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Chapter 1

Introduction

B.J. Hensen

But if they mean that the thing is performed without any mechanism by a simple
primitive quality or by a law of God who produces that effect without using any
intelligible means, it is an unreasonable and occult quality, and so very occult
that it is impossible that it should ever be done though an angel or God himself
should undertake to explain it.

—Leibniz, referring to gravity in a letter to Newton (1693)1

Quantum nonlocality refers to the various aspects of non-separable quantum states
describing physically separated systems. On the one hand, such entangled states are
at the basis of the many phenomena that make quantum theory difficult to interpret
philosophically: the interaction with a measurement apparatus and the subsequent
measurement back-action; the consequent non-contextuality of quantum measurement;
and last but not least the non-local structure of the theory itself. On the other
hand, entangled states are also at the basis of many quantum advantages for tasks in
information theory, for example, factoring a large number using a quantum computer
running Shor’s algorithm, or performing quantum key distribution using a Bell test
certified quantum communication channel.

In this chapter an introduction is given to those aspects of quantum nonlocality
that are central to the work in this thesis, starting from the application perspective in
quantum information processing, and zooming in on the foundational aspect of Bell
nonlocality. Additionally we briefly introduce the quantum system used in this thesis,
the nitrogen-vacancy (NV) centre, introduced in more detail in the next chapter.
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1. Introduction

1.1 Quantum Information Processing

The field of quantum information attempts to study and realize applications of
quantum theory in the world of information science. Roughly, it can be divided
into two categories: quantum computation and quantum communication. In this
thesis the focus is on an essential ingredient in both computation and communication
applications: creating links of entanglement between isolated quantum systems. In
particular, the entanglement is created over human-scale distances using a flying
(photonic) quantum link. Such remote entanglement forms the linking operation in a
future quantum network, linking together multiple (small) quantum processing units
to make a larger one. It also lies at the basis of (device independent) quantum key
distribution and randomness generation protocols.

single photon

emissionlaser excitation

entanglement by photon 

interference and measurement

spin manipulation

by magnetic resonance pulses

or ?

Figure 1.1 — Figure from Pfaff 2 Vision of a macroscopic quantum network based on spins
in diamond. Nodes consist of single NV centres in diamonds that are separated by macroscopic
distances (metres up to kilometres). The NV electronic spin (purple) can be measured optically,
and serves as the interface for a quantum register of nuclear spins (orange, green). Entanglement
between nodes is established by interference and measurement of photons that are correlated
with the electron spins.

2



1.1. Quantum Information Processing

1.1.1 Quantum computation

The interest in quantum computation was sparked in the 1980s and 1990s, by the
realisation of Deutch, Shor, Grover and others that certain problems in mathematics
for which no efficient∗ algorithmic solution was known, could be solved efficiently
on a computer consisting of binary quantum systems (qubits), where the algorithm
consisted of a set of unitary operations between those qubits3.

Additionally, quantum information processing could help to overcome limitations in
simulating quantum systems using classical computing4. For example, suppose we
want to simulate a molecule of 500 degrees of freedom, where each of those dimensions
has at least two possible states. The full state information consists of the complex
amplitudes of all ≥ 2500 terms in a general superposition state — more numbers than
the estimated total of atoms in the observable universe and thus certainly intractable
by any classical computer. However, if controlled and preserved well enough, a
quantum system that can be mapped to the very molecule to be described can be
used for the task. This idea has been generalized to show that any quantum system
can be simulated efficiently on a quantum computer5.

Capitalising on these potential applications requires unprecedented control over
quantum systems. It requires a quantum system that can be controlled and read
out and can be shielded from interactions with its environment. At the same time it
requires coupling of multiple quantum systems while retaining this shielding from the
rest of the world.

For a while it was thought a quantum computer would face similar issues as the
existing field of analog computation: promised speed-ups would not be attainable
in practice due to the finite precision of operating a continuous computational basis.
These doubts were invalidated by the development of quantum error correction codes3

in the 1990s and the discovery of fault tolerance thresholds for quantum operations,
above which scaling to a larger system reduces the overall error in the computation.
Recent developments of topological error correction codes6 have further minimized the
required operation fidelities and number of qubits to a regime that no longer seems
prohibitively large.

A final reason why developing a quantum computer is considered an important
effort, is to study the interplay between quantum mechanics and the observed classical
world. It might turn out that nature prohibits the increasingly large entangled states
required for the operation of a quantum computer. However, such a barrier would
have to result from fundamentally new physics, a prospect considered by some to be
even more exciting than the realisation of a quantum computer itself.

∗running on a space / in a time polynomial with the problem size

3



1. Introduction

1.1.2 Quantum communication

Another important field where quantum theory may provide an operational advantage
is in communication.

The most well known examples are in cryptography, involving communication
between parties that might not trust each other or the communication channel they
operate. One important task in cryptography is the distribution of a secure key
between two trusted parties. Any message sent by encrypting it (for binary messages
the encryption would just be a bitwise XOR operation) with a one time use of a
random key shared between the two parties is secure against eavesdropping. The
main problem is then: how to distribute the keys? In 1984, Bennett and Brassard7

developed a quantum key distribution protocol, allowing secure distribution of private
random keys between two parties by sending individual quantum bits. The protocol
relies on the fundamental quantum measurement back-action, that disturbs the sent
qubits if eavesdropped. Notably, an equivalent protocol8 can be implemented using
two qubits that are in an entangled state.

Similarly to quantum computation, many applications in quantum communication
require high fidelity control over quantum systems. However, often only two, or few
qubits are sufficient to show a quantum advantage over the best known classical
implementation. For example, a system implementing quantum key distribution over
few kilometre distances is already available commercially†.

1.2 Entangled Particles and Bell’s theorem

Consider two electrons, whose spin degree of freedom is brought into the maximally
entangled singlet state:

∣∣Ψ−〉 =
1√
2
(|↑〉A |↓〉B − |↓〉A |↑〉B). (1.1)

The electrons are spatially separated, and under control of Alice and Bob, labelled A
and B.

Suppose A performs a measurement of the spin along Z with the observable
Ŝz = (+1)�↑ + (−1)�↓ = |↑〉 〈↑| − |↓〉 〈↓|. With probability 1

2 she will find outcome
+1, which leaves the post-measurement state

|Φ′〉 = (�↑ ⊗ �
(B)) |Φ+〉√

1
2

= |↑〉A |↓〉B , (1.2)

where � denotes the identity operator. If subsequently B measures the spin of his
electron along Z, clearly he will find the opposite outcome to A, −1 with unit

†ID Quantique, www.idquantique.com
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1.2. Entangled Particles and Bell’s theorem

probability. The same anti-correlation holds for A’s outcome −1, and, remarkably, for
co-aligned measurements for A and B along any axis.

These predictions bothered Einstein, Podolsky and Rosen9,10. In their 1935 paper
on the subject9 they concluded that the quantum mechanical description is incomplete.
For example, perhaps the correlations are pre-set in some variables λ carried by each
of the electrons, but these are hidden from us: a local-hidden variable explanation of
the behaviour10.

In 1964, John Bell showed11,12 that no such local-hidden variable explanation can
reproduce the statistical predictions of quantum theory for the system of equation (1.1).
This meant that quantum theory could not be supplemented with an additional theory
that ‘fixed’ the non-local behaviour.

There exists an overwhelming amount of literature on Bell’s theorem, its implications
and applications. For a recent operational review see for instance Brunner et al.13.
For an overview of the underlying philosophical principles and a historical background,
see for example Wiseman and Cavalcanti14. Additionally, the October 2014 issue of
Journal of Physics A was devoted to Fifty years of Bell’s theorem15 and contains a
comprehensive overview of recent developments and historical background.

In this Section we will try to summarize the arguments presented by Bell in the final
chapter of his landmark book16, aiming to keep the main arguments and assumptions
required to obtain the Bell inequality, but inevitably skipping many of the subtle
points.

1.2.1 Locality

If two events A and B are correlated (p(A,B) 
= p(A)p(B)), then it is natural to try
to find a causal explanation for this correlation. For instance B could be a direct effect
of A (p(B|A) = 1), or vice versa, or A and B could have a direct common cause C
(p(A,B|C) = p(A|C)p(B|C)). The idea that correlated events should be explainable
is known as Reichenbach’s principle:

Reichenbach’s principle If two sets of events � and � are correlated, and
no event in either is a cause of any event in the other, then they have a set
of common causes � , such that conditioning on � eliminates the correlation.
(P (�,�|�) = P (�|�)P (�|�))

According to Einstein’s theory of relativity, no effect should follow its cause sooner
than light could have propagated from the place of the cause to the place of the
effect. Consider an ordinary ‘flat’ region of Minkowski space-time, such as depicted in
Fig. 1.2:

5



1. Introduction

2

causes

effects

1

time

space

3

Figure 1.2 — Figure adapted from Bell 17. Local causality: “Full specification of what happens
in 3 makes events in 2 irrelevant for predictions about 1 in a locally causal theory.” 17

Relativistic causality Events in an ordinary area of Minkowski space-time
(for example region 1 in Fig. 1.2) can have effects only in its forward light cone
(the red region in Fig. 1.2), and causes only in its backward light cone (the blue
region in Fig. 1.2).

This concept ensures that superluminal signalling and communication is impossible.

Combining Reichenbach’s principle and Relativistic causality leads to Bell’s definition
of local causality:

Local causality If two space-like separated sets of events and are correlated,
then there is a set of events in their common Minkowski past light cone such
that conditioning on eliminates the correlation.

Indeed, in Fig. 1.2, events in areas 1 and 2 can be correlated, due to mutual causes
located in the overlapping regions of their backward light cones. However under local
causality, conditioning on the complete specification of events in space-time region 3
should eliminate the correlation between events in areas 1 and 2.

1.2.2 Bell’s test of local causality

Bell’s test involves two boxes labelled A and B (Fig. 1.3). Each box can accept a
binary input (0 or 1) and subsequently delivers a binary output (+1 or −1). In each
trial of the Bell test a random input bit is generated on each side and input to the
respective box. The random input bit triggers the box to produce an output value,
and both input and output bits are recorded. The test concerns correlations between
the output values (labeled x and y for box A and B, respectively) and the input bits
(labelled a and b for A and B respectively) generated within the same trial.

The goal of Bell’s test is now to show that a theory T under investigation, describing
the boxes behaviour, cannot be embedded in a locally causal theory, as described in

6



1.2. Entangled Particles and Bell’s theorem

a

x

b

y

0 or 1a

A

1 or +1x

0 or 1b

B

1 or +1y

time

space

Figure 1.3 — Typical layout of a Bell test of local causality. Two boxes labelled A and B are
located in space-like separated regions of a flat space-time. The Bell tests concerns the joint
probability of the boxes’ outputs x and y conditional on the inputs a and b, and hidden variables
λ defined at a specific time (on a space-like hypersurface) in the past light cones of the areas
containing the boxes.

Sec. 1.2.1. To do so, we need to be able to realize (if only in principle) the test setup
as described above. In particular we need to assume:

(1) Macro-reality Once an output value exits the boxes, it can be recorded as a
real objective value that cannot be changed, is not relative to anything, nor a
probability distribution.

(2) Minkowksi spacetime The boxes A and B can be contained in an ordinary
part of space-time as shown in Fig. 1.3, with relativistic light cones defined by
the speed of light c, a definite arrow of time and without fancy structures like
wormholes or closed time-like loops.

(3) Free choice Freely chosen bits exist that can be recorded and used as input to
the boxes. The choices are free in the sense that they are uncorrelated with any
other inputs to the boxes, known or unknown (in particular, of λ, see equation
1.7).

Under assumption (1), we can write a joint probability distribution for the outcomes‡

p(x, y|a, b, λ), (1.3)

‡Here we are using the short hand notation, where actually p(x, y|a, b, λ) = Prob(X = x, Y =

7



1. Introduction

conditional on the input values, and where λ denotes all additional variables, known
or unknown, needed to describe the boxes’ behaviour, according to theory T. For any
theory T that satisfies local causality defined in Fig. 1.3, and using assumption (2),
we can factorize the joint probability distribution of the outcomes:

p(x, y|a, b, λ) = p(x|a, λ)p(y|b, λ). (1.4)

We then define:

S := 〈x · y〉(0,0) + 〈x · y〉(0,1) + 〈x · y〉(1,0) − 〈x · y〉(1,1) , (1.5)

with
〈x · y〉(a,b) :=

∑
λ

∑
x∈{−1,+1}

∑
y∈{−1,+1}

(xy)p(x, y|a, b, λ)p(λ|a, b). (1.6)

Using assumption (3), we have:

p(λ|a, b) = p(λ). (1.7)

Combining equations (1.4) - (1.7) we find the CHSH form of Bell’s inequality12,19,20:

− 2 ≤ S ≤ 2 (1.8)

for any theory T that satisfies local causality. Dropping any of the assumptions (1)-(3),
does not lead to the bound (1.8).

Considering quantum theory, suppose we take the electron spins from equation
(1.1), and embed one each in the boxes A and B. Suppose the spin in box A is then
measured along direction Z (for input bit a = 0) or X (for a = 1) and the spin in box
B is measured along (−Z − X)/

√
2 (for b = 0) or (−Z + X)/

√
2 (for b = 1). If the

measurement outcomes are used as outputs of the boxes, quantum theory predicts a
value of

S = 2
√
2. (1.9)

This shows that under assumptions (1)-(3), quantum theory cannot be embedded in a
locally causal theory.

1.2.3 Experimental Bell test

The theoretical Bell test naturally extends to an experimental setting. In this case we
conduct a finite number n sequential trials of the test described above, noting down all
the inputs and outcomes. The goal is to bound the probability that the observed data

y|A = a,B = b, {Λi} = {λi}) and A,B and X,Y are discrete binary random variables describing
the inputs and outputs respectively, and Λi is a set of additional random variables. For a rigorous
derivation see for instance Brunner et al.13, or for a specific analysis of the experiment described in
Chapter 5, refer to the online Supplementary Information of Hensen et al.18.
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1.2. Entangled Particles and Bell’s theorem

from the boxes can be explained by assuming some locally causal theory T. Strictly
speaking, under the minimal set of assumptions (1-3), a theory can be experimentally
tested using the Bell test if and only if it specifies at least:

(1b) where and when the output of each box can be accessed/recorded;

(3b) where and when the free choices for the input of each box can be accessed/recorded.

Only if such a specification is made can we bound the boxes A and B in space and
time, so that we can situate them such that the input setting from one side cannot be
communicated to the other side before the output is recorded.

We are especially interested in testing a subset of locally causal theories that we
consider to be in agreement with our classical understanding of the world outside boxes
A and B. For example, theories that predict two independently operating random
number generators produce free choices for the inputs, and that recordings made in,
for example, a desktop computer memory are fixed and real. Such theories are in
agreement with our everyday understanding of the world, yet at the same time, by
embedding the above described electron spins (or other entangled quantum systems)
in boxes A and B, we can hope to falsify the hypothesis that these theories describe
the inner workings of the boxes.

If we require additional assumptions about the inner workings of the boxes, or the
way they might be connected to each other, this results in experimental loopholes,
allowing violation of the Bell inequality, Eq. (1.8), without a violation of local
causality or one of the assumptions (1)-(3). An experiment that needs no further
assumptions to test such classical theories is commonly referred to as a loophole-free
Bell test21–23. Two examples of common loopholes in experimental Bell tests are
the locality loophole 13,24 and the fair-sampling or detection loophole 21,25. The first
does not ensure a separation of A and B far enough to exclude communication of the
input settings before the outputs are recorded. The second allows a third outcome
corresponding to a ‘no-outcome’ event. If trials with a no-outcome events are discarded,
to obtain the correlators 〈x · y〉(a,b), one effectively allows the boxes to select trials
based on the input setting, allowing a local explanation of any observed violation. An
experiment that closes both these loopholes is challenging, because fragile entangled
quantum systems have to be separated far enough to close the locality loophole, while
both the process of separation and the subsequent detection has to be done with high
efficiency to close the detection loophole.

