and the head sea case in Figure 43. A visual representation of the 
response is also shown in Figure 44 and Figure 45. 
 

Table 16, Maximum connector loads for wave headings 150 and 180 degrees in SS-B (Hs 4.5m, Tp 
6.3 sec). 

Wave Fx (kN) Fy (kN) Fz (kN) Mx (kN.m) My (kN.m) Mz (kN.m) 

150 2738 571 3522 407 5640 474 

180 1554 1093 2268 494 7319 601 

 
The forces and moments for both wave headings are greater in Fx, Fz, and My 
compared to the other DOFs. The force in the axial direction (Fx) is large due to the 
being the main translational restraint in the direction of the wave train. The vertical 
shear (Fz) force is usually large because it is coupled to the vertical bending moment 
(My). The force (Fy) becomes much greater for head seas because then there is an 
interaction between the outer and inner rows of floaters. In oblique seas the value of 
Fy is unevenly distributed across the structure because the floaters behave more 
individually compared to head seas where they move in rows. 
 
In oblique seas the forces and moment distribution does not follow an obvious trend. 
The vertical moments (My) are much larger for the X-facing connectors compared to 
the Y-facing connectors. Conversely, the moments (Mz) are much higher for Y-facing 
connectors. For the other forces and moments, there is a more random distribution 
across the grid. The vertical forces (Fz) along the outer edge of the structure are 
generally (not always) greater than internal and at the side facing away from the 
incoming wave. 
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The distribution of connector forces and moments on the structure in head seas follows 
more of a consistent pattern. Generally the X-facing connectors have greater loads in 
Fx, Fz, and My while the Y-facing connectors have greater loads in Fy, Mx, and Mz. 
The loads are fairly symmetrical about the x-axis. For Fy, Mx, and Mz the connectors 
in the centre of the structure are much higher because they restrain rows of outer 
floaters which have greater motions. For the same reason but this time to restrain the 
translation in the axial direction, the outer connectors have higher axial forces (Fx). 
The force Fz is generally higher on one side of the floated compared to the other which 
is caused by uneven rotation (pitch or roll). 
 
The vertical bending moment (My) is distributed evenly for both head and oblique 
seas. The X-facing connectors have much greater bending moments than the Y-facing 
connectors which makes sense considering they are perpendicular to the main 
direction of the wave train. The Y-facing connectors have a vertical bending moment 
approximately 80% lower than the X-facing connectors. In oblique seas, the 
connectors adjacent to the corner floater aft of the incoming waves (i.e., floater 1) 
experiences the maximum bending moment while the forward corner (i.e., floater 9) 
experiences the minimum. 
 
The distribution of the connector loads is complex because of fluid structure 
interaction. The shielding that the nearby floaters might provide is negated by the 
dynamics of the connectors. The velocity potentials from the radiated and incident 
wave forces interact with the structure in such a way that causes resonance. The gaps 
between the floaters also increase the magnitude of the wave forces. These interacting 
excitation forces result in an uneven distribution of connector forces and moments 
across the structure. The bending moments (My) for the X-facing and Y-facing 
connectors might not be equal but bending across two axes causes some high loads 
that are undesirable.  
 
When considering the design of connectors the distribution of loads can provide 
insights for raising or lowering stiffnesses across the structure or for certain DOFs. 
The moments Mx and My are the most obvious choice because there is a large 
variation in these moments and also a clear difference between the X- and Y-facing 
connectors. The X-facing connectors could reduce in stiffness kry while increase in 
stiffness in krx. This would result in a more even distribution of these moments. This is 
not as simple in other DOF but generally, the central floater stiffness could be 
decreased in ky, kz which would reduce these loads by providing more flexibility. 
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Connector Forces Fx (Max 2738 kN) Connector Moments Mx (Max 407 kN.m) 

  

  

Connector Forces Fy (Max 571 kN) Connector Moments My (Max 5640 kN.m) 

  

  

Connector Forces Fz (Max 3522 kN) Connector Moments Mz (Max 474 kN.m) 

  

         

Figure 42, Distribution of connector forces and moments for SS-B for wave heading 150 degrees. 
Results relative to the maximum force or moment in the structure. Percentage of maximum load shown 
in color scale below. Arrow shows wave direction (bottom right).  
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Connector Forces Fx (Max 1554 kN) Connector Moments Mx (Max 494 kN.m) 

  

  

Connector Forces Fy (Max 1093 kN) Connector Moments My (Max 7319 kN.m) 

  

  

Connector Forces Fz (Max 2268 kN) Connector Moments Mz (Max 601 kN.m) 

  

               

Figure 43, Distribution of connector forces and moments for SS-B for wave heading 180 degrees. 
Results relative to the maximum force or moment in the structure. Percentage of maximum load shown 
in color scale below. Arrow shows wave direction (bottom right). 
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Figure 44, Motions in SS-C with wave heading 180 degrees. Grid model with med connector stiffness. 

