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Abstract

Osteoarthritis is a chronic joint disease in which
the protective cartilage between bones deteriorates
over time, leading to pain, stiffness, and reduced
mobility. Diagnosis is a time-consuming and some-
what subjective process. To address this challenge,
machine learning techniques can be applied. How-
ever, training supervised models on medical images
is often challenging because of the limited avail-
ability of labeled training data. Self-supervised
methods, which pretrain models to learn useful fea-
tures without labels, offer a potential solution to
this issue. In this paper, we explore the use of
Generative Adversarial Networks (GANs) as a pre-
training step for osteoarthritis diagnosis. The first
step is the training of a GAN on a semi-public
dataset of x-ray images. In the second stage, we
explore different strategies for fine-tuning the dis-
criminator model to diagnose osteoarthritis. Our
experiments suggest that while GAN-based pre-
training offers slight improvements over purely su-
pervised approaches, the performance gains remain
modest. 1

1 Introduction
Osteoarthritis is a progressive joint disease that impacts many
individuals, leading to symptoms such as pain, stiffness, and
discomfort. The diagnosis of osteoarthritis is clinically de-
fined mainly based on the patient’s symptoms, but imaging
methods are widely used [9]. Healthcare professionals rely
on X-ray images to identify damage to joints. However, the
process of analyzing the scans can be both time-intensive
and subjective, particularly in the early stages of the condi-
tion when signs of damage are subtle and harder to detect.
If an automated system could produce reliable predictions
and diagnoses, it could enable patients to get quicker access
to appropriate treatment and free up valuable time of highly
trained clinicians to focus on more critical cases. If the auto-
mated system proved robust, it could even help minimize the
late-stage effects by giving early warnings.

One promising approach to building such automated sys-
tems is through the use of machine learning, specifically
neural networks. Convolutional neural networks have been
shown to be able to achieve remarkably low error rates when
trained on massive datasets of labeled data (such as ImageNet
[10]). These training methods however require the data to be
labeled, which is an expensive and time consuming task, es-
pecially in the medical field.

To reduce the need for massive labeled datasets, self-
supervised learning frameworks have been developed. These
methods train a model on unlabeled data using a pretext task
for which labels are not needed. The goal of this pretext task
is to help the model learn useful representations from the data
without relying on labels. Afterwards, the model can be fine-

1Code is available at https://gitlab.tudelft.nl/
osteoarthritis-2025-bsc/gan classification model teun

tuned on the actual problem using a much smaller labeled
training set. [8] [13]

There are many possible pretext tasks. The model could for
example be trained as an autoencoder, or it could be tasked to
find representations that are invariant to predetermined trans-
formations, it could even predict obscured parts of an image.
In this paper we will explore the use of pre-training the clas-
sifier as part of a Generative Adversarial Network (GANs).
In GANs two networks a generator and a discriminator are
trained in competition with each other. Typically, the trained
generator is the goal of this process. Its latent space can en-
code high-level features and map them to images [18]. How-
ever, in this work we focus on an alternative use case. Us-
ing the discriminator as the basis for the downstream classi-
fier. Specifically, we experimented with two strategies: (1) di-
rectly fine-tuning the discriminator and (2) replacing the final
classification layer with a new classification head of varying
types.

This is an interesting pre-training task because the model
is implicitly learning visual features in order to tell real im-
ages apart from fakes. In doing so, it learns to understand the
underlying structure and distribution of the input images, or
at least the parts the generator is getting wrong. This could
be especially useful in the context of medical images because
the pretraining is teaching the model to look for properties
that are out of the ordinary, which could be correlated with a
disease, though this would have to be confirmed.

Working with GANs also comes with unique challenges
in the form of training instability. The training has a couple
failure modes that other machine learning techniques do not.
For example the discriminator can become too strong or too
weak relative to the generator leading to a vanishing gradient.
Additionally, models can experience mode collapse, where
the generative models start to produce only a small subset
of the training data. The models may also oscillate between
strategies, never stabilizing into an equilibrium. [1] [6] [18]

Despite these challenges, the potential of this approach
makes it a compelling direction to explore. In this paper, we
investigate whether using a GAN discriminator as the foun-
dation for a classifier can improve osteoarthritis classifica-
tion performance compared to standard supervised learning.
We also examine whether replacing the classification head
with additional layers can further enhance the model’s per-
formance. Our hypothesis is that pre-training a model us-
ing the GAN-based method allows it to learn useful features
from unlabeled data. This pre-trained model should provide
a stronger starting point than random weight initialization
for supervised learning, improving its ability to diagnose os-
teoarthritis.