The first reported Bell test experiment was performed in 1972 by Friedman and
Clauser26, using entangled photons from an atomic cascade. They found a violation
of the CHSH Bell inequality by 6 standard deviations. This experiment was open
to both above loopholes, as many photons got lost and the polarisation analyser
settings had to be manually rotated, thus measuring the four correlator terms in
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successive runs. In 1982, Alain Aspect27 used a photonic setup with fast time-varying
polarisation analysers, allowing settings changes while the photons were already flying.
The change of analyser setting on one side was space-like separated from the detection
on the other side, thus convincingly addressing the locality loophole. Although the
settings were chosen by an in principle quasi-periodic process, it seems natural to
assume their functioning is uncorrelated. Subsequent photonic experiments improved
by further restricting locality conditions28–30. The detection loophole was closed
first using non-photonic systems, due to their more efficient detection31–35. Recently,
improvements in entangled photon source and detector technology allowed a Bell
violation free of the detection loophole with photons36,37. These experiments however
could not address the locality loophole.

1.2.4 Device independence

An intuitive link between the Bell test and applications in quantum communication
is provided by Ekert’s protocol for quantum key distribution8: Suppose Alice and
Bob want to establish a shared private key. They respectively operate boxes A and B,
as described in Section 1.2.2. We now add a third possible input setting for box A,
such that we have a ∈ {0, 1, 2}. Using again the entangled spins from equation (1.1)
with the same measurement angles for {a, b} ∈ {0, 1}, Alice now chooses to measure
along the (−Z−X)/

√
2-axis for a = 2, parallel to the measurement done by Bob for

b = 0. Then, using the subset of inputs and outputs corresponding to {a, b} ∈ {0, 1} to
check the Bell inequality Eq. (1.8), we can use the remaining subset (a, b) = (2, 0) to
generate a shared key that is perfectly correlated between A and B, but uncorrelated
to the rest of the world38. Here the violation of the Bell inequality functions to limit
the amount of correlation of the outcomes x, y with observations made by a potential
eavesdropper, given, for instance, the validity of quantum theory.

The power of this idea is that in the above protocol outline, in particular for the
violation of the Bell inequality, we did not need any specific knowledge of the way
the boxes A,B are implemented. Indeed this idea led to the development of quantum
key distribution that does not even need the assumption that quantum theory is
universally correct38, as long as superluminal signalling is impossible.

In this cryptographic perspective of certifying nonlocality, experimental loopholes
in a Bell experiment take on a much more practical form: Any loophole could be
exploited by an adversary to ‘fake’ the Bell test inequality violation39, thereby letting
Alice and Bob believe they share private randomness when in fact they do not.

In absence of experimental loopholes, no assumptions about the ‘cryptographic
devices’ (the boxes A and B in Fig. 1.3) or the powers of an adversary are necessary,
except that they are limited by the impossibility of superluminal signalling. This idea
is called ‘device independence’ and various protocols in quantum communication have
gained a device independent variant40–42.
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1.3 The nitrogen-vacancy centre for quantum technologies
and fundamental tests

All experiments in this thesis are performed with single spins that are associated with
the nitrogen-vacancy (NV) colour defect in diamond. The NV centre has attracted a
lot of interest in experimental quantum physics since the first observation of a single
NV centre in 199743: the defect behaves much like a single ion or small molecule,
but comes “pre-packaged” in a robust solid-state environment that protects the spin
states, while it does not strongly interact with them.

Much pioneering work has been done to uncover the various features of the NV
centre, both on the theory and on the experimental side, for a recent review, see
Gao et al.44, for a more theoretical background see for instance Doherty et al.45.
The NV centre shows photoluminescence under excitation with visible light and is a
stable single photon emitter46. It has an electronic spin that can be initialized and
read out optically, and manipulated with standard magnetic resonance techniques47.
Remarkably, these properties are available even at room temperature. As a result, the
NV centre has been used for experiments in various aspects of quantum science, from
sensitive metrology48–51, studies of single-spin decoherence52,53, to fundamental tests
of quantum mechanics54–56, to name only a few.

Recent critical advances show the potential for NV centres in quantum information
processing: It has been shown that nuclear spins interacting with the NV electronic spin
can be used as qubits57–61, while at the same time the electronic spin’s optical interface
can be used for projective measurements62 and allows spin-photon entanglement63 at
cryogenic temperatures. This opens up the possibility for building local multi-qubit
quantum registers, that can be linked together using photons to form macroscopic
networks for quantum communication64 or even computation65. A cartoon of the
architecture we envision is shown in Fig. 1.1 on page 2.

1.4 Thesis overview

Chapter 2 of this thesis provides a detailed description of the NV centre as well as
the experimental methods used in this thesis. Chapter 3 presents a key experiment
where two electron spins in different diamonds, separated by 3 meters are entangled
using a heralded protocol. This experiment enabled two further experiments, both the
first of its kind, which are presented in the next chapters: In Chapter 4 we present
the first demonstration of unconditional quantum teleportation over human scale
distances, from a nuclear spin qubit in one diamond to the electron spin of the other.
This first demonstration of remote unconditional teleportation establishes the NV
centre as a prime candidate for building quantum networks. Then in Chapter 5, we
scale our setup from 3 meters to 1.3 kilometres, to enable the first loophole-free Bell
test experiment. Such a loophole-free Bell test forms the basis for various proposed
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device-independent quantum communication protocols.
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Chapter 2

Methods

B.J. Hensen

In this chapter we will introduce nature’s own trapped ion system, the Nitrogen-
Vacancy (NV) defect in diamond. We will first present the basic electronic structure
and the defect’s spin and optical properties (Sec. 2.1). In Sec. 2.2 and 2.3 we will
highlight the most important experimental aspects of NV centre control. The toolbox
to initialize, control and read out the NV-spin register quantum state will be introduced
in Sec. 2.4, where we also discuss the challenges to attain short and long term stability
of the setup. Finally, in Sec. 2.5 we summarize the remote entanglement protocol as
the main workhorse in the subsequent chapters of this thesis.
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Figure 2.1 — Crystal and electronic structure of the NV centre (a) The Nitrogen-Vacancy
center defect is formed by a substitutional nitrogen atom (N) and a missing atom (vacancy, V)
at an adjacant position in the diamond lattice. (b) The electron occupation of the molecular
orbitals in the electronic ground state of NV −, following Pauli’s exclusion principle.

2.1 The NV centre in diamond

2.1.1 Defect structure

The Nitrogen Vacancy centre is a point defect in the diamond crystal. It consists of a
substitutional nitrogen atom and a neighbouring vacancy (Fig. 2.1a). In its neutral
charge state, denoted NV 0, the 5 unbound valence electrons of the surrounding nuclei
(3 from the carbons, 2 from the nitrogen), occupy a localized wave-function around
the vacancy. An additional electron can be trapped from the environment, supplied
by for instance nearby charge traps in the crystal, resulting in the negatively charged
state NV −. Here, we work almost exclusively with NV −, re-initializing the charge
state whenever an electron is dynamically lost to the environment.

The electronic wave-function is well approximated by a linear combination of the
available atomic orbitals around the vacancy, for the largest part the hybridized sp3

orbitals of the 3 neighboring carbons and the nitrogen, with small contributions from
next-nearest neighbours (see Doherty et al.1 and references therein). Many properties
of the spin-orbital eigenstates and optical and vibronic transitions can be deduced
from the C3v symmetry of the defect1–4. By constructing linear combinations of the
available atomic orbitals, that transform according to the C3v symmetry, appropriate
single particle molecular orbitals can be found, whose configuration is depicted in
Fig. 2.1b. Given the six-electron occupation of the orbitals, both the ground state and
first excited orbital states (promoting an electron from the a1 orbital to one of the ex,y
orbitals in Fig. 2.1b) have an energy well within the electronic band-gap of diamond,

20



2.1. The NV centre in diamond

resulting in the trapped-ion like properties of the electronic structure. By filling the
available orbitals with six electrons and a similar symmetrization of the 6 particle
wave-function, a good approximation is obtained of the eigenstates of the Hamiltonian
including the nuclear, coulomb, spin-spin and spin-orbit potentials. This results in the
electronic structure shown in Fig. 2.2: the orbital ground state is a spin-triplet, that
couples optically to the first excited orbital doublet, spin-triplet states. A meta-stable
singlet state can be populated from the excited triplet state.

2.1.2 Orbital ground state manifold and hyperfine interactions

In the orbital ground state, with S = 1, the ms = 0 and ms = ±1 states are separated
by the zero-field splitting D ≈ 2.88 GHz, due to spin-spin interactions, while an
external magnetic field lifts the degeneracy between ms = +1 and ms = −1 via the
Zeeman splitting (Fig. 2.2, bottom right). The effective spin Hamiltonian, neglecting
second order spin-orbit interactions, is given by5

HGS,e = DS2
z + γeB · S (2.1)

with S = [Sx, Sy, Sz], Si the spin matrices for a spin-1 system and γe = 2.8 MHz/G
the gyromagnetic ratio of the electron spin. We define our qubit in the ms = 0 (|0〉)
and ms = −1 (|1〉) states (alternatively the ms = +1 state can be used to encode
|1〉). For the experiments in this thesis we work with a typical splitting between the
ms = ±1 states around 100 MHz.

All NV centres have an intrinsic nuclear spin associated with the nitrogen atom of
the defect. The most common isotope is 14N (99.3% abundance) which carries a spin
I = 1. As the quantization axis of the nitrogen spin is aligned with the electron spin,
the combined electron-nuclear spin system is described by the following Hamiltonian:

He,N = HGS,e −QI2Nz
+ γNB · IN −A‖SzINz

−A⊥(SxINx
+ SyINy

), (2.2)

with INi the nitrogen spin matrices, γN = 0.3077 kHz/G the gyromagnetic ratio of the
nitrogen spin, Q = 4.98 MHz the quadrupole splitting and the hyperfine parameters
A‖ = 2.19 MHz and A⊥ ≈ 2.1 MHz5. The experiments reported in this thesis are
performed at magnetic fields where the separation between electron spin levels is large
compared to the energy scale of the flip-flop terms (SxINx and SyINy ). We therefore
take the secular approximation and neglect these terms such that the Hamiltonian
becomes

He,N = HGS,e −QI2Nz
+ γNB · IN −A‖SzINz

, (2.3)

for a magnetic field aligned along the z-axis of the defect.

The parallel component of the hyperfine interaction introduces a splitting of the
electron spin transitions that can be observed in a pulsed electron spin resonance
measurement (Fig. 2.11 on page 32a). The three resonances correspond to the nuclear
spin eigenstates labelled mI = +1, 0,−1. To encode a qubit we define the logical
states as |0〉N : mI = −1 and |1〉N : mI = 0.
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Figure 2.2 — Electronic level structure and optical excitation of NV−. (Left): The ground
state of the NV − centre is the spin-triplet with orbital A2 symmetry. It can be optically excited to
one of the six excited orbital-doublet spin-triplet states, either resonantly, or off-resonantly through
the phonon-sideband (PSB). Relaxation can similarly occur resonantly (into the zero-phonon-line,
ZPL), into the PSB, or via the spin-singlet states. The singlet states mix with the triplet states
through a spin-orbit coupling term. (Centre): Spin-spin and spin-orbit interactions result in the
fine structure of the ground an excited states. The ground state splits into one ms = 0 state
and two degenerate ms = ±1 states. The excited state splits into four levels, two of which
(Ex,y and E1,2) are doubly degenerate. The excited state ms = ±1 levels are equal mixtures of
ms = +1 and ms = −1. The Ex,y states are almost completely of ms = 0 character, except
for a small spin-spin mixing term that mix them with the E1,2 states. Optical selection rules
allow spin-conserving transitions from the ms = 0 state to the Ex,y states, with linearly polarised
light, and transitions from the ms = +1 or ms = −1 ground states to the E1,2 and A1,2 states,
with circularly polarized light. (Top right): To first order, crystal strain affects the electronic
structure in the same manner as an external electric field: the projection along the NV axis shifts
the energy of the whole excited state structure, while the projection along the perpendicular axis
splits the excited states as shown. The ground state is unaffected by off-axis strain to first order.
(Bottom right): The Zeeman splitting induced by a magnetic field along the NV axis is used to
separate the degenerate ms = ±1 levels. For the work in this thesis, a qubit is defined in the
ms = 0 and ms = −1 levels, with a typical magnetic field of 20-40 Gauss.
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2.1.3 Transitions, rates and temperature effects

At low temperature, low strain splitting, the excited state lifetime of the Ex,y excited
states is found to be 12.1 ± 0.2 ns (see e.g. Fig. 5.10 on page 119). Due to the strong
cyclic nature of the ms = 0⇔ Ex,y transitions, this lifetime is expected to be close
to the bare excited state lifetime3,6. Relaxation through the singlet states occurs
predominantly from the excited state ms = ±1 levels6,7. The upper singlet level 1A1

has a short lifetime of about 1 ns8, while the lower levels 1E relax non-radiatively to
the ground state triplet with a lifetime of about 400 ns7,8, with an expected equal
contribution to the ms = 0 and ms = ±1 levels7.

Phonons cannot couple to the electronic spin degree of freedom directly, so require
spin-orbit coupling to cause a spin-flipping mechanism4. Below 4 kelvin, the dominant
role of phonons and local vibronic modes regarding the NV centre’s spin dynamics is
to assist in the non-radiative decay to and from the singlet states9–11. From 4 – 30
kelvin, at low strain, a two-phonon process mixes excited triplet states with the same
spin projection, with a strong T 4 temperature dependence6,9. At higher temperatures,
the excited state orbital doublet 3E interacts with the lattice vibrations much stronger,
and at room temperature the individual excited states are no longer resonantly
addressable10. At low temperature, emission into the ZPL accounts for about 4%
of the emission, at room temperature the relative phonon-sideband contribution is
increased (panel c of Fig. 2.5 on page 26 shows a typical room-temperature spectrum).

2.1.4 The neutral charge state

The NV centre can dynamically switch between the NV 0 and NV − charge states,
through a two-photon absorption process12,13. Much less is known about the electronic
structure of the neutrally charged NV 0. It possess a 575 nm zero-phonon line
transition, but the exact electronic orbital structure of NV 0 is still debated14. In
this thesis the NV 0 optical transitions are used to re-initialize the NV − charge
state12,13. In order to gain some understanding of the NV 0 optical transitions, we
perform photoluminescence excitation spectra of both charge states of a single NV. We
compare the spectra obtained from NV − (which allows extraction of the strain/electric
field components experienced by the NV −) to the ones obtained from NV 0.

In Fig. 2.3, spectra are taken of a single NV as a function of externally applied
electric field. Electric field is applied through a voltage applied to the surface gate
electrodes (see Fig. 2.6 on page 27). Fig. 2.4 shows a quantitative analysis of the
observed transition frequencies from this measurement, as well as measurements
performed without external gate voltages on various other NV’s.

The data in Fig. 2.4b is consistent with a nonzero splitting of about 9 GHz for the
NV 0 optical transitions, for cases where the NV − splitting goes to zero. This splitting
would be surprising for the proposed14 model of a single excited state coupled to two
ground states for NV 0, as the absence of an off-axis electric-field component for NV −
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Figure 2.3 — Photo-luminescence excitation spectra of NV − and NV 0 as a function of
d.c. Stark tuning gate voltage. For each step in gate voltage the following procedure is followed:
(a) the NV − is laser frequency is scanned first, at low power (5 nW, approximately saturation
power). A continuous microwave tone at the ms = 0 ↔ ms = −1 transition is applied during
the scan. NV − is then ionised to NV 0 by doing the same scan in reverse with high power red
(30 nW, data not shown). (b) Then the NV 0 spectrum is recorded, with an excitation power of
0.5 nW. Finally, NV 0 is similarly de-ionised to NV −, by the same scan in reverse (50 nW, data
not shown). Laser frequencies shown are with respect to 470.4 THz (a) and 521.22 THz (b).