 

   
Figure 45, Motions in SS-C for wave heading 150 degrees. Grid model with med connector stiffness. 

6.2.5. Grid Frequency Response Functions 

Pitch frequency response functions for the grid structure are presented in Figure 46. 
The magnitude and natural frequencies of the grid shift when comparing a single rigid 
body, a grid of free floaters, and two cases of connectors (soft and stiff with the rod 
diameter equal to 180mm and 300mm respectively). The average motion is shown 
and the shaded areas represent the minimum and maximum of the individual floaters. 
 
The results follow a similar trend to the three floater pitch response (Figure 39) where 
the single large floater has a higher motion and lower natural frequency. As the 
stiffness increases, the natural frequency reduces and the magnitude of motion 
increases. When the connector becomes stiffer the response is more similar to the 
single rigid floater rather than the case with soft connectors.  
 
The variation in the results for individual floaters is smaller compared to when there 
are connectors. For the individual case, at the natural frequency there is a variability 
of 7% whereas the stiff and soft connector case this is 17% and 21% (respectively). 
There are also larger changes between the floaters when the motion is close to the 
natural frequency. Increasing the stiffness of connectors makes structure behave like 
a single structure which decreases the natural frequency. There is a fluid structure 
interaction which has a dynamic amplification at certain wave frequencies. 
 

Wave direction 

Wave direction 
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Figure 46, Pitch motion response calculated in regular 1m wave height head waves for the grid model 
(average shown where applicable) with one continuous structure (long dashed line), no connectors 
(solid line), soft connectors (short dashed line), and stiff connectors (dotted line). Shaded zones 
represent the minimum and maximum values. 

 
The forces and moments of the connectors also have a frequency response which has 
been plotted in Figure 47 for the axial (Fx) and vertical shear (Fz) forces and vertical 
bending moment (My). The results are shown for head seas in 1m wave height regular 
waves. The stiff connector has a larger response at frequencies closer to resonance. 
The bending moment has a distinct resonant peak whereas the forces Fx and Fz both 
have more of a flattened peaks meaning that the response is inertia driven over more 
wave frequencies. 
 
Similar to the pitch response plot, there is a shift to a higher resonant frequency when 
the stiffness of the connector decreases. However, the connector vertical bending 
response has a higher natural frequency than the pitch motion response. The 
difference in the location of the peak motion to the connector bending moment shows 
that the floater motion is only partially influenced by the connector natural frequency. 
The comparison of response plots show there is an interdependence between the 
connector stiffness and floater response and connector loads. 
 
The connector frequency response is important because the connectors can 
experience their own resonance due to structural excitation. The connector forces and 
moments at resonance will be higher. The connectors have a higher natural frequency 
than the pitch bending frequency response. This is beneficial to the design because if 
the pitch motion and the connectors resonate at the same frequency this would cause 
even larger connector loads. 
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Figure 47, Frequency response functions for averaged Fx, Fz, My at the connector of the grid model. 
Results shown for soft (dashed line) and stiff (dotted line) connector stiffness. Shaded zones represent 
the minimum and maximum values. 

 Case 3 – 4x4 Grid Model 

6.3.1. Grid Distribution of Loads 

The third case investigated investigates the connector response on a 4x4 grid model. 
The distribution of forces and moments has been analyzed for SS-B (Hs 4.5m, Tp 
6.3sec). The maximum force or moment is shown for head and oblique seas in Table 
17. Normalized connector loads are shown for oblique seas in Figure 42 and head 
seas in Figure 43. 
 

Table 17, Maximum connector loads for wave headings 150 and 180 degrees in SS-B (Hs 4.5m, Tp 
6.3 sec). 

