
Uncovering the Secrets of the Maven Repository
Analysis of Library Sizes in Maven Central

Niels Tomassen1

Supervisor(s): Sebastian Proksch1, Mehdi Keshani1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Niels Tomassen
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Mehdi Keshani, Soham Chakraborty

An electronic version of this thesis is available at http://repository.tudelft.nl/.

1 Abstract
This research explores the size variations of artifacts in
Maven Central, a repository containing a large collection of
Java artifacts. This analysis sheds light on the coding habits
and dependency management ecosystems within Maven Cen-
tral, emphasizing the importance of managing artifact sizes
effectively. It also provides valuable insights to library main-
tainers and clients who want to download libraries. For exam-
ple, we can determine the average amount of space required
to download 100 libraries.

The analysis is done by selecting a single version for each
artifact in Maven Central and extracting metadata from the
corresponding files.

The results reveal that the average size of an artifact is
1447 KB, although this average is heavily influenced by a
few exceptionally large artifacts. Approximately 86% of the
artifacts have a size smaller than 400 KB, indicating that the
majority of artifacts are relatively lightweight. The large arti-
facts identified in the analysis are predominantly attributed to
two categories. The first category contains extensive projects
with a substantial number of files, while the second category
includes machine learning or big data projects that include
massive data files.

2 Introduction
Maven Central is a repository that contains a large number of
common libraries used in Java. It serves as a place where de-
velopers can store and share projects written in Java or other
languages that compile to JVM bytecode. Maven has gained
popularity for simplifying the build process of Java projects,
especially regarding dependencies. It was estimated in 2018
that every week over 100 million artifacts are downloaded
from Maven Central [1].

Maven dynamically downloads Java packages from Maven
Central and stores them in a local cache, the .m2 direc-
tory, for easy access. The packages uploaded to the Cen-
tral Maven Repository contain a wealth of useful informa-
tion about the coding habits of library maintainers and statis-
tics about Java projects. Unfortunately, the libraries uploaded
to Maven Central may include nonessential or unnecessary
components, such as repackaged dependencies, unused lines
of code, and bloated dependencies (dependencies specified
but not needed) [2], among other issues.

To classify and bring structure to the extraneous elements
contained in libraries, we conducted a data analysis on a
dataset from Maven Central. Specifically, we examined why
certain libraries occupy more space than others. The insights
obtained from this analysis provide valuable information for
developing guidelines to reduce the amount of undesirable
content in libraries, whether they are intended for Maven or
other repositories. Additionally, knowing how big libraries
are on average is very valuable information. If a software
engineer wants to install 100 libraries, an estimate can be
given for the amount of space required. This knowledge is
very beneficial in aspects of software design such as resource
planning, infrastructure design, performance considerations
and more.

While earlier research has analyzed Maven repositories,
there has been insufficient investigation into the causes of
large artifact sizes (refer to the related works section for more
information). Our research serves as a brick in the metaphor-
ical ”house of software development knowledge”, and en-
hances our understanding of the most popular repository to
distribute and use Java artifacts [3], Maven Central.

This research aims to provide insights into the factors con-
tributing to the varying space requirements of libraries. To
address this objective, the research is structured around three
sub-questions:

1. How big is an average library on Maven?
2. How is the space requirement of the libraries distributed

in the ecosystem?
3. What are the reasons for the larger sizes?

The first research question serves as a baseline to determine
the average size of libraries, enabling the identification of out-
liers based on their significant deviation from this average.
The second question is answered by means of a distribution
graph illustrating how the size requirement deviates from the
average in Maven Central. The last research question involves
a more comprehensive approach. Initially, correlation graphs
are plotted between relevant metadata of libraries and their
sizes. This metadata consists of the number of files in the li-
brary and the number of direct and transitive dependencies.
For further details, refer to the methodology section. Finally,
individual outliers within these correlation graphs are manu-
ally analyzed to determine the causes behind their deviation
from the expected result.

