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1 Introduction

A wide range of fields, such as geology, construction, urban planning, agriculture, or mining,
rely on accurate knowledge of the ground. Therefore, it is necessary to develop useful and
precise ground classification methods to help identify rocks and soils in a variety of contexts
and conditions. Nowadays, there are many ways to achieve this through petrographic de-
scriptions like texture and composition, anisotropy, QAPF diagrams, etc. However, there are
still some areas that have been limited to the absence of interaction with rock or soil classifi-
cation and that could leverage some promising results if applied correctly. As programming
develops, so do the different ways in which information is handled, and as of today, artificial
intelligence might be the key to new classification methods.

Thermal imagery is not often associated to any classification methods, for instance, in ge-
ology, where other more traditional methods are preferred. Thermal attributes in rocks and
soils are influenced by many geological factors, which can be used to delineate a wide vari-
ety of them. Moreover, there are new technologies that provide new ways in which to collect
and view thermal data due to the development of the aforementioned artificial intelligence,
enabling for machine learning algorithms to take part in this classification process.

Deep learning is a newer type of data-driven machine learning which uses multiple neu-
ral network layers in order to obtain higher-level features from inputted datasets (Dehghani
et al.[(2023a)). It has had limited influence in rock and soil classification up to this date. Even
though Al is growing at exponential rates and new algorithms are being developed to occupy
such role, there is still limited implementation of thermal imagery in machine learning. Con-
sequently, an objective of this thesis is to develop deep learning algorithms that manage to
accurately classify a range of soils and rock types when receiving thermal data. By training
and testing the algorithms, the aim is to take thermal attributes as inputs and yield the correct
soil/rock type with the highest accuracy as possible in different contexts and environmental
conditions.

The algorithms to be used in this project include Convolutional Neural Networks (CNN)
and Convolutional LSTM (Long Short-Term Memory). CNNs are very powerful tools for ex-
tracting spatial features through filtering, acting as an initial classification method by recog-
nizing different textures or patterns present in images. ConvLSTM algorithms are used to en-
hance the temporal analysis of sets of images, yielding temporal predictions that can identify
the required features through their behavior over time. That being the case, these algorithms
will be fed with either a single or a set of thermal images (both in the spatial and temporal
domain) from which they will extract both the emissivity and the surface temperature values
in order to classify different rock and soil types found in them. These algorithms will then be
compared to provide insights into which one produces more accurate outputs. At the same
time, the algorithms will be trained to work with a wide range of input images that include
different environmental factors, such as diurnal and seasonal changes and different urban set-
tings (to test how well it deals with several cities). The country this will be tested on is Spain,
given its semi-arid conditions in order for vegetation or cloud coverage to not become a prob-
lem. However, if time allows it, to not limit the project to something regional, for instance,
images from countries like the Netherlands could be used for training and testing the algo-
rithms, given their different climate and ground composition. Thus, the algorithms would
become more robust to cloud and vegetation coverage, resulting in a reliable tool for the sci-
entific community.



The aim of this project is to develop a relevant classification process which aids in automat-
ing such a tedious process and acts as a pioneer for investigation on how Al with thermal
images can improve fields like geology, providing a useful and modern link between the afore-
mentioned geology and geomatics fields. For that reason, the research will determine if such
an approach is viable as a classification method that may help make informed decisions in
construction, landscaping or infrastructure projects. Thus, enhancing urban planning by de-
tecting soil and rocks types in an automated way, contributing to more sustainable urban de-
velopment, where infrastructures are placed on top of adequate soil. Moreover, reducing the
risk of foundation failure or subsidence occurring due to erroneous human decisions. This can
also be applied to other fields like mining (to avoid caves from collapsing), geology (detecting
rock types in an efficient and faster way) or resource extraction (enhancing the efficiency of
such process by reducing the cost of rock/soil identification).

2 Related work

The following section includes a small review of all the relevant information found in the lit-
erature with links to this project. Firstly, on thermal information and then on neural networks.

2.1 Relevant literature presentation
2.1.1 Understanding behavior of rocks/soils in thermal imagery

Ye et al.| (2022) performed a study on emissivity and atmospheric parameters for estimation
of land surface, where it is stated that remote sensing techniques involving TIR data contains
information which helps distinguish features in the land surface, contributing to applications
like land classification through differences in thermal attributes. Thus, implying the potential
of implementing thermal satellite imagery for ground surface classification by accounting for
different thermal attributes.

In Zhu et al.| (2022), the study demonstrates the difference in thermal properties between
rocks and soils. It is mentioned that igneous (1.93-3.14 W/m-K) and sedimentary (1.54-2.55
W/m-K) rocks tend to have higher thermal conductivity than looser sediments (0.89-1.82
W/m-K) due to their lower porosity. Nevertheless, it also shows how soils generally con-
tain a better heat storage capability due to a larger water content, such as silt (1.80 MJ/m3 - K
) and clay (1.42 M]J/ m3-K), exceeding most rock types. The analysis of the materials proves
helpful for the thesis as a great source of information for developing hypotheses and knowl-
edge on ground surface material thermal behavior.

