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Abstract—This paper presents an efficient approach to battery
cycle life prediction through few-shot transfer learning, address-
ing the challenges of costly and limited battery aging data. Lever-
aging freely available datasets, a multi-layer perceptron (MLP)
model was pretrained on diverse battery aging datasets to adapt
to new prediction tasks with minimal training samples through
few-shot fine-tuning techniques on the target data. The proposed
fine-tuning strategy was validated using a heterogeneous aging
dataset of 347 batteries, with cycle lives ranging from 144 to 4,052
cycles, incorporating batteries with lithium iron phosphate (LFP),
lithium cobalt oxide (L.CO), nickel cobalt aluminum oxide (NCA),
and nickel manganese cobalt oxide (NMC) chemistries, which
ensures robust validation of our methods. The results show that
even with few samples of data from a target task, a comparable
generalization performance to training from scratch with 100%
data can be achieved, thus demonstrating its effectiveness in
utilizing available resources for accurate cycle life prediction.

Index Terms—Battery aging prediction, cycle life prediction,
transfer learning, few-shot learning, fine-tuning, deep learning

I. INTRODUCTION

Accurate prediction of battery cycle life is necessary for
optimizing the performance of batteries across various appli-
cations such as energy storage systems and electric vehicles.
These applications rely on precise cycle life estimation to
ensure reliability, cost-effectiveness, and sustainability.

In recent years, data-driven aging models have garnered
increasing attention in the field. Data-driven models have been
extensively applied to enhance the performance of batteries
[1], [2]. A particularly notable study used data from only the
first 100 cycles of an aging campaign to predict battery cycle
life with an impressively low error of 9.1% [3]. Recent study
highlights possibilities and methods in predicting battery life
from field data [4]. However, acquiring field data can be costly
and time-consuming. Consequently, the freely available open-
source aging data has become a useful source.

Transfer learning can be used to pretrain a model on one or
several datasets and then transfer it to a target dataset. A study
illustrated how a pretrained deep learning model, initially
developed with 20 NCA cells, was successfully transferred
to target NCM cells using only two samples of NCM data [5].

This paper proposes few-shot transfer learning on heteroge-
neous aging datasets to overcome the limitation of dataset sizes
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boosting predicting performance. Precisely, an MLP model is
pretrained using partial battery aging datasets from multiple
sources [3], [6], [7], [8], [9], [10], [11], [12], intentionally
forming a mixed aging dataset with different chemistries in-
cluding LFP, LCO, NCA, and NMC. A fine-tuning strategy is
proposed to adapt the MLP using a few samples from the target
dataset, and the MLP is optimized using Optuna [13]. The
case studies assess the generalization performance as the fine-
tuning samples increase. An overview of the experiment design
can be found in Fig. 1. Compared to training a model with
100% data for a specific task, the proposed transfer learning
strategy achieves comparable generalization performance and
requires between only 8.6% to 48.8% of the data for different
tasks, showing its effectiveness in utilizing the potential of
open-sourced aging datasets for accurate cycle life prediction.
In addition, we have prepared cleaned and merged feature sets
to facilitate researchers in applying transfer learning to their
datasets.

II. DATASET

To address the fragmented landscape of battery data formats
and sources, the study BatteryML [14] introduced a unified
data format. In this work, we form and utilize three major
datasets following the BatteryML format. The distribution of
cycle lives, representing the remaining useful life (RUL) of
batteries, for three datasets, is shown in Fig. 2.

1) MATR: This contains 124 LFP cells [3]. The cells were
cycled in a temperature-controlled environmental chamber (30
°C) under varied fast-charging conditions but identical dis-
charging conditions until 80% capacity fade. The dataset was
originally split into 33.1% (41 cells) for training, 34.7% (43
cells) for primary testing, and 32.3% (40 cells) for secondary
testing. We chose the primary testing set to evaluate the
performance of generalization, as the secondary testing set was
created after the model was developed [3].

2) HUST: This contains 77 LFP cells [6], which underwent
the same charging protocol but were subjected to various
multi-stage discharge regimes, all conducted at a temperature
of 30 °C. The dataset was split into 71.4% (55 cells) for
training and 28.6% (22 cells) for testing.