Our findings show that on average libraries in Maven Cen-
tral are 1447KB. However, the median is 25.9KB. This means
that the average is skewed by a small amount of very large
artifacts. Our manual analysis revealed that these very large
artifacts are almost all related to machine learning or big data.

This paper will be structured as follows: first there is a sec-
tion on related works. Section 4 describes the methodology
used in this research. After that, the results are presented in
Section 5. Section 6 provides a discussion of the findings,
with Section 7 on responsible research. Finally, Section 8
concludes the paper.

3 Related work
Our research aims to provide insight into why some libraries
require more space than others. Here, related works in the
field of analysing dependency manager ecosystems are dis-
cussed.

Bloated dependencies are packages that are specified as
dependencies, but are not required to build or run an appli-
cation. Bloated dependencies unnecessarily increase the de-
pendency set of an application. Soto-Valero et al. (2021)
studied these bloated dependencies in the Maven ecosystem.
In particular, they quantified the amount of bloat in Maven
artifacts. They concluded that, on average, 75.4% of depen-
dencies are bloated in an artifact, either declared directly or
through inheriting from other dependencies [2]. Furthermore,
they released a tool called DEPCLEANwhich analyzes Java ap-
plications that are packaged with Maven and can automat-
ically remove any bloated dependencies. This tool is very

useful if one wants to create guidelines to prevent bloat in
future Maven artifacts. Additionally it can be used in fur-
ther research on package managers to detect bloat in Java
applications. While bloated dependencies can be one of the
main causes for a large dependency set, our research differs
from this research because it examines individual package
size rather than the dependencies of packages.
FindBugs is a tool that statically analyzes Java bytecode

and can detect various types of software bugs. The distribu-
tion of these types of bugs across software ecosystems pro-
vides insights into what causes developers to have software
bugs in their code. Mitropoulos et al. (2014) analyzed a
dataset obtained from the Central Maven Repository by using
FindBugs. In their paper, it is explained how their dataset
was carefully constructed from a snapshot and had to go
through data cleaning to yield the final dataset. This dataset
has been uploaded on GitHub, which can be used when do-
ing further research on the Maven ecosystem. The results
of their research are not limited to the distribution of bugs in
the Maven Ecosystem, they also calculated the correlation be-
tween artifact size and bug count. They found that a greater
size indicates a higher likelihood of bugs, especially in the
categories: style, performance, bad practice and malicious
code [4]. While their research offers great insights into is-
sues that arise as the artifact size increases, the underlying
reason for large sizes is what is explored in our research.

There are several benefits to using packages to reuse code.
For example, it can improve software quality and increase
productivity. There are packages that implement very basic
functionality, called trivial packages, which are used by a lot
of software developers. Abdalkareem et al. (2017) researched
these trivial packages to find out why people use trivial pack-
ages, when the simple functionality they serve can easily be
implemented by hand. Moreover, they examined how com-
mon trivial packages are and what the drawbacks of using
them are. Their findings indicate that trivial packages make
up 16.8% of their dataset of npm packages. The main rea-
son people cited for using trivial packages is that they believe
the functionality is well implemented and tested. However,
their research showed only 45.2% even have tests [5]. Fur-
ther analysis showed that 11.5% of trivial packages have over
20 dependencies. When most people use trivial packages for
simple functionality, that could be written in a few lines of
code, adding all these dependencies unnecessarily bloats the
dependency set of your project. Abdalkareem et al. have
studied the prevalence of trivial packages and their usage in
the npm ecosystem. Our research explores the size of pack-
ages in the Maven ecosystem, trivial packages are an inter-
esting subset of these packages, which are expected to have a
small size.

When using a dependency manager like Maven, one of the
main benefits is that it can automatically download new ver-
sions of libraries, as they are released, without any action re-
quired from the developer. Newer versions often improve per-
formance or fix problems in the previous versions so updating
is desirable. However, occasionally, newer versions introduce
defects that were not present in previous versions. When this
happens, developers strive to fix these issues within the same
day and release another version, a so-called same-day release.