Two studies proved how emissivity, although complicated at times, can be used as a suitable
thermal attribute for differentiation of materials. In the first place, Guha and Kumar| (2014)
states that 0.96 is the acceptable approximated value for the emissivity of geological materi-
als, influenced by their chemical composition. In the second place, Mineo and Pappalardo
(2021) released a list of emissivity values from a wide variety of rocks. Mineo and Pappalardo
(2021) proves that it is very difficult to obtain univocal emissivity values for rocks and that,
instead, a range of these is used, where most of them fall between 0.83-0.99. Just as Guha and
Kumar| (2014), Mineo and Pappalardo| (2021) also mentions how mineral composition affects
the observations, where some minerals (michas) have higher surface temperature and, thus,
emissivity is a weighted average of these minerals. Both of these papers contain emissivity
values (for all the soil and rock categories to be used - defined later in section [£.T) which can
be used as reference. They both make emphasis on the difficulty of using emissivity for clas-



sification purposes, given some value ranges between different rock types can be incredibly
similar (sedimentary rocks = 0.91-0.99, igneous = 0.83-0.99, metamorphic = 0.89-0.99), leading
to overlaps (stated as well in Rani et al.| (2018),which mentions the sensitivity of temperature
variations to land cover).

Harlianto et al| (2017) provide a guide into the main type of soil classification used. The
USCS or Unified Soil Classification System. It classifies soils by using only two letters, the first
one for the type of soil, and the second one for its plasticity or grain size. This classification
serves as reference to the soil types to be used during the research.

Studies like Rockwell and Hofstral (2008b) and |Guha and Kumar| (2014) indicate the exis-
tence of several limitations when working with thermal images like ASTER'’s spatial resolu-
tion, which even though it shows potential for geological mapping, Rockwell and Hofstra
(2008b) states that atmospheric correction is needed (such as MODTRAN). At the same time,
Guha and Kumar (2014) describes the influence of vegetation cover on temperature values.
Both of them give essential insights for practical considerations when working with this type
of data.

SAR data will be implemented as a final complementary data type to enhance the classifi-
cation process. SAR data can ease the process of finding differences in soil moisture values
through time, which in combination with thermal attributes can result in more accurate out-
puts. Studies like Liu et al.|(2019) (consisting of using LSTM for agricultural classification with
SAR data) indicate that temporal dependencies in neural networks with SAR data improves
the classification models. In turn, Ndikumana et al.|(2018) integrate CNN to map land use and
cover using SAR data, concluding how combining data types like optical and SAR improves
effectively the classification process. Thus, the potential for SAR data to be used alongside
another data type like thermal imagery.

2.1.2 Leverage of deep learning techniques

Regarding the machine learning aspect of the project, most of the information was achieved
from documentations on CNN and ConvLSTM code and websites, but mostly from articles
comparing and evaluating both methods. They provide information on how neural networks
work and are structured with insights into how useful they are for classification.

The study from Yin et al|(2019) describes how CNNs and RNNs work, explaining how
convolution takes place, what ResNets and BatchNormalization are used for, how ConvL-
STM works and how the training process is conducted, taking care of overfitting and the
outputs. Dehghani et al. (2023b) compares ConvLSTM and CNN models against each other
and against® other types of neural networks in performance. The study concludes that CNNs
and ConvLSTMs are the best at dealing with higher variations in data, providing excellent re-
sults for classification matters even when data is missing or there is great spatial distribution.
In Ye et al. (2022), they propose a combined LSTM-CNN model for land surface parameters
estimation with TASI imagery, in which they conclude that auxiliary data would enhance the
classification accuracy of their model. Therefore, proving the potential of adding SAR data to
the proposed models in order to obtain a much more accurate model.

2.2 Finding the gap

There are few studies that combine both emissivity and surface temperature values in an auto-
mated process that classifies rocks and soils types with two distinct deep learning algorithms.



Previous works mostly focus on just obtaining the thermal values and listing the outputs of
each type (with very similar emissivity values). Others solely focus on implementing deep
learning techniques to obtain different geological information.

Consequently, the thesis aims to fill this gap. Using emissivity and surface temperature
to help identify different rocks and soil types through differentiating those small variances.
Adding temporal dependencies, as well as the possibility of adding SAR data, can help with
the identification process by distinguishing soil and rock types that have a similar range of
thermal values but different temporal behaviors. To do so, geology, geomatics and machine
learning will be combined in a process that will include knowledge all of these fields through
different models (CNN and ConvLSTM) that manage to automate this process.

3 Research questions

The following section presents the main hypothesss and the research questions that guide
the investigation. Given the aim of the project is to explore the potential of deep learning
algorithms for the classification of rocks and soils with the use of thermal images, the following
questions are designed to assess the effectiveness, accuracy and robustness of it. Answering
these questions will be the foundation for determining the validity of the research. Only 2
soils types will be established at the moment for hypothesis. Nevertheless, the rest of rock and
soil types will also have their respective hypothesis to help guide the experiments.

3.1 Hypotheses

¢ Clay soils gain heat slowly throughout the day but retain heat longer due to its higher
moisture content and fine-grained texture.

