
Vis Comput (2010) 26: 1283–1300
DOI 10.1007/s00371-010-0520-4

O R I G I NA L A RT I C L E

SkelTre

Robust skeleton extraction from imperfect point clouds

Alexander Bucksch · Roderik Lindenbergh ·
Massimo Menenti

Published online: 13 August 2010
© Springer-Verlag 2010

Abstract Terrestrial laser scanners capture 3D geometry of
real world objects as a point cloud. This paper reports on
a new algorithm developed for the skeletonization of a laser
scanner point cloud. The skeletonization algorithm proposed
in this paper consists of three steps: (i) extraction of a graph
from an octree organization, (ii) reduction of the graph to a
skeleton, and (iii) embedding of the skeleton into the point
cloud. For these three steps, only one input parameter is
required. The results are validated on laser scanner point
clouds representing 2 classes of objects; first on botanic trees
as a special application and secondly on popular arbitrary
objects. The presented skeleton found its first application in
obtaining botanic tree parameters like length and diameter
of branches and is presented here in a new, generalized ver-
sion. Its definition as Reeb Graph, proofs the usefulness of
the skeleton for applications like shape analysis. In this pa-
per we show that the resulting skeleton contains the Reeb
Graph and investigate the practically relevant parameters:
centeredness and topological correctness. The robustness of
this skeletonization method against undersampling, varying
point density and systematic errors of the point cloud is
demonstrated on real data examples.

Keywords Skeletonization · Point cloud · Laser scanning

A. Bucksch (�) · R. Lindenbergh · M. Menenti
Delft University of Technology, Kluyverweg 1, 2629 HS, Delft,
The Netherlands
e-mail: a.k.bucksch@tudelft.nl

R. Lindenbergh
e-mail: r.c.lindenbergh@tudelft.nl

M. Menenti
e-mail: m.menenti@tudelft.nl

1 Introduction

In recent years, instruments capable to measure thousands
of distances per second from the instrument to surrounding
surfaces became available [22]. One such instrument is a ter-
restrial laser scanner. These scanners are used to systemati-
cally sample the surface of objects by determining the dis-
tance to their surroundings. The surrounding is represented
as a function of two spherical angles and a distance. The re-
sulting data is called a point cloud. The modeling of botanic
tree structures from laser scanned point clouds is a growing
topic in both Computer Graphics, e.g. [25, 26] and Remote
Sensing, e.g. [13] and [9]. Both fields have in common that
a skeleton is used to represent the tree with the goal to ex-
tract surface information. Extraction of complex botanic tree
structures from a point cloud is difficult for several reasons.

1. Varying point density caused by the spherical scan geom-
etry of the instrument in a single scan.

2. Varying point density caused by the alignment of single
scans into a common coordinate system.

3. Undersampling caused by occlusion effects.
4. Noise and systematic errors masking the object structure.

A skeleton is a one-dimensional description of the object
structure. Skeletons are represented as curves, collections of
ordered points or graphs. Their extraction from a point cloud
faces several algorithmical challenges to achieve three main
properties of a skeleton. First, topology preservation of the
object is essential for navigating to a certain position within
the object. Secondly, proper centering of the skeleton within
the point cloud enables the extraction of correct surface in-
formation. The third property addresses computational effi-
ciency. A point cloud of a small orchard tree, Fig. 1a, already
easily consists of 300,000 points. These three properties can
be achieved by considering that a point cloud is subject to
noise, undersampling, and varying point density.

mailto:a.k.bucksch@tudelft.nl
mailto:r.c.lindenbergh@tudelft.nl
mailto:m.menenti@tudelft.nl

1284 A. Bucksch et al.

Table 1 Algorithm classes

Algorithm class Descriptor dimension Spatial data structure Complexity

Morphology 2D Raster with defined boundary O(nw),1,2 [13]

Distance transform 2D Raster with defined boundary O(n),1 [20]

Voronoi diagram 2D Defined boundary O(n2),1,3 [1]

Clustering 1D Neighboring structure, e.g. kd-tree
or minimum spanning tree

O(kn2Δ2),1,4,5 [26]

Level set extraction 1D Raster with defined boundary O(n),1,6 [8]

Graph reduction 1D Octree graph O(n),1 [4]

1n denotes the number of input cells, point cloud points or vertices
2w denotes the size of a structuring element
3Worst case scenario, often almost linear in practice, [1]
4Quaranteed scenario for k-means clustering [2]
5Δ is the spreading of the input points
6Referring to the height function, may be higher for other functions

This paper reports on the details of a method for
(Skel)etonisation of (Tre)es, here called SkelTre Skeleton,
directly from a 3D point cloud by considering all six prin-
cipal Cartesian directions. A preliminary version has been
described elsewhere [5]. The algorithm incorporates three
main elements. First, an octree is built from which an octree
graph is extracted, representing the connectivity between
the octree cells with respect to the point cloud. In a second
step, the octree graph is exploited to retract the point cloud
to a skeleton. The third element is a strategy to embed the
skeleton graph into the point cloud. Topology preservation
is enhanced by using a new noise robust criterion to de-
cide on proper connections in the octree graph instead of
simple thresholding. It is shown that the skeleton contains
a well-known topological structure, the Reeb Graph, which
is widely used in computer graphics and shape modeling.
The centering is improved by a new embedding strategy
taking the approximate shape of the original object into ac-
count. This new embedding is less sensitive to varying point
density and undersampling. The basis of this strategy is a
novel graph reduction method that automatically incorpo-
rates the approximate local surface elongation by using suit-
able vertex labels. These vertex labels form the basis for an
increased efficiency, because the new octree graph reduction
rules behave linear in time.

2 Related work

In this section, an overview of skeletonization algorithms for
point cloud data is given. Notably, their use on point clouds
representing botanical trees is highlighted. An overview is
of algorithm types is given in Table 1. First algorithms are

distinguished based on the dimension of the output descrip-
tor. Two classes are shown in Table 1, first algorithms aiming
at the extraction of a 2D descriptor which is reduced further
to 1D and second algorithms producing a one-dimensional
skeleton directly. Further distinction is achieved by identi-
fying the underlying data structure and computational com-
plexity of the algorithms, which is an important factor when
using large data sets.

2.1 2D descriptors

The best known 2D descriptor of an object is the medial
axis which is the set of points having more than one closest
point on the object boundary [3]. Several frameworks exist
to formulate the medial axis extraction. The medial axis may
be derived as a subset of the Voronoi diagram of the point
cloud, or from a morphological thinning process. One ma-
jor property of the medial axis of a 3D object is that it in
general consists of a set of surfaces. For the reduction of the
2D medial axis to a 1D skeleton, a second processing step is
needed. For example, [10] have shown that an approximate
medial axis is reducible to a meaningful skeleton. Medial
axis approaches commonly need a defined inside and out-
side of the object. Undersampling and occlusions make this
difficult to define on laser scanning data representing a hull.

Morphological thinning methods organize the point
cloud in a 3D raster of equally sized cubic cells. From this
raster, the outer layer is removed until the skeleton remains.
Removing the outer layer makes use of the morphologi-
cal operations opening and erosion [21]. This class of al-
gorithms requires a defined inner volume of the object to
produce a centered skeleton. Depending on the kernel used
for the thinning process also the medial axis is derivable.
Palagyi et al. [16] introduced a time linear algorithm us-
ing 6 sub-iterations. Its application on tree point clouds was

SkelTre 1285

proposed by Gorte and Pfeifer [13] and later extended [12].
As stated by the authors, the skeleton does not preserve the
topology [13]. Varying point density is only treated by the
number of points per cell. Undersampling and occlusions
are subject to the cell size. The efficiency of morphological
thinning is characterized by a complexity of O(nw), n being
the number of raster cells and w being the number of cells
used as structuring elements.