(corresponding to zero splitting) is expected to translate to the NV 0 case (as it has
the same symmetry axis)14. We note however that the electric field at the location
of the NV might be different for NV 0 and NV −. Firstly, for the data presented in
Fig. 2.3, it is known that for constant gate voltage the electric field at the NV drifts
over time, likely due to (surface) charge trap population dynamics and screening
effects. Although the laser excitation spectra are recorded subsequently for NV 0 and
NV −, they cannot be taken simultaneously. Secondly, the ionized electron from NV −

might be trapped in the vicinity of the NV, thus causing a different electric field.

The clear difference in slope in Fig. 2.4a between the data obtained for different
NV’s without gate tuning, and those obtained by electric field tuning, could indicate
a different relative NV −/NV 0 sensitivity for electric field compared to crystal strain.

Given an initial NV − strain splitting, one NV − Ex/y and one NV 0 transition
frequency, the slope obtained from gate-voltage scans like in Fig. 2.3 can be used to
recalculate the strain splitting of NV −, for changed NV − and NV 0 frequencies. This
is used for the automated laser frequency tuning described in Sec. 2.4.6.
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Figure 2.4 — Relation of the NV − optical frequencies to NV 0. Solid datapoints are obtained
from photo-luminescence excitation spectra without any external gate voltage applied, for 9
different NV’s in 4 different diamond samples. Purple open data points of NV A, including the
inset, are obtained from the measurement presented in Fig. 2.3. Turquoise open datapoints are
obtained by an identical measurement procedure on another NV. (a) Shown are the average
transition frequencies of NV − versus NV 0. For NV −, we take the average of the Ex and Ey

related transitions, for NV 0 the average of the two observed transitions. Frequencies are with
respect to 470.4 THz (NV −) and 521.22 THz (NV 0). (b) shows instead the splitting between
the mentioned transitions. Red solid lines are linear fits to the solid datapoints, with indicated 1
SE fit errors.

2.2 Device fabrication

Fig. 2.5a shows the typical measurement configuration to detect single NV centres. By
scanning the position of the sample with respect to a confocal microscope setup, we
observe single spots of fluorescence (Fig. 2.5b). Identification as a single NV can be
done by checking its emission spectrum (Fig. 2.5c) using a spectrometer, anti-bunching
of its emission (Fig. 2.5d), and by optically detected electron spin resonance (Fig. 2.10
on page 31).

The experiments in this thesis are all performed on individual NV centres that are
naturally present in high purity type IIa chemical-vapor deposition diamond samples
grown by Element Six Innovation, with a 〈111〉 crystal orientation. When a new
diamond sample is obtained, it goes through a number of fabrication steps:

First, a gold strip-line and marker field for navigation is fabricated on the surface
by electron-beam lithography. About 10-30 single NVs are searched for, in the setup
described in Fig. 2.5. These NV’s are preselected to have a 111 orientation by checking
excitation polarisation dependence. Additionally, for the work in this thesis, NV’s with
a strongly (> 1 MHz coupling) coupled 13C (1% natural abundance) are unwanted,
and are excluded in this step by checking the optically detected electron spin resonance
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Figure 2.5 — Detection of single NV centres Figure from Bernien 15. (a) Confocal microscope
setup. The NV centres are excited by focussing a green (532 nm) excitation laser onto the
sample using a microscope objective (MO). The sample is mounted on a piezo-stage allowing
three-dimensional scans. The emission is spectrally filtered using a dicroic mirror (DM) and via
a mechanically switchable mirror (FM) sent either to a spectrometer or to a beamsplitter (BS)
followed by two APDs in a HBT-configuration. (b) Confocal scan of a bulk diamond sample.
The intensity is plotted as a function of the stage position in x and y. Blue is higher intensity.
(c) Emission spectrum of a single NV centre with the zero phonon line at 637 nm and the
phonon-sideband at higher wavelengths. (d) Second-order autocorrelation function, with τ the
delay between detection events of different detectors. The solid-line is a fit using a three-level
model, including dark counts. The slow decay is associated with the decay from the singlet levels.

spectrum.

Next, a hemispherical Solid Immersion Lens (SIL) is fabricated around the NV
locations found in the previous step. The SILs are fabricated by milling away diamond
in a focussed ion beam. The hemispherical domes allow efficient extraction of the
NV’s fluorescence out of the high index of refraction diamond material, by minimizing
total internal reflection15,16: ideally the NV sits at the centre of the hemisphere,
resulting in light exiting the diamond perpendicular to the surface for the entire
collection numerical aperture. The collection efficiency from each of these structures is
characterized by a count-rate saturation measurement, and the best 5-10 are selected
for further fabrication. Fig. 2.6 shows the typical surface structure of a finished device
and the effect of the SIL.
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Figure 2.6 — Figure from Bernien 15. (a) Electron microscope image of a device. A solid
immersion lens (SIL) is fabricated into the diamond surface (grey) by ion beam milling. Below the
SIL a gold strip line (light grey, RF) is fabricated for magnetic resonance pulses. A DC voltage
can be applied to the gold gate-electrodes on the top, d.c. Stark tuning. (b) Confocal scan of
the SIL with green excitation and detection in the PSB. The enhanced emission of the NV centre
is visible in the middle.

In a final electron beam lithography step, a gold strip is fabricated across the surface
of the diamond, through which we can apply the AC current to drive electron/nuclear
spin oscillations (Sec. 2.4.3). Gold gate-electrodes to apply static electric fields are
also fabricated, allowing tuning of the NV’s optical resonances through the d.c. Stark
effect17.

For the samples used in Chapter 4 and 5, a single layer anti-reflection coating
(aluminium oxide) is additionally fabricated as a top layer to further reduce unwanted
reflections.

2.3 Experimental control setup

Fig. 2.7 shows a schematic representation of the typical hardware setup used for a
single setup. The experimental protocols discussed in this thesis involve conditional
logic, for instance for probabilistic charge and resonance preparation, probabilistic
preparation of nuclear spin states by projective measurement, and feedback in the
teleportation protocol. We therefore implement the experiment control loops on a
fast, programmable controller with DAC- and counter-modules (ADwin Gold II or
ADwin Pro) that is able to trigger experiment sequences on other hardware.

2.4 Initialization, control and readout

The electronic spin can be initialised and read out optically using the standard
tools from atomic physics. In this thesis, we use optical light fields at two different
frequencies for this: a readout (RO) laser, that excites one of the two ms = 0⇔ Ex,y

transitions, and a spin-pumping (SP) laser that excites both ms = ±1 ground states
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Figure 2.7 — Figure adapted from Pfaff 18. Typical measurement control setup schematic.
A PC programs the control loop on a integrated micro-controller (ADwin) and pulse sequences
on an arbitrary waveform generator (AWG; Tektronix AWG 5014). Sequences on the AWG are
triggered from the ADwin, and the AWG notifies the ADwin when sequences are completed.
Both ADwin and AWG generate laser pulses for charge re-pumping (repump), electron spin
pumping (SP), and electron spin readout (RO) via acousto-optical modulators. The AWG also
generates fast optical excitation pulses for coherent optical control on the readout transition via
an electro-optical modulator. Laser frequencies are monitored with a wave meter (Highfinesse
WS6 or WSU), and controlled using DAC modules on the frequency modulation inputs of the
lasers. Microwave pulses are generated by a vector source (Rohde & Schwarz SMB100A). The
AWG controls frequency and timing of these pulses via IQ- and pulse modulation. RF pulses
are synthesised directly in the AWG. Spin manipulation signals are amplified (Amplifier Research
20S1G4 or 40S1G4 for MW, and AR 30W 1000B or Electronic & Innovation 240L for RF) and
combined (Minicircuits) before feeding to the sample. Gate voltages to the sample are controlled
via a home-built DAC module and DC amplifier. Phonon-sideband (PSB) fluorescence is split off
from the zero-phonon line (ZPL) emission using a dichroic mirror (DM) and detected with an
avalanche photodiode (APD). Detection events are registered by both the counting module of
the ADwin and a fast time-tagging module (PicoQuant; TimeHarp 260N or HydraHarp 400).
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Figure 2.8 — Figure adapted from Robledo et al. 19 Initialization by spin pumping. (a) Optical
transitions used to initialize (and readout) the electron spin. We excite transitions with a well-
defined spin character of either ms = 0 (bright red arrows) or ms = ±1 (dark red arrows),
resulting in spin-conserving optical cycling (indicated by bended solid arrows). Dashed arrows
indicate the spin non-conserving decay paths. (b) Observed fluorescence when exciting to the Ex

(A1) states with the spin initially prepared in ms = ±1 (ms = 0). From the exponential fit we
find a lower limit for the initialization fidelities: (99.7± 0.1)% for ms = 0 and (99.2± 0.1)% for
ms = ±1.

to one of the excited states with ms = ±1 character∗, see Fig. 2.8a.

Spin rotations are performed using pulsed electron and nuclear resonance techniques,
by supplying AC current though a gold stripline on the surface of the diamond.

2.4.1 Electron spin initialisation

Spin initialisation is done by simply turning on the SP-laser: if the system starts
in either of the ms = −1 or ms = +1 states, it will be optically excited, until
probabilistically a spin-flip occurs to the ms = 0 ground state. As the SP-laser is not
resonant with any ms = 0 transition, the system will get stuck in this state. Fig. 2.8b
shows an example fluorescence curve for this process, from which we can estimate an
initialisation fidelity. Initialisation into either ms = +1, or ms = −1 is best attained
by a microwave spin rotation from an initialized ms = 0 state, however a mixture of
ms = ±1 can be achieved by spin-pumping with the RO-laser on the ms = 0 transition
until it goes dark (Fig. 2.8b).

∗For small magnetic fields, the excited state line-width is broad enough such that both transitions
from ms = −1 and ms = +1 ground states to a single excited state can be excited with one laser
frequency. At higher magnetic fields, the E1,2 states split with the same magnetic field-factor as the
ms = ±1 ground states, thus allowing a resonance condition with one frequency.
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Figure 2.9 — Figure from Blok 20. Single shot readout. (a) Histograms of the number of
detected photons in the PSB for initial state ms = 0 (blue) and ms = ±1 (red) during a 10 μs
readout on the ms = 0 ⇔ Ex transition, for a strain splitting of 1.9 GHz. (b) Fidelities for
reading out the electron spin state initially prepared in ms = 0 (blue) and ms = ±1 (red) as a
function of readout duration. The mean readout fidelity is plotted in grey. The inset is a zoom of
the region where the optimal mean readout fidelity is reached.

2.4.2 Electron spin readout

Electron spin readout is obtained by collecting photons emitted into the phonon-
sideband, while exciting the cycling ms = 0 ⇔ Ex,y transitions. Detection of 1 or
more photons then indicates the spin state was in the bright ms = 0 state, while if
the system remains dark, we conclude it was not in the ms = 0 state. For a protocol
where we only populate the ms = 0 and ms = −1 states, this is sufficient to read out
the state of the spin-qubit. Fig 2.9a shows the distribution of photon detections for an
initialized spin state. The readout fidelity for the ms = 0 state is limited by the finite
collection efficiency and the (small < 1%) spin-flip probability per optical cycle, that
depends on the NV strain splitting19. The readout fidelity for the ms = ±1 states
is limited by detector dark counts and off-resonant excitation of one of the ms = ±1
transitions. Fig. 2.9b shows the readout fidelities obtained for a low-strain-split NV
embedded in a SIL structure (see Sec. 2.2).

2.4.3 Spin control

The electron spin in the ground state can be manipulated with electron spin reson-
ance techniques. We send an AC current to the stripline on the diamond surface,
generating an oscillating magnetic field at the location of the NV centre. When the
resonance condition is met between the ms = 0 and ms = −1 ground states, we can
drive coherent Rabi- oscillations as shown in Fig. 2.10. Arbitrary rotations can be
obtained by adjusting the length or amplitude of a microwave-pulse. The hyperfine
interaction causes a different electron spin resonance frequency depending on the
nitrogen nuclear spin state, as shown in Fig. 2.11a. This allows for rotation of the
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Figure 2.10 — Figure adapted from De Lange, Blok 20,21. Electron spin manipulation. (a)
Optically detected continuous wave (CW) electron spin resonance measurement. Integrated
counts obtained from CW green excitation, for varying CW microwave frequency. The two
observed dips correspond to the ms = 0 to ms = −1 transition (left) and ms = 0 to ms = +1
transition (right), for a typical axial magnetic field of 29 Gauss. (b) Coherent qubit rotations of
the electron spin are performed by varying the length of a MW pulse resonant with the ms = 0
to ms = −1 transition. Solid line is a sinusoidal fit from which we determine a Rabi frequency of
(7.67± 0.02) MHz.

electron spin conditional on the state of the nitrogen spin, by driving the electron
spin sufficiently weakly such that only one of the three lines is addressed. Conversely,
for an unconditional rotation of the electron spin, the Rabi frequency must be large
enough to rotate all three lines.

When the electron spin is in either ms = ±1, the nitrogen nuclear spin qubit can
be manipulated via magnetic resonance techniques, similar to the electron spin, see
Fig 2.11b. Here, there are two transitions with energy spitting Q+A‖ and Q−A‖
for the mI = 0⇔ mI = −1 and mI = 0⇔ mI = +1 respectively. An unconditional
rotation of the nitrogen spin can be obtained by embedding the nuclear rotation in a
electron spin echo sequence22.

The time-scale of the manipulation scales inversely with the gyromagnetic ratios,
resulting in a typical Rabi frequency of 1-10 MHz for the electron spin rotations, and
a Rabi frequency 5-20 kHz for the nitrogen spin rotation.

2.4.4 Nuclear spin initialisation and readout

By combining rotations of the electron spin conditional on the state of the nuclear
spin (Fig. 2.11a) with electron spin readout, we can read out the state of the nuclear
spin via the electron spin. If the electron readout is non-destructive of the nuclear
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Figure 2.11 — Figure adapted from Blok 20. Manipulation of the nitrogen spin. (a) Pulsed
electron spin resonance measurement of the electron spin ms = 0 to ms = −1 transition. The
three resonances (grey) arise from the hyperfine interaction with the uninitialised nitrogen spin.
By driving the electron sufficiently weakly on one of the three resonance lines (mI = 0,−1
blue,red respectively), the electron spin is rotated conditional on the nitrogen spin state. When
followed by a projective measurement of the electron spin, the nuclear spin can be read out or
initialised by measurement. (b) Coherent qubit rotations of the nitrogen spin are performed
by varying the length of an RF pulse at 7.1 MHz. Solid line is a sinusoidal fit from which we
determine the Rabi frequency (17.07± 0.01) kHz.

spin state populations, this can be done repetitively, which yields a higher readout
fidelity.

To initialize the nuclear spin state, one can swap an initialized electron spin state
to the nitrogen spin state, or, as we do in this thesis, initialize the nuclear spin by
measurement. We use the antisymmetric nature of the electron spin readout, where if
we detect a photon, the electron spin state is projected in the ms = 0 state with very
high fidelity. Combining this with a weak, selective rotation of the electron from the
ms = −1 state conditional on the nuclear spin state, we can in turn probabilistically
initialize the nuclear spin with high fidelity (Fig. 2.11a).

2.4.5 Charge state initialization and spectral diffusion

The NV centre can dynamically switch between the NV 0 and NV − charge states,
through a two-photon absorption process12,13. In this thesis we are only interested in
the NV − charge state due to its ground state spin properties and consider the NV 0

state undesirable. Additionally, the NV centre optical transition frequencies fluctuate
on various time-scales due to changes in the effective strain/electric field that influence
the excited state energy levels. Such fluctuations can arise from (de-)population of
charge traps in the vicinity of the NV centre or on the diamond surface, or drifting
of the d.c. Stark tuning voltage applied to the surface electrodes. Fluctuations on a
short time-scale (<≈ 1 ms) effectively broaden observed transition linewidths (usually
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Figure 2.12 — Verifying the charge state and laser resonances. (a) Schematic of the
experimental sequence to verify the charge state of the NV centre and the laser resonances, as
used in Chapters 3 and 4. The ms = 0 and ms = ±1 ground states are simultaneously excited,
using the RO and SP lasers, while an Avalanche Photo-diode (APD) counts photons emitted into
the PSB. Only when the number of detected counts in a fixed integration time is exceeded do
we proceed to do the experiment. When the number of detected photons is below the threshold
a green laser is applied to prepare the NV− state (repump stage), otherwise the experimental
sequence is initiated. (b) Photon number distribution during the verification stage, conditioned
on the previous CR check being successful.

referred to as spectral diffusion).