* Clay soils are better identified when using both emissivity values and VV-polarization
due to the higher moisture content returning a stronger VV back-scatter.

¢ Sandy soils gain heat quickly throughout the day but loose it rapidly given its lower
moisture content and coarse-grained texture.

¢ Sandy soils are better identified in urban settings when combining thermal and SAR
HH-polarization due to the HH-backscatter being stronger in these type of settings.
3.2 Research Questions

¢ To what extent can CNN-RNN combined deep learning methods help identify/detect
different soil /rock types with thermal imagery?

* What characteristics/attributes do different rock and soil types have in thermal imagery?

e How accurately can temporally stacked CNN-based models vs. ConvLSTM identify
rock and soil types with thermal attributes?

e How does the model deal with very similar rock/soil attributes?

* How do temporal factors (diurnal and seasonal changes) affect the classification perfor-
mance?

* How do different urban settings affect the classification accuracy of the model?

e If other types of data are included (such as RADAR or SAR), does the performance/out-
comes improve?



¢ When using SAR, what type of polarization (V-pol, H-pol) helps better in differentiation
for soil types?

With all these questions in mind, it is important to state what will and will not be done
during this project. Therefore, it is necessary to state the MoSCoW rules that will accompany
the project. These set of rules give a clear idea as to how the research will be aimed.

3.3 MoSCoW Rules
3.3.1 Must
* Develop classification model.
* Train algorithm to identify different types of rock/soils.
¢ Train algorithm to handle temporal data to analyse changes over time.

¢ Handle data pre-processing pipelines to handle the noise, incomplete data or different
resolutions.

e State the validity of the model (performance metrics).
* Incorporate and asses the impact of SAR data on classification performance.

e Test algorithm’s ability to recognize under different conditions (diurnal, seasonal and
urban settings).

* Analyze the effect of single vs. stacked spatio-temporal images for classification accu-
racy.
3.3.2 Should
¢ Compare results with complementary data.

* Investigate if simpler versions of the model can achieve similar results (ablation).

3.3.3 Could
¢ Test algorithm at different places (Spain, the Netherlands, Sahara).
¢ Test algorithm’s ability to classify with increased vegetation or cloud coverage.
¢ Implement some physical sampling although the main focus remains on satellite im-
agery.
3.3.4 Won't

e Train algorithm to take color or geological properties into account (just work with ther-
mal values).

* Focus on a single region or setting.
» Will not focus on a single specific rock or soil type.

These rules establishes the limits of the project. It is possible that some of them might not be
accomplished due to time constraints on the project. Given there are many parameters, rocks
and soils to test with, in addition to the time it takes to train such models, it could happen that
some statements might not be met in time.



4 Methodology

The following section tackles the steps to be carried out to answer all research questions and
develop the required models.

4.1 Methodology

The methodology established for the project is defined in a list of steps which represent an
ideal workflow for the research to be accomplished before reaching the P4 and P5 deadlines
(clearly established in chapter|5).

The first step is to define the problem (something established in chapter[T). Then, listing the
rocks and soil types to be identified as well as the different conditions in which they will be
tested. For soils:

e Sand
e Peat

* Clay

Chalk

e Loam

Silt

Rocks will be divided into three groups and, inside them, they will be further subdivided
into two:

¢ Sedimentary rock - Carbonatic and Detritic
¢ Igneous rock - Plutonic and Volcanic
¢ Metamorphic rock - Foliated and Non-foliated

Later on, the corresponding datasets will be acquired. Labeled examples will be required to
train the models to serve as reference for their performance. Data pre-processing of the images
will be necessary for normalizing emissivity values (if necessary) by rescaling pixel values to
be between 0 and 1, aligning them in temporal sequences or including code that deals with
rotation, scaling and brightness of the images (to improve its performance against real-world
conditions).

Further on, neural networks will be computed. In the first place, the Convolutional Neural
Network. With a similar architecture to the one described in section the convolutional
layers will extract spatial features from the datasets, in this case emissivity (as the primary
attribute) and surface temperature (as the secondary and complementary attribute). The deci-
sion behind these two attributes stems from the fact that emissivity is material-specific, thus is
not that susceptible to environmental noise, and surface temperature can act as a great contex-
tual factor. The algorithm will then be trained with different datasets to classify rock and soil
types in individual thermal images. Separate subsets of the data will be used for validation.
The program will later on be enhanced to intake stacks of images, and finally, multi-temporal
images, testing any possible improvements in the identification process.

Secondly is the Convolutional Long Short-Term Memory algorithm. A defined temporal
sequence of the images to be used as input is obtained. Convolutional operations will take



place at different LSTM gates in order for the spatial context to be retained as the sequence
advances. In these kind of neural networks, it is really important to avoid gradient problems
as information travels backwards and forwards in the temporal sequence.

To test the robustness of the research, both algorithms will be put to the test with thermal
images taken under varying environmental settings. The datasets will include images during
diurnal and seasonal conditions, as well as different urban settings. The idea is that it can be
used in as many contexts as possible, reducing its limitations.