2 Related Work
Fine-tuning a discriminator is not a novel idea. This approach
was first introduced by [18] in their work on deep convolu-
tional generative adversarial networks (DCGANs). In their
experiments, they demonstrated that a discriminator, trained
to distinguish between real and generated images, could learn
high-level, abstract features useful for downstream tasks.

Since then, this approach has been successfully adapted to
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various domains, including remote sensing. For example [11]
and [20] employed this method to develop classification sys-
tems for satellite imagery. These approaches were effective
in leveraging the vast amounts of unlabeled image data avail-
able.

Further theoretical insights were provided by [14], in their
analysis into why fine-tuning discriminators can yield strong
feature extractors. Their study suggests that discriminators
can capture robust and semantically meaningful representa-
tions. However, they also identified potential limitations,
such as little feature separation and sensitivity to mode col-
lapse.

3 Methodology
3.1 General Approach
To investigate whether pretraining a discriminator within a
GAN can improve downstream classification performance on
osteoarthritis, we followed a two-step approach. First, the
discriminator is trained as part of a GAN. Afterwards the dis-
criminator model was repurposed to become the classifier.
The classifier was then trained directly on the final task di-
agnosing osteoarthritis. The pre-trained classifier was com-
pared with the same architecture but initialized with random
weights, this served as the control. The GAN is trained on
a set of unlabeled data, while the fine-tuning is on a smaller
labeled set. The labeled data is split into a training, testing
and validation set. The labeled training set is also used in
the GAN training without the labels, as having more images
helps with the pretraining. Testing and validation are not.

Figure 1: General approach, step one is GAN training. Step two is
fine-tuning

3.2 GAN Framework
To pre-train the model the GAN framework was used. This
was first introduced in [5]. In this paper the authors pro-
pose a way to train generative models via an adversarial pro-
cess. Two models are optimized simultaneously, a generative
model that produces images, and a discriminative model that
classifies the images as coming from the dataset or produced
by the generator. This framework is a two-player minimax
game, in which the two models are in direct competition with
each other. The result of this training process is that the gen-
erator is incentivized to produce images from the same distri-

bution as the training set (even though it has never seen the
training data).

This approach offers various benefits, namely the discrim-
inator is learning visual features in order to tell real im-
ages from the generated images. To properly distinguish im-
ages from a sufficiently advanced generator the discrimina-
tor needs to have a model of what the structure of the joints
should be. This suggests that the model will also need to be
looking at features like the distance between the bones and
texture of the joint. The theory to test is that this will also
help the model learn the different types of images there are
i.e. healthy joint vs unhealthy.

GANs are well known for their training instability. Sev-
eral methods have been proposed to solve this issue such
as Wasserstein GAN [1], Wasserstein GAN with gradient
penalty [6], R1 Regularization [15], spectral normalization
method [16]. Along with several guidelines for architectures
[18].

In our testing the Wasserstein GAN, R1 Regularization and
spectral normalization method did not work, for the dataset
used in this paper. This may be the result of suboptimal hy-
perparameter tuning or bugs. However one possible explana-
tion is that it is a result of the dataset itself. The dataset im-
ages are all of the same joint taken in a standardized way. This
makes them more similar to each other than natural images.
The discriminator can therefore figure out fake from real with
a high confidence very early on in the training process, which
could lead to the experienced mode collapse. What did work
was the Wasserstein GANs with gradient penalty, which is to
be expected as this method is relatively good at preventing
mode collapse.

To design the models several guidelines from the literature
are used. The first is the use of LeakyRelu activation func-
tions in the discriminator. This type of activation function
is especially good at allowing the gradient to flow to earlier
layers which in this case includes the generator. This helps
the generator to always have a clear direction to improve.
Secondly is the use of strided convolution blocks instead of
pooling layers, this also helps with stability [18]. Lastly no
dropout and batch normalization was used in the discrimina-
tor as this doesn’t work well with the optimization method
[6].