Wave Fx (kN) Fy (kN) Fz (kN) Mx (kN.m) My (kN.m) Mz (kN.m) 

150 479 151 3481 396 1302 46 

180 238 35 2258 24 2359 16 
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Connector Forces Fx (Max 479 kN) Connector Moments Mx (Max 396 kN.m) 

  

Connector Forces Fy (Max 151 kN) Connector Moments My (Max 1302 kN.m) 

  

Connector Forces Fz (Max 3481 kN) Connector Moments Mz (Max 46 kN.m) 

  

         

Figure 48, Distribution of connector forces and moments for SS-B for wave heading 150 degrees. 
Results relative to the maximum force or moment in the structure. Percentage of maximum load shown 
in color scale below. Arrow shows wave direction (bottom right).  
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Connector Forces Fx (Max 479 kN) Connector Moments Mx (Max 396 kN.m) 

  

Connector Forces Fy (Max 151 kN) Connector Moments My (Max 1302 kN.m) 

  

Connector Forces Fz (Max 3481 kN) Connector Moments Mz (Max 46 kN.m) 

  

         

Figure 49, Distribution of connector forces and moments for SS-B for wave heading 180 degrees. 
Results relative to the maximum force or moment in the structure. Percentage of maximum load shown 
in color scale below. Arrow shows wave direction (bottom right). 
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The vertical shear force (Fz) and the bending moment (My) are both greater than other 
forces and moments. This differs from the 3x3 grid where the axial force (Fx) is much 
greater and comparable to Fz. When the grid size increases most of the connector 
loads decrease because the loads are more distributed through the structure. 
Additionally, there is more shielding from forward floaters which have larger motions 
as shown in Figure 50. The wavelength of a deep water wave with a period of 6.3 
seconds is approximately 60m and the length of the grid is 66m. This explains the 
lower axial force for SS-B because the grid floats with the wave train. 
 
The largest axial forces (Fx) are experienced at the sides of the structure in oblique 
seas. This occurs as the rigid floaters rotate in yaw but through symmetry the load is 
taken as axial force. In head seas the axial forces are more evenly distributed because 
the wave train is exactly perpendicular to the structure. There is a shielding effect from 
the forward floaters which generally experience larger forces than the aft floaters. 
 
Similar to the 3x3 grid, Fz is greatest for the inner connectors which restrain the motion 
of the outer floaters compared to the inner floaters. The force distribution is varied for 
both the head and oblique sea cases. The larger Fz value at the aft side of the structure 
shows that the response is affected by dynamic amplification. 
 
The distribution of moments in bending (My) is different to the 3x3 case because there 
is a shielding effect for the X-facing connectors. The aft connectors have 15-20% lower 
moments than the forward row in the head seas case. This shielding is less 
pronounced for the oblique seas. This is because in oblique loading other bending 
mode shapes become more significant to the response. For the 3x3 grid, the bending 
moments are all much more evenly distributed over the X- and Y-facing connectors 
showing that the interaction of the floaters and connectors is less than for the 4x4 grid. 
 

  
Figure 50, Grid model in oblique seas for SS-B (Hs 4.5m, Tp 6.3sec). 

6.3.2. Grid Frequency Response Function 

The frequency response in pitch is shown for SS-B (Hs 4.5, Tp 6.3) in Figure 51. There 
is a shift in the natural frequency towards the right compared to the 3x3 grid. The 
shaded area shows the minimum and maximum values. The maximum pitch motion 
occurs at approximately 1.3 rad/s with a magnitude of 2.5m for 1m regular waves. This 
frequency equals a wave period of 4.76 seconds which is similar to the wave peak 
period of SS-B showing that the floaters are in resonance. There are some floaters 
which experience quite a small motion even at the resonant frequency.  

Wave direction Wave direction 
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Figure 51, Frequency response function for vertical bending for medium stiffness connectors in SS-B 
(Hs 4.5m, Tp 6.3sec). Shaded zones represent the minimum and maximum values. 

 
The connector frequency response functions are then shown for Fx, Fz and My in 
Figure 52. The response in Fx and Fz shows that there are two resonant peaks at 
approximately 1.1- and 1.3 rad/s. The maximum motion amplitude occurs at 1.3 rad/s 
for both DOFs. The response in My shows there is a single resonant peak at 1.3 rad/s. 
This frequency is the same as the resonant response in pitch motion from Figure 51. 
 
The results of the connector frequency response functions show that the connectors 
are experiencing resonance at around the wave peak period of SS-B. This can explain 
why the connectors at the aft side of the structure still experience large loads even 
with the shielding effect of the other floaters.  
 