Cogo et al. (2021) have researched these same-day releases.
Specifically they used data from the npm ecosystem to ex-
amine the frequency, the code changes, and the adoption rate
of same-day releases. Their findings indicate that despite the
time constraint accompanying same-day releases, the changes
are important. Furthermore, they found 96% of the popular
packages have at least one same-day release [6]. As part of
their results they also noticed that same-day releases are of-
ten error-prone as 39% of same-day releases were followed
up by another same-day release. The results of their research
are valuable for software developers, Cogo et al. illustrated
the error-prone nature of same-day releases, so developers
should carefully assess the trade-off between the value and
risk of adopting them. Furthermore, their research showed
that it would be wise for popular packages to have a release
pipeline that can properly handle same-day releases. Our re-
search differs because we analyze the size of library releases,
but as evident from the results of Mitropoulos et al. (2014)
an increase in size corresponds to a higher likelihood of bugs
which can be the culprit for same-day releases.

Analyzing large software ecosystems such as Maven can
unlock valuable insights into decision-making regarding
adoption of libraries, or updating to newer versions. In or-
der to model popularity, adoption and diffusion of libraries
within a software ecosystem, Kula et al. (2017) introduced
the Software Universe Graph (SUG). The SUG is a way to
represent software ecosystems, and its nature allows it to be
mined for insights about popularity, adoption and diffusion of
libraries. Further contributions of their research include the
formal definition of metrics related to adoption, popularity
and diffusion which provide a way to compare and contrast
these categories among libraries or even software ecosystems.
Furthermore, they built SUG models for both the Maven and
CRAN software ecosystems and show how the SUG can be
used to illustrate differences between these dependency man-
agers. They found that Maven users are more reluctant to up-
date to newer releases of dependencies whereas CRAN users
exhibit a more always-updated approach to dependency man-
agement [7]. The SUG model can be used in further research
into the popularity of libraries, or used for comparisons of
software ecosystems. Our research uses a different approach
to analyze a software ecosystem as it uses a more traditional
data analysis, because the nature of the SUG model does not
lend itself well to our specific research questions.

There has been some research into the ecosystems of de-
pendency managers, but there has been too little research into
the reasons for large artifact sizes. The importance of this re-
search is evident as the result of several researches have illus-
trated the correlation between large artifact size and a higher
bug count.

4 Method
The infrastructure we use can be divided into four main com-
ponents. Figure 1 shows a high level overview of how these
parts fit together. The indexer reader (1) reads the maven cen-
tral index and stores the result in a table. The data selector
(2) runs on the table created by the indexer reader and selects
which packages to use for analysis. The resolver (3) receives

Maven
Central

ResolverExtractor

Local
db

Data SelectorIndexer Reader

Packages
ID (g:a:v) last modified

… …

Package
ID (g:a:v) last modified

Metadata

ID (g:a:v) size …

Maven
Central Index

4.

2.

3.

1.

Figure 1: Component diagram of software architecture we use for
the data analysis. The four main components are: 1. Indexer Reader,
2. Data Selector, 3. Resolver, and 4. Extractor.

the ID of a package from the data selector and resolves the
files required for analysis. The extractor (4) uses the files
which were resolved by the resolver and extracts metadata
from these specific files.

4.1 Data Specification
On Maven Central, there are approximately 11 million in-
dexed packages. Each package consists of a group ID, ar-
tifact ID and version. When libraries update, they release a
new version. This means most libraries have many versions
which are very similar to each other. Analyzing multiple ver-
sions of the same packages increases the time and resources
required for the analysis and biases trends towards packages
with many versions released. This is why in our research,
we analyze only one version for each group ID and artifact
ID. This is done through random selection to get an accurate
distribution of packages per year of Maven Central. This is
needed to analyze trends throughout the years. Only selecting
the latest versions could result in the exclusion of packages
from earlier years, which is why we opted for the random
selection.