In practice, Distance Transform based methods often
start from a point cloud embedded in a 3D raster of equal
sized cubic cells as well [27]. All raster cells are consecu-
tively marked by their distance to the object boundary. The
set of cells, where maximal distances occur, form the skele-
ton. These methods extract the medial axis, and face the
same post processing problems as morphological thinning
approaches. Furthermore, connectedness of the skeleton is
not guaranteed [8]. It’s computational complexity is given
as O(n), with n being the number of raster cells. An appli-
cation of the distance transform on botanical tree data was
not found.

Voronoi Diagram based approaches also derive an ap-
proximation of the medial axis from the point cloud, e.g. [1].
The medial axis is extracted by investigating the poles of the
Voronoi diagram of a point cloud, for example [1], distin-
guished between inner and outer poles of a suitable weighted
Voronoi diagram. The set of inner poles containing facets in
3D approximates the medial axes. To our best knowledge, no
specific application to botanic trees is known. Only a simple
example on a synthetic tree point cloud can be found in [8].
As stated in [1], this method requires a sufficiently dense
sampled object as input, as the object has to be assumed wa-
tertight. This condition may be difficult to achieve with laser
scanned data on trees containing many occlusion effects and
undersampling. The construction of the Voronoi diagram de-
termines the efficiency of the algorithm. The complexity is
in the worst case O(n2) and O(n logn) on average, with n

being the number of point cloud points.

2.2 1D descriptors

One-dimensional descriptors have in common that they use
neighborhood information to extract the skeleton as a graph.
This graph is embedded with an embedding strategy into the
point cloud.

Clustering methods produce clusters of point cloud
points from a suitable spanning graph, like the minimum
spanning tree, to represent a point neighborhood. Some dis-
tance metric is used to produce the clusters. Neighboring
clusters are connected to a skeleton. In [25], a neighboring
graph is used and points with the same quantized distance
from the root are considered as belonging to one cluster.
The approach shows good results until two-third of the tree
height on a test tree carrying leafs. The remaining skeleton

is produced by using species dependent allometries. An-
other promising clustering approach was presented by Yan
et al. [26]. They used a kd-tree and k-means clustering to
produce the clusters from which the skeleton is derived. It
was shown in [26] that embedding of the skeleton is still an
issue for these methods. A further drawback is that they need
the complete point cloud as an input to perform the skele-
tonization. The guaranteed termination of k-means cluster-
ing algorithms is given by Arthur and Vassilvitskii [2] as
O(kn2Δ2), with Δ being the spreading of the data. Never-
theless, it was also shown in [2] that, dependent on the data,
better complexities are achievable.

One-dimensional descriptors with proved topological
properties, like the Reeb Graph [19], were used first in [23].
Reeb Graphs rely on Morse theory describing the extraction
of critical points. A discrete formulation of Morse theory
came from [11]. Two frameworks exist to extract a skele-
ton based on topological properties: extracting the level sets
based on a Morse function and graph reduction, which is
used in this paper.

Level set extraction methods use a function that is defined
on the sampled surface. The height function is often used
to extract the level sets from a given point cloud, e.g. [24].
Placement of vertices at every centroid of each extracted
level set produces a skeleton by connecting the vertices with
respect to the chosen function. Every branching point of the
resulting skeleton is a saddle point and every one connected
vertex is a minimum or maximum. The graph containing
only the saddle points and the minima and maxima of curva-
ture is a Reeb Graph [7]. The biggest problems arising with
these approaches are the rotational dependency of the height
function and the sensitivity of the level set extraction to the
sampling density, [8]. The approach of [24] was applied by
Côtè et al. [9] on trees. A virtual tree model based on the al-
lometries of the known tree species was used to estimate the
finer branches. The virtual tree model is required because of
undersampling at the finer branches.

Graph reduction based approaches, [4], extract an initial
graph from a spatial subdivision. This initial graph is re-
duced by a set of rules to a skeleton. These rules consider the
connectivity between different parts of the point cloud. Sev-
eral advantages of such a approach could be demonstrated:
a high robustness to noise on imperfect data, a good cen-
teredness and a good connectivity. Centeredness is achieved
by embedding the graph into the point cloud. Topological
correctness is achieved by choosing a proper decision crite-
rion to place connections between the different point cloud
parts and the careful design of the reduction rules. Another
benefit is that no preprocessing is necessary to define the
inside and outside of the given object. Problems arise with
the method of [4], because varying point density and noise
are only treated by the cell size. This fact leads to faults in
the embedding. In case of large undersampling, erroneous

1286 A. Bucksch et al.

loops may appear at higher resolutions. As a consequence,
the topology of the object is locally not represented any-
more. The overall complexity was given as O(n).

3 SkelTre skeletonization algorithm

This paper introduces a linear-time algorithm for computing
a skeleton from an unorganized 3D point cloud sampling.
Unorganized point clouds contain no neighboring informa-
tion on the points; see Fig. 1a. From here, the point cloud
is divided into subsets by an octree subdivision. The cen-
troids of the point cloud points within an octree cell, are
the vertices of the octree graph; see Fig. 1b. Two 6-adjacent
vertices are connected by an edge if the point cloud parts in
the two corresponding octree cells fulfill a suitable connec-
tivity criterion. These edges in the octree graph are labeled
by a direction label to indicate the local object elongation.
The goal of this section is to show that the retraction of the
octree graph using so-called E-Pairs and V-Pairs preserves
the topology and embeds it into a well-known topological
data structure, the so-called Reeb Graph [19]. Moreover, an
explanation of the octree generation and the octree graph
extraction and labeling technique is given, followed by the
actual formulation of the complete SkelTre Skeleton algo-
rithm.

3.1 Octree generation

An octree is a hierarchical subdivision of a starting cube into
8 equally sized subcubes, so-called octree cells. These sub-
cubes are subdivided further until the subdivision is termi-
nated.

Let the surface of an object be represented by a point
cloud Σ . A spatial subdivision of the point cloud Σ into
subsets Σi is obtained by an octree. The octree subdivides
the space occupied by the point cloud into cubic cells con-
taining point cloud points. These cubic cells have equal size.

Definition 1 The octree space is modeled as a cubical re-
gion consisting of 2n × 2n × 2n unit cubes, where n is the
subdivision depth. Each unit cube has value 0 or 1, de-
pending on whether it contains data points or not, adapted
from [6].

Note that this definition of the octree assumes equal oc-
tree space length. In fact, the algorithm is capable to handle
adaptive octrees, where the length is locally adapted to the
point cloud. Nevertheless, we focus within this paper on the
graph reduction principle and do not use adaptive octrees
throughout this paper.

Ideally, our intermediate result of the octree generation
is a subdivision which separates all parts of the object that
are also spatially separated. Clearly, the separating power of
the subdivision depends on the minimum resolution of the
octree.

3.2 Extraction and labeling of the octree-graph

We are aiming on a graph-reduction method. Because of
that an initial graph, so-called octree-graph, is generated.
This octree-graph is later reduced to the SkeTre skeleton.
An octree-graph is the face dual of the octree, whose ver-
tices correspond to octree cells. The vertices of the octree-
graph are simply placed at the center of gravity of all points
belonging to a cell and connected by an edge if two octree
cells have adjacent faces.