3) MIX: This dataset combines several smaller battery
collections from the CALCE, HNEI, RWTH, SNL, and UL
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Fig. 1. Overview of the experiment design. Task specific training (left) involves training one model from scratch using 100% of the training data. Few-shot
fine-tuning (right) entails pretraining one model with external datasets, and then fine-tuning with only a limited number of samples from the target data. After
finishing training, different approaches will be evaluated and compared with the same testing data.
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Fig. 2. Distribution of cycle lives for three datasets. The training set is
depicted in orange and the testing set in tan. a, Distribution for MATR, cycle
life varies from 148 to 2,238 cycles. b, Distribution for HUST, cycle life
varies from 1144 to 2,691 cycles. ¢, Distribution for MIX, cycle life varies
from 144 to 4,052 cycles.

PUR datasets [7], [8], [9], [10], [11], [12], encompassing 146
cells. The dataset features a variety of electrode chemistries,
including LFP, LCO, NCA, and NMC. The data is divided into
training and testing subsets, with 79.5% (116 cells) allocated
for training and 20.5% (30 cells) designated for testing.

III. METHODOLOGY
A. Feature Engineering

The feature engineering is based on the quantified dis-
charge linearity methodology, proposed in [3]. This involves
a processing pipeline that interpolates the discharge voltage-
capacity curve.

1) Interpolation: Each discharge voltage-capacity curve is
subjected to a conditional interpolation. Vi and Q¢ are defined

as the sets of voltage and capacity values where the discharge
current [ is less than or equal to a small negative threshold
—e, where € > 0 and is a very small value:

Ve V[I < —6]7

Qc=Q < —¢|. 6]

The interpolation of discharge capacity @y is performed
across a specified voltage interval [Vinin, Vinax]- This interval
is divided into K even segments. The interpolation model is
trained on data points (V, Qc). It then predicts the discharge
capacity at these K segmented voltage points to form K
interpolated points of discharge capacity:

QI = Intel‘polate(VQ QC) [Vmin7 Vmax]7 K) (2)

2) Feature Compilation: The final features for each cell are
constructed by calculating the difference between the values
at cycle 100 and cycle 10 of the interpolated capacities. These
differential features help emphasize the changes in battery
behavior over cycles and are utilized as input in machine
learning models. The features are expressed as follows:

A(Qr)100—10 = (Q1)100 — (R1)10 3)

3) Label Extraction: In predictive modeling of battery
health, RUL is a critical label that signifies the number of
remaining cycles before a battery reaches its end-of-life (EoL).
The EoL is defined as the point in its lifecycle when the battery
retains only a certain percentage of its nominal capacity Qn,
here set at 80%.

B. Modeling

1) Base Model: The base model for the transfer learning
approach is MLP. The MLP is designed with multiple layers,
each consisting of neurons that apply a nonlinear activation
function. Mathematically, MLP can be described as follows:

f(x;0) = a(W(”g(W(Lfl) .

“)
d(Wx 4 bM)y... ) i b(L—l)) L pD

Authorized licensed use limited to: TU Delft Library. Downloaded on August 11,2025 at 07:55:32 UTC from IEEE Xplore. Restrictions apply.



TABLE I

TESTING RMSE AND MAE

FOR PREDICTED CYCLE LIVES

Task Specific Training  Inference Few-Shot Fine-Tuning 0/0-Shot 5/5-Shot 10/10-Shot
Data RMSE MAE Data RMSE MAE RMSE MAE RMSE MAE
MATR — MATR  113.50 87.28 HUST + MIX — MATR  242.31 202.20 121.88 95.95 110.39 90.97
HUST — HUST  443.98 373.54 MIX + MATR — HUST  909.96 696.48 496.34 402.01 444.80 354.00
MIX — MIX 327.59 209.52 MATR + HUST — MIX  874.13 607.36 344.38 248.71 253.58 177.71
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Fig. 3. Observed and predicted cycle lives using few-shot transfer learning. The fine-tuning strategy was evaluated on testing data from MATR (orange
triangle), HUST (blue circle), and MIX (tan square). a, Usage of zero samples for both fine-tuning and hyperparameter optimization. b, Usage of five samples

for each. ¢, Usage of ten samples for each.

where x is the input vector, W) and b(®) are the weights
and biases at layer [, o represents the activation function,
and © denotes the collection of all weights and biases. The
objective is to find:

where y; is the actual cycle life and n is the number of
samples in the training set.

2) Transfer Learning: Transfer learning in the context of
this study involves adapting a pretrained MLP to a target cycle
life prediction task with minimal target battery data. The fine-
tuning of the model weights can be expressed as:

n

> (i — f(2::0))?

i=1

1
O = argmin < %)
o n

0'=0"+ A0 (6)

where ©’ represents the updated parameter set, ©* the initial
parameters from the pre-trained MLP, and A® the adjustments
computed through several iterations of gradient descent on the
new dataset:

AO = —nVeL(f(x;0),y) )

where 7 is the learning rate, and £ is the loss function. x
and y represent input features and target outputs, respectively.