  

 
Figure 52, Frequency response functions for averaged Fx, Fz, My at the connector of the grid model 
with medium connector stiffness. Shaded zones show the minimum and maximum values. 
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 Discussion of Assumptions 

This Section discusses the implications of the assumptions made for the numerical 
model and how they might affect the results. The main assumptions that are discussed 
are use of potential flow, the deep water assumption, linearized connector stiffness, 
and number of connectors used in the model. 
 
The hydrodynamic problem is solved using potential flow theory which ignores the 
viscous effects. This assumption could affect the results because the corners of a 
barge experience significant viscous damping due to the formation of vortices. The 
gap between the modules also can be affected by viscosity. These viscous affects are 
more prominent close to resonance. The motions are expected to be reduced 
compared to the results presented in this thesis. The use of damping models might 
provide more accuracy when predicting the magnitude of results but the trends are 
likely to be the same. 
 
The deep water assumption means that the velocity potentials are able to disperse 
evenly away from the structure. It is likely that an OFPV might be deployed in shallow 
water. The Hollandse Kust Noord site has a water depth of 15-25m which is not deep 
[94]. In shallow water, the seabed causes the radiated waves to reflect back towards 
the floating body and affect the wave excitation forces on the structure. The added 
mass is usually reduced in shallow water because of the influence of the seabed and 
this can shift the natural frequency to higher than predicted. The viscosity from the 
sea-bed of underwater obstacles also effects the hydrodynamics. Finally, shallow 
water causes the waves to increase in height and velocity. Overall, these factors 
usually cause the structure to experience greater forces and motions. 
 
The connector stiffness has been assumed to be linear which makes the computations 
simpler. However, there are cases where stiffness acts in only one direction which is 
the case with fenders. Alternatively, the connector might exhibit nonlinear stiffness 
properties such as for certain rubber or springs. These can be designed to become 
stiffer as the deformation or applied forces increase. The results of this Section show 
the potential for designing nonlinear or contact based connectors in areas of higher or 
lower loads. It is recommended that future work would investigate nonlinear connector 
stiffness or damping, or fenders which have stiffness in compression but not in tension. 
These cases would require the use of a time-domain analysis. 
 
It has been assumed that there are only two connectors per side of the floaters. If more 
connectors would be used, then either the stiffness stays the same and then motions 
and loads will both decrease. The overall load transferred through the set of 
connectors will increase but the load for individual connectors decreases. The natural 
frequency will also increase as the structure would get stiffer. The other situation would 
be if the stiffness decreases but the number of connectors increases. This would result 
in the natural frequency being similar but then the connector loads would decrease 
while motions remain similar.  
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 Practical OFPV Design 

This Section discusses some practical design considerations that have arisen due to 
this thesis. The numerical model can be used to predict the motions of floaters and 
connector forces and moments. Therefore, design decisions for the OFPV structure 
can be made using this method, particularly for calculating motions and connector 
loads.  
 
The results from this thesis are presented for a grid of 3x3 and 4x4 floaters but to be 
practical and cost effective the design of an OFPV should be much larger with a total 
footprint of roughly 200m2 (or a grid of 15x15 floaters) [53]. The time domain approach 
is computationally expensive compared to a frequency domain analysis. However, the 
time domain is required to accurately predict the connector forces and moments in the 
OFPV because of the nonlinear behaviour due to large deformations and the multi-
body interaction. These nonlinearities are captured by solving the Froude-Krylov and 
wave incident forces directly. Also, the nonlinear connector stiffness which is 
recommended for future implementation requires the time domain to solve.  
 
The distribution of loads allows the designer to understand which connectors could 
become more or less stiff. The forward floaters experience the largest loads because 
there is a shielding effect for the larger (4x4) grid model. The central floaters 
experience the larger Fz forces while the connectors on the edge of the structure 
experience greater Fx forces. The connector stiffness in kz can be reduced in the 
centre of the structure which would allow more floater movement but lower forces.  
 
The trade-off between numerical accuracy and computational expense is a significant 
challenge when designing an OFPV. The results of this thesis show that the governing 
load would occur close to the natural excitation frequency of the structure. It is 
recommended that the maximum connector loads calculated at sea states with wave 
peak frequencies close to the natural frequency. In particular the natural frequency in 
bending appears to dominate the response. However, to obtain the ultimate predicted 
strength requires solving each possible sea state in a given wave scatter diagram. 
 