Definition 2 Let OCi , i = 1, . . . , n be a collection of octree
cells. And let CSjk be the shared sides of an octree. The
octree-graph OG(V ,E) contains the vertices V dual to OCi

connected via the edges E dual to CSjk .

The benefit of using this dual is, that it exhibits local grid
graph properties, which is illustrated in Fig. 2 for the 3D
case.

Definition 3 A three-dimensional grid graph is an m×n×r

graph that is the graph Cartesian product of path graphs on
m, n and r vertices [18] and denoted as G(m,n, r).

Fig. 1 (a) Botanic tree point
cloud with a zoom into the inner
crown of a leafless orchard tree.
The zoom is colored by
intensity. The three marked
areas show examples of noise
where the separation of
branches is even hard by visual
inspection. (b) Example of an
extracted octree graph, which is
reduced to the skeleton in (c)

SkelTre 1287

Fig. 2 (a) a G(1,2,0) subgraph (b) a G(2,2,0) subgraph
(c) a G(2,2,2) subgraph

Figure 2 shows the grid graph configurations relevant in
the context of the paper. Let m = 1, n = 2 and r = 0, then
G(1,2,0) corresponds to two vertices connected by one
edge (Fig. 2a), forming a line segment. Let m = 2, n = 2
and r = 0, then G(2,2,0) corresponds to 4 vertices con-
nected by 4 edges (Fig. 2b), forming a squared structure.
Let m = 2, n = 2 and r = 2, then G(2,2,2) corresponds to
6 vertices connected by 12 edges (Fig. 2c), forming a cubic
structure.

Ideally, the octree-graph represents the local directions of
the object surface and connects only object parts. As stated
above, terrestrial laser scan data is subject to noise, under-
sampling and varying point density. These data driven prob-
lems can result in both overconnecting and underconnecting.
Overconnecting occurs when additional erroneous connec-
tions are created due to noise and outliers, underconnecting
occurs because of undersampling due to occlusions. The cri-
terion to handle undersampling and noise is a decision crite-
rion to place connections between neighboring octree cells.
Note that the extraction is based on the intersection direction
of the octree cell. Therefore, this extraction overcomes the
known rotational dependency problems of octrees [4].

3.2.1 Robustness criterion

The formulation of a robustness criterion is motivated by
two aspects. Firstly, to address the problem of noise, which
is covering and maybe hiding the underlying object topol-
ogy. And secondly, it provides the possibility to address in-
strument specific error models. This robust criterion whether
to connect two octree-graph vertices, corresponding to two
adjacent octree cells, by an edge, is based on the distances of
the cell points to three suitable planes (Fig. 3). Let C1 and
C2 be the centroids of the point cloud points in two adja-
cent octree cells Ω1 and Ω2. Let C12 be the midpoint of the
line segment C1C2. The three suitable planes P1, P2, and
P12, are the planes through the points C1, C2, and C12, per-
pendicular to the line through C1 and C2. Let d1, d2, and
d12 be the median values of the squared distances of the
points in Ω1, Ω2 and Ω1 ∪Ω2 to the planes P1, P2 and P12.
Under ideal conditions, the

√
d1,2 of two connected cells

would be at least 1
4 of the distance between C1 and C2 to

Fig. 3 Robustness criterion to connect octree-graph vertices C1 and
C2 by an edge

Fig. 4 Connecting and labeling an octree-graph: Five complete oc-
tree cells, containing some black data points. The vertices of the oc-
tree-graph corresponding to the octree cells are shown in orange. They
are positioned in the center of gravity of the local point cloud points.
The connectedness of the vertices is based on a robustness criterion

indicate a connection between the two corresponding point
cloud parts. In that sense, we use 1

16d12 ≤ min(d1, d2) as a
criterion to place connections in the octree-graph.

Now that the octree-graph is extracted and defined, the
graph should be labeled. A label belongs to an edge, but is
always associated to a vertex. Every label corresponds to the
unique Cartesian direction of the edge from the view point
of one of the two incident vertices vi and vj . The direction
of the graph edges is incorporated by labeling them with a
direction label.

Definition 4 A label associated with an edge of the octree
graph indicates the direction of the edge with a direction
vector. The labels for all 3D-directions are:

Left/Right: (±1,0,0),
Up/Down: (0,±1,0),
Front/Back: (0,0,±1).

1288 A. Bucksch et al.

Fig. 5 (a) Point cloud of a tree
(b) derived skeleton with color
labeled direction labels and
a zoom into the skeleton
(c) each color corresponds to a
subset of the point cloud
associated to one contour and
belonging to one vertex in the
skeleton graph and a zoom into
the level sets

The resulting octree-graph should be interpreted as a
bidirectional graph, as every edge gets two labels (Fig. 4).
Suppose, that two vertices vi, i = 1,2, with Cartesian co-
ordinates (xi, yi, zi) are connected. And let x1 < x2 such
that y1 = y2 and z1 = z2. Then the edge e12 gets the label
(1,0,0) and the edge e21 the label (−1,0,0). Note that the
sum of the labels belonging to one edge is the zero-vector
(0,0,0) in 3D. Two graphs with different directional flows
can be obtained by taking the (0,0,0) labels and either la-
bels containing a positive element in the 3D vector of the
edge label or labels containing a negative element into ac-
count. This strategy is depict in Fig. 10.

3.2.2 Localized directions

The direction labels will be used to identify the local ob-
ject elongation which in turn will enable a local reduction
of the octree-graph. This localized approach has as its ma-
jor benefit that it overcomes the rotational dependency, [8],
of considering the levels sets sz of a global height function
f : R

2 → R. Therefore, we consider level sets locally with
respect to one of the three Cartesian directions. That is, de-
pendent on the local object elongation, the height change in
either the x-, the y- or the z-direction is considered. This
choice is founded in the fact that parts of the surface parallel
to the x- or y-axis will collapse to one remaining vertex in
the skeleton graph, when taking only a global height func-
tion into account. Thus, a local choice of f based on the
surface elongation will preserve the representation of sur-
face parts parallel to one of the axis.

The resulting skeleton graph is augmented by vertices be-
tween the saddle points, minima and maxima. The minima
and maxima are represented as vertices that have one inci-
dent edge in the skeleton graph and the saddle points are
vertices with 3 or more incident edges. Note here that every
vertex in the skeleton graph corresponds to a contour (com-
pare Fig. 5(b) and (c)) derived with respect to the local sur-
face elongation.

3.3 Computational framework

The goal of this section is to show, that the extracted skele-
ton contains a known topological structure. This structure is
the Reeb-graph, which was first introduced by [19] and is
strongly linked to Morse theory [14].

The input to the graph reduction is a labeled octree graph.
Based on the introduced concept of octree-graphs, Sect. 3.1,
and the underlying concept of the grid graph (Definition 3),
a graph reduction for the skeletonization algorithm is de-
scribed. This graph reduction will be defined by merging
suitable pairs of neighboring vertices to be specified be-
low. The merging operation of two vertices will be denoted
as ⊕.

The operations on the octree-graph are intuitively ex-
plained as the merge of two vertices incident to the same
edges. To quantify the reduction, we introduce the vertex di-
mension, denoted as vdim.

Definition 5 The number of distinct associated edge labels
of a vertex vi is called the dimension vdim(vi) of a vertex.

In Fig. 4, the vertex in cell A has dimension 0, while the
vertices in cell D and E have dimension 1. The vertices in
cell B and C both have dimension 2. The vertex in cell C has
two associated labels corresponding to two direction labels
of opposite direction while the vertex in cell B has labels
indicating different principal directions.