After pruning all the other versions, our reduced dataset
contains 479,915 packages, which each have an unique com-
bination of group ID and artifact ID. Figure 2 shows the dis-
tribution of packages released per year for the entire dataset
while Figure 3 shows the distribution of the reduced dataset.
These are very similar which means the dataset we analyze is
a good sample to draw conclusions about trends throughout
the years for the entirety of Maven Central.

With the total population size and the sample size we can
calculate the error margin and confidence level of our sam-
ple. The error margin reflects the level of precision or risk
a researcher is willing to accept [8]. The confidence level
represents the level of confidence one has in the sample accu-
rately representing the entire population. From a sample size
of 479,915 and a population size of 10,333,041 we derive an
error margin of 0.18% and a confidence level of 99%.

4.2 Reading the Maven Central index
The described sampling method is applied to the index file
of Maven Central. The index file is a comprehensive listing
of the majority of artifacts stored in Maven Central, along
with metadata such as the date of the last modification. In
the selection process, the index file is read, and the package

Figure 2: Distribution of packages released per year in the Maven
Central index

Figure 3: Distribution of packages per year in the sample we obtain
from our data selection

ID (groupid:artifactid:version) and the last modified date are
stored in a database table. After that, the sampling method
is employed to create a new reduced table including only the
packages that have been selected through the selection pro-
cess.

4.3 Artifact Resolution
Once the IDs of the selected packages are stored in a table,
the next step is artifact resolution. This involves checking
whether the local .m2 folder contains the JAR and POM files
corresponding to each artifact ID in the table.

A JAR (”Java archive”) file is a file that aggregates many
class files, meta data and resources into a single compressed
archive. It is similar to a ZIP file but used primarily for dis-
tributing Java libraries. Our pipeline also works with other
packaging types such as EAR, WAR or any generic other
type. For simplicity, we will refer to any such packaging type
as a JAR file.

A POM (Project Object Model) file is a configuration file
used by Maven. The POM file, named ”pom.xml” is an XML
file that describes the structure and configuration of a Maven
project. It tells Maven how to build the project and which
dependencies are included.

If either or both of the files (JAR and POM) are not present

in the .m2 folder, the resolver automatically downloads them
from Maven Central and saves them in the .m2 folder.

By the end of this process, all of the selected packages will
have their corresponding JAR and POM files available in the
local cache.

4.4 Extraction of Metadata
After the artifact resolution, the next step involves extracting
metadata from both the JAR and POM files. This process
begins by parsing the actual files into Java JAR and POM
objects. Subsequently, two separate extractors are executed
to extract the desired metadata from the files.

The first extractor is the ”Size Extractor”, which extracts
the following information for each JAR file:

1. Total number of files (excluding directories)

2. Size of the JAR file in bytes

3. Different file extensions contained within the JAR file,
and for each extension:

(a) Number of files with that extension
(b) Average size of files with that extension
(c) Smallest size among files with that extension
(d) Largest size among files with that extension
(e) Median size among files with that extension

The Size Extractor provides a comprehensive analysis of file
sizes and distributions within the JAR files.

The second extractor is the ”Dependency Extractor”, which
extracts the following information from each POM file:

1. Number of direct dependencies

2. Number of transitive dependencies

The Dependency Extractor provides insights into the depen-
dency structure of each project, including the counts of direct
and transitive dependencies specified in the POM files.

5 Results
In this section, we present the results of running the extractors
on the selected data sample. Out of the 479,915 packages we
analyze, 63,250 do not have an artifact (JAR, EAR, WAR,
etc.). These packages are left out of the plots and averages
we compute in this section because they do not have any files
or an artifact with a size. Most of these packages are parent
poms that specify the dependencies or other configurations of
a child artifact. Also, for an additional 6,419 packages, the
POM file could not be resolved because the parent is likely
hosted on a different repository than Maven Central.