Both models will be trained over a period of time of at least 15 days, so that they can absorb
as much information as possible in the established timeline from section 5| Lastly, the algo-
rithms will be monitored and their performance evaluated with metrics like accuracy, preci-
sion, recall or F1 score as the training process progresses. Confusion matrices will be used to
identify any possible misclassifications taking place, early stopping for overfitting and tem-
poral monitoring so that the sequence is checked consistently. The following three factors will
be used as the main metrics:

* OA (Overall Accuracy) - states the amount of correctly identified rocks/soils divided by
the total sample size of the dataset.

e AA (Average Accuracy) - indicates the precision across all different types of rock/soils
used.

* Kappa coefficient - similar to confusion matrices, it represents the consistency of the true
value against the classified one in all categories of the research (Zhang et al.| (2023)).

To validate the results of the project, not only will performance metrics be used but also the
comparison to other types of complementary data. Just like Rockwell and Hofstra (2008a)) did,
geological maps will be employed to compare the results, as well as SAR data being included
to potentially enhance the performance of the models. This is because, given the similarities
some rocks and soil types in emissivity and surface temperature profiles, the inclusion of SAR
data can help, especially with soil grounds, in differentiating these cases over time.

Finally, both models will be compared to each other, testing for the highest accuracy model,
with the most reliable outputs under all the established environmental and temporal condi-
tions.

4.2 Architecture of NNs

The neural networks that will be employed will mainly rely on U-Nets, a simple architectural
design for deep learning algorithms for image segmentation and which becomes very useful
in cases like these where the aim is to output a type of structured data (images in this case)
with the same spatial dimension as the input.

Regarding the first technique to be developed, the architectural design for the Convolutional
Neural Network is based on the structure of the CNN in Dehghani et al.| (2023a) and will be
as follows:

* Input layer - initial layer adapted to accept thermal images as input.

¢ Convolutional layers - layers with multiple filters (kernels) that detect the wanted at-
tributes/features in the images (textures, patterns, etc.).

* Pooling layers - same number of layers as convolutional ones. Will employ methods like
max-pooling or average-pooling to reduce the spatial dimensions of images for further
convolutional layers to act on, consequently controlling possible overfitting problems.
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Figure 1: Architecture of U-Nets from Ronneberger et al. (2015).

¢ Batch Normalization - normalize the outputs to improve the convergence of the values.

e Connected layer - final fully connected layer flattens the feature maps generated with
the previous layers, connecting them to a single dense layer that yields the classification
made by the algorithm.

* Loss function - include a loss function (such as cross-entropy) that will measure the
model’s performance for specific tasks (in this case classification).

¢ Optimizers - including optimizers minimizes or maximizes a loss function by searching
for the most optimal parameters (Desai (2020)). Thus, adjusting the learning rate for
each parameter. Optimizers like Adam are suitable options.

¢ Training - the algorithm will be trained for sufficient epochs with an early stopping
system in order to prevent overfitting problems.

* Evaluation - evaluate the performance, accuracy and adjust the hyperparameters of the
model to obtain the best result possible.

For the architectural design of the ConvLSTM algorithm, a very similar process will be
carried out. [Shibuya and Hotta| (2022) remarks, in his experimental study of combining con-
volution LSTM and U-Nets, the effectiveness of U-Nets in ConvLSTM for handling sequential
data. Thus, a combination approach of the previous algorithm and that of Fig2]will be carried
out:

¢ Input format - input is formatted to become a sequence of images and an input shape
(established with batch size, timesteps, channels, etc).

* Input layer - initial layer that will accept the sequence of thermal images.

* ConvLSTM layers - combine spatial feature extraction from convolutional operations
with the LSTM gates that capture the temporal dependencies across the timesteps the
algorithm retains the spatial context of the images.

* ResNets - integrated to avoid gradient problems like the vanishing gradient problem
during backpropagation.

* U-Net architecture - this type of architecture handles the image segmentation while still
maintaining the the spatial resolution. Through downsampling with convolutional and
pooling steps, called the encoder path, the bottleneck is reached (lowest resolution where
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Figure 2: Feedback U-Net with convolutional LSTM from Shibuya and Hotta| (2022). The out-
put is fed to the input layer again once.

spatial features and temporal dependencies are merged). Then, the opposite step (un-
sampling) is carried out, until the original spatial dimensions are reconstructed. Con-
nections can later be skipped by passing information from the encoder to the decoder
(Shibuya and Hotta|(2022)) while preserving finer details.

¢ Pooling layers - optional layer to reduce the time dimension of images (max-pooling for
instance).

* Dense layer - a layer that will flatten the output and feed it into a single dense layer
yielding the final classification established by the model.

e Loss function - similar to CNN model.
¢ Optimizers - same as CNN model.

¢ Training - model training for enough epochs with controlled overfitting problems.

4.3 Code structure

The main idea of the code structure can be observed in the GitHub for this project: https://
github.com/Javif16/ge02020_Javier_Martinez.git. Currently, the code structure includes
the files below, but note that changes may occur as the code is developed during the research
process.

The idea is to have each section of the project have its own python file:

¢ thermal.py - deals with normalizing the initial datasets, making them suitable for the
neural networks.