In 3D, the dimension of a vertex is at most 6. The conver-
gence toward the skeleton and the preservation of the shape
elongation is established by a notion of a local direction.
This direction is defined per vertex as vertex direction vdir.

Definition 6 The sum vdir(vi) over the distinct associated
edge labels of a vertex vi is called the vertex direction.

Each label in 3D is a 3D vector, which allows adding
up the labels. In Fig. 4, the vertex v1 in cell B, with the
associated labels (0,−1,0) and (1,0,0) has vertex direction

SkelTre 1289

Fig. 6 The dominant direction in vk . (a) The minimal configuration. (b) A merge of vi and vk without taking the norm value into account resulting
in a changed dominant direction (c) the merge of vj and vk preserving the dominant direction

vdir(v1) = (1,−1,0). The vertex v2 in cell C has vdir(v2) =
(0,0,0).

The vertex direction encodes local surface elongation
properties. Such a direction is called dominant direction. On
the other hand a direction corresponding to a nonzero value
for xi is called a nondominant direction.

Definition 7 Let x1, x2, x3 be the three components of
vdir(v) = (x1, x2, x3). The direction of v is trivial if the
Cartesian entries are zero for any associated edge label.
A direction is dominant at v, if xi = 0 for some i = {1,2,3},
but not trivial.

For example, in Fig. 6a, the dominant direction of vertex
vk is marked green.

Until here, a set of definitions is given for the purpose of
valid vertex merging. Still, constraints apply to dimension
3 vertices. Consider the minimal configuration of G(2,2,0)

subgraphs as given in Fig. 6a with three vertices vi, vj , vk ,
all three having vertex dimension 3. In the framework given
so far, it might happen that vi is merged to vk , before vj

is merged to vk , resulting in the leakage of a dominant di-
rection. Figure 6b demonstrates such a leakage, where the
dominant direction in vk is not represented anymore in the
resulting merged vertex vi ⊕ vk .

A solution to this problem is to take the norm of a vertex
into account.

Definition 8 Let vdir(vi) = (x1, x2, x3). The norm of vi is

norm
(
vdir(vi)

) = norm(x1, x2, x3) = |x1| + |x2| + |x3|. (1)

In case of vertex dimension 3, vertices with smaller norm
value are reduced first. Taking the norm into account re-
sults in a unchanged dominant direction as can be seen in
Fig. 6c. Because norm(vk) = 1 and norm(vj) = 1 (Fig. 6a)
and norm(vi) = 3, vk and vj are merged before vi .

The local reduction of the graph will be driven and rules
exploiting the underlying grid graph. Two types of special
configurations are considered: so-called E-Pairs and V-Pairs.
The two configurations are shown in Fig. 8 and Fig. 7. The
definition of E-pairs and V-Pairs find their identification in
the grid graph properties of the octree-graph. Because of the
underlying octree organization the octree-graph is a collec-
tion of various connected grid graphs, as introduced in Def-
inition 3. The primary goal is to remove the overrepresented
graph parts from the graph by merging vertices. These sub-
graphs, Fig. 2, are mostly G(2,2,0) and G(2,2,2) grid
graphs, forming loops.

1290 A. Bucksch et al.

Fig. 7 Circles indicate the vertices. The E-Pair and its merging are
indicated in green. The dotted lines denote the cell sides and the la-
bels are shown along the black edges. Note here that the position of
vdim(vi ⊕vj) is chosen arbitrarily. (a) An E-Pair configuration and (d)
a merging result of the E-Pair in (b)

Fig. 8 The vertices are circular. The V-Pair and its merging are in-
dicated in green. The dotted lines denote the cell sides and the la-
bels are shown along the black edges. Not here that the position of
vdim(vi ⊕ vj) is chosen arbitrarily. (a) Example of a V-Pair configura-
tion and (b) a merging result of the V-Pair in (a)

Definition 9 Let vi and vj be two adjacent vertices with
vdim(vi) ≤ vdim(vj). Then vi forms an E-Pair with vj if:

1. vdim(vi ⊕ vj) ≤ max(vdim(vi), vdim(vj));
2. vdir(vi) �= (0,0,0) and vi and vj are connected in the

same direction of one of the nonzero entries of vdir(vi);
3. vi and vj do not form a G(1,2,0) subgraph.

Note here that a G(1,2,0) subgraph is a part of the re-
sulting skeleton, which should not be reduced further. In
Fig. 7(a), vertices vi and vj form an E-pair. In Fig. 7(b) ver-
tices vi and vj are merged to vi ⊕ vj .

Definition 10 Two vertices vi and vj both incident to a ver-
tex vc are called a V-Pair if:

1. the labels of edges vivc and vjvc are identical;
2. vdim(vi ⊕ vj) ≤ max(vdim(vi), vdim(vj)).

The two vertices vi and vj shown in Fig. 8(a) form a V-
pair, because the edge labels vivc = (0,−1,0) and vjvc =
(0,−1,0) are identical and vdim(vi ⊕vj) = 3 is smaller than
max(vdim(vi) = 3, vdim(vj) = 4) = 4. Figure 8(b) shows
the resulting labels of vi ⊕ vj . Remember here that V-Pairs
are generated by E-Pairs and because of that the example
in Fig. 8 is a intermediate configuration in the reduction
process.

3.4 Topological and geometrical correctness

In order to simplify the following explanations, we assume
ideal conditions for the principal proof. It is assumed that
first the point cloud is without noise, and second that it is
sufficiently dense in the sense that it covers every directional
change of the surface. The octree-graph extracted from the
octree cells encodes both topology and surface information
under these idealized conditions. We conclude from that the
octree-graph is an alternative for representing the directional
behavior of the sampled surface, embedded into 3D Euclid-
ean space under the assumption made above.

The octree-graph, consisting of its vertices and edges la-
beled by direction, is ideally to be retracted to a graph em-
bedded into 3D-Euclidean space containing only loops rep-
resenting the topological genus of the sampled object. At
this stage, we are ready to connect the resulting skeleton
graph to the properties of a known skeleton graph, the so-
called Reeb-graph.

Given a piecewise linear function f , the level set of a
value s ∈ R is defined as the set of points with a function
value equal to s ∈ R. Recall that the octree-graph is embed-
ded into 3D Euclidean space, and because of that every ver-
tex has 3D-coordinates. The construction of a Reeb-graph
is based on the analysis of the evolution of the connected
components of the level sets generated by f . We call such a
level set to be merged a contour. In the following, we show
that the given retraction rules are an analysis of the evolu-
tion of the connected components of the level sets generated
by f . Practically, a Reeb-graph connects the contours with
respect to f . For a function value si of f where the number
of contours increases compared to si−1, the Reeb-graph will
split and indicate a saddle point of f . For values si having
no successor si+1, the Reeb-graph represents a maximum.
A minimum is present if si has no predecessor si−1.

In this paragraph, we use a local elongation function
e(vdir(v)) on the octree-graph as the piecewise linear func-
tion f . Here, e(vdir(v)) gives the local elongation of the
object surface at a vertex vi by its vertex direction vdir(vi).