Research Question 1
The first research question is: How big is an average library
on Maven? After analyzing the sizes of all the packages in
the sample, we calculate the average size to be approximately
1447KB. Out of the 410,246 artifacts we consider 354,755
were smaller than 400KB. Which means more than 86% of
packages are less than 400KB yet the average is 1447 KB.
The median of the size is 25.9 KB, with the largest package
being 986,867 KB.

Figure 4: Average size of an artifact per year. The figure shows that
the average artifact size increases as the years go by.

0 200 400 600 800 1000 1200 1400
Size (KB)

0

50000

100000

150000

200000

250000

300000

Fr
eq

ue
nc

y

Figure 5: Distribution of size of artifacts in Maven Central. The x-
axis has been cut off at 1500KB for readability. We see the majority
of packages are significantly smaller than the mean of 1447KB

In Figure 4 the changes in size requirements over the years
are depicted. In 2011, the average size of a library was ap-
proximately 723 KB and in 2023 this has increased to 1683
KB. The figure shows a distinct pattern, with package size
increasing as the years go by.

Research Question 2
The second research question explores the distribution of
space requirements in Maven Central. Figure 5 presents a
distribution graph depicting the distribution of space require-
ments within our sample from Maven Central. There are out-
liers that take an enormous amount of space, but for readabil-
ity, the graph has been cut off at 1500 KB. This distribution is
as expected, most packages are in the 0-100KB range, in ac-
cordance with the median of 25.9KB. This figure shows most
of the packages are significantly smaller than the average size
computed in research question 1.

Research Question 3
The last research question investigates the reasons behind
larger library sizes. Figures 6, 7 and 8 illustrate the corre-
lations between artifact size and the number of files, direct

Figure 6: Scatter plot of the number of files included in a JAR and
total artifact size.

Figure 7: Scatter plot of the number of direct dependencies and total
artifact size.

dependencies, and transitive dependencies, respectively. Fig-
ure 6 shows two distinct categories of libraries. Those who
slightly increase in size when they add more files and those
who don’t have that many files to begin with and are usually
small but can become very large too. In the subsection man-
ual analysis of outliers, we investigate the libaries that have
a small number of files but a large total artifact size to find a
reason for the larger size.

For the transitive dependencies, an additional 40,396 ar-
tifacts are not taken into account in the analysis. This is be-
cause the library we use to determine the transitive dependen-
cies, ShrinkWrap1, has dependency conflicts with a part of
our core infrastructure, the resolver. Because of this, the par-
ent pom files cannot be resolved for certain artifacts, which is
needed to resolve the dependencies of the child pom. Never-
theless, we still obtain the number of transitive dependencies
for 369,723 artifacts, which are shown in Figure 8. This does
not impact Figures 6 and 7, which include 410,246 artifacts.

1https://github.com/shrinkwrap/resolver

Figure 8: Scatter plot of the number of transitive dependencies and
total artifact size..

Manual analysis of outliers
The analysis of outliers that belong to the category of small
number of files and large artifact size from Figure 6 provides
insight into other dimensions that contribute to library size.
Specifically, we looked at packages that have less than 200
files and are larger than 600,000 KB (600 MB). In our sam-
ple, it turns out there are 11 such packages. The artifacts
that were analyzed can be found in the README file of the
repository. As expected, most of them are data analysis and
machine learning related projects that include massive data
files such .data, .csv, .db, .nt and .rnn. Some of the packages
are analyzing natural language so they had many large .ol files
describing part of a language features. An example of such
a file is: ’bg-hyphenation.hfst.ol’ which appears to be related
to hyphenation patterns or rules for the Bulgarian language.

An interesting case is one package that had three massive
.so files. Shared object (so) files are dynamically linked li-
braries that contain compiled code and data in Unix-like oper-
ating systems. By linking to shared object files, programs can
access functions, data, and other resources contained within
those files without including them directly in the JAR.