¢ CNN.py - Convolutional Neural Network, as well as training and parametrization.

¢ ConvLSTM.py - Convolutional Long Short-Term Memory, as well as training and parametriza-
tion.

* performance.py - the program will test the performance for any algorithm inputted,
through the metrics established in section 4.1}

¢ complementary.py - with additional conditions and cases, it will include all possible
cases the models should be able to deal with, such as varying urban settings. In addition,
it will contain any necessary code for the inclusion of SAR data.
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5 Time planning

To explain the time planning behind it, a Gantt chart has been developed to explain, with
visual detail, the timeline for this research:

As it can be observed in Fig[3] the timeline is divided in 5 main parts (differentiated by
colors), each one corresponding to a different deadline or phase.

S |
Preparation ' N
Literature review [
Research design [ |
Data Collection [ ]
Graduation plan [ ]
Code set-up [ ]
P2 - Kick-Off [ ]
Reportwriting |
Data pre-processing [ ]
Develop CNN + training |
Develop ConvLSTM + training [ ]
Performance evaluation [ ]
CNN + ConvLSTM evaluation [ ]
P3 - Midterm meeting [ |
Advanced analysis
Projectconclusions
Finalrevision and editing
P4 - Green light

Feedback + adjustments

P5 - Finalisation |

13/11/2024 15/12/2024 16/01/2025 17/02/2025 21/03/2025 22/04/2025 24/05/2025 25/06/2025

Figure 3: Gantt chart of thesis project. Each color corresponds to a different phase of the
research process (P1, P2, etc.)

5.1 P1

The requirements for this phase had already been met during November, at the start of the
Thesis Preparation course.

5.2 P2 - Kick-off

* Preparation - identifying the research topic, the gap, the problem and the objective. In
addition, developing the hypothesis and research questions by exploring the relevant
literature.

¢ Literature review - knowledge of deep learning techniques and thermal data. Under-
standing what results to expect when completing the research.

* Research design - deciding on methodology and the steps to be taken.

¢ Data Collection - collecting the necessary data and establish where the datasets will be
obtained from.

* Writing - outlining chapters and writing draft report.
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Code set-up - developing coding environment, code structure, organization, etc.

P2/Kick-off - presentation of Graduation Plan and decision.

5.3 P3 - Midterm

Develop CNN - Convolutional Neural Network model, testing and training thermal
datasets.

Develop ConvLSTM - Convolutional Long Short-Term Memory model, testing and
training with thermal datasets.

Performance evaluation - evaluating performance.

CNN-ConvLSTM evaluation - determining the feasibility of both models for the re-
search’s purposes.

P3/Midterm meeting - meeting with supervisors to check progress.

5.4 P4 - Green light

Advanced analysis - enhanced analysis as networks are optimized and trained with
complementary data (SAR).

Project conclusions - obtain final feasibility conclusion. Present results and potential
future work.

Final revising and editing - last adjustments on draft report.

P4/Green light - presentation of draft thesis report and final decision.

5.5 P5 - Finalization

Feedback & adjustments - necessary changes to the project, enhancing code and final-
izing the draft report with feedback from P4.

P5/Finalization - final presentation of the project.

6 Tools and datasets used

The following sections explains the tools and datasets that will be employed during the re-
search in order to fulfill all the objectives set. The code will be performed in Python language,
given its wide range of community libraries. Thermal data will be obtained from several re-
sources and in different formats and resolutions, to test which one performs the best.

The python files established in the GitHub in section 4.3| may be carried out either in Py-
Charm Community or in JupyterNotebook (as its division in blocks reduces computational time),
depending on how fast the algorithms run on the local PyCharm.
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6.1 Python libraries

The main libraries that will be used for coding, building and training the algorithms are Py-
Torch and TensorFlow, given their wide range of functions specialized on deep learning opera-
tions. Both will be included in order to get the most out of the algorithms.

Other important libraries that will be employed are 'Rasterio’, for reading and writing geospa-
tial data, ‘Numpy’ for any mathematical operation, as well as "Matplotlib’, "IPython’ and "ipy-
widgets’ to visualize the results.

Finally, sub-libraries stemming from TensorFlow will most likely be included in the project
to deal with the neural networks. For example, 'Keras” includes many functionalities to build
and train deep learning algorithms like ConvLSTMs, easing the process of generating such a
complex program.

Here is an example, from the Keras documentation website (Ieam|(2025)):

Listing 1: ConvLSTM2D Code Example

x = layers.ConvLSTM2D (
filters=64,
kernel_size=(5, 5),
padding="same",
return_sequences=True,
activation="relu",

) (inp)

x = layers.BatchNormalization () (x)

x = layers.ConvLSTM2D(
filters=64,
kernel_size=(3, 3),
padding="same",
return_sequences=True,
activation="relu",

) (x)

These libraries allow for a seamless integration of a variety of machine learning operations
and techniques. Thus, functionalities like batch normalization, activation and loss functions
can be implemented with them.