Definition 11 Let v = (x, y, z) be a vertex in R
3, with

x, y, z ∈ R. Let vdir(v) = (d1, d2, d3) with di ∈ {−1,0,1},

SkelTre 1291

Fig. 9 (a) A G(1,2,0) subgraph, belonging to the skeleton. (b) A G(2,2,0) subgraph and a possible V-Pair derived from it. (c) A G(2,2,2)

subgraph with an example of a possible derived V-Pair configuration. ⊕ denotes the merge of two neighboring vertices

where di = 0 indicates a dominant direction. The function
to extract the contours is then defined as

e(vdir(v)) =
⎧
⎨

⎩

x if vdir(v) = (0,∗,∗);
y if vdir(v) = (∗,0,∗);
z if vdir(v) = (∗,∗,0).

with ∗ ∈ {−1,0,1} (2)

Note that this definition is not unique in case there is more
than one dominant direction. This, however, is not a prob-
lem. A different choice of dominant direction only corre-
sponds to a different order of reduction of the octree-graph.
Careful investigation of the elongation function e(vdir(vi))

reveals that the height function is included e(vdir(vi)) = z,
if the object is only elongated in the Cartesian z-direction.

Proposition 1 Let OG be an octree graph derived from a
sampled object. The merging operations on OG defined by
E-Pairs and V-Pairs result in a skeleton containing the Reeb-
graph.

We prove Proposition 1 by proving three lemmas. First,
we prove that the local elongation is correctly represented
and the dominant direction stays unchanged during merg-
ing operations in Lemma 1. Then we prove in Lemma 2 that
E-Pairs always result in V-Pairs, which assures the conver-
gence of the algorithm towards a skeletal line. At last, we
prove in Lemma 3 that merging V-Pairs does not change the
dominant direction. Lemma 3 relies on the correct represen-
tation of the elongation in Lemma 1 and the guaranteed con-
vergence in Lemma 2. Proposition 1 is proven, by showing
the three lemmas in the following setting:

Let OG be an octree-graph derived from an octree sub-
division, as described in Sect. 3.2, formed of G(1,2,0),
G(2,2,0) and G(2,2,2) subgraphs. These three underlying
subgraphs are the minimal cases considered to locally de-
scribe a merge of two connected vertices. A G(1,2,0) is the
trivial case belonging to the skeleton demanding no further
processing (compare Fig. 9(a)). Every G(2,2,2) subgraph,
Fig. 9(c), is the union of vertices and edges of six G(2,2,0)

subgraphs, Fig. 9(b), inducing four valid E-Pair configura-
tions. This coherence between E-Pairs and the G(2,2,0)

grid graph allows to prove Lemma 1 and Lemma 2 on an
valid E-Pair configurations in a G(2,2,0) setting. Recall,
that every edge of OG is labeled with two labels, contain-
ing a positive and a negative component. In the following
lemma, we make use of the fact that two graphs with op-
posite directional flows can be obtained. The first directed
graph is derived by removing all edge labels from the octree-
graph containing a negative entry, Fig. 10(c). The second di-
rected graph is derived by removing all edge labels from the
octree-graph containing a positive entry, Fig. 10(b).

Lemma 1 Let E be an E-Pair consisting of two vertices vi

and vj . The merging operation vi ⊕ vj preserves the domi-
nant directions of vi .

Proof Consider two connected G(2,2,0) subgraphs A

and B . Two cases have to be considered. First, the case
where A and B share exactly one vertex resulting in maxi-
mal 2 valid E-Pair configurations, corresponding to exactly
one dominant direction (Fig. 11 subgraph A). The second
case consists of two subgraphs sharing exactly one edge and
2 vertices. The second case results in exactly one possible
E-Pair configuration (Fig. 11 subgraph B). The E-Pair con-
figuration of the subgraph contains only one non-dominant
direction. According to Definition 9, merges only occur in
nondominant directions, preserving the dominant one. �

Note that an example of the elongation description by an
E-Pair was already given in Fig. 6a.

The octree-graph is retracted by merging vertices form-
ing a V-Pair. If no V-Pair is present in the graph to be re-
tracted, a V-pair is created by an E-Pair representing local
elongation of the sampled surface. Now that it is shown that
the merge of an E-Pair preserves the elongation, it has to be
shown that every E-Pair is resulting in a V-Pair, for continu-
ation of the retraction process.

Lemma 2 The merging of an E-pair results in at least one
V-Pair.

Proof A G(2,2,0) contains 4 valid E-Pair configurations,
as illustrated in Fig. 12. Consider one arbitrary E-Pair con-
figuration of a G(2,2,0). Merging the two vertices involved

1292 A. Bucksch et al.

Fig. 10 (a) A labeled octree
graph is shown. (b) and (c) the
two derived graphs are shown.
These derived graphs are
directed. (b) Contains only label
elements ≤ 0 and (c) contains
only label elements ≥ 0

Fig. 11 The two considered configurations of Lemma 1, with possible
E-Pairs marked by an ellipse

Fig. 12 The considered
configuration of Lemma 22,
with possible E-Pairs marked by
an ellipse

in the E-Pair, reduces the squared structure to a triangle
satisfying the definition of a V-Pair according to Defini-
tion 10. �

Concluding that every E-Pair results in a V-Pair, as shown
in Fig. 6c on an example, it is finally necessary to show that
the merge of a V-Pair does not change the dominant direc-
tion in the graph.

Lemma 3 Merging of V-Pairs does not change the local
dominant direction.

Proof Consider the triangle structure of a V-Pair, Fig. 8. The
triangle structure of a V-Pair contains at least one direction
label exactly two times, and the label to be removed by the
merging operation exactly one time. The merge removes ex-
actly one dominant label, which preserves the difference be-
tween the amount of dominant and non-dominant labels. �

SkelTre 1293

3.5 Graph embedding

The desired centeredness of the skeleton is achieved via a
graph embedding. Thus, the octree graph is embedded into
the point cloud by averaging the points Σi belonging to an
octree-cell. The embedding explained in Pascucci et al. [17]
was adapted to points clouds, because their embedding can
be applied during the computation of the SkelTre Skele-
ton. Every vertex in the octree graph has an initial weight
w which is equal to the number of points belonging to the
corresponding octree cell. During the merging process the
weighted average of the 3D positions of two merged ver-
tices v1 and v2 is taken for the position of the newly created
vertex vnew. The weight wnew of vnew is then the sum of the
previous weights, compare Fig. 13, that is, wnew = w1 +w2.
These weights are used to compute the coordinates of vnew

into the point cloud. The position of vnew is calculated as:
vnew = w1·v1+w2·v2

w1+w2
In case of different levels of subdivision,

the subdivision level is multiplied to the weight to obtain a

Fig. 13 Example of an embedding. (a) Shows a graph before merging
is applied to v1 and v2 and (b) the graph with the new vertex vnew

centered skeleton as a result. Embedding can be problem-
atic, if the hull of Σi is concave, because then the centroid
is not necessarily equal to the weighted average described
above. In case of trees this occurs on vertices, where the
skeleton branches. For such cases, a post-processing step
is required. The post-processing step treats the 3 or more
connected vertices of the skeleton, by investigating the dis-
tance of point cloud points Σi belonging to one vertex to
their bounding box. Note here that Σi is a subset of the
point cloud Σ . Let the 6 sides of a bounding box be the
6 Cartesian directions of some Σi . And let every point pi

be closest to one of these sides, then the {x, y, z}-coordinate
component closest to a side of the bounding box is selected.
The corrected vertex coordinate is computed by averaging
selected {x, y, z} values for every coordinate component.

4 Algorithm analysis

This section demonstrates the implementation of the algo-
rithm as pseudo code. Furthermore, the computational com-
plexity of the algorithm is discussed together with its behav-
ior per vertex dimension in practice.

4.1 Implementation of the framework

This section discusses an implementation of the given com-
putational framework. For the vertex dimensions counting
from n = 5 to n = 2, successively the following steps have
to be implemented. The merging is visualized on a simple
2D example in Fig. 14.