3.3 Fine-tuning
After pre-training, the discriminator model is repurposed un-
der the assumption that it has learned task-relevant features.
We test two fine-tuning strategies. The first involves minimal
modification: the pre-trained discriminator is fine-tuned as is.
The second strategy replaces the classification head with ad-
ditional layers, and the entire model is fine-tuned. In both
cases, the fine-tuned models are compared to controls with
the same architecture and training procedure, the only differ-
ence being the weight initialization.

No layers are frozen during training, as this would not pro-
vide a realistic comparison with the control models. Since the
models are sufficiently large to overfit the data, early stopping
is used to prevent overfitting. The models are trained until the
validation loss stops decreasing, after which performance is
evaluated on the test set.



3.4 Evaluation
Measuring performance improvements in GAN training is
more challenging than in supervised learning, as the gener-
ator and discriminator losses do not steadily decrease over
time. To assess the performance of the GANs during pre-
training a combination of metrics are used.

To evaluate the generator, the Fréchet Inception Distance
(FID) is employed [7]. This metric estimates the distance be-
tween the distribution of real images and the distribution of
generated images. In this research, the FID implementation
from the TorchMetrics library was used. It relies on Inception
v3, a model trained on natural RGB images of a different res-
olution. While this may not be the best metric for x-ray im-
ages, FID remains a standardized benchmark, which makes
it useful for comparing models. The FID is also calculated
against the test set. A significant difference in FID between
the training and test sets could indicate overfitting.

To further test for overfitting, the discriminator’s confi-
dence on the training set is compared to its confidence on
the test set. A significantly higher confidence on the training
data could suggest that the discriminator has memorized the
training samples rather than learning generalizable features.

The effectiveness of the pretraining strategy is evaluated
using area under the ROC curve (AUC) on the testing set.
The AUC is more important than metrics like accuracy in this
case as there is a class imbalance in the data. The ROC curve
is the plot of the true positive rate over the false positive rate
at each possible decision threshold [4]. The area under the
ROC curve represents the probability that the model, if given
a randomly chosen positive and negative example, will rank
the positive higher than the negative. The AUC is therefore
independent of the specific threshold used for prediction and
gives a more clear idea of how much the model has learned.

4 Experiment
4.1 Data used
To train the models, the CHECK [19] and OAI [17] datasets
were used. These datasets consist of multiple scans of 969
and 4755 individuals, respectively. Each individual has no
more than 5 scans in the dataset. The datasets have slightly
different distributions and properties. The OAI contains sig-
nificantly more healthy patients. The images are also on av-
erage less sharp and have different brightness histograms [2].
To test self-supervised methods, it is useful to have a larger
unlabeled dataset than the fine-tuning dataset, as this is a more
realistic scenario. To also avoid the models learning to distin-
guish between the datasets, thereby unfairly achieving higher
accuracy, the OAI dataset was used exclusively as an unla-
beled dataset to assist during pre-training.

The CHECK dataset was split 80-10-10 into a train, test
and validation sets. The split was done on individuals and not
on scans in order to make sure the testing set is independent.
For the purposes of training the images were converted to a
standard resolution of 224x224 and normalized to [-1, 1]. The
right hip joint is also flipped so that the GAN doesn’t need to
learn the mirror image of all the features. Osteoarthritis is
typically classified into five levels, which are grouped into

two categories for training purposes: the first two levels indi-
cate no or doubtful presence of the condition, while the last
three indicate definite presence.

4.2 Architecture
The generator is designed to map a noise vector to an image.
It starts off by using a fully connected layer that projects the
latent vector into a 7×7×512 feature map. This is followed by
five upsampling blocks. Each block consists of upsampling, a
3×3 convolution, batch normalization, and a ReLU activation
function. The final output is scaled using the tanh activation
function. For specific details such as the amount of channels
in each layer reference the codebase.