3) Fine-Tuning Strategy: Initially, the MLP is pretrained
using all available data from two of the three datasets.
Subsequently, the model is fine-tuned on M samples from
the training set of the third dataset to adapt the pretrained
model. To optimize the MLP’s hyperparameters and prevent
overfitting, other N samples from the training set of the

third dataset are used for validation through Optuna [13]. We
introduce this approach as the M/N-shot fine-tuning strategy.

The core idea behind employing this fine-tuning strat-
egy is to emulate a realistic scenario in which the
target dataset—identified as the third dataset in this
study—represents project-specific in-house aging data, typ-
ically limited in availability. By pretraining on the more
abundant and diverse data from the other two datasets, which
we consider as freely available open-source data, we prepare
the MLP to adapt to the scarce target data effectively.

C. Evaluation

To assess the performance of our models, we employ two
standard metrics: mean absolute error (MAE) and root mean
squared error (RMSE).

®)

I )
MAEZEZM—%\

i=1

RMSE = )

where y; represents the observed cycle lives, y; represents
the predicted cycle lives, and n is the number of observations.

IV. EXPERIMENT

The objective of this experiment is to demonstrate that the
few-shot transfer learning can achieve comparable predictive
accuracy to a training method that utilizes the entire dataset.
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A. HUST + MIX — MATR

The MLP is pretrained using data from 77 cells from HUST
and 146 cells from MIX. Fine-tuning is performed with M
samples and optimized with N samples from the original
training dataset (41 cells) of MATR. Testing is conducted on
the original testing dataset (43 cells) from MATR.

Our experiments demonstrate a clear trend: as we progress
from 0/0-shot to 5/5-shot, and further to 10/10-shot, there is a
consistent decrease in the loss metrics (RMSE and MAE), as
can be seen in Table I, corroborating the efficacy of the M/N
fine-tuning strategy. A comparison with task specific training
reveals that the 10/10-shot fine-tuning, which takes only 48.8%
of the data, yields similar performance to training models from
scratch using 100% of the data. This indicates that the few-shot
transfer learning approach effectively matches the predictive
accuracy of the task specific training.

B. MATR + MIX — HUST

The MLP is pretrained using data from 124 cells from
MATR and 146 cells from MIX. Fine-tuning is performed with
M samples and optimized with N samples from the original
training dataset (77 cells) of HUST. Testing is conducted on
the original testing dataset (22 cells) from HUST.

Despite achieving similar predictive performance by apply-
ing a 10/10-shot fine-tuning strategy compared to task specific
training using 100% training data, the HUST dataset presents
a notable challenge, as indicated in Table I, which is reflected
in higher loss metrics.

C. HUST + MATR — MIX

The MLP is pretrained using data from 77 cells from HUST
and 124 cells from MATR. Fine-tuning is performed with
M samples and optimized with N samples from the original
training dataset (116 cells) of MIX. Testing is conducted on
the original testing dataset (30 cells) from MIX.

The MIX dataset achieves comparable performance with
5/5-shot fine-tuning, utilizing only 8.6% of the training dataset,
as opposed to training from scratch. However, as shown in Fig.
3, the model tends to overestimate the short cycle lives when
the number of samples used for fine-tuning is small. Increasing
the fine-tuning samples from MIX itself results in rapid
calibration of the model, effectively mitigating overestimation
for short cycle lives while also improving underestimation for
longer cycle lives.

V. CONCLUSION

This study demonstrates the potential of leveraging large
amounts of open-source aging data to transfer learning effec-
tively to target tasks. The results indicate that the proposed
M/N-shot fine-tuning strategy proves to be effective, enabling
the achievement of performance comparable to models trained
from scratch. This is particularly significant for applications
where data acquisition is expensive and time-consuming. Fur-
thermore, our cleaned and merged feature sets can be utilized
to transfer learning to researchers’ datasets.

Looking ahead, there is a clear avenue for advancing the
accuracy of cycle life predictions through feature engineering.
This could involve the integration of deeper domain-specific
knowledge into the learning process to capture the complex
behaviors of battery degradation more precisely. Additionally,
exploring model-agnostic meta-learning could be worthwhile,
as it may enable models to adapt rapidly with even fewer data
points. Embracing such strategies could pave the way for more
nuanced and robust predictive models in the field of battery
health management.
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