1. Initialize a vertex-list VPairList containing all vertices of
dimension n. For each vertex vi in VPairList test if new
V-Pairs can be formed with its direct neighbors vj , until

Fig. 14 Example of the collapsing procedure

1294 A. Bucksch et al.

either a V-Pair is found, or no direct neighbors to test are
left. All V-Pairs found are stored in a list.

2. If during the loop through the vertex list VPairList no
V-Pair was found, go through the vertex list VPairList
again. Whenever possible, an E-Pair is merged to one or
more V-Pairs with the direct neighbors vj of vi , until ei-
ther an E-pair is found, or no direct neighbors to test are
left. Each E-pair is merged to one or more V-Pairs which
are added to the list of V-Pairs.

3. All vertex pairs in the VPairList are merged. Directly af-
ter merging it is tested whether the merging resulted in
the creation of new V-Pairs. If so, these are added at the
end of the V-Pairs list.

Remember that the merging of two vertices vi and vj

along a common edge is denoted by vi ⊕ vj . The resulting
merged vertex vc inherits all incident edges from its ances-
tors vi and vj . If vi and vj were both incident to a common
vertex vc, then the two edges vivc and vjvc are collapsed to
a common edge (vi ⊕ vj)vc. Under ideal conditions, these
edges represent the connection between two connected sub-
sets of the sampled surface Σ . For this reason, the opera-
tion vi ⊕ vj is only performed on vertices representing two
neighboring subsets of Σ with the same direction character-
istic, as indicated by the identical edge labels of vivc and
vjvc.

4.2 Computational complexity

In practice, the computation of the skeletons operates on
a far smaller set of vertices than the number of points in
the point cloud. Our focus lies on the explanation, that the
graph-reduction of the SkelTre algorithm is linear in time.
A pseudo code to implement the algorithm is shown in Pro-
cedure 1 and Procedure 2.

Let vi be a vertex of the set of vertices V of the processed
graph. The dimension of vi is denoted as vdim(vi) and the
number of incident edges as k(vi). Let vj denote a direct
neighboring vertex of vi and c1 ≤ 6 a constant. The proce-
dure computeSkeleton contains an outer for-loop, which is
bounded by O(1). As can be noticed in Procedure 1, dimList
is always initialized with O(V). Note that V is decreasing
after every dimension. The inner while-loop is operating on
a subset of V with at most V

2 operations, which results in
O(V

2) as an upper bound.
The procedure computeVPair(), selects the first un-

processed entry vi in dimList that fulfills Definition 9, and
loops through all elements of dimList. We show the influ-
ence of this condition on the inner while-loop for two ex-
treme cases:

Case 1 The input graph is already a skeleton, e.g., a com-
bination of G(2,1,0) subgraphs, all connected on only 2

Procedure 1 computeSkeleton
Input: An Octree graph
Output: SkelTre Skeleton

contains the vertices of the of the processed dimension;
dimList[];
contains found VPairs;
VPairList[];
for dim = 5 to 2 do

dimList := {vi |vdim(vi) ≥ dim, i = 0 . . . n};
forall vi ∈ dimList do

if VPair = true for some vk of vi then
add found pair to the end of VPairList;

end
end
while VPairList �= ∅ and createVPair() return
true do

{vi, vj } = first unprocessed entry in VPairList;
vnew = vi ⊗ vj ;
if (VPair = true for some vk of vnew) then

add found pair to the end of VPairList;
end
if vdim(vnew) ≥ max(vdim(vi, vj)) then

add vnew to the end of dimList;
end
remove {vi, vj } from VPairList;

end
end

Procedure 2 createVPair
Input: a vertex vi

Output: true or false

if vdir(vi) �= ∅ then
foreach vj adjacent to vi do

if EPair = true for {vi, vj } then
add found pair to the end of VPairList;
return true;

end
end

end
return false

vertices. This combination will lead to no merge at all; be-
cause of that the whole inner while-loop of computeSkele-
ton() stays O(V) by checking one time Definition 9 = true.

Case 2 All vdim(vi) are equal within V , e.g. a graph formed
by G(2,1,0) subgraphs, which all are connected on three
vertices. This will lead to exactly one check of condition
Definition 9 = true in the given example, and c2 calls. c2

is bounded by the minimal number of aligned G(2,2,0)

subgraphs in one of the principal Cartesian directions.

SkelTre 1295

Now that it is shown that the influence of computeVPair() on
the inner while loop is O(c2) or O(V), the algorithms over-
all complexity can be calculated as follows from the upper
bound. O(1) · (O(V)+O(V

2)+O(V)) = O(V). Note here,
that the special case of dimension 3 vertices are simply three
lists, each for every norm value. Because of that, they have
no influence on the complexity analysis given here.

4.3 Algorithm behavior

Vertex dimension 6 results in vertex direction 0,0,0 in all
cases and because of that it can be omitted in the reduc-
tion. The reduction of the graph is therefore limited to ver-
tex dimension 5 to 2. This successive reduction from ver-
tex dimension 5 to 2 guarantees that first the G(2,2,2)

graph parts are reduced, before G(2,2,0) subgraph regions
are processed. Another example to depict the algorithm is
to characterize vertices of a certain dimension. For exam-
ple, vdim(v) = 3 can be either a corner of a G(2,2,2)

with vdir(v) = (±1,±1,±1) or a vertex on the boundary of
G(2,2,0) subgraph with one entry �= 0 in vdir(v). Bound-
ary vertices of a G(2,2,2), which have dimension 4, are
processed before the “corner”-vertices of a G(2,2,2) area,
and the boundary of a G(2,2,0) region is processed before
its “corners” of vdim(v) = 2.

In Fig. 15, the convergence of the algorithm is illus-
trated. The values correspond to the skeleton in Fig. 5(b).
Figure 15(top) depicts the algorithmic behavior of Skel-
Tre per vertex dimension. It is observable that the amount
of vdim = 1 and vdim = 2 vertices is increasing, as they
form mainly the targeted skeleton. Meanwhile, vdim = 5
and vdim = 6 vertices are vanishing as expected, also a rapid
decrease of vdim = 3 and vdim = 4 vertices is recognized.
This behavior of the algorithm is coherent to the behavior
described in theory.

The red curve in Fig. 15 (bottom) shows that the number
of graph vertices is decreasing after every processed ver-
tex dimension. The black curve shows the overall number
of merging operations after every processed vertex dimen-
sion, which is almost constant between dimension 3 and 2.
This approximate constant behavior is explainable by the in-
fluence of the procedure createVPair() (compare Sect. 4.2,
Case 1), because this intermediate case is already close to
the desired skeleton. This observed performance is also in
compliance with the expectations described theoretically.

5 Results and practical validation

The evaluation of the extracted skeletons considers several
examples and validation parameters. This section is divided
into three parts, trees and nontree objects. The trees and ob-
jects use a variety of scanners and produce different density,

Fig. 15 (Left) amount of vertices per dimension after every processed
vertex dimension. (Right) The red graph shows the vertices belonging
to the intermediate skeleton and the black graph the number of merged
vertices after every processed vertex dimension

sampling, and noise characteristics. Limitations are pointed
out to explain the algorithm behavior. In all cases, the skele-
ton edges are colored by their resulting direction labels. Yel-
low denotes a (1,0,0) label, blue a (0,1,0) label, and green
a (0,0,1) label. In all labeling cases, the corresponding neg-
ative label is indicated in red.