A practical solution to reducing the time taken for running analyses for OFPV 
structures is to solve the boundary value problem to obtain the connector and floater 
response functions in the frequency domain. The high frequency responses which are 
required to calculate the impulse functions of the radiation potentials use a fine mesh. 
In the time domain, the mesh size doesn’t need to be so fine so can become larger 
hence, speeding up the solve times. The time domain simulations are used to calculate 
the floater motions and connector loads at critical sea states. The calculations should 
also be performed in the time-domain to optimise the connector stiffness and damping.  
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7. Conclusions and Recommendations 

 Conclusions 

This thesis expands on an existing numerical model that was developed by Tuitman 
[2]. The determination of connector responses in multi-body OFPV structures is the 
main contribution of this work. The hydrodynamic problem is solved in the frequency 
domain using a 3D-BEM to determine frequency dependent coefficients before 
converting to the time domain and solving a multi-body equation of motion. The 
floaters are connected using linear beam elements which are compliant in all degrees 
of freedom. After the model has been verified and validated, three cases studies, a 
three floater serially connected structure, a 3x3 grid and 4x4 grid connected structure 
are used to explore the influence of various factors on the OFPV response. The 
research sub-questions from Chapter 1 are shown. 
 
A. How does wave direction and frequency affect the connector response for grid-like 

VLFS? 
 
The floater motions and connector loads are investigated for various wave directions 
and frequencies. The first case with the serially connected structure shows that the 
vertical bending motion (pitch) gives the largest motions and connector loads and is 
the governing load for design. When considering the 3x3 grid, the oblique seas 
generally give higher loading than head sea for all DOFs apart from in vertical bending. 
The distribution of forces and moments across the grid structures are much more 
varied than for the serially connected structure. This is more prominent for oblique 
seas than head seas and is caused by the larger motion of the corner or outermost 
floaters. The connectors can also be in resonance which causes high loading 
throughout the structure. It is also shown that the resonant frequencies of the 
connectors and floaters are not always the same in the same DOF. 
 
B. What is the connector response in irregular waves? 
C. How does connector compliance affect the motions of a grid-like VLFS and what 

are forces and moments at the connectors? 
 
Both case studies are performed in irregular waves which are based on ocean 
conditions in the Hollandse Kust Noord site in The Netherlands. Two sea states (SS-
C and SS-D) are predicted maximum expected values for 10- and 100 year waves. 
The other two sea states (SS-A and SS-B) are based on peak periods close to the 
bending natural frequency of the structures from Case 1 and Case 2 respectively. The 
sea state with a peak frequency close to the natural frequency of the structure causes 
larger motions and connector loads even if the wave height might be lower. Structural 
dynamics clearly plays an important role in the response of an OFPV. The forces are 
greater in the outermost connectors compared to those on the insider of the structure. 
 
D. How does connector stiffness and damping affect its loads and the motions of the 

floaters? 
 
The connector stiffness affects both the motion response and the connector response. 
As the connectors increase in stiffness, the floater motions become larger but the 
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connector forces and moments decrease. An increase in the connector stiffness 
decreases the magnitude of motion and the natural frequency of the structure so that 
it behaves more like a single continuous structure rather than individual (free) floaters. 
The connectors also have their own natural frequency and this shifts towards a lower 
frequency when the stiffness increases. Therefore, connector stiffness is an important 
parameter when designing an OFPV system because it influences the frequency 
response of the connectors and the floaters. 
 
The effect of damping was investigated for the three floater OFPV using a linear spring 
mass damper model. The floater motions and the forces and moments in the 
connectors reduce because of damping but only close to the natural frequency of the 
structure where the inertia terms dominate the response. As the peak frequency of the 
sea state moves away from the natural frequency the damping has a negligible effect. 
Increasing damping reduces the floater motions and also the connector loads. 
 
E. How does the distribution of connector forces and moments vary from a 3x3 to a 

4x4 grid? 
 
The 3x3 grid was expanded to a 4x4 grid with floaters and connector with the same 
properties. The results showed that the larger grid reduced the connector loads 
because the structure behaved more flexibly because of the compliance in the 
connectors. In the larger grid, the floaters are still bending in two directions but now 
there is more of a shielding effect from some floaters which reduces the loads. The 
4x4 grid experiences much lower axial forces (Fx) relative to the other forces 
compared to the 3x3 grid but similar in the other DOFs. 