We mitigate both the broadening and charge state effects by using a charge and
resonance (CR) check19,23 (Fig. 2.12): we simultaneously excite with the RO-laser
(ms = 0 transition) and SP-laser (ms = ±1 transition). The lasers have a linewidth
much narrower than the life-time limited linewidth of the NV transitions, and powers
are chosen below saturation power. By only starting an experimental run when the
number of photons detected in a short (≈ 50 μs) excitation period exceeds a fixed
threshold value, we can reduce the effective NV − transition linewidth to its life-time
limited value (see panel b of Fig. 3.3 on page 48). Additionally, when little or no
detections occur, we assume the NV to be ionized to NV 0. We then apply a charge
repump pulse to re-initialize the NV − charge state by exciting the NV 0 optical
transition24.

The charge repump can be done either off-resonantly using a strong (≈ 10 μW, as
opposed to typical resonant saturation powers of a few nW), short (10 μs) 532 nm
laser pulse, or resonantly using a much weaker (≈ saturation power), longer (500 μs)
575 nm laser pulse. A disadvantage of using the off-resonant green repump pulse
lies in its effect on the NV centre’s charge environment. Depending on the presence
of nearby charge traps, using a strong repump can result in environmental charge
dynamics on various time-scales, affecting the NV centre’s optical transition stability
and causing additional spectral diffusion, as seen in Fig. 2.13.

33



2. Methods

a

b

0

40 Kcts/s

0

80 Kcts/s

Figure 2.13 — Spectral diffusion effects for resonant and non-resonant charge repumping.
Shown are 500 subsequent photo-luminescence excitation spectra of the ms = 0 ⇔ Ex of NV −,
with a Gaussian fit to the averaged spectrum to the right. In (a), between each scan a strong
non-resonant repump pulse was applied (532 nm, 150 μW, 0.5 s). The fit yields a linewidth of
(130± 4) MHz FWHM. In (b), between each scan a resonant repump was applied by sweeping
over the NV 0 resonance (575 nm, 300 MHz sweep over resonance during 2 s, 50 nW). The fit
yields a linewidth of 71± 1 MHz FWHM. For the non-resonant case (a), in 25 % of the scans
no resonance was observed, for the resonant case (b), 12 %.

Additionally, it is found that the d.c. electric field used for Stark tuning the NV’s
optical frequency, applied using the surface gate electrodes, is altered by strong optical
illumination. The electric field strength along the optical illumination axis can be
enhanced initially, but on the order of seconds, the electric field at the location of the
NV becomes effectively screened. It is speculated that the strong optical illumination
allows nearby charge traps to redistribute their charges according to the applied
electric field. In chapter 3, this effect is mitigated by reversing the d.c.-voltage on a
20 millisecond time-scale. On this time-scale the charges might not have enough time
to redistribute fully, so that by only running the experiment in one of the two electric
field “phases”, we can still use sufficient Stark tuning over long time-scales (however
reducing the start-rate by a factor two).

If no d.c.-Stark tuning is required, the two repump methods can also be compared
on their efficiency of passing the CR-check. The resonant yellow repump pulse can (in
principle) deterministically initialize the charge state, whereas for the non-resonant
case the NV centre only ends up in the NV − state in about 70% of the cases (again
depending on its environment). However, the non-resonant pulse is much shorter, such
that including the charge check duration, it still initializes the charge state much faster.
Nonetheless, the spectral diffusion will cause the resonance check to fail more often,
resulting in a lower CR success rate. Finally, the use of the resonant repump method
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requires additional laser frequency stabilisation as described in Sec. 2.4.6 below: not
only the repump laser itself has to be kept on resonance now, but the absence of the
increased spectral diffusion due to the off-resonant repumping actually requires much
more precise tuning of the two red lasers, to efficiently pass the CR-check.

Finally, for longer, millisecond-length pulse sequences, the time since the last CR-
check increases. In that case charge dynamics on a millisecond time-scale could affect
the fidelity of the performed NV operations. This effect is expected to be enhanced
for the high power off-resonant repump.

2.4.6 Laser stabilization and feedback

Although the CR-check described in the precious section effectively removes spectral
diffusion, slower, second time-scale drifts occur, of either the NV transition frequencies
or the reference to which the lasers are locked (typically a wave-meter). These drifts
exceed the typical spectral diffusion, and can therefore reduce the CR check success
rate, the experimental start-rate and the conditional probability of actually being on
resonance after the CR check passes.

For the experiments in Chapters 3 and 4, these drifts were compensated ‘by hand’:
looking at the average number of counts during the CR check, the frequencies of the
excitation lasers and/or the applied gate voltage would be adjusted every few seconds
to minutes. Although sufficient, this solution is very labour-intensive and potentially
error-prone, considering the typical rates of the experiments involved (one event every
10 minutes to one event every hour for the experiment in Chapter 5), and the typical
hours of experimental operation (day and night).

Feedback control was implemented to automatically counteract the slow drifts. In
the typical two-setup entanglement scenario, we use the RO-laser as the common
reference for both NV’s. The d.c. Stark gate voltage is adapted to match the resonance
condition for the chosen ms = 0 transition. The SP-laser and yellow repump-laser
(for resonant repumping) frequencies must then be changed accordingly. To obtain
an error-signal for the feedback control of the gate voltage, the pre-experiment stage
was altered as shown in Fig. 2.14a. By superimposing a small (≈ 0.1 V) fast (50 μs)
modulation on the static gate voltage, we can correlate the amount of counts obtained
during resonant illumination with the phase of this modulation. By averaging over
about 5 seconds, an error-signal could be obtained to adjust the static gate voltage,
using a standard PID-feedback loop. In this manner we can ‘lock’ the NV to a fixed
laser frequency. A similar method was used to lock the yellow repump-laser to the
NV resonance. In this case the driving frequency of the acousto-optical modulator
(used for amplitude-modulation) the laser was frequency-modulated as well.

Finally, to adapt the SP-laser frequency accordingly, the change of the yellow
repump-laser frequency and the fixed RO-laser frequency was used to calculate the
change in parallel and perpendicular components of the effective electric field (see
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Figure 2.14 — Stabilising d.c.-Stark voltage and laser frequencies by feedback control (a)
Extended version of the CR check shown in Fig. 2.12: During the resonant NV 0 repump phase
(1st block), the yellow laser frequency is modulated and correlated with the emission countrate,
to obtain an error signal for laser frequency stabilisation. Similarly, the gate-electrode voltage is
modulated on top of its static offset voltage, to obtain an error signal (2nd block). After this we
proceed with the standard CR check as described in Sec. 2.4.5. (b) Method used to obtain an
error signal: the modulated signal is correlated with the arrival time of photon detections in the
PSB.

Sec. 2.1.4), from which in turn we can calculate the expected frequency of the chosen
ms = ±1 transition.
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2.5 Remote entanglement generation

To generate an entangled state between the electronic spin states of two NV centres
in different diamond samples, we use photons as the mediating qubits, with a method
known as entanglement swapping25–29. First, the electron spin state of each NV
is entangled with a single photon, emitted by the NV’s. Different protocols allow
entanglement with various degrees of freedom of the photonic state, such as polarisation,
wavelength, spatial or temporal mode. Next, the photons are overlapped on a non-
polarizing beamsplitter. The detection of two photons in the same (different) output
port(s) of the beam-splitter projects the spins on a symmetric (anti-symmetric) joint
state, which in general can be maximally entangled. Such a process is probabilistic,
but the heralding allows in principle unit fidelity overlap with the target state. The
heralding also makes the process insensitive to photon loss, until the photon detection
probability from either side drops to the level of the dark count probability.

2.5.1 Barret and Kok scheme

The particular protocol for entanglement swapping used in Chapters 3, 4 and 5 was
developed by Barret and Kok30. It relies on photonic time-bin encoding for the spin-
photon entanglement, and requires a single optically excited state, with a spin-selective
cycling transition to one of the ground states. The protocol proceeds as follows:

1. Both NV‘s, labelled A and B, are prepared in an equal superposition of the
ground state spin-qubit:

1√
2
(|↑〉A + |↓〉A)⊗

1√
2
(|↑〉B + |↓〉B), (2.4)

where |↑〉 , |↓〉 corresponds to thems = 0 andms = −1 ground states, respectively.

2. A single spin-selective optical excitation pulse, affecting only one of the two
ground state spin levels, say |↑〉, followed by a resonant photon emission, entangles
the spin state of each NV with the presence of a photon. For A:

1√
2
(|↑〉A |1〉A + |↓〉A |0〉A), (2.5)

and similar for B, where |0〉 denotes the vacuum mode of the electromagnetic
field, and |1〉 a single photon Fock state.

3. Both NV’s ground state spin is flipped using a coherent spin-inversion (microwave-
π-pulse):

1√
2
(|↓〉A |1〉A + |↑〉A |0〉A), (2.6)
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4. A second identical excitation pulse and photon emission now entangles the spin
state of each NV with the temporal mode of a photon:

1√
2
(|↓〉A |L〉A + |↑〉A |E〉A), (2.7)

where |E〉 denotes an early single photon emitted in the first round of excitation,
and |L〉 a late photon, emitted in the second round.

5. The photons from each NV are overlapped on a beam-splitter, and if the photons
are otherwise indistinguishable, the detection of one early and one late photon
in the output ports of the beam splitter results in the Bell state

1√
2
(|↑〉A |↓〉B ± |↓〉A |↑〉B) (2.8)

with a +-sign for two photon detections in the same output port of the beam-
splitter, and the −-sing for detection in different output ports.

The protocol has a success probability of 1
2η

2, with η the overall detection probability
of a single photon from each side. It is insensitive to path length variations that
fluctuate slower than the time-separation of the first and second excitation.
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Chapter 3

Heralded entanglement between
solid-state qubits separated by

three metres

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M.S. Blok, L. Robledo, T.H. Taminiau,
M. Markham, D.J. Twitchen, L. Childress and R. Hanson

Quantum entanglement between spatially separated objects is a unique resource for
quantum information processing and communication. Entangled qubits can be used to
establish private information or implement quantum logical gates1,2. Such capabilities
are particularly useful when the entangled qubits are spatially separated3–5, opening
the opportunity to create highly connected quantum networks6 or extend quantum
cryptography to long distances7,8. Here we present two key experiments towards
the realisation of long-distance quantum networks with solid-state quantum registers.
Firstly, we have entangled two electron spin qubits in diamond that are separated
by a three-metre distance. Our robust entangling protocol is based on local creation
of spin-photon entanglement and a subsequent joint measurement of the photons to
herald spin-spin entanglement. The resulting shared Bell-pair between the two nodes
then enables the unconditional teleportation of a single nuclear spin state by combining
a deterministic Bell-state measurement with real-time feed-forward. These results
establish diamond spin qubits as a prime candidate for the realization of quantum
networks for quantum communication and network-based quantum computing1

The results in this chapter have been published in Nature 497, 86 (2013).
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3. Heralded entanglement between remote qubits

3.1 Introduction

A quantum network can be constructed by using entanglement to connect local
processing nodes, each containing a register of well-controlled and long-lived qubits6.
Solids are an attractive platform for such registers, as the use of nano-fabrication and
material design may enable well-controlled and scalable qubit systems9. The potential
impact of quantum networks on science and technology has recently spurred research
efforts towards generating entangled states of distant solid-state qubits10–16.

A prime candidate for a solid-state quantum register is the nitrogen-vacancy (NV)
defect centre in diamond. The NV centre combines a long-lived electronic spin (S=1)
with a robust optical interface, enabling measurement and high-fidelity control of
the spin qubit10,17–19. Furthermore, the NV electron spin can be used to access and
manipulate nearby nuclear spins20–24, thereby forming a multi-qubit register. To
use such registers in a quantum network requires a mechanism to coherently connect
remote NV centres.

Here we demonstrate the generation of entanglement between NV centre spin qubits
in distant setups. We achieve this by combining recently established spin initialisation
and single-shot readout techniques20 with efficient resonant optical detection and
feedback-based control over the optical transitions, all in a single experiment and
executed with high fidelity. These results put solid-state qubits on par with trapped
atomic qubits3–5 as highly promising candidates for implementing quantum networks.

Our experiment makes use of two NV spin qubits located in independent low-
temperature setups separated by 3 metres (Fig. 3.1). We encode the qubit basis states
|↑〉 and |↓〉 in the NV spin sub-levels ms = 0 and ms = −1, respectively. Each qubit
can be independently read out by detecting spin-dependent fluorescence in the NV
phonon side band (non-resonant detection)20. The qubits are individually controlled
with microwave pulses applied to on-chip strip-lines18. Quantum states encoded in the
qubits are extremely long-lived: using dynamical decoupling techniques18 we obtain a
coherence time exceeding 10ms.

3.2 Heralded entanglement

We generate and herald entanglement between these distant qubits by detecting the
resonance fluorescence of the NV centres. The specific entanglement protocol we
employ is based on the proposal of S. Barrett and P. Kok25, and is schematically drawn
in figure 3.2. Both centres NV A and NV B are initially prepared in a superposition
1/
√
2(|↑〉+ |↓〉). Next, each NV centre is excited by a short laser pulse that is resonant

with the |↑〉 to |e〉 transition, where |e〉 is an optically excited state with the same
spin projection as |↑〉. Spontaneous emission locally entangles the qubit and photon
number, leaving each setup in the state 1/

√
2(|↑ 1〉+ |↓ 0〉), where 1 (0) denotes the

presence (absence) of an emitted photon; the joint qubit-photon state of both setups is
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Figure 3.1 — Experimental setup. (a) Each nitrogen vacancy (NV) centre resides in a
synthetic ultra-pure diamond oriented in the 〈111〉 direction. The two diamonds are located
in two independent low-temperature confocal microscope setups separated by 3 metres. The
NV centres can be individually excited resonantly by a red laser and off-resonantly by a green
laser. The emission (dashed arrows) is spectrally separated into an off-resonant part (phonon
side band, PSB) and a resonant part (zero-phonon line, ZPL). The PSB emission is used for
independent single-shot readout of the spin qubits 20. The ZPL photons from the two NV centres
are overlapped on a fiber-coupled beamsplitter. Microwave pulses for spin control are applied
via on-chip microwave strip-lines. An applied magnetic field of 17.5 G splits the ms = ±1 levels
in energy. The optical frequencies of NV B are tuned by a d.c. electric field applied to the
gate electrodes ((b) scanning electron microscope image of a similar device). To enhance the
collection efficiency, solid immersion lenses have been milled around the two NV centres 20.
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Figure 3.2 — Entanglement protocol (details in main text), illustrating the pulse sequence
applied simultaneously to both NV centres. Both NV centres are initially prepared in a superposition
1/

√
2(|↑〉+ |↓〉). A short 2 ns spin-selective resonant laser pulse creates spin-photon entanglement

1/
√
2(|↑ 1〉+ |↓ 0〉). The photons are overlapped on the beamsplitter and detected in the two

output ports. Both spins are then flipped, and the NV centres are excited a second time. The
detection of one photon in each excitation round heralds the entanglement and triggers individual
spin readout.

then described by 1/2(|↑A↑B〉 |1A1B〉+ |↓A↓B〉 |0A0B〉+ |↑A↓B〉 |1A0B〉+ |↓A↑B〉 |0A1B〉).
The two photon modes, A and B, are directed to the input ports of a beamsplitter (see
Fig. 3.1a), so that fluorescence observed in an output port could have originated from
either NV centre. If the photons emitted by the two NV centres are indistinguishable,
detection of precisely one photon on an output port would correspond to measuring the
photon state |1A0B〉±e−iϕ |0A1B〉 (where ϕ is a phase that depends on the optical path
length). Such a detection event would thereby project the qubits onto a maximally
entangled state |ψ〉 = 1/

√
2(|↑A↓B〉 ± e−iϕ |↓A↑B〉).