No post processing is applied to the skeleton. Centered-
ness is analyzed by considering the (average) Euclidean dis-
tance of every point cloud point to the skeleton. First re-
sults on botanical trees are presented and secondly results
on nontree-like objects are shown.

In Sect. 5.3, running time aspects of our implementation
in a proprietary software are shown. This evaluation gives
the parameters used for the examples and the running times.

5.1 Trees

In Fig. 16, results of the SkelTre algorithm on point clouds
representing three different trees scanned with three differ-
ent terrestrial laser scanners: a Simple Tree, an Apple tree,

1296 A. Bucksch et al.

Fig. 16 First row shows the
raw point cloud. The second row
shows the skeleton colored by
direction labels. All negative
ends are labeled red. The
directions Up/Left/Front are
colored with yellow/blue/green.
The third row shows the
distances to the skeleton
according to the color scheme
given on the bottom of the figure
(red indicates more than 10 cm
for the Simple Tree and the
Apple Tree and more than
100 cm for the Tulip Tree). The
black point cloud part belonging
to the Simple Tree shows strong
undersampling due to
occlusions. The tree in the
second column is an orchard
cherry tree with small blossoms,
which can be recognized as
noise. The third tree is a huge
Tulip tree of 11,5 meters height
with leafs

and a Tulip tree. For the Simple tree and the Apple tree, the
maximum of the color scale indicates distances to the skele-
ton larger than 10 cm. For the Tulip tree, the maximum of
the color scale indicates distances to the skeleton larger than
100 cm.

The Simple tree was scanned with a Leica Scan Station
laser scanner and was previously used in the publication
of [13]. This tree of 4.07 m height is sampled by 49,669
points The simple tree shows good connectedness in the
18 detected branches, even under bad sampling conditions

(upper red box in Fig. 16). The distances to the skeleton
show a symmetric pattern. The Simple Tree is represented
by a single scan from one viewpoint. On this single scan
the skeleton is attracted to one side (light blue color), be-
cause the back of the tree was not scanned. The sampling
density shows a very noisy pattern already on a single scan.
Spurious branches on the boundary indicate the noise on the
object boundary.

The Apple Tree was scanned with the Zoller and Froeh-
lich scanner Imager 5006 in high resolution. Therefore, the

SkelTre 1297

Fig. 17 3 test objects. First row
shows the raw point cloud. The
second row shows the skeleton
colored by with direction labels.
All negative ends are labeled
red. The directions
Up/Left/Front are colored with
yellow/blue/green. The third row
shows the distances to the
skeleton according to the color
scheme given on the bottom of
the figure

Apple tree was sampled by 385,772 points by Stefan Fleck
from the University of Göttingen. The Apple tree is 1.99 m
high and its largest extension in the crown is 1.62 m. The
derived skeleton of the Apple tree contains only one erro-
neous loop due to unresolvable noise problems in the dense
crown containing 136 detected branches. The distances to
the skeleton get larger in the inner crown, because the crown
contains a huge amount of noise, as discussed before in this
paper.

The Tulip tree was scanned with a Calidus scanner. It
is 11.75 m high and 14.47 m wide at the largest extension

of the crown. This massive tree was scanned by Forstliche
Versuchs- und Forschungsanstalt Freiburg near Karlsruhe,
Germany. It is sampled by 816,670 points. The tree was
scanned during summer time and contains leaf. The marked
region show the difficulty on this particular tree. Noise,
e.g., because of moving leaves during the scan procedure,
makes a meaningful extraction of the skeleton impossible.
The locally bad extracted skeleton is visible as distances
to the skeleton in the order of 5–8 cm on fine branches.
Still, the major branches and the trunk are extracted cor-
rectly.

1298 A. Bucksch et al.

Table 2 Running time for the example objects

Modell Number of
points

Octree
construction
time

Graph
reduction
time

Octree graph
vertices

Octree cells
size

Data range

Simple tree 49,669 0.45 s 1.1 min 667 0.1 x: [225.0–229.1]

y: [393.2–397.3]

z: [102.2–106.3]

Apple Tree 385,772 2.7 s 192.0 min 5064 0.05 x: [225.0–229.1]

y: [393.2–397.3]

z: [102.2–106.3]

Tulip Tree 816,670 1.8 s 275.6 min 5084 0.5 x: [225.0–229.1]

y: [393.2–397.3]

z: [102.2–106.3]

Raptor 1,000,079 2.3 s 10.5 min 2404 0.04 x: [225.0–229.1]

y: [393.2–397.3]

z: [102.2–106.3]

Fertility 241,607 0.5 s 9.9 min 2132 10.0 x: [−75.7–123.9]

y: [−76.9–122.8]

z: [−36.9–162.8]

Torus 4,509 0.1 s 0.01 min 92 0.5 x: [−1.2–1.2]

y: [−0.2–2.2]

z: [−1.2–1.2]

5.2 Nontree objects

In this paragraph, examples of nontree objects are given.
Note here that distances are not given with a unit, because
the unit of the data sets is not known.

The Raptor model with lots of ripple on its skin is taken
from the aim@shape repository. It consists of 1,000,079
points and no information about the construction process is
known. The skeleton shows good connectedness and clearly
represents the saddles and maxima of the object. The skele-
ton of the left foot shows a straight element, which results in
unexpected high distances to the skeleton. In this case, not
all directional changes are covered by the chosen minimum
cell size. Instead of a curved skeleton of the toe, a straight
line is the result. If not all directional changes of the surface
are modeled, the skeleton is not embedded correctly, due to
the fixed octree cell size used in this paper. Nevertheless, the
local surface maximum is modeled preserved.

The Fertility model is a genus 4 stone sculpture and
taken from the aim@shape repository as well. It consists
of 241,607 points. It was obtained with a Roland LPX-w50
laser range scanner. The marked region shows a huge hole
in the point cloud of the statue, which prevented the use of
fine resolutions. This results in insufficient skeleton resolu-
tion on the left and in the head region of the statue, because
not all directional changes of the statue could be modeled
by the octree graph. The genus is still represented correctly

in the skeleton, and the maxima are modeled correctly as far
the octree-graph covered them (e.g., on the baby’s stomach).

The Torus model is sampled by 4,509 points from a
polygonal surface. The sampling is rough to show the in-
fluence of strong undersampling. From theory, one would
expect two maxima on a ring; compare Definition 11. The
strong undersampling is the reason for the vanishing max-
ima. Furthermore, a pattern is observable in the distances
to the skeleton, because of the discreteness of the skeleton-
graph.

5.3 Running time

The calculation time for six examples given in Fig. 16 and
Fig. 17 is given in Table 2. The table shows the size of the
point cloud as number of point cloud points and its data
range, the time needed to construct the octree under a fixed
octree cell size. Furthermore, the number of octree graph
vertices is given and the time needed to reduce the graph
with the SkelTre algorithm. The calculation times given re-
fer to a Intel Dual-Core processor 6700 running at 2.66 GHz
having 3.5 GB memory. The operating system used was
Windows XP with Service Pack 3 installed.

Table 2 shows the time needed to perform the octree con-
struction and the graph reduction. The running times are
given for the algorithm as given in Sect. 4.1. The imple-
mentation uses the vector container of the Standard Tem-
plate Library, [15] to store the adjacency list of the graph and

SkelTre 1299

all other intermediate lists, causing performance loss above
1,000 graph vertices.