 Recommendations 

This numerical method has been used to determine the structural response of a 
multibody VLFS in offshore conditions. There is a real lack of research in this area 
meanwhile, small pilot OFPV projects are being realized across the world. Over the 
course of this thesis there are lessons learnt which can be passed on to aid further 
research in this field.  
 
The grid structure of an OFPV should have many smaller interconnected floaters with 
soft connectors. The smaller floaters are shown to have a higher natural frequency 
which shifts the resonant response away from the peak period of the sea states in 
consideration. Having softer connectors has the same effect because the grid 
structure starts behaving more like free floating modules rather than one large rigid 
structure. 
 
There should be experimental work performed which serves to validate future 
numerical models. During this thesis validation has been conducted using an 
experimental test case of a serially connected structure and also comparing results 
with another numerical 3x3 grid model. However, future OFPV systems will almost 
certainly contain many more floating modules and experimentation will be crucial to 
validating the results. Additionally, the connector models need further validation 
especially in such a large interconnected structure. 
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This thesis has outlined that a time domain simulation takes significant time and that 
solving every case in a wave scatter diagram for a very large structure might be 
unrealistic. The results from the parametric studies already show that the response 
functions already give a lot of insight into the VLFS design. The natural frequencies 
should first be calculated and then results can be obtained for the most critical load-
cases using the time domain simulation which is more accurate and sometimes 
necessary when calculating forces and moments. The connector stiffness should be 
included in the frequency solution so that mode shapes and connector response 
functions can be calculated more easily. 
 
Further improvements to this method would be to introduce nonlinear stiffness to the 
connector model. This would require obtaining the nonlinear curves by 
experimentation. Alternatively, the fender type design has a stiffness in compression 
but not tension. These cases require the equation of motion to be solved in the time-
domain to capture the displacement varying response. Additionally, it is recommended 
that further research is performed to improve the understanding of damping on grid 
connected OFPVs because this could result in a reduction of both the highest floater 
motions and connector loads. 
 
The floaters are assumed to act like rigid bodies because the connector stiffness is 
significantly lower. In this regard some OFPV concepts exhibit high floater flexibility 
[11] while others assume high floater stiffness [86] so this is situation dependent. 
There should be a sensitivity study with flexible floater to determine up until which 
stiffness ratio with the connectors is the rigid body assumption still valid. 
 
There should also be more research into the mooring design. The mooring 
arrangement has not been the focus of this thesis however, this will have a significant 
impact on the design loads and motions. The mooring stiffness has been assumed to 
be linear and no damping was applied. However, the actual mooring arrangement are 
likely to have nonlinear stiffness and some line damping. These influences on the 
OPFV responses should be further investigated. 
 
A larger grid model should be investigated which has the same sized but more floaters 
(e.g., a grid size of 15x15). Both of the grid model test cases have demonstrated that 
the floater motions and connector loads can be obtained. Connector resonance was 
recorded for certain wave headings and sea states. Further expanding the grid will 
reveal additional mode shapes and potentially critical natural frequencies. The shape 
and design of the floater might also lead to some interesting results. This thesis has 
assumed a simple box shape but with companies like SolarDuck pursuing triangular 
shaped semi-submersible structures, these should be publicly investigated further.  
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Appendix A – Grid Model Results 
 
The complete results of Case 2 for the 3x3 grid VLFS are presented in this Appendix. 
The first parametric study is presented first and shows the results for various sea 
states and wave headings of 150- and 180 degrees. Meanwhile, the second part 
shows the influence of individually varying the connector stiffness in heave and pitch 
for SS-B and SS-D with a wave heading of 150 degrees. 
 
The results are presented by separating the floaters or connectors that are side by 
side (Y) and those forward and aft (X). This separation shown in Figure 53 is used to 
get a better impression of the distribution of floater motions or connector loads across 
the structure. 
 

  
 

Figure 53, Grid model VLFS marking Y connectors (left) and X connectors (right). NOT TO SCALE.  
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Sea State and Wave Heading 

 

  

 
 

  

Figure 54, Significant motions relative to Y (left side) or X (right side) adjacent floaters. Wave heading 
is 180 degrees and sea states A, B, C, and D are shown. Averaged values are shown for the X or Y 
relative floaters (see Figure 57) and error bars show the maximum and minimum relative motion. 
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Figure 55, Significant connector forces or moments relative to Y (left side) or X (right side) adjacent 
floaters. Wave heading is 180 degrees and sea states A, B, C, and D are shown. Averaged values are 
shown for the X or Y relative connectors (see Figure 57) and error bars show the maximum and 
minimum individual force or moment. 