6.2 Thermal datasets and Data Acquisition

Thermal datasets will be obtained from open access portals, mainly from the USGS Earth
Explorer (Landsat 8-9) and NASA'’s EarthData Search (ECOSTRESS). The portals include im-
agery from the Landsat 8-9 OLI/TIRS (Operational Land Imager/Thermal Infrared Sensor) C2
(Collection 2) L1 and L2 (product levels) and ECOSTRESS, respectively. USGS’s portal con-
tains data from Operational Land Imager-2 (OLI-2) and Thermal Infrared Sensor-2 (TIRS-2),
which acquires multi-spectral observations of the Earth (Choate et al. (2023)) in L1 (corrected
to a standard map projection) and L2 (contains atmospheric and additional corrections) prod-
ucts. From Earth Explorer, the data is obtained in GeoTIFF or JPEG format (thus, the use of
Rasterio), with a resolution of 100 meters for thermal bands (Bands 10 and 11).

NASA’s portal provides ECOSTRESS (ECOsystem Spaceborn Thermal Radiometer Experi-
ment on Space Station) outputs with thermal data at a resolution of 70 meters in TIF format.
It also contains ASTER data. ASTER or Advanced Spaceborn Thermal Emission and Reflec-
tion Radiometer contains fine spectral bands in short-wave infrared (SWIR) and thermal in-
frared (TIR) regions of the electromagnetic spectrum (Fatima et al.|(2017)). The portal contains
ASTER L2 data (which is used for geological mapping as Rockwell and Hofstra| (2008a) did),
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for both surface temperature and emissivity in independent files. However, in this case, all
the files are obtained in "hdf’ format. In Figures [ and [ are some example datasets.

SAR data will be obtained from ESA’s Copernicus Open Hub. A portal that contains SAR
data in different formats, either in raw data for better custom analysis or with the already pre-
processed GRDH data. It will be a valuable tool to be used in the later stages of the research
to enhance classification accuracy.

Python libraries like Rasterio, Numpy and additional ones such as GDAL (Geospatial Data
Abstraction Library) will be used to handle GeoTIFF files, 'h5py’, to handle 'hdf’ files, and
possibly "Xarray’ to deal with multi-dimensional arrays.

During the normalization steps, Numpy and OpenCV can handle image pre-processing like
resizing, cropping or other basic operations. Then, when the single images turn into temporal
sequences, libraries like Pandas or Xarray will ensure the sequence order is maintained. Batch-
ing will be handled by libraries like PyTorch and TensorFlow, while visualization will take place
mostly with Matplotlib.

6.3 Data Preparation

Data cleaning is a necessary step to providing relevant datasets for the neural network models.
Corrupted or incomplete data must be removed, or with the use of QA bands from Landsat
data, clouds and shadows can be identified and masked (including other possible artifacts
found in the data). Data should also be transformed if necessary, such as resampling or re-
sizing, especially if obtaining datasets from different sources (which might be this project’s
case) and formats. Using GDAL or Rasterio can help maintain consistent data inputs with the
same coordinate reference system or unit conversion, for instance, changing surface tempera-
ture or emissivity values to [0, 1] (with Numpy), respectively. At the same time, libraries like
OpenCV can ensure that rotations or flips are dealt with correctly before inputting them into
the algorithms. The temporal sequences will be transformed from single images that will be
stacked together. To do so, Pandas and Xarray can help cluster these images by time intervals
and maintaining chronological order.

Lastly, dividing the datasets will be crucial for training the models. Thus, a suitable range
of training and testing for the project is 70%-30%, respectively (the number can change if
datasets become too big and training needs to be maximized). In each division, a balanced
representation of rocks and soils must be ensured, in order for the training to be as successful
as possible. Temporal considerations will also be accounted for, in order for time series to not
be very different between subsets. If possible, Landsat and ECOSTRESS data could be merged
or combined with the purpose of including more information into the final dataset, though
this is an experimental note.

7 Preliminary results

The outcomes of the thesis aim or are expected to demonstrate the feasibility and effectiveness
of employing CNN and ConvLSTM for classifying rocks and soils based on thermal attributes.
However, some of the expected results at the moment might not be achieved at the final stages
of the research due to time constraints. A feasibility study will be carried out, in which testing
if the method to differentiate rock and soil types in this way is actually possible.
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7.1 Expected Algorithm Performance
7.1.1 CNN

The model is expected to perform correct spatial classification of rocks and soils from the
thermal attributes extracted from the images (for instance, differentiating clay from loam or
volcanic from plutonic). First for a single image and, later on, for a whole set of thermal
images. However, given the similarity in the emissivity ranges the rocks have, overlaps can
become a big problem. Nevertheless, the aim is for the program to obtain high performance
metrics with values >=85% or >=0.85 (for the main metrics established in section [4.1).

7.1.2 ConvLSTM

This model should be expected to produce a similar performance to that of the CNN, perform-
ing a correct temporal classification, enhancing the process by identifying temporal patterns
that can help detect variations between different types of rocks and soils (such as slower/-
faster cooling rates). Just as with the CNN model, it is expected to produce performance
metrics higher than >=85% or >=0.85.