Any realistic experiment, however, suffers from photon loss and imperfect detector
efficiency; detection of a single photon is thus also consistent with creation of the
state |↑↑〉. To eliminate this possibility, both qubits are flipped and optically excited
for a second time. Since |↑↑〉 is flipped to |↓↓〉, no photons are emitted in the second
round for this state. In contrast, the states |ψ〉 will again yield a single photon.
Detection of a photon in both rounds thus heralds the generation of an entangled
state. The second round not only renders the protocol robust against photon loss, but
it also changes ϕ into a global phase, making the protocol insensitive to the optical
path length difference26 (see Supporting Material). Furthermore, flipping the qubits
provides a refocusing mechanism that counteracts spin dephasing during entanglement
generation. The final state is one of two Bell states |ψ±〉 = 1/

√
2(|↑A↓B〉 ± |↓A↑B〉),

with the sign depending on whether the same detector (+), or different detectors (−)
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clicked in the two rounds.

3.3 Implementation

A key challenge for generating remote entanglement with solid-state qubits is obtaining
a large flux of indistinguishable photons, in part because local strain in the host lattice
can induce large variations in photon frequency. The optical excitation spectra of the
NV centres (Fig. 3.3a) display sharp spin-selective transitions. Here we use the Ey

transition (spin projection ms = 0) in the entangling protocol and for qubit readout;
we use the A1 transition for fast optical pumping into |↑〉20. Due to different strain in
the two diamonds, the frequencies of the Ey transitions differ by 3.5GHz, more than
100 line-widths. By applying a voltage to an on-chip electrode (Fig. 3.1b) we tune the
optical transition frequencies of one centre (NV B) through the d.c. Stark effect13,27

and bring the Ey transitions of the two NV centres into resonance (Fig. 3.3a bottom).

Charge fluctuations near the NV centre also affect the optical frequencies. To
counteract photo-ionisation we need to regularly apply a green laser pulse to re-
pump the NV centre into the desired charge state. This re-pump pulse changes the
local electrostatic environment, leading to jumps of several line-widths in the optical
transition frequencies28. To overcome these effects, we only initiate an experiment if
the number of photons collected during a two-laser probe stage (Fig. 3.3b) exceeds a
threshold, thereby ensuring that the NV centre optical transitions are on resonance with
the lasers (see Sec. 2.4.5, Fig. 2.12). The preparation procedure markedly improves
the observed optical coherence: as the probe threshold is increased, optical Rabi
oscillations persist for longer times (see Fig. 3.3b). For high thresholds, the optical
damping time saturates around the value expected for a lifetime-limited linewidth28,
indicating that the effect of spectral jumps induced by the re-pump laser is strongly
mitigated.

Besides photon indistinguishability, successful execution of the protocol also requires
that the detection probability of resonantly emitted photons exceeds that of scattered
laser photons and of detector dark counts. This is particularly demanding for NV
centres since only about 3% of their emission is in the zero-phonon line and useful for
the protocol. To minimise detection of laser photons, we use both a cross-polarised
excitation-detection scheme (Fig. 3.3c inset) and a detection time filter that exploits
the difference between the length of the laser pulse (2 ns) and the NV centre’s excited
state lifetime (12 ns) (Fig. 3.3c). For a typical detection window used, this reduces the
contribution of scattered laser photons to about 1%. Combined with micro-fabricated
solid-immersion lenses for enhanced collection efficiency (Fig. 3.1b) and spectral
filtering for suppressing non-resonant NV emission, we obtain a detection probability
of a resonant NV photon of about 4× 10−4 per pulse — about 70 times higher than
the sum of background contributions.

The degree of photon indistinguishability and background suppression can be
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Figure 3.3 — Generating and detecting indistinguishable photons. (a) Excitation spectra;
frequency relative to 470.4515THz. By applying a voltage to the gates of NV B the Ey transitions
are tuned into resonance. (b) Dynamical preparation of charge and optical resonance. Top:
Preparation protocol. A 10μs green laser pulse pumps the NV into its negative charge state 20.
The transition frequencies are probed by exciting the Ey and A1 transitions for 60μs. Conditional
on surpassing a certain number of photons detected the experiment is started (pass) or preparation
is repeated (fail). APD, avalanche photodiode. Bottom: Line-narrowing effect of the preparation
shown by the dependence of the decay time of optical Rabi oscillations on preparation threshold.
Dashed line indicates lifetime-limited damping 28. (c) Resonant optical excitation and detection.
The polarisation axis of the detection path is aligned perpendicular to the excitation axis. The
dipole axis of the Ey transition is oriented in between these two axes (inset). Remaining laser
light reflection is time-filtered by defining a photon detection window that starts after the laser
pulse. (d) Two-photon quantum interference using resonant excitation and detection. The g(2)

correlation function is obtained from all coincidence detection events of APD 1 and APD 2
during the entanglement experiment (see Supporting Material). The side-peaks are fit to an

exponential decay; from the fit values, we obtain the expected central peak shape g
(2)
⊥ (red line)

for non-interfering photons. The visibility of the interference is given by (g
(2)
⊥ − g(2))/g

(2)
⊥ .
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obtained directly from the second-order autocorrelation function g(2), which we extract
from our entanglement experiment (see Supporting Material). For fully distinguishable
photons, the value of g(2) would reach 0.5 at zero arrival time difference. A strong
deviation from this behaviour is observed (Fig. 3.3d) due to two-photon quantum
interference29 that, for perfectly indistinguishable photons, would make the central
peak fully vanish. The remaining coincidences are likely caused by (temperature-
dependent) phonon-induced transitions between optically excited states30 in NV A.
The visibility of the two-photon interference observed here — (80±5)% for |dt| < 2.56 ns
— is a significant improvement over previously measured values13,14 and key to the
success of the entangling scheme.

To experimentally generate and detect remote entanglement, we run the following
sequence: First, both NV centres are independently prepared into the correct charge
state and brought into optical resonance according to the scheme in figure 3.3b. Then
we apply the entangling protocol shown in figure 3.2 using a 600 ns delay between the
two optical excitation rounds. We repeat the protocol 300 times before we return to
the resonance preparation step; this number is a compromise between maximising the
attempt rate and minimising the probability of NV centre ionisation. A fast logic
circuit monitors the photon counts in real time and triggers single-shot qubit readout
on each setup whenever entanglement is heralded, i.e. whenever a single photon is
detected in each round of the protocol. The readout projects each qubit onto the
{|↑〉, |↓〉} states (Z-basis), or on the {|↑〉 ± |↓〉, |↑〉 ∓ |↓〉} states (X or −X basis). The
latter two are achieved by first rotating the qubit by π/2 using a microwave pulse
before readout. By correlating the resulting single-qubit readout outcomes we can
verify the generation of the desired entangled states. To obtain reliable estimates of
the two-qubit state probabilities, we correct the raw data with a maximum-likelihood
method for local readout infidelities. These readout errors are known accurately from
regular calibrations performed during the experiment (see Supporting Material).

3.4 Demonstration of remote entanglement

Fig. 3.4 shows the obtained correlations. When both qubits are measured along Z
(readout basis {Z,Z}), the states ψ+ and ψ− (as identified by their different photon
signatures) display strongly anti-correlated readout results (odd parity). The coherence
of the joint qubit state is revealed by measurements performed in rotated bases ({X,X},
{−X,X}), which also exhibit significant correlations. Furthermore, these measurements
allow us to distinguish between states ψ+ and ψ−. For ψ+ the {X,X} ({−X,X}),
outcomes exhibit even (odd) parity, whereas the ψ− state displays the opposite
behaviour, as expected. The observed parities demonstrate that the experiment yields
the two desired entangled states.

We calculate a strict lower bound on the state fidelity by combining the measurement
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Figure 3.4 — Verification of entanglement by spin-spin correlations. Each time that entan-
glement is heralded the spin qubits are individually read out and their results correlated. The
readout bases for NV A and NV B can be rotated by individual microwave control (see text). The
state probabilities are obtained by a maximum-likelihood estimation on the raw readout results
(see 3.6.8). Error bars depict 68% confidence intervals; dashed lines indicate expected results for
perfect state fidelity. Data is obtained from 739 heralding events. For ψ−, the detection window
in each round is set to 38.4 ns, and the maximum absolute detection time difference |δτ | between
the two photons relative to their laser pulses is restricted to 25.6 ns. δτ = τ2 − τ1, where τ1 is
the arrival time of the first photon relative to the first laser pulse and τ2 the arrival time of the
second photon relative to the second laser pulse. For ψ+ the second detection window is set to
19.2 ns with |δτ | < 12.8 ns, in order to reduce the effect of photo-detector after-pulsing.
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results from different bases (Sec. 3.6.5):

F = 〈ψ±|ρ|ψ±〉 ≥ 1/2(P↑↓ + P↓↑ + C)−√
P↑↑P↓↓, (3.1)

where Pij is the probability for the measurement outcome ij in the {Z,Z} basis (i.e.
the diagonal elements of the density matrix ρ) and C is the contrast between odd and
even outcomes in the rotated bases. We find a lower bound of (69± 5)% for ψ− and
(58± 6)% for ψ+, and probabilities of 99.98% and 91.8%, respectively, that the state
fidelity is above the classical limit of 0.5. These values firmly establish that we have
created remote entanglement.

The lower bound on the state fidelity given above takes into account the possible
presence of coherence within the even-parity subspace {|↑↑〉, |↓↓〉}. However, the
protocol selects out states with odd parity and therefore this coherence is expected to
be absent. To compare the results to the expected value and to account for sources of
error, we set the related (square-root) term in Eq. 1 to zero and obtain for the data
in figure 3.4 as best estimate F = (73± 4)% for ψ− and F = (64± 5)% for ψ+.

Several known error sources contribute to the observed fidelity. Most importantly,
imperfect photon indistinguishability reduces the coherence of the state. The fidelity
is further decreased by errors in the microwave pulses (estimated at 3.5%), spin
initialisation (2%), spin decoherence (< 1%) and spin flips during the optical excitation
(1%) (see 3.6.9). Moreover, ψ+ is affected by after-pulsing, whereby detection of a
photon in the first round triggers a fake detector click in the second round. Such
after-pulsing leads to a distortion of the correlations (see for example the increased
probability for |↓↓〉 in figure 3.4) and thereby a reduction in fidelity for ψ+ (see 3.6.9).
Besides these errors that reduce the actual state fidelity, the measured value is also
slightly lowered by a conservative estimation for readout infidelities and by errors in
the final microwave π/2 pulse used for reading out in a rotated basis.

The success probability of the protocol is given by Pψ = 1/2ηAηB. ηi is the overall
detection efficiency of resonant photons from NV i and the factor 1/2 takes into account
cases where the two spins are projected into |↓↓〉 or |↑↑〉, which are filtered out by
their different photon signature. In the current experiment we estimate Pψ ≈ 1.610−7.
The entanglement attempt rate is about 20 kHz, yielding one entanglement event per
10 minutes. This is in good agreement with the 739 entanglement events obtained
over a time of 158 hours.

3.5 Conclusion

Creation of entanglement between distant spin qubits in diamond, as reported here,
opens the door to extending the remarkable properties of NV-based quantum registers
towards applications in quantum information science. A natural path forward is the
incorporation of auxiliary nuclear spin qubits at the local nodes. In the following we
discuss a second experiment where the nitrogen spin initialization and decoherence
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protected gates are combined with an improved entanglement protocol to realize a
deterministic Bell-state measurement which enables teleportation between a single
nuclear spin and a distant electron spin.

3.6 Supplementary Information

3.6.1 Setup

We perform the experiments with two home-built low-temperature confocal micro-
scopes. Each setup features lasers for off-resonant and resonant excitation, cryogenic
piezoelectric positioners and high-efficiency/low background fluorescence detection
paths. The zero-phonon line (ZPL) detection paths of both setups lead to the common
beam splitter and photon detectors used for the entanglement generation. Each
setup has an independent microwave (MW) source (Rohde & Schwarz SMB100A)
and MW amplifier (Amplifier Research 20S1G4 and AR 40S1G4 for setups A and B,
respectively) to drive the NV centre electron spins.

Sample A is mounted on a XYZ stepper/scanner piezo stack (Attocube) in a Janis
ST-500 flow cryostat and kept at T ≈ 8K. Sample B is mounted on a XYZ stepper
(Attocube) inside a custom-built Cryovac bath cryostat with optical access and kept
at a temperature of T ≈ 4K.

Off resonant green excitation is provided for each of the setups by 532 nm lasers
(Spectra Physics Millenia Pro and Laser 2000 Cobalt Samba for setups A and B,
respectively). Two tuneable 637 nm lasers (New Focus Velocity) for independent
resonant excitation are used for optical spin-pumping. For the resonant excitation
pulses used to generate the entanglement both setups share a tuneable continuous
wave 637 nm laser (Sirah Matisse DS). Its output is sequentially fed through an
acousto-optic modulator (AOM; Crystal Technologies) and an electro-optic modulator
(EOM; Jenoptik). After passing through the AOM & EOM, the beam is split using
a 50/50 beam splitter, and a 30 cm adjustable delay line is inserted in one arm for
fine-tuning the temporal overlap of the excitation.

The photon emission of each NV is split into a ZPL part and an off-resonant phonon
sideband (PSB) part by a dichroic long-pass filter (Semrock LPD01-633RS). The
PSB emission is independently detected for each setup by avalanche photo-diodes
(APDs; Perkin-Elmer SPCM). The ZPL emission is further filtered by a second dichroic
filter (to remove green excitation light) and a tuneable band pass filter (Semrock
TBP-700B). After filtering resonant excitation light by cross-polarisation rejection
the ZPL emission of NVs A and B is coupled into the input ports of a fibre-coupled
beam splitter (Evanescent Optics) by polarisation-maintaining fibres. The photons
leaving the output ports of the beam splitter are detected by fibre-coupled avalanche
photo-diodes (Picoquant Tau-SPAD) and time-tagged by a Picoquant Hydraharp 400
system.
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3.6.2 Rejection of resonant excitation light

The experimental protocol requires the resonant excitation of a single optical transition
and the detection of indistinguishable resonant photons from spontaneous emission
of this transition. We use polarisation rejection and time-filtering to filter residual
resonant excitation light — stemming from reflections from optical elements and the
sample surface — from the signal.

The excitation laser is linearly polarised and rotated using a half-wave-plate (HWP)
to a non-zero angle ϕ with respect to the (linear) dipole of the |↑〉 ↔ |Ey〉 transition
it excites (Fig. 3.5). In the detection path, the combination of a half-wave plate and
polariser sets a detection axis with an angle θ in the opposite direction with respect
to the NV transition dipole. A further quarter-wave-plate (QWP) corrects for circular
polarisation components of the signal that are induced by optical elements in the
detection path. We find the optimum in laser-rejection, NV excitation efficiency and
NV collection efficiency by varying the angles ϕ, θ while keeping ϕ+ θ = 90◦.

As can be seen in Fig. 3.12, reflections of the two-nanosecond excitation pulse can
be clearly distinguished from the exponentially decaying NV centre emission. In this
manner laser reflections that are not removed by the polarisation rejection can be
removed by time-filtering.

|Ey〉
|Ex〉

|b〉
θ

λ/2

ZPL

PSB

detection axis

NV frame

excitation polarization

λ/2
λ/4

ϕ

(a) (b)

pol.

pol.

Figure 3.5 —Resonant detection and excitation. a, Working principle of cross-polarisation
rejection. b, Optical setup. See text for details.