File extensions
Figure 9 displays the file extensions with the largest aver-
age size, highlighting the specific types of files that, when
included, contribute significantly to the overall size of arti-
facts in Maven Central. Many of the largest files are used for
storing data, like files such as .rnn (recurrent neural network),
.box (used for storing e-mails), .bigmodel, etc. These files
can take up a significant amount of space.

On the other hand, Figure 10 illustrates the average distri-
bution of file extensions within a JAR file, providing insights
into the composition of file types typically found in JAR files.
Class files are by far the most common files in a JAR file
hosted on Maven Central. Applications often consist of nu-
merous class files, each representing different functionalities
and components of the software. The number of class files
can go into the thousands for larger applications, the artifact

Figure 9: File extensions with the largest average size.

Figure 10: Distribution of number of occurrences of file extensions
found in JAR files hosted on Maven Central. Class files are the
most common, being 30.3 times more common than the number two:
.sjsir files.

with the most class files in our sample has a total of 209,729
class files.2

Number two and three are .sjsir and .js files which are sim-
ilar to class files but used for Scala and JavaScript projects
respectively. Interesting is .png files which appear higher on
the list than we expected. After further analysis, we find that
png files are only included in 17,238 artifacts but on average
they are included 70.4 times. This high number explains why
they are found so high on the list even though they are not
that common to include in a JAR file.

We also see a lot of extensions like .mf and .xml files. A
manifest file (.mf) is a text file that contains metadata about a
JAR file and its content, it is not a surprise that this is a com-
mon file as almost any JAR includes such a file. XML files
can be used for different use cases but a common one is for
the POM.xml which is present in almost any Maven project.
This explains why so many JAR files hosted on Maven Cen-
tral include xml files.

2ID: org.apache.servicemix.bundles:org.apache.servicemix.bundles.
aws-java-sdk2:2.17.257 1

6 Discussion
In this section, we interpret the results obtained from the anal-
ysis. Additionally, we discuss the implications and limita-
tions of our research. Finally, we conclude with recommen-
dations for further research in this area.

6.1 Interpretation
From the results, it is evident the average is getting skewed by
a few very large artifacts. This can be seen in Figure 5. The
large majority of artifacts are smaller than 400 kilobytes, still
the average size is 1447 kilobytes. The median of the sample,
which is 25.9 KB, indicates that most artifacts are extremely
lightweight. This means that the 14% remaining artifacts are
so big they massively contribute to the average size.

Average size per year
Figure 4 shows the average size of an artifact per year. It
is evident that there is a distinct pattern with package size in-
creasing as the years go by. We suspect that that this is caused
by an increase in the machine learning and big data industry.
As seen in the results section on file extensions, many of the
largest extensions are files like .rnn and .bigmodel which are
used for machine learning or data purposes. The increase in
these industries can be explained by a general increase in the
storage and computing power of modern computers. Moore’s
law states that the number of transistors on a microchip dou-
bles approximately every two years, while the cost of the chip
remains the same or decreases. Because of this, most modern
high-end computers have the capacity to store over a terabyte
(TB) of data in their main memory [9].

Another explanation is that most packages have multiple
versions, with newer versions adding extra features or fixing
bugs. This could cause an increase in size in the later years
as there is a higher probability of a package being in a later
stage of its development cycle, and thus having a larger size
as more features got added.

Reasons for large artifact size
Looking at Figure 6, it is clear that although the number of
files do increase artifact size slightly, they are not the main
culprit for the largest libraries. A similar thing can be stated
for the number of direct and transitive dependencies. It seems
in fact that the largest libraries have a low number of files,
direct and transitive dependencies.