7.2 Thermal datasets

This section displays some example images of thermal data that will be used to train and
test the algorithms presented in the project (obtained from the portals mentioned in section [6]
These images can also be observed in the GitHub of this project, mentioned in 4.3} It includes
initial preliminary code of how data is normalized from the thermal images found in the fol-
lowing path: Set-up/Thesis/Thesis/thermal.py. In this same path, two files with the outputs
of the code can be found, with the values for emissivity and surface temperature already nor-
malized. It also includes the rest of the thermal images obtained at the moment, found in the
following path: Set-up/Thesis/Thesis/Images/Thermal.

In the following images, both bands 10 and 11 from LANDSAT are presented, as well as
ECOSTRESS. The main candidates for the research are Band 10 from LANDSAT (less affected
by atmospheric interferences) and ECOSTRESS images (higher spatial resolution). Band 11
will be used, if necessary, as complementary data. The resolution differences will be pre-
processed before inputting the datasets into the algorithms.
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(a) Land Surface Temperature (LST) image of ECOSTRESS data from the 18th of December
2024.

& £
(b) Emissivity image of ECOSTRESS data (c) Emissivity image of ECOSTRESS data
from the 17th of November 2024. from the 18th of December 2024.

(d) Emissivity images of ECOSTRESS data.

Figure 4: ECOSTRESS images showing Land Surface Temperature (LST) and Emissivity data
for different dates.
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(a) Thermal image from the 23rd of De- (b) Thermal image from the 8th of Jan-
cember 2024. uary 2025.

(c) Thermal image of Band 10 from the (d) Thermal image of Band 10 from the
23rd of December 2024. 8th of January 2025.

(e) Thermal image of Band 11 from the (f) Thermal image of Band 11 from the 8th
23rd of December 2024. of January 2025.

Figure 5: Landsat images showing thermal data for different bands (B10, B11) from various
dates.
18



References

M. J. Choate, R. Rengarajan, M. N. Hasan, A. Denevan, and K. Ruslander. Operational aspects
of landsat 8 and 9 geometry. Remote Sensing, 16(1):133, 2023. doi: 10.3390/rs16010133. URL
https://doi.org/10.3390/rs16010133!

A. Dehghani, H. M. Z. H. Moazam, F. Mortazavizadeh, V. Ranjbar, M. Mirzaei, S. Mortezavi,
J. L. Ng, and A. Dehghani. Comparative evaluation of Istm, cnn and convlstm for hourly
short-term streamflow forecasting using deep learning approaches. Ecological Informatics,
75:102119, 2023a. doi: 10.1016/j.ecoinf.2023.102119. URL https://doi.org/10.1016/].
ecoinf.2023.102119.

A. Dehghani, H. M. Z. H. Moazam, F. Mortazavizadeh, V. Ranjbar, M. Mirzaei, S. Mortezavi,
J. L. Ng, and A. Dehghani. Comparative evaluation of Istm, cnn and convlstm for hourly
short-term streamflow forecasting using deep learning approaches. Ecological Informatics,
75:102119, 2023b. doi: 10.1016/j.ecoinf.2023.102119. URL https://doi.org/10.1016/j.
ecoinf.2023.102119.

C. Desai. Comparative analysis of optimizers in deep neural networks. International Journal of
Innovative Science and Research Technology, 5(10):959-962, 2020. ISSN 2456-2165. URL https:

//ijisrt.com/comparative-analysis-of-optimizers-in-deep-neural-networks.

K. Fatima, M. U. K. Khattak, A. B. Kausar, M. Togeer, N. Haider, and A. U. Rehman. Minerals
identification and mapping using aster satellite image. Journal of Applied Remote Sensing, 11
(4):046006, 2017. doi: 10.1117/1.JRS.11.046006. URL https://doi.org/10.1117/1.JRS.11.
046006.

A. Guha and K. V. Kumar. Potential of thermal emissivity for mapping of greenstone rocks
and associated granitoids of hutti maski schist belt, karnataka. In The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume XL-8, page
423, ISPRS Technical Commission VIII Symposium, Hyderabad, India, 2014. doi: 10.5194/
isprsarchives-XL-8-423-2014.

P. A. Harlianto, T. B. Adji, and N. A. Setiawan. Comparison of machine learning algorithms
for soil type classification. In 2017 3rd International Conference on Science and Technology -
Computer (ICST), 2017.

S. Liu, Z. Qi, X. Li, and A. G.-O. Yeh. Integration of convolutional neural networks and object-
based post-classification refinement for land use and land cover mapping with optical and
sar data. Remote Sensing, 11(6):690, 2019. doi: 10.3390/rs11060690. URL https://www.mdpi.
com/2072-4292/11/6/690. Explores the use of RNNs (LSTM) for agricultural classification
using SAR data. Emphasizes that incorporating temporal dependencies in neural network
models improves classification.

S. Mineo and G. Pappalardo. Rock emissivity measurement for infrared thermography
engineering geological applications. Applied Sciences, 11(9):3773, 2021. doi: 10.3390/
app11093773. URL https://doi.org/10.3390/app11093773.