3.6.3 Experimental control

For the experiment to be feasible, a high repetition rate of the entanglement generation
sequence is crucial, because the success probability per shot is small, Ps = 1/2×ηAηB ≈
10−7. We achieve a reasonable repetition rate by employing a conditional protocol as

53



3. Heralded entanglement between remote qubits

follows (Fig. 3.6): We first ensure that both NV centres are in the negative charge
state and on resonance. To this end we independently re-set the charge and resonance
state of the two NVs with green laser pulses until the resonant excitation lasers are on
resonance31,32. After this preparation we run the spin-preparation and entanglement
generation sequence. In case of successful generation of entanglement we read out both
spins in a single shot and return to the charge and resonance (CR) check. Otherwise,
we repeat spin-preparation and entanglement generation. After 300 unsuccessful
entanglement attempts we start over with the CR check. The success probabilities for
passing the CR check, PCR ≈ 2%, and for successfully generating entanglement let
us predict an entanglement generation rate of ∼ 1/10minutes. For comparison, an
unconditional protocol in which charge/resonance and entanglement generation are
only verified in post-processing would yield an entanglement rate of only ∼ 1/50 hours.

charge initialisation 
and resonance check

(ADWIN 2x)

entanglement 
protocol

(AWG)

70 μs 11 μs

spin readout
(ADWIN 2x)

fail

success success

60 μs

failfailed 300 x

monitor
photons
(CPLD)+

P ≈ 2% P ≈ 1E-7

Figure 3.6 —The conditional sequence to implement the entanglement protocol. Two program-
mable micro-controllers with integrated DAC- and counter modules (ADwin 2x) independently
initialise each NV centre and perform the charge-resonance check described in the main text. If
both checks pass, a trigger is sent to the Arbitrary Waveform Generator (AWG) that executes the
entanglement protocol. The protocol is run up to 300 times until it is successful. A successful
attempt is recognised by a logic device (CPLD) that looks for a success-signature in the stream
of photon clicks produced, and sends a halt trigger to the AWG when it does. The readout is
then performed by the ADwins, after which the sequence starts over.

Conditional operation is implemented in the following manner: The CR check
and readout is done independently for the two setups by two programmable micro-
controllers with DAC- and counter modules (Adwin Gold II and Adwin Pro II for
setup A and B, respectively). Once both CR checks pass, a start trigger is sent to the
Arbitrary Waveform Generator (Tektronix AWG 5014C) that sequentially executes
the entanglement protocol up to 300 times. For each round, the photon clicks are
recorded and time-tagged by a Picoquant Hydraharp 400 system. In addition, the
photon clicks are also monitored in real time by a programmable logic device (CPLD;
Altera Max V development kit) that time-filters the signal and recognises a successful
entanglement event; if a success occurs, a stop trigger is sent to the AWG within
50 ns to prevent it from running the next entanglement cycle. Furthermore, the logic
device triggers both ADwin micro controllers to start their readout sequence. Further
(more selective) time filtering is done in post-processing for the successful events, by
combining the time-tagged data and spin readout data.
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3.6.4 Optical Rabi oscillations

On resonance (i.e. in the absence of quasi-static spectral diffusion), the exponential
damping time τrabi of the Rabi oscillations is determined by the pure optical dephasing
time T ∗,opt

2 via33

1

τrabi
=

3

4T1
+

1

2T ∗,opt
2

, (3.2)

where T1 is the NV centre optical lifetime (about 12 ns).

As can be seen in Fig. 2b in the main text, and Fig. 3.7, τrabi saturates to the
lifetime-limited value for high thresholds. Similar saturation behaviour is observed for
different optical Rabi frequencies.
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Figure 3.7 —Line-narrowing effect of the dynamical initialization of charge and resonance for
NV B, exemplified by the dependence of the decay time of optical Rabi oscillations on preparation
threshold. See Fig. 2b in the main text for details of the pulse sequence used.

3.6.5 Fidelity measure

We want to estimate the fidelity of the generated two-spin state |ψ〉 with respect to
the ideal Bell state. We take the example of the Bell state Ψ+:

∣∣Ψ+
〉
= (|↑〉A |↓〉B + |↓〉A |↑〉B)/

√
2 ≡ (|↑↓〉+ |↓↑〉)/

√
2, (3.3)

where |↑〉 and |↓〉 denote the ms = 0 and ms = −1 spin sub-levels of the NV centre
ground state and subscripts A, B indicate the two NV centres used. The density
matrix for this state is

ρΨ+ =
∣∣Ψ+

〉 〈
Ψ+

∣∣ = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎟⎠ . (3.4)
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The fidelity of the state |Ψ+〉 with density matrix ρ, for both spins in the z-basis, is
therefore

F =
〈
Ψ+

∣∣ ρ ∣∣Ψ+
〉
=

1

2
(ρ22 + ρ33 +�(ρ23) +�(ρ32)) = 1

2
(ρ22 + ρ33 + 2�(ρ23)). (3.5)

The term coming from the diagonal elements, ρ22 + ρ33, is given by the fraction
of spin-readouts in which the outcomes from NVs A and B are anti-correlated. To
estimate the off-diagonal terms we measure both spins in the X-basis by applying
π/2-rotations around y, yielding the density matrix

ρ̃ =
(√

Y ⊗
√
Y
)
ρ
(√

Y
† ⊗

√
Y

†)
, (3.6)

where the operator Y describes a π-rotation around the y-axis,
√
Y = e−

i
h̄Syπ/2, (3.7)

where Sy is the y-component of the spin- 12 operator. The contrast between measured
correlations and anti-correlations in this basis is

ρ̃11 + ρ̃44 − ρ̃22 − ρ̃33 = 2�(ρ23) + 2�(ρ14). (3.8)

It follows from the definition of the density matrix that the absolute of �(ρ14) is
bounded by

| �(ρ14) |≤ √ρ11ρ44, (3.9)

and therefore
2�(ρ23) ≥ ρ̃11 + ρ̃44 − ρ̃22 − ρ̃33 − 2

√
ρ11ρ44. (3.10)

In terms of measured quantities in two bases, the fidelity has thus a strict lower bound
of34

F ≥ 1

2
(ρ22 + ρ33 + ρ̃11 + ρ̃44 − ρ̃22 − ρ̃33 − 2

√
ρ11ρ44) . (3.11)

The treatment for the Bell state |Ψ−〉 = (|↑↓〉 − |↓↑〉)/√2 and for rotations around
other axes is analogous. For the best estimate of the fidelity as mentioned in the main
text, the term

√
ρ11ρ44 is set to zero in the inequality above. To obtain coherence

within the even-parity subspace, several errors are required to occur within the same
entanglement attempt (such as two dark counts of the detector while not exciting the
NV centres with the laser). The probability of such a string of events happening is
negligible.

3.6.6 Spin readout

We perform single shot readout (SSRO) of the NV spin states by spin-resolved optical
excitation31. The fidelity for reading out |↑〉 correctly is given by the probability with
which at least one photon is detected when |↑〉 is prepared:

F↑ = p(≥ 1| ↑). (3.12)

56



3.6. Supplementary Information

Conversely,

F↓ = p(0| ↓), (3.13)

after preparation of |↓〉. The mean fidelity for readout of an unknown spin-state is
therefore FSSRO = (F↑ + F↓)/2.

Infidelities are due to photon losses and ‘incorrectly’ obtained photons (e.g., due to
off-resonant excitation or detector dark counts), leading to wrong assignment of the
spin-state. The readout result of the two-spin-state

|ψ〉 = c↑↑ |↑↑〉+ c↑↓ |↑↓〉+ c↓↑ |↓↑〉+ c↓↓ |↓↓〉 (3.14)

is therefore

R =

⎛
⎜⎜⎝

p↑↑
p↑↓
p↓↑
p↓↓

⎞
⎟⎟⎠ = E

⎛
⎜⎜⎝
|c↑↑|2
|c↑↓|2
|c↓↑|2
|c↓↓|2

⎞
⎟⎟⎠ , (3.15)

where pij is the probability for measurement outcome i, j ∈ {↑, ↓}, and the induced
error is described by E = EA ⊗EB, where EA,B describe descirbe the independent
readout errors on both NV’s.

3.6.7 Single-shot readout characterisation

To obtain a characterisation of the electron SSRO we perform a calibration31 every
three hours during the entanglement measurements (Fig. 3.8). We use the statistical
mean and standard deviation of the fidelities from all calibration measurements as
values and uncertainties for FA

↑ , FA
↓ , FB

↓ and FB
↑ as required for state estimation.

For the calibration measurements we take into account imperfect spin-initialisation
due to incomplete optical spin pumping31. Measuring the probability pinit↑ (pinit↓ ) that
the initialisation into |↑〉 (|↓〉) is successful, the readout fidelities then become

F↑ =
1− pinit↑ − p(0| ↑init) + pinit↑ p(0| ↑init)− pinit↓ p(≥ 1| ↓init)

p(0| ↑init) + p(≥ 1| ↓init)− 1
, (3.16)

F↓ =
1− pinit↓ − p(≥ 1| ↓init)− pinit↑ p(0| ↑init) + pinit↓ p(≥ 1| ↓init)

p(0| ↑init) + p(≥ 1| ↓init)− 1
. (3.17)

p(0| ↑init) (p(≥ 1| ↓init)) are the probabilities to measure 0 (≥ 1) photons during the
calibration after imperfect initialisation into |↑〉 (|↓〉). From independent initialisation

measurements presented in Fig. 3.11 above, we estimate pinit,A↑ = (99.5 ± 0.1)%,

pinit,B↑ = (98.3 ± 0.6)%, pinit,A↓ = (99.7 ± 0.2)%, and pinit,B↓ = (99.6 ± 0.3)%. The
results of the calibration measurements, shown in Fig. 3.8, include this analysis.
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Figure 3.8 —Readout characterisation for both NVs. Imperfect spin-preparation before calibration
measurements are taken into account. Histograms and means (red) of the SSRO fidelities, for both
NVs, A and B, and both spin states, ms = 0 and ms = ±1, measured during all entanglement
measurements.

3.6.8 Maximum likelihood estimate of the state probabilities

To estimate the eigenstate measurement populations |cij |2 from a number of raw
events nij in which outcome i has been obtained for NV A and outcome j for NV B,
we perform a maximum likelihood estimation.

The raw events are distributed according to a multinomial distribution f(nij) with
parameters p↑↑, p↑↓, p↓↑, and p↓↓ = 1 − p↑↑ − p↑↓ − p↓↑, the probabilities for each
possible outcome, that are in turn a function of the state probabilities |cij |2, as defined
from Eq. (3.15) above.

The likelihood function for the probabilities, parametrized by the measurement
outcomes n↑↑, n↑↓, n↓↑, n↓↓, and n = n↑↑ + n↑↓ + n↓↑ + n↓↓, is therefore

L [
pij(E, |cij |2)

]
=

n!

n↑↑!n↑↓!n↓↑!n↓↓!
p
n↑↑
↑↑ p

n↑↓
↑↓ p

n↓↑
↓↑ p

n↓↓
↓↓ . (3.18)

The values |cij |2 that maximise the likelihood are the desired populations. We verify
that the found maxima are also global maxima by sampling through the parameter
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space numerically.

From the Likelihood function we also obtain Bayesian confidence intervals35 (or
credible intervals) by integration. We assume a uniform prior on the intervals pij ∈
(0, 1). The error bars in Fig. 3.9 and Fig. 3 in the main text correspond to 68%
confidence intervals of the marginal probability distributions obtained from integrating
over the two other probabilities. We note that the uncertainty originating form
the uncertainty in the SSRO fidelities FA,B

↑,↓ is negligible compared to the statistical
uncertainty.
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Figure 3.9 —Raw events and MLE of the state populations |cij |2, for both prepared states
Ψ−,Ψ+, and all three measurement bases Z,Z; X,X; and -X,X as described in the main text.
Each of the six subplots represents an independent MLE. We note that the MLE for the ZZ-basis
measurement of Ψ− lies on the boundary of the physical space.

Maximum likelihood estimate of the fidelity

From the likelihood for a set of probabilities pZ,Zij (for both spins measured in the

Z-basis), pX,X
ij (both spins measured in the X-basis) and p−X,X

ij (spins measured in the
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X and −X-basis, respectively), the likelihood for any value of F can be obtained,

L(F) =
∫
F

⎛
⎝∏

i,j

dpZ,Zij dpX,X
ij dp−X,X

ij

⎞
⎠L(pZ,Zij )L(pX,X

ij )L(p−X,X
ij ), (3.19)

where the integration is taken over a constant value of FLB or F . The expression
for FLB is given in Eq. (3.11); for our best estimate for the fidelity, F , we set the
square-root term in this expression to zero.

We perform this integration numerically (Fig. 3.10) for a set of values for FLB and
F . Because of the finite resolution of the numerical calculations, we fit the resulting
distribution with a normalised Gaussian (free parameters are only the mean and the
standard deviation) to obtain the best value and the 68% confidence interval, from the
standard deviation of the Gaussian fit. Fig. 3.10 shows that this procedure is justified
for our results.
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Fidelity
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(
)
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LB =0.69 ±0.05

Figure 3.10 —Maximum likelihood estimation for the state fidelity. We plot the likelihood density
for resulting fidelities F and FLB for values spaced by 0.02. Thick lines are gaussian fits from
which the means and standard deviations are obtained. Here we show the resulting distribution
for Ψ−, with a length of both detection windows of 38.4 ns, and a maximal window for |δτ | of
25.6 ns.

3.6.9 Error estimates

Spin state initialization

We initialise the electron spin of each NV in the ms = 0 ground state by optical
spin pumping on the |ms = ±1〉 ↔ |A1〉 transitions. The residual population in the
ms = ±1 states can be estimated from the fluorescence time-trace obtained during
the pumping (Fig. 3.11). With the initial fluorescence amplitude A and the residual
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fluorescence level y0, an upper bound for the remaining population in ms = ±1 is
given by (y0 − ybg)/(A+ y0 − ybg), where ybg is the calibrated background level31.

The fluorescence time-trace shows a clear double exponential behaviour with a fast
component, on the order of a hundred nanoseconds, and a slower component on the
order of microseconds. The fast timescale indicates a fast transition to a dark state
that we attribute to the meta-stable singlet state.
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Figure 3.11 —Fluorescence time-traces during spin pumping on the |ms = ±1〉 ↔ |A1〉 trans-
itions for a, NV A and b, NV B. The laser power is the same as in the entanglement protocol
and corresponds to near saturated driving. Insets show the curve for the |ms = 0〉 ↔ |Ey〉
transition (used for single-shot readout characterisation). The curves are fitted with a single-(light
line) and double-(dark line) exponential decay with vertical offset. As can be seen the single
exponential decay does not accurately describe the fluorescence for short time scales. From the
double-exponential fits we obtain a total initial amplitude A of (89± 2) kHz and a offset y0 of
(0.90± 0.03) kHz for NV A, and for NV B an amplitude (62± 1) kHz and offset (1.00± 0.02) kHz.
Background ybg for NV A,B is 350 Hz and 80 Hz respectively. From this we calculate an
initialisation error of (0.61± 0.05)% for NV A and (1.46± 0.05)% for NV B.

Spin-flips in the excited state manifold

During the two optical excitations in the entanglement protocol, a spin flip can occur
due to spin-spin interactions in the excited state manifold. We can obtain an estimate
of the probability of a spin-flip in the excited state, from the fluorescence time-trace
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of the used Ey transition, given in the insets of Fig. 3.11. Since this time-trace
corresponds to driving near saturation, we can extract both the average number of
photons detected 〈ndetected〉 = A1t1 +A2t2, and the detection efficiency η = 2A1+A2

Γ .
Here, A1, t1, A1, t2 are the fit parameters obtained from the double exponential fit of
the data and Γ is the NV optical lifetime. From this we can calculate the average
number of optical cycles 〈n〉 before a spin-flip occurs:

〈n〉 = 〈ndetected〉
η

, (3.20)

and finally, an estimate for the spin-flip probability per cycle pflip = 1
〈n〉 of 0.46%±

0.01% (0.53%± 0.01%) for NV A (NV B). We note that pflip corresponds to a crude
estimate for the combined probability of a direct spin-flip due to spin mixing and a
transition into the meta-stable single state.