Our manual analysis of outliers reveals that the largest files
are often large due to a few very large files used to store data
needed in the rest of the application. The artifacts that used
these files were all related to big data or machine learning in
some way. Bigger libraries are not preferable for distributing
purposes. It takes a lot of space to store them in a database
like Maven Central, and users have to download a massive
artifact to be able to use it. In most cases it would be bet-
ter practice to not include such large files that store data in
the JAR and instead upload them to a separate online storage
system and write in a README how to connect to these files.

The manual analysis also revealed one case where .so files
are included in the JAR. It is striking that these files are in-
cluded in the artifact’s JAR, since their main purpose is to
separate reusable code from the program, like a dependency
from Maven.

The big picture
From our analysis, it has become clear that the number of
files and the number of direct and transitive dependencies are
not the underlying reasons for the largest artifacts. We found
that the largest artifacts are related to machine learning or
big data in some way. These libraries include massive files
that are used for storing data. This is supported by the fact
that average library size seems to have increased along with
an increase in the machine learning and data industry. These
large library are undesirable for distributing purposes. Hence,
we urge that the software community considers size when im-
plementing and distributing libraries. One thing we propose
is the separation of these massive files from the actual code,
which will drastically decrease the size of these artifacts.

6.2 Threats to validity
It is important to acknowledge the limitations of this study,
for example, we only select one version per package. We
believe this results in the most fair analysis but it is important
to keep in mind. In addition, there are 6,419 packages for
which the POM file could not be resolved because the parent
is hosted on a different repository.

The way we detect outliers is also a limiting factor. We
manually query the data for packages that have less than an
arbitrary number of files and are larger than a certain thresh-
old. Changing these thresholds leads to different packages
being selected for manual analysis which might reveal differ-
ent explanations for large artifacts.

Moreover, we resolve the number of transitive dependen-
cies with ShrinkWrap which conflicts with part of our core
infrastructure. Because of this, an additional 40,396 pack-
ages are not taken into account for the number of transitive
dependencies. This means these packages were not taken into
account in the analysis of the impact of transitive dependen-
cies on size.

Finally, there could be other factors that cause a difference
in size that were not analyzed in this research. These un-
explored factors could potentially contribute to variations in
package sizes.

These limitations should be taken into account when inter-
preting the results.

6.3 Future Works
To further enhance our understanding of library sizes in the
Central Maven Repository, future research could explore ad-
ditional factors that contribute to the size variations. Inves-
tigating the impact of specific dependencies, coding prac-
tices, or build configurations could provide valuable insights.
Moreover, considering other dimensions of library quality,
such as performance or security, could lead to a more com-
prehensive analysis.

7 Responsible Research
Conducting research in a responsible manner is crucial.
As researchers, it is important to prioritize transparency in
methodology and results, as well as consider any ethical
implications of the research. In our study, we adhere to
these principles by ensuring the reproducibility of our results.

Moreover, we take precautions to avoid exceeding the rate
limit while making requests to Maven Central, in order to
prevent excessive strain on this publicly available resource.
Respecting usage limits helps maintain the availability and
stability of the service for all users. By being mindful of these
considerations, we aim to conduct our research responsibly
and ethically.

It is important the results are correct and consistent. We
ensure code consistency and correctness by conducting ex-
tensive testing to verify that our code consistently produces
the expected results. We synthesize fake packages and run
the extractors on them to validate the functionality and relia-
bility of our code.

7.1 Reproducibility
Reproducibility is indeed a crucial aspect of data analysis.
It ensures that consistent results are obtained every time the
experiment is run. To achieve reproducibility, we take several
measures. Firstly, we provide a means to reproduce the data
sample that was selected. This is accomplished through the
use of a configuration file that where the seed value can be
set. The seed value influences which version will be analyzed
for each package. By setting this parameter to the same value,
the same data sample can be obtained consistently.

Furthermore, our software development and deployment
process ensures reproducibility. We have containerized the
application using Docker3. This ensures that the code can
run consistently inside of the container, without depending on
the underlying environment of the machine. This effectively
eliminates the infamous ”it works on my machine” issue.