 

  

  

  

Figure 56, Significant motions relative to Y (left side) or X (right side) adjacent floaters. Wave heading 
is 150 degrees and sea states A, B, C, and D are shown. Averaged values are shown for the X or Y 
relative floaters (see Figure 57) and error bars show the maximum and minimum relative motion. 

 



94 

  

  

  

Figure 57, Significant connector forces or moments relative to Y (left side) or X (right side) adjacent 
floaters. Wave heading is 150 degrees and sea states A, B, C, and D are shown. Averaged values are 
shown for the X or Y relative connectors (see Figure 57) and error bars show the maximum and 
minimum individual force or moment. 
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Varying Stiffness in Heave and Pitch 

This Section presents the results of the parametric study on modifying the connector 
stiffness individually in either heave or pitch. The wave heading of 150 degrees is 
presented for SS-B (Hs 4.5m, Tp 6.3sec) and SS-D (Hs 7.6m, Tp 11.8sec). 
 

  

 
 

  

Figure 58, Significant motions relative to Y (left side) or X (right side) adjacent floaters when modifying 
only pitch stiffness. Wave heading is 150 degrees in sea state B (Hs 4.5, Tp 6.3sec). Results 
presented for soft, medium and stiff connectors. Averaged values are shown for the X or Y relative 
connectors (see Figure 57) and error bars show the maximum and minimum relative motion. 
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Figure 59, Significant connector forces and moments relative to Y (left side) or X (right side) adjacent 
floaters when modifying only pitch stiffness. Wave heading is 150 degrees in sea state B (Hs 4.5, Tp 
6.3sec). Results presented for soft, medium and stiff connectors. Averaged values are shown for the X 
or Y relative connectors (see Figure 57) and error bars show the maximum and minimum forces or 
moments. 

 

  

 
 

  

Figure 60, Significant motions relative to Y (left side) or X (right side) adjacent floaters when modifying 
only pitch stiffness. Wave heading is 150 degrees in sea state D (Hs 7.6, Tp 11.8sec). Results 
presented for soft, medium and stiff connectors. Averaged values are shown for the X or Y relative 
connectors (see Figure 57) and error bars show the maximum and minimum relative motion. 
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Figure 61, Significant connector forces and moments relative to Y (left side) or X (right side) adjacent 
floaters when modifying only pitch stiffness. Wave heading is 150 degrees in sea state D (Hs 7.6, Tp 
11.8sec). Results presented for soft, medium and stiff connectors. Averaged values are shown for the 
X or Y relative connectors (see Figure 57) and error bars show the maximum and minimum forces or 
moments. 
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Figure 62, Significant motions relative to Y (left side) or X (right side) adjacent floaters when modifying 
only heave stiffness. Wave heading is 150 degrees in sea state B (Hs 4.5, Tp 6.3sec). Results 
presented for soft, medium and stiff connectors. Averaged values are shown for the X or Y relative 
connectors (see Figure 57) and error bars show the maximum and minimum relative motion. 

 

  

 
 

  

Figure 63, Significant connector forces and moments relative to Y (left side) or X (right side) adjacent 
floaters when modifying only heave stiffness. Wave heading is 150 degrees in sea state B (Hs 4.5, 
Tp 6.3sec). Results presented for soft, medium and stiff connectors. Averaged values are shown for 
the X or Y relative connectors (see Figure 57) and error bars show the maximum and minimum forces 
or moments. 
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Figure 64, Significant motions relative to Y (left side) or X (right side) adjacent floaters when modifying 
only heave stiffness. Wave heading is 150 degrees in sea state D (Hs 7.6, Tp 11.8sec). Results 
presented for soft, medium and stiff connectors. Averaged values are shown for the X or Y relative 
connectors (see Figure 57) and error bars show the maximum and minimum relative motion. 
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Figure 65, Significant connector forces and moments relative to Y (left side) or X (right side) adjacent 
floaters when modifying only heave stiffness. Wave heading is 150 degrees in sea state D (Hs 7.6, 
Tp 11.8sec). Results presented for soft, medium and stiff connectors. Averaged values are shown for 
the X or Y relative connectors (see Figure 57) and error bars show the maximum and minimum forces 
or moments. 

 