Microwave Pulse Errors

The fidelity of the microwave (MW) π and π/2 pulses is limited by the static magnetic
field applied and the hyperfine interaction with the NV host nitrogen nuclear spin.
Because the nitrogen spin is not initialized, the MW pulses are randomly either on
resonance or detuned by the hyperfine splitting of the 14N(2.2MHz), depending on
the state of the nitrogen spin. The error due to this detuning decreases with higher
Rabi frequency. In the applied static magnetic field of 17.5 G, the ms = +1 transition
is 98 MHz detuned from the ms = −1 transition. Therefore pulses with too high Rabi
frequency will populate the ms = +1 level. We drive Rabi oscillations for NV A of
10 MHz, and 8.6 MHz for NV B. For NV B we apply CORPSE pulses36 to reduce the
effects of the detuning and to limit the population of the ms = +1 level. For NV A
we apply conventional pulses to avoid heating of the sample. We simulate the effect of
the two errors on the combined state of the two NVs by numerically solving a three
level driven system for the pulses used for each NV and calculating the 9× 9 density
matrix of the joint state. From this simulation we expect to reduce the fidelity of our
final Bell State to 96.5% due to pulse errors. From the same simulation we find that
the population of the ms = +1 state is less than 0.4% at the end of the protocol. The
pulse simulations agree with independently measured π pulse contrasts for both NVs.

Spin Coherence and Dynamical Decoupling

The main source of decoherence of the NV electron spins is the interaction with a spin
bath of 13C nuclear spins (S = 1/2). We measure a free induction decay time T ∗

2 of
(3.07± 0.06) μs for NV A and (0.96± 0.03) μs for NV B. The spin echo of the electron
spins periodically collapses and revives due to entanglement and disentanglement with
the surrounding 13C spins precessing in the external field37. The revival amplitudes
decay with a coherence time T2 = 687μs (NV B).
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For the dynamical decoupling we use a XY16 sequence38 and choose the inter pulse
delay to be twice the Larmor period of the 13C spins, thus measuring always the
amplitude of the revivals. When applying more than 16 pulses, the pulse errors due
to off-resonant driving of the ms = +1 level become significant. To circumvent this
limitation we initialize the 14N nuclear spin by a projective measurement31. This
allows for a lower Rabi frequency (1.6 MHz) and therefore suppresses off-resonant
driving of the ms = +1 level.

Residual laser photons

After polarization rejection and time-filtering of the reflected laser photons there is still
a finite probability of detecting a laser photon. Fig. 3.12 shows the combined count
histogram during the first detection window on one APD, as well as the histogram
counting only laser reflections, measured under similar conditions. With the chosen
detection window settings there remains a ∼ 1% probability that a detected photon
comes from the laser instead of from either NV. Counting the possible two click events
(NV+NV, NV+laser, laser+NV, laser+laser), this yields a 2% probability for a fake
heralding event. Assuming that fake heralding events actually correspond to totally
mixed states in the ms = 0, ms = −1 subspace with F = 1/4, this yields a state
infidelity of 1.5%.

Detector dark counts

Our detectors have been selected for low dark counts, with an average dark count rate
of less than 25 Hz. Taking into account the two detection windows and the probability
of detecting a NV photon, we estimate a relative probability of 1.3% for detecting a
dark count. This yields a state infidelity of 2%.

Off-resonant excitation

The 2 ns optical π pulses applied, have a small probability of exciting an off-resonant
excited state transition. From Fig. 2a in the main text it can be seen that the nearest
transition corresponding to a ms = −1 spin is detuned by ∼ 5GHz. We estimate
the off-resonant excitation by simulating a 4-level driven system master equation
in the Born-Markov approximation. Starting with an initial superposition of two
ground states corresponding to the ms = 0 ms = −1 levels, and two excited states
corresponding to the resonantly driven ms = 0 excited state level and the nearest off
resonant ms = ±1 level, we find a ∼ 1% probability to excite the ms = −1 state.

APD After-pulsing

With the APDs used in the experiment we observe after-pulsing, fake events that are
triggered some time after the actual registration of a photon. In our entanglement
scheme this can lead to fake heralding events: if a photon is detected in the detection
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Figure 3.12 —To estimate the remaining laser photons in the time filtered signal we compare a
time trace of the combined laser reflections and NV emission (light), and a time-trace showing
only the laser pulse and reflections (dark). The NV data shown corresponds to the summed
histogram of a single detector of the first excitation pulse of the whole entanglement dataset.
The laser-only data was taken overnight under identical conditions, but with the excitation laser
far detuned from the NV resonances. For both traces background is subtracted. The dashed line
marks the start of the chosen detection window.

window following the first laser pulse, there is a finite chance of obtaining a click on
the same detector during the second detection not coming from a photon. Such events
lower the fidelity of the produced entanglement.

We perform a control experiment to estimate the chance to detect such fake heralding
events (Fig. 3.13). With the excitation laser strongly detuned from resonance we run
the entanglement sequence, ideally (i.e., for no after-pulsing occurring) only expecting
clicks from the laser reflection and background/dark counts. Identified after-pulsing
events triggered by laser pulses are shown in Fig. 3.13a. To identify these events
we assume that a click preceded by a click during a laser pulse is due to after-
pulsing, neglecting the possibility of accidental double-events due to background/dark
counts. This analysis implicitly includes erroneous entanglement heralding due to
background/dark counts.

We obtain an estimate for the ratio of probabilities for real and fake heralding of
Ψ+ generation as follows. We compare the probability for detecting an NV photon
after excitation by the second laser pulse in the entanglement measurement and the
probability for registering during the same window an after-pulsing event triggered by
the first laser pulse (Fig. 3.13b). For fake heralding events the after-pulsing event is
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triggered by an NV photon. Therefore, after-pulsing events are expected later than
those triggered by the laser. We neglect this time-difference because the probability
for an after-pulsing event during the detection window is almost constant.
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Figure 3.13 —After-pulsing. a, After-pulsing events following laser pulses, measured on one APD
after the beam splitter. We identify detection events (green histogram curves) that are registered
after a laser photon from the first and second laser pulse, respectively. The black curve shows
events that are not preceded by another detection event (laser photons and dark/background
counts). Dashed lines mark the range used to identify entanglement events. The high probability
for a click obtained during the second laser pulse after obtaining a click during the second (data
point encircled red) is not due to after-pulsing but due to the comparatively high probability
of detecting a photon from both pulses in the same run. b, Detection probabilities for NV
photons and after-pulsing events. The green curve shows the probability to detect in the second
detection window an after-pulsing event triggered by the first laser pulse. The grey curve shows
for comparison the typical probability to detect an NV photon.

For the chosen detection window of 19.2 ns after the second excitation we find an
8.8% relative probability to measure an afterpulsing event instead of an NV photon.
Assuming that fake heralding events actually correspond to totally mixed states in
the ms = 0, ms = −1 subspace with F = 1/4, this leads to an infidelity of 6.5%. Note
that this error only applies for the Ψ+ state.

Dephasing

The largest contribution to the state infidelity is dephasing of the produced Bell state
due to distinguishability of the photons emitted by the NV centres. An estimate for
the distinguishability of the photons can be gained from the two-photon interference
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presented in figure 2d of the main text. The interference shows a reduced visibility
due to distinguishability of the photons. As explained in more detail in the section on
phase evolution below, the visibility V gives an upper bound for the Bell state fidelity:
F ≤ 1/2 + 1/2V .

The photon distinguishability is likely caused by phonon-induced transitions between
optically excited states, mainly in NV A, which is operated at a higher temperature.
Another contribution is the resonance check performed before the entanglement
protocol to ensure both NV’s are on resonance: to minimize the time necessary for
the resonance check, the NV’s are excited with a laser power near saturation. This
can however decrease the frequency-selectivity of the resonance check, as the lines will
be power broadened.

3.6.10 TPQI signature

As a measure of the indistinguishability of the photons from NV A and B we evaluate
the difference between the measured g(2)(dt) function and the expected function

g
(2)
⊥ (dt) that would be obtained in the case of perfectly distinguishable photons. We
define the visibility as

V (dt) =
g
(2)
⊥ (dt)− g(2)(dt)

g
(2)
⊥ (dt)

. (3.21)

g(2)(dt) is proportional to the histogram of all coincidences obtained between photons
detected on the two APDs after the beam splitter, where dt = t1− t2, and t1 (t2) is the
arrival time of the photon detected by APD 1 (2). We only take into account photons
obtained during the same entanglement attempt. Because our pulse scheme consists
of two optical π pulses, coincidence peaks only occur around dt = 0ns (two photons
detected after the same excitation pulse) and dt = ±600 ns (one photon detected after
each excitation pulse).

To determine g
(2)
⊥ (dt) from our measurement we can use the coincidence count-rates

of the side peaks around dt = ±600 ns. The shape of g
(2)
⊥ (dt) for two single emitters

in our pulse scheme is given by

g
(2)
⊥ (dt) =

∑
i=−1,0,1

Ai exp(−Γ|dt− i× 600 ns|), (3.22)

where the relative amplitudes Ai are determined by the spin-dependent excitation
probabilities: The full state of the system after the first excitation round has the form
(see main text)

|ψ〉 = 1

2
(|↑↑〉 |11〉+ |↓↓〉 |00〉+ |↑↓〉 |10〉+ |↓↑〉 |01〉) . (3.23)
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Neglecting initialisation and microwave errors, the |00〉, |11〉 states both contribute to
the A0 peak only, and the |01〉, |10〉 states contribute to the A±1 peaks only. Because
all states occur with equal probability (1/4) and collection efficiency factor (ηAηB),
we have

A0 = A−1 +A+1, and A−1 = A+1. (3.24)

The amplitudes A±1 can be extracted from the measurement of g(2)(dt), because for

the side peaks, g(2)(dt) = g
(2)
⊥ (dt).

We note that in Fig. 3 of the main text we have renormalised the central peak such

that g
(2)
⊥ (0 ns) = 1/2, the expected result for a conventional pulsed TPQI experiment,

with an infinite pulse sequence and two single emitters, for clarity. As the same
normalisation factor is applied to the measured central peak of g(2)(dt), this does not
change the visibility.

3.6.11 Phase of the entangled state

Considering all relevant phases, the quantum state of the system after the first
excitation before the beam splitter is

1

2

[
(e−iωA

↓ t |↓〉A |0〉A + e−iωA
↑ t |↑〉A eikAxA−iωAτ |1〉A) (3.25)

⊗(e−iωB
↓ t |↓〉B |0〉B − e−iωB

↑ t |↑〉B eikBxB−iωBτ |1〉B)
]
,

where ω↓i
and ω↑i

correspond to the energy levels for the two ground states {|↓〉 , |↑〉}.
ω is the transition frequency from the excited state |e〉 to the corresponding ground
state and k the corresponding wavenumbers k = ω/c. x is the photon path length
from the NV centre to the beam splitter, the time t corresponds to the time after
the first MW π/2 pulse and time τ to the time after the excitation pulse. The labels
{A,B} denote the two NV centres. See also Fig. 3.14.

E
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( )j

( )j

0sm 1sm
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e

Figure 3.14 —Schematic showing the energy levels involved in the protocol, and the definitions
for the various frequencies ω involved, where j labels the NV centre j ∈ {A,B}

.
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After a single click in one of the output ports of the beam-splitter at a time
τ1 > kAxA, kBxB after the excitation (caused by one or two photons in that port),
the two NV spins are projected onto the mixed state

|α|2 ∣∣ψ±〉
AB

〈
ψ±∣∣

AB
+ |β|2 |↑〉A |↑〉B 〈↑|A 〈↑|B , (3.26)

with the (−)-sign if we detect a click on the detector on output port 1 and a (+) for a
click on 2, and amplitudes α, β depending on the collection efficiencies for NV A and
B, respectively. |ψ±〉AB is an entangled state, with, at time tMW after the first MW
π/2-pulse, the following phase relations:

∣∣ψ±〉
AB

=
1√
2

[
e−iωA

↓ tMW |↓〉A e−iωB
↑ tMW |↑〉B · eikBxB−iωBτ1

± e−iωA
↑ tMW |↑〉A e−iωB

↓ tMW |↓〉B · eikAxA−iωAτ1
]
. (3.27)

Here we have assumed identical NV-optical lifetimes Γ−1 and identical path-lengths
from the beam splitter to the two different detectors, for simplicity.

At this time, the MW π-pulse is applied, flipping all |↓〉 ←→ |↑〉 in Eqns. (3.26),
(3.27). Then the second excitation round proceeds, and after again detecting a single
click in one of the output ports of the beam-splitter at a time τ2 > k′Ax

′
A, k

′
Bx

′
B , the

two NV spins are projected onto the pure state:

1√
2

[
e−iωA

↓ tMW e−iω
′A
↑ tMW |↑〉A e−iωB

↑ tMW e−iω
′B
↓ tMW |↓〉B

× eikBxB−iωBτ1eik
′
Ax′

A−iω′
Aτ2

± e−iωA
↑ tMW e−iω

′A
↓ tMW |↓〉A e−iωB

↓ tMW e−iω
′B
↑ tMW |↑〉B

× eikAxA−iωAτ1eik
′
Bx′

B−iω′
Bτ2

]
, (3.28)

at the spin-echo time t = 2× tMW after the first MW π/2-pulse. Here we have denoted
variables corresponding to physical quantities during the second round with a prime
(’). The (+)-sign corresponds to a click in the same detectors, the (−)-sign to different
detectors.

The phase of the final entangled in Eq. (3.28) contains terms that oscillate with
the photon frequency. To produce useful entanglement, a stable phase is required,
suggesting that spatial interferometric stability of the setup and prohibitively small
detector time jitter are needed.

However, the time T between the two excitation rounds is short (T = 600ns)
compared to many environmental drifts of e.g. the optical path lengths and electric
and magnetic fields. This suggests we should consider certain assumptions about the
relation between the physical quantities in the first and second excitation rounds. In
particular, possible assumptions are:
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1. ω↑ = ω′
↑ and ω↓ = ω′

↓, requiring stability of the magnetic field as felt by the NV
centre on the time-scale T . From independent spin-echo measurements in e.g.
figure 1b in the main text we know that this assumption satisfied.

2. x = x′ requiring stability of the setup on the order of a wavelength (637 nm) on
the time-scale T . With T being only 600ns, the setup is expected to be stable.

3. ω = ω′ (and therefore also k = k′). This assumption is harder to justify by
independent measurement, and in fact would not be satisfied if phonon-induced
transitions occur in the excited state.

If all three assumptions are satisfied, the phase relation in Eq. (3.28) simplifies:

1√
2

(|↓↑〉AB ± eiϕ |↑↓〉AB

)
, (3.29)

with
ϕ(τ1, τ2) = (τ2 − τ1)(ωA − ωB), (3.30)

so that the overlap with the wanted Bell states is:

F (ϕ) =
1

2
+

1

2
cos(ϕ). (3.31)

This analysis shows that whenever the two NV centres are on resonance, perfect
state fidelity could be obtained independent of the photon arrival times. Also, if the
photon arrival times are identical, no dephasing is present independent of the detuning
between the NV centres’ optical frequencies.

3.6.12 Relation to TPQI visibility

Following Legero et al.39, we have for the two-photon correlation function g(2)(t1, t2)
of two photons with identical polarisation exiting from the beam-splitter:

g(2)(t1, t2) =
1

4
|ξA(t1)ξB(t2)− ξB(t1)ξA(t2)| , (3.32)

where ξ(t) describes the spatio-temporal mode of the state of a single-photon light
field, at time t. When these modes are written as the product of a real amplitude
and a complex phase, ξi(t) = εi(t) exp[−iφi(t)], the correlation above function can be
rewritten:

g(2)(t1, t2) = g
(2)
⊥ (t1, t2)−K(t1, t2). (3.33)

Here, g
(2)
⊥ (t1, t2) is the correlation function for two fully distinguishable (perpendicu-

larly polarised) single photons,

g
(2)
⊥ (t1, t2) =

1

4

(
(εA(t1)εB(t2))

2 + (εA(t2)εB(t1))
2
)
, (3.34)
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which is independent of the phases φ. K(t1, t2), however, does depend on the phase:

K(t1, t2) =
1

2
(εA(t1)εB(t2)εA(t2)εB(t1)) cos(φA(t1)− φA(t2) + φB(t2)− φB(t1)).