The discriminator model maps images to one value that
represents the model’s confidence that the image is from the
real dataset. It begins with 5 down sampling blocks, each
consisting of 4x4 convolution with stride 2 and an activation
function in this case LeakyRelu (α = 0.2). The convolutional
blocks are followed with one fully connected layer to the out-
put. No activation function is used on the output to allow
the WGAN-gp training method to properly optimize the net-
works.

4.3 Training WGAN-GP
To optimize the networks the Wasserstein GAN GP method
was used [3]. The models were trained for 200 epochs, with a
batch size of 64 images. The Adam optimizer was used with
a learning rate of 0.0001, β1 = 0 and β2 = 0.99. The latent
space (random input) was 100 dimensional. The discrimina-
tor was trained 5 times as often as the generator per epoch.
The penalty constant λgp = 10. As the goal of this research
is not to find new training methods for GANs an existing im-
plication of the Wasserstein loss with gradient penalty was
used, credits to [12].

4.4 Base model
The first test conducted was to test if the discriminator model
has indeed learned useful features. The pretrained and con-
trol models were trained again using the Adam optimizer on
the labeled dataset, until the performance on the validation
set decreased. The pretrained model performed best with 7-8
epochs. After which performance on the testing set decreased
as the model began to overfit. This procedure was repeated
for the discriminator models saved at every 10-epoch inter-
vals during pretraining.

4.5 Classification head
The second experiment was to examine whether replacing the
classification head with additional layers can further enhance
the model’s performance. First we define the classes of pos-
sible architectures to search through. Each method will leave
the base of the model unchanged and replace the classification
head. The features in the base are again not frozen and can
also be optimized. In Table 1 we define the possible classifi-
cation heads that could be used. From this set 50 models were
sampled and trained on the dataset with labels. Each model
was trained until validation loss began to increase. The mod-
els are again compared with the same architecture but random
weights.



Table 1: Set of architectures to append to the base model

Nonlinearity [ReLU, LeakyReLU, Tanh, Sigmoid]
Depth [1, 2, 3, 4]
Batch norm [True, False]
Dropout [0, 0.2, 0.5]
Layer size [16, 32, 64, 128]

5 Results

5.1 Generator performance

The generator produces reasonable results but suffers from a
bit of blurriness and random white blobs, though the blobs
are also present in the training set. 25 samples can be seen in
Figure 2. The FID score can be seen in Figure 4. In the Figure
it can be seen that the model is somewhat steadily decreasing,
and has stabilized around 200 epochs. Secondly it can also be
seen that the test and training curves diverge a little, implying
that the generator is slightly overfitting to the data.

5.2 Discriminator performance

To test how much the discriminator is overfitting, average
confidence of the final model on the training and testing set is
compared. On the training set it is 47.855 and on the testing
set it is 47.030. The train-test gap is 0.824. For the purpose of
the next tests this was deemed good enough. One somewhat
interesting test that can still be applied is to find the input
image which maximizes the discriminator’s realness score.
Starting with a random input image, gradient descent was
used to optimize the image to get the highest possible confi-
dence from the model. The resulting image that does that can
be seen in Figure 5. The image does not look anything like a
hip joint, this suggests that the generator is sufficiently good
at producing the contours of bones that the discriminator can-
not use it to classify it as fake. This may have implications
for turning the discriminator into a classifier.

5.3 Fine tuning

The results from the experiment show that the pretrained
(base) model gets AUC of 0.72 vs the control which got an
AUC of 0.68, The roc curve for this model can be found in
Figure 6. The best addition to the model are the layers de-
scribed in Table 2. The AUC of this model is 0.734. The AUC
of the control model was also computed, this was 0.727. (re-
member this was the same architecture only with a different
starting point). This implies that the discriminator model did
learn some useful features for classification. Discriminator
models saved at 10-epoch intervals were also compared, and
found to perform similarly or worse.

Figure 2: 25 random images produced by the generator. The images
are reasonable fakes but suffer from a bit blurriness

Figure 3: Reference images from the dataset



Figure 4: FID score plotted over the training epochs. The FID score
was calculated over 2024 fake images and 2024 real images per 10
epochs. In blue the generated images are compared with the train set
and in orange with the test set. The curves diverge a little, suggesting
that the generator is slightly overfitting to the data.