E. Ndikumana, D. H. T. Minh, N. Baghdadi, D. Courault, and L. Hossard. Deep recurrent
neural network for agricultural classification using multitemporal sar sentinel-1 for ca-
margue, france. Remote Sensing, 10(8):1217, 2018. doi: 10.3390/rs10081217. URL https:
//www.mdpi.com/2072-4292/10/8/1217.

19


https://doi.org/10.3390/rs16010133
https://doi.org/10.1016/j.ecoinf.2023.102119
https://doi.org/10.1016/j.ecoinf.2023.102119
https://doi.org/10.1016/j.ecoinf.2023.102119
https://doi.org/10.1016/j.ecoinf.2023.102119
https://ijisrt.com/comparative-analysis-of-optimizers-in-deep-neural-networks
https://ijisrt.com/comparative-analysis-of-optimizers-in-deep-neural-networks
https://doi.org/10.1117/1.JRS.11.046006
https://doi.org/10.1117/1.JRS.11.046006
https://www.mdpi.com/2072-4292/11/6/690
https://www.mdpi.com/2072-4292/11/6/690
https://doi.org/10.3390/app11093773
https://www.mdpi.com/2072-4292/10/8/1217
https://www.mdpi.com/2072-4292/10/8/1217

K. Rani, A. Guha, S. K. Pal, and K. V. Kumar. Comparative analysis of potentials of aster
thermal infrared band derived emissivity composite, radiance composite and emissiv-
ity—temperature composite in geological mapping of proterozoic rocks in parts of ban-
swara, rajasthan. Journal of the Indian Society of Remote Sensing, 46(5):771-782, 2018. doi:
10.1007 /s12524-017-0737-z.

B. W. Rockwell and A. H. Hofstra. Identification of quartz and carbonate minerals across
northern nevada using aster thermal infrared emissivity data—implications for geologic
mapping and mineral resource investigations in well-studied and frontier areas. Geosphere,
4(1):218-246, 2008a. doi: 10.1130/GES00126.1.

B. W. Rockwell and A. H. Hofstra. Identification of quartz and carbonate minerals across
northern nevada using aster thermal infrared emissivity data—implications for geologic
mapping and mineral resource investigations in well-studied and frontier areas. Geosphere,
4(1):218-246, 2008b. doi: 10.1130/GES00126.1.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical im-
age segmentation. arXiv preprint arXiv:1505.04597v1, 2015. https://arxiv.org/abs/1505.
04597.

E. Shibuya and K. Hotta. Cell image segmentation by using feedback and convolutional Istm.
The Visual Computer, 38:3791-3801, 2022. doi: 10.1007 /s00371-021-02221-3.

K. Team. Convlstm example in keras, 2025. URL https://keras.io/examples/vision/conv_
lstm/.

X. Ye, H. Ren, J. Nie, J. Hui, C. Jiang, ]J. Zhu, W. Fan, Y. Qian, and Y. Liang. Simultaneous
estimation of land surface and atmospheric parameters from thermal hyperspectral data

using a Istm-cnn combined deep neural network. IEEE Geoscience and Remote Sensing Letters,
19:5508705, 2022. doi: 10.1109/LGRS.2022.3187042.

Q. Yin, R. Zhang, and X. Shao. Cnn and rnn mixed model for image classification. In MATEC
Web of Conferences, volume 277, page 02001, 2019. doi: 10.1051/matecconf/201927702001.
URL https://doi.org/10.1051/matecconf /201927702001, JCMME 2018.

J. Zhang, L. Zhao, H. Jiang, S. Shen, P. Z. Jian Wang, W. Zhang, and L. Wang. Hyperspectral
image classification based on dense pyramidal convolution and multi-feature fusion. Remote
Sensing, 15(12):2990, 2023. ISSN 2072-4292. doi: 10.3390/rs15122990. URL https://doi.
org/10.3390/rs15122990.

X. Zhu, Z. Gao, T. Chen, W. Wang, C. Lu, and Q. Zhang. Study on the thermophysical prop-
erties and influencing factors of regional surface shallow rock and soil in china. Frontiers in
Earth Science, 10:864548, 2022. doi: 10.3389/feart.2022.864548.

20


https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://keras.io/examples/vision/conv_lstm/
https://keras.io/examples/vision/conv_lstm/
https://doi.org/10.1051/matecconf/201927702001
https://doi.org/10.3390/rs15122990
https://doi.org/10.3390/rs15122990

	Introduction
	Related work
	Relevant literature presentation
	Understanding behavior of rocks/soils in thermal imagery
	Leverage of deep learning techniques

	Finding the gap

	Research questions
	Hypotheses
	Research Questions
	MoSCoW Rules
	Must
	Should
	Could
	Won't


	Methodology
	Methodology
	Architecture of NNs
	Code structure

	Time planning
	P1
	P2 - Kick-off
	P3 - Midterm
	P4 - Green light
	P5 - Finalization

	Tools and datasets used
	Python libraries
	Thermal datasets and Data Acquisition
	Data Preparation

	Preliminary results
	Expected Algorithm Performance
	CNN
	ConvLSTM

	Thermal datasets