By implementing these measures, we strive to ensure the
reproducibility of our research and enable others to validate
and reproduce our findings.

7.2 Reduce strain on Maven Central
To minimize the number of requests made to Maven Central
during the resolution step, we leverage the use of a large exist-
ing .m2 folder. This folder, created by the FASTEN4 project,
contains a considerable number of packages that have been
incrementally downloaded from Maven Central over time.
By utilizing this local cache of artifacts, we significantly re-
duce the number of requests required to fetch packages from
Maven Central.

This approach helps optimize the resolution process by re-
lying on the pre-existing collection of artifacts in the .m2
folder, thereby decreasing the number of direct downloads
from Maven Central. By leveraging this local cache, we
can efficiently access and retrieve the required artifacts while
minimizing the strain on the Maven Central server.

8 Conclusion
Maven Central contains a wealth of information about Java
artifacts that provides insight into coding habits and depen-
dency management ecosystems as a whole. Our analysis is

3Docker: an open-source platform for packaging and deploying
applications in isolated containers, providing consistency and porta-
bility across environments. Available at: https://www.docker.com/

4FASTEN: https://www.fasten-project.eu/view/Main/

related to the size of these artifacts and the underlying causes
for size variations.

To analyze this we first employed a data selection, by se-
lecting only one version for each artifact. After that, we re-
solved the POM and JAR files for each package and extracted
metadata from both of them.

The results show that the average size of an artifact is
1447 KB, which is increased dramatically by a few very large
artifacts. 86% of artifacts are smaller than 400KB. These
very large artifacts were either massive projects with a large
amount of files, or they were a machine learning or big data
project that included enormous files containing data.

References
[1] Amine Benelallam, Nicolas Harrand, César Soto-Valero,

Benoit Baudry, and Olivier Barais. The maven depen-
dency graph: a temporal graph-based representation of
maven central. 2019.

[2] César Soto-Valero, Nicolas Harrand, Martin Monperrus,
and Benoit Baudry. A comprehensive study of bloated
dependencies in the maven ecosystem. 2021.

[3] César Soto-Valero, Amine Benelallam, Nicolas Harrand,
Olivier Barais, and Benoit Baudry. The emergence of
software diversity in maven central. 2019.

[4] Dimitris Mitropoulos, Vassilios Karakoidas, Panos
Louridas, Georgios Gousios, and Diomidis Spinellis. The
bug catalog of the maven ecosystem. 2014.

[5] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi,
Suhaib Mujahid, and Emad Shihab. Why do develop-
ers use trivial packages? an empirical case study on npm.
2017.

[6] Filipe R. Cogo, Gustavo A. Oliva, Cor-Paul Bezemer, and
Ahmed. E. Hassan. An empirical study of same-day re-
leases of popular packages in the npm ecosystem. 2021.

[7] Raula Gaikovina Kula, Coen De Roover, Daniel M. Ger-
man, Takashi Ishio, and Katsuro Inoue. Modeling library
popularity within a software ecosystem. 2017.

[8] Hamed Taherdoost. Sampling methods in research
methodology; how to choose a sampling technique for
research. 2016.

[9] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer,
Bradley C. Kuszmaul, Butler W. Lampson, Daniel
Sanchez, and Tao B. Schardl. There’s plenty of room
at the top: What will drive computer performance after
moore’s law? 2020.

	Abstract
	Introduction
	Related work
	Method
	Data Specification
	Reading the Maven Central index
	Artifact Resolution
	Extraction of Metadata

	Results
	Research Question 1
	Research Question 2
	Research Question 3
	Manual analysis of outliers
	File extensions

	Discussion
	Interpretation
	Average size per year
	Reasons for large artifact size
	The big picture

	Threats to validity
	Future Works

	Responsible Research
	Reproducibility
	Reduce strain on Maven Central

	Conclusion