Figure 5: This image that maximises the confidence of the discrimi-
nator that it is a real sample

Figure 6: The ROC curve of the base discriminator when finetuned
vs the control

Layers Details
Linear 25088 → 64
BatchNorm1d 64
Tanh -
Linear 64 → 128
BatchNorm1d 128
ReLu -
Dropout p = 0.2
Linear 128 → 16
Dropout p = 0.5
Linear 16 → 64
ReLu -
Dropout p = 0.5
Linear 64 → 1

Table 2: Best fine-tuning addition

6 Responsible Research
Several considerations are necessary to ensure this research
is conducted responsibly. First, the models are trained on
biomedical data derived from real individuals, which raises
important ethical and privacy concerns. As the data of these
individuals cannot be released by both the rules associated
with the datasets and by ethical guidelines, the results of this
research are not reproducible by other institutions without re-
leasing the original data set. Should this need arise, it would
be advisable to contact the TU Delft directly. Secondly the
generator could have learned some of the specifics of individ-
uals. It appears that the model is not overfitting, but neverthe-
less this model will not be shared, without a lot more tests to
prove it doesn’t violate any privacy concerns.

One limitation for reproducibility comes from the fact this
study does not use a large sample set of different architec-
tures and hyper-parameters. This is because training was pro-
hibitively time consuming, which made it impractical to set



up a proper T-test. While the code base used a defined ran-
dom seed to make the data reproducible, any small change to
the method will mean different outcomes.

7 Discussion
The results of our study show that while GAN-based pre-
training provides some benefit to downstream osteoarthritis
classification tasks, the gains are modest. The AUC improve-
ments (0.72 from 0.68 for the base discriminator and 0.734 vs
0.727 for the best architecture) indicate that the discriminator
does learn features useful for classification, but these are not
major improvements. There are several possible reasons for
this.

One major factor could be the structure of the dataset. The
X-ray images used are highly standardized, which may limit
the features the GAN learns to distinguish real from fake. The
discriminator may be relying on texture cues to stay ahead of
the generator. We see some hints of this in Figure 5. What is
clear is that the features in the model are not well lined with
diagnosis. A quick test to see Pearson correlation between
the neurons activation and the labels shows that in the last 3
layers of the network no neurons are more than 0.2 correlated
with having osteoarthritis. This means that the optimizer still
has to do a lot of work.

Of course the GAN training only represents one sam-
ple, the network architecture and hyper-parameters are not
tested over a range of values. This is a problem for making
more generalized claims about how well the method works
or doesn’t. All we can say is this combination performed the
way that it did. The reason not multiple GANs were trained
was the massive amount of compute needed. Training this
GAN is approximately a 12 hours task on the Delftblue su-
percomputer.

This study also does not explore the effects of additional
data on performance. In the experiments the OAI database
was used as unlabeled data to help train the GAN. It was not
tested what the effect was of differences between the OAI and
CHECK. It could be that the difference between the datasets
negatively impacted performance. Also it was not tested how
adding more data to the training helps with improve perfor-
mance or not.

8 Conclusion
In this study, we demonstrated that GAN-based pretraining
can improve model performance in diagnosing osteoarthri-
tis. Our method achieved an increase in AUC compared to
the baseline models without GAN pretraining, suggesting that
discriminators can learn useful features even in medical imag-
ing.

However, while the improvements are measurable, they re-
main modest. The performance gains may not justify the con-
siderable computational cost and time needed to work with
the instability typically associated with training GANs. These
factors limit the practical value of the approach in its current
form, especially when more accessible and less resource in-
tensive alternatives, like data augmentation and regularization
techniques may offer comparable or greater improvements.
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Computations were performed using the DelftBlue super-
computer [3], without which this study would have been
much more time consuming.

B Use of AI

Chat-GPT was used during the course of the project, mainly
with helping with coding and as a replacement to stack over-
flow. Chat-gpt was also asked how to make code better and
cleaner. In addition, it was asked to help fix grammar and
improve sentence structure, though the sentences produced
were often very general and overly formal. Grammarly was
also used to help improve writing.

Figure 7: Prompt to GPT and response



Figure 8: Prompt to GPT and response
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