6 Conclusion

In this paper, the SkelTre skeletonization method has been
presented. The method reduces an initial graph, correspond-
ing to the subdivision of a point cloud by a suitable oc-
tree, to the SkelTre skeleton using only one input parameter.
We have shown that the produced skeleton incorporates a
well-known topological structure, the Reeb-graph. It could
be shown that the graph reduction is linear in time, which
underlines the efficiency of the method that is designed to
skeletonize real, large point clouds of botanic trees. Both the
correctness and robustness could be demonstrated on sev-
eral different point clouds. The capability of the method to
skeletonize point clouds of a much larger class of objects
was shown on examples. Further research will first focus on
applying the retrieved skeletons on the automatic extraction
of structural parameters and sizes of objects.

References

1. Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls
and the medial axis transform. Comput. Geom., Theory Appl.
19(2–3), 127–153 (2001)

2. Arthur, D., Vassilvitskii, S.: On the worst case complexity of the
k-means method. Technical Report, Stanford 698 (2005)

3. Blum, H.: A transformation for extracting new descriptors of
shape. In: Proceedings Models for Perception of Speech and Vi-
sual Form, pp. 362–380 (1967)

4. Bucksch, A., Lindenbergh, R.: Campino—a skeletonization
method for point cloud processing. ISPRS J. Photogramm. Re-
mote Sens. 63, 115–127 (2008)

5. Bucksch, A., Lindenbergh, R., Menenti, M.: Skeltre—Fast skele-
tonization of imperfect point clouds of botanic trees. In: Pro-
ceedings 3D Object Retrieval Workshop 2009 (3DOR), pp. 13–20
(2009)

6. Chen, H.H., Huang, T.S.: A survey of construction and manipula-
tion of octrees. Comput. Vis. Graph. Image Process. Arch. 43(3),
409–431 (1988)

7. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V.,
Pascucci, V.: Loops in Reeb graphs of 2-manifolds. Discrete Com-
put. Geom. 32(2), 231–244 (2004)

8. Cornea, N.D., Min, P.: Curve-skeleton properties, applications,
and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548
(2007)

9. Côtè, J.F., Widlowski, J.L., Fournier, R.A., Verstraete, M.M.: The
structural and radiative consistency of three-dimensional tree re-
constructions from terrestrial lidar. Remote Sens. Environ. 113(5),
1067–1081 (2009)

10. Dey, T.K., Sun, J.: Defining and computing curve-skeletons with
medial geodesic function. In: Proceedings 4th Eurographics Sym-
posium on Geometry Processing, pp. 143–152 (2006)

11. Foreman, R.: Morse theory for cell complexes. Adv. Math. 134,
90–145 (1998)

12. Gorte, B.: Skeletonization of laser-scanned trees in the 3d raster
domain. In: Proceedings 3DGeoInfo 2006 (2006)

13. Gorte, B., Pfeifer, N.: Structuring laser-scanned trees using 3D
mathematical morphology. Int. Arch. Photogramm. Remote Sens.
XXXV(B5), 929–933 (2004)

14. Milnor, J.: Morse Theory. Princeton University Press, Princeton
(1963)

15. Musser, D., Saini, A.: Stl Tutorial and Reference Guide: C++
Programming with the Standard Template Library. Addison-
Wesley Professional Computing Series. Addison-Wesley, Reading
(1996)

16. Palagyi, K., Sorantin, E., Balogh, E., Kuba, A., Halmai, C., Erdo-
helyi, B., Hausegger, K.: A sequential 3D thinning algorithm and
its medical applications. In: Proceedings 17th International Con-
ference Information Processing in Medical Imaging, pp. 409–415
(2001)

17. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust
on-line computation of Reeb graphs: simplicity and speed. ACM
Trans. Graph. 26(3), 58 (2007)

18. Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica. Cambridge
University Press, Cambridge (2003)

19. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complè-
ment intégrable ou d’une fonction numérique. C. R. Acad. Sci.
222, 847–849 (1946)

20. Saito, T., Toriwaki, J.: New algorithms for Euclidean distance
transformation of an n-dimensional digitized picture with appli-
cations. Pattern Recogn. 27, 1551–1565 (1994)

21. Serra, J.: Image Analysis and Mathematical Morphology. Acad-
emic Press, London (1982)

22. Shan, J., Todd, C. (eds.): Topographic Laser Ranging and Scan-
ning. CRC Press, Boca Raton (2008)

23. Shinagawa, Y., Kunii, T.L.: Surface coding based on Morse theory.
IEEE Comput. Graph. Appl. 11, 66–78 (1991)

24. Verroust, A., Lazarus, F.: Extracting skeletal curves from 3d scat-
tered data. Vis. Comput. 16, 15–25 (2000)

25. Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based
modeling of laser-scanned trees. ACM Trans. Graph. 26(4), 19
(2007)

26. Yan, D.M., Wintz, J., Mourrain, B., Wang, W., Boudon, F., Godin,
C.: Efficient and robust branch model reconstruction from laser
scanned points. In: Proceedings 11th IEEE International Confer-
ence on Computer-Aided Design and Computer Graphics (2009)

27. Zhou, Y., Kaufman, A., Toga, A.W.: Three-dimensional skeleton
and centerline generation based on an approximate minimum dis-
tance field. Vis. Comput. 14(7), 303–314 (1998)

Alexander Bucksch obtained his
bachelor’s and master’s degree in
Media and Information Technol-
ogy at the Brandenburg University
of Technology, Germany. Currently,
he is a Ph.D. at the Remote Sensing
Department at Delft University of
Technology. He started working on
point clouds obtained by terrestrial
laser scanning already during his
bachelor thesis. His main research
interest is aiming on the develop-
ment of new point cloud processing
methodology. Notably, his current
work founds its application in tree
analysis for forestry and ecology.

1300 A. Bucksch et al.

Roderik Lindenbergh studied Math-
ematics at the University of Amster-
dam, the Netherlands. He obtained a
Ph.D. in Mathematics from the Uni-
versity of Utrecht, the Netherlands,
for his work on limits of Voronoi di-
agrams. After his Ph.D., he joined
the Remote Sensing Department
of Delft University of Technology
where he is currently employed as
an assistant professor. His research
interests are focused on those appli-
cations of notably laser range data
where the signal to noise ratio is
critical.

Massimo Menenti holds the Chair
of Optical and Laser Remote Sens-
ing. He has expertise in hydrology,
water management and land sur-
face processes, and remote sens-
ing. He is coordinating the EU FP7
CEOP–AEGIS project aiming at es-
tablishing a prototype observation
system of water resources on the
Qinghai–Tibetan Plateau and ma-
jor river basins in Southeast Asia.
He has been the lead scientist of
the ASI–CSA Joint Hyperspectral
Mission and of the ESA SPECTRA
and LSPIM missions. He has coor-

dinated an EU research project—Hydrological Determinants of Agri-
cultural Production in South America and an EU network dealing with
Climate Impact on Water and Dry lands Agriculture. Past investiga-
tions include studies of groundwater hydrology in the deserts of Libya
and Egypt, the use of advanced Earth Observation sensors systems to
improve the performance of atmospheric models and irrigation wa-
ter management in several countries. His experience with time series
analyses of both ground and satellite measurements dates back to 1973
with studies on precipitation, evaporation, and vegetation.

	SkelTre
	Abstract
	Introduction
	Related work
	2D descriptors
	1D descriptors

	SkelTre skeletonization algorithm
	Octree generation
	Extraction and labeling of the octree-graph
	Robustness criterion
	Localized directions

	Computational framework
	Topological and geometrical correctness
	Graph embedding

	Algorithm analysis
	Implementation of the framework
	Computational complexity
	Algorithm behavior

	Results and practical validation
	Trees
	Nontree objects
	Running time

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