(3.35)
Finally, the visibility of the two photon interference in Eq. (3.21) is given by

V (t1, t2) =
g
(2)
⊥ − g(2)
g
(2)
⊥

= K/g
(2)
⊥ . (3.36)

Relating the above to photons emitted by our two NV centres in the situation in
our experiment, and assuming the excitation time t0, we have

εi(t) = Γ exp[Γ(t− t0 − xi/c)], (3.37)

where we have assumed as before identical optical lifetime Γ−1 for the both NV’s.
Furthermore:

φi(t) = (t− t0)ωi − kixi. (3.38)

In this case, V (t1, t2) above reduces to

V (t1, t2) = cos[(t2 − t1)(ωA − ωB)]. (3.39)

Comparing this result with Eqns. (3.30),(3.31) above, we have 1
2 + 1

2V (dt) =
F (ϕ(δτ)), with - as before - dt = t2 − t1 and δτ = τ2 − τ1. Since rejecting any of the
assumptions (1-3) made in the previous section to arrive at the simplified expression
for F will in general decrease the fidelity, V sets an upper limit for the fidelity overlap
with the Bell states.
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Chapter 4

Unconditional teleportation
between solid-state qubits
separated by three metres

W. Pfaff, B. Hensen, H. Bernien, S.B. van Dam, M.S. Blok, T.H. Taminiau,
M.J. Tiggelman, R.N. Schouten, M. Markham, D.J. Twitchen and R. Hanson

Quantum teleportation allows for transferring arbitrary quantum states between
remote parties that share an entangled state as resource. Such teleportation is an
essential ingredient for the operation of a quantum network. Here we demonstrate
deterministic teleportation of the quantum state of a nuclear spin onto an electronic
spin over three metres. We combine the previously attained remote entanglement
between two NV electronic spins with a local Bell-state measurement that acts on
one of the entangled electronic spins and a source qubit encoded in a nuclear spin.
This scheme allows us to teleport a source state prepared on the nuclear spin onto the
remote electronic spin with a fidelity that clearly exceeds the classically allowed value.
Our result shows that the NV is a prime candidate for the realisation of a macroscopic
quantum network.

The results in this chapter have been published in Science 345, 532 (2014).
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4.1 Introduction

Teleportation allows quantum information to be faithfully transmitted over arbitrary
distances provided the two parties (“Alice” and “Bob”) have previously established a
shared entangled state and can communicate classically. In the teleportation protocol
(Fig. 4.1) Alice is initially in possession of the state to be teleported (qubit 1) which
is most generally given by |ψ〉 = α |0〉+ β |1〉. Alice and Bob each have one qubit of
an entangled pair (qubits 2 and 3) in the joint state |Ψ−〉23 = (|01〉23 − |10〉23)/

√
2.

The combined state of all three qubits can be rewritten as

|ψ〉1 ⊗
∣∣Ψ−〉

23
=

1

2

( ∣∣Φ+
〉
12
⊗ (α |1〉3 − β |0〉3)

+
∣∣Φ−〉

12
⊗ (α |1〉3 + β |0〉3)

+
∣∣Ψ+

〉
12
⊗ (−α |0〉3 + β |1〉3)

− ∣∣Ψ−〉
12
⊗ (α |0〉3 + β |1〉3)

)
, (4.1)

where |Φ±〉 = (|00〉 ± |11〉)/√2 and |Ψ±〉 = (|01〉 ± |10〉)/√2 are the four Bell states.
To teleport the quantum state Alice performs a joint measurement on her qubits
(qubits 1 and 2) in the Bell basis, projecting Bob’s qubit into a state that is equal to
|ψ〉 up to a unitary operation that depends on the outcome of Alice’s measurement.
Alice sends the outcome via a classical communication channel to Bob, who can then
recover the original state by applying the corresponding local transformation.

Because the source qubit state always disappears on Alice’s side, it is irrevocably lost
whenever the protocol fails. Therefore, to ensure that each qubit state inserted into the
teleporter unconditionally re-appears on Bob’s side, Alice must be able to distinguish
between all four Bell states in a single shot and Bob has to preserve the coherence of
the target qubit during the communication of the outcome and the final conditional
transformation. Several pioneering experiments have explored teleportation between
remote nodes1–3 but unconditional teleportation between long-lived qubits4–6 has so
far only been demonstrated within a local qubit register7–9.

We demonstrate unconditional teleportation between diamond spin qubits residing
in independent setups separated by 3 meters. This result is achieved by fully separating
the generation of remote entanglement (the preparation of the teleporter) as from the
two-qubit Bell-state measurement and feed-forward (the actual teleportation action).
In particular, a photonic channel is used to generate heralded remote entanglement
between two nitrogen-vacancy (NV) center electronic spins, while the teleportation
protocol solely exploits matter qubits that – unlike photonic qubits – allow for a
deterministic Bell-state measurement with current technology. The source state is
encoded in a nuclear spin close to one of the NV electron spins after preparation of
the teleporter. We preserve the target qubit’s coherence by dynamical decoupling
while the measurement outcome is forwarded and the final correction pulse is applied.
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Figure 4.1 — Teleportation scheme. General scheme for teleportation. In our experiment Alice
and Bob each control a single NV centre in a single-crystal CVD-grown diamond by operating an
independent cryogenic confocal microscope setup (T = 8K for Alice and T = 4K for Bob).

This protocol ensures that the source state is successfully teleported in each of the
experimental runs.

4.2 Implementation

Alice and Bob each operate an independent low-temperature confocal microscope setup
that addresses a single NV centre. The two NV electronic spins (labeled as qubits 2
and 3) are initialized in the non-local entangled state |Ψ−〉23 = (|01〉23 − |10〉23)/

√
2

according to the protocol described in 3.2, with the following improvements: We
have further enhanced the efficiency of photon collection from our device through
optimization of the SIL fabrication and by adding an anti-reflection coating. Also,
we have significantly improved both the spectral stability of the NV centre’s optical
transition and the charge state initialization by resonant re-pumping on the neutral-
charge state zero-phonon line10. As a result we were able to increase the generation
rate of the entangled state |Ψ−〉23 fivefold to 1/250 s−1 and improve the entangled
state fidelity from 0.73 to an estimated 0.87.

The additional qubit in Alice’s node — essential for making the teleportation
unconditional — is provided by the nitrogen-14 nuclear spin of Alice’s NV (qubit 1).
Before establishing the entanglement link, this nuclear spin is initialized into state |1〉
by a projective measurement via the electron spin11. We reinitialize the nuclear spin
after each 250 entanglement attempts in order to preserve its purity (Figs. 4.2a,b). We
prepare the source state after establishing remote entanglement, thus avoiding possible
dephasing of the source state by repeated optical excitation of the nearby electron12,13
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Figure 4.2 — Preparation of the teleporter. (a) Circuit diagram for the periodic measurement-
based re-initialization of the nuclear spin (qubit 1) in between remote entanglement generation
attempts. Both the probability for success per attempt and the time duration of a single attempt
are indicated for the initialization by measurement of qubit 1 and the generation of entanglement
between qubits 2 and 3. (b) Measured probability P(|1〉) to preserve the initialized nuclear spin
state |1〉 as a function of number of entanglement generation attempts Nent. A fit (solid line) to
a rate-equation model yields a probability of (0.85± 0.05)× 10−3 per entanglement generation
attempt that the nuclear spin flips. The dashed line marks the maximum number of attempts
before the nuclear spin is re-initialized (Nent = 250).

during entanglement generation. We employ a decoherence-protected gate14 on Alice’s
side to set the nuclear spin to the source state |ψ〉 = α |0〉+ β |1〉. This gate combines
two nuclear spin rotations with a refocusing pulse on the electron spin such that the
entangled state is efficiently preserved for the duration of the gate (Figs. 4.3a). This
operation concludes the preparation of the teleporter and the insertion of the source
qubit, with the three-qubit system left in the state |ψ〉1 ⊗ |Ψ−〉23 = (α |0〉1 + β |1〉1)⊗
(|01〉23 − |10〉23)/

√
2.

At the heart of unconditional qubit teleportation is a deterministic Bell-state
measurement (BSM) by Alice on qubits 1 and 2 that generally involves two steps.
First, the four Bell states are mapped onto the four different qubit eigenstates |i〉1 |j〉2
by quantum gate operations. In the second step each of the two qubits is read out in a
single shot and the two measurement outcomes are sent to Bob. Our implementation
of this scheme is shown in Fig. 4.3a. We implement the Bell-state mapping by applying
a two-qubit controlled-NOT gate (CNOT) followed by a π/2 rotation on the nuclear
spin using another decoherence-protected gate. Then we read out the electron spin in
a single shot (average fidelity 0.963± 0.005). Finally we read out the nuclear spin by
mapping its state onto the electron spin followed by electron spin readout. The two
single-shot readout results give the outcome of the BSM.
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Figure 4.3 — Deterministic Bell-state measurement (BSM) and real-time feed-forward.
(a) Circuit diagram of our implementation. The label ‘e’ (‘N’) indicates operations acting on the
electron spin (nitrogen nuclear spin). To enhance the readout fidelity for the nuclear spin, we
perform the mapping to the electron spin via a CNOT and the subsequent electron readout twice.
While Alice is performing her BSM Bob applies an XY4 decoupling sequence on his electron
qubit. After receiving the BSM outcome from Alice, Bob applies the feed-forward operation U
and reads out his qubit. πx,y denote rotations around the x-axis and y-axis, respectively. (b)
Calibration of the BSM by inserting the four different Bell states on Alice’s side and determining
the probability with which the ideal outcome is observed (blue bars). Data is not corrected
for imperfect preparation of the input states. Expectations based on independently determined
experimental imperfections are shown in orange. Error bars are two statistical s.d.

We benchmark the BSM by preparing each of the four Bell states as input states in
Alice’s register (Fig. 4.3b). This procedure yields an uncorrected mean fidelity, given
by the probability to obtain the measurement result corresponding to the prepared
Bell state, of 0.89± 0.02. To gain more insight into the sources of imperfections we
compare the data with numerical simulations that use the independently determined
infidelities of the nuclear spin initialization, CNOT gate, and electron single-shot
readout as input. These simulations predict an average fidelity of 0.9 (Fig. 4.3b), in
excellent agreement with the data. Taking known errors in the preparation of the
input states into account, we infer a BSM fidelity of 0.93± 0.02.

The final challenge for successful unconditional teleportation is to maintain the
coherence of Bob’s target qubit (qubit 3) during the BSM and feed-forward. In our
experiment, Bob’s qubit is mostly affected by interactions with the surrounding nuclear
spin bath. We counteract this decoherence by applying an XY4 dynamical decoupling
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Figure 4.4 — Demonstration of unconditional quantum teleportation between remote
qubits. (a) Bloch sphere with the six mutually unbiased basis states that we teleport.
|±X〉 = (|0〉 ± |1〉)/√2, |±Y 〉 = (|0〉 ± i |1〉)/√2. (b) State tomography after teleportation of
the input state |Y 〉. We determine the density matrix ρm by measuring the expectation values of
the Pauli spin operators, 〈σx〉, 〈σy〉, 〈σz〉, where the required qubit rotations before readout are
performed conditional on the BSM outcome. The measured (ideal) entries of the density matrix
are ρ00 = 1 − ρ11 = 0.52 ± 0.08 (0.5) and ρ01 = ρ∗10 = 0.05 ± 0.08 − i0.28 ± i0.07 (−i0.5),
respectively. (c) Average teleportation fidelity from the measured fidelities of the six states (blue
bars). Sample sizes are (left to right) 54, 89, 73, 49, 52, and 47. Predictions from simulations are
shown in orange. Without feed-forward, the target state is completely mixed (white bar). The
horizontal line marks the classical limit of 2/3. Data is not corrected for source state initialization
errors. Uncertainties are one statistical s.d.

sequence15. The time between entanglement generation and the triggering of the
feed-forward operation based on the BSM outcome is 300μs. For this duration the
decoupling protocol preserves the qubit state with an average fidelity of 0.96± 0.02.

We first verify that the teleporter is calibrated correctly by applying it to the
nominal input state |Y 〉 = (|0〉+ i |1〉)/√2 and performing tomography on the state
that appears on Bob’s side. The reconstructed density matrix (Fig. 4.4B) shows that
the target state vector is aligned well with Y and therefore that the reference frames
of Alice and Bob are correctly set.
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4.3 Results

To prove that our quantum teleporter outperforms any classical communication
strategy, we teleport an unbiased set of six basis states |ψ〉 (Fig. 4.4A) and determine
the fidelity of the teleported state on Bob’s side with respect to the ideal input state.
In these experiments we use a feed-forward operation that maps the ideal state of
qubit 3 onto a qubit eigenstate such that the readout directly yields the teleportation
fidelity. Since the feed-forward operation is conditional on the BSM outcome, ignoring
the BSM outcome yields a completely mixed state and random outcomes ensuring
that no information is transmitted. Without feed-forward we indeed observe an
average teleportation fidelity of 〈F 〉 = 0.50± 0.03 (Fig. 4.4C). In contrast, including
the feed-forward loop we find 〈F 〉 = 0.77 ± 0.03. This value exceeds the classical
limit of 2/3 by more than 3 standard deviations, thus proving the quantum nature
of our teleporter. We note that this fidelity presents a lower bound on the actual
teleportation fidelity because it does not take into account initialization errors of the
source state. Importantly, this result is obtained without any post-selection: each
teleportation attempt is included in the data presented here.

We also simulate the outcomes by using independently determined infidelities in the
protocol. The only unknown parameter is the fidelity of the entangled state shared
by Alice and Bob. We find that our data is well reproduced by the simulations if we
assume a fidelity to the ideal Bell state |Ψ−〉23 of 0.87 (Fig. 4.4C). The simulations
also enable us to quantify the effect of imperfect initialization of the source qubit on
the measured fidelities. In this way we estimate the teleportation fidelity to be ∼ 0.86.

4.4 Conclusion

The ability to generate remote entanglement and to control and read out multiple
qubits per node as shown in the present teleportation experiment makes NV centres
a leading candidate for realizing a quantum network. Our teleportation scheme is
both unconditional and scalable to large distances as it can mitigate photon loss by
heralding and purification of the distributed entangled state16. In future experiments
we aim to supplement our current capabilities with quantum memories that are robust
against optical excitation of the electrons, enabling remote entanglement purification
and the connection of multiple nodes into the network. A promising route is the
use of weakly coupled nuclear spins17–19 on which multi-qubit quantum control has
very recently been demonstrated20. For such nuclear spins, coherence times of over 1
second under optical excitation have been reported21, while the incorporation of NV
centres into optical cavities may enable remote entanglement generation on millisecond
timescales22. Furthermore, the entanglement and readout fidelities reported here
are sufficient for a violation of a Bell inequality with the detection loophole closed,
making NV centres a promising system for realizing a loophole-free Bell test and
device-independent quantum key distribution23.
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4.5 Supplementary Information

4.5.1 Conventions

The basis states used for the electrons are |0〉 = |ms = 0〉 and |1〉 = |ms = −1〉. For
the nitrogen, |0〉 = |mI = 0〉 and |1〉 = |mI = −1〉. When specifying joint quantum
states, the first qubit is the nitrogen on site A, the second the electron on site A, and
the third the electron on site B. Teleportation is performed from qubit 1 onto qubit 3.

By x, y, z we denote π/2 rotations around the +X,+Y,+Z axes respectively. Bars
over gate symbols indicate negative rotation sense. In the measurement sequences,
rotations around +X,+Y correspond to phases of the applied driving pulses of
+90◦ and 0◦, respectively. We prepare |x〉 ≡ (|0〉 + |1〉)/√2 by y |0〉 and |y〉 ≡
(|0〉+ i |1〉)/√2 = x̄ |0〉. Capital letters X,Y, Z indicate π rotations.

Hamiltonian of Alice

The relevant energy levels of the electron and nuclear spins of Alice are depicted in
Fig. 4.7a. We chose the rotating frame (Fig. 4.7b) such that the relevant Hamiltonian
without driving can be written as

HA
0 =

⎛
⎜⎜⎝
−A 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (4.2)

where A = 2π × 2.19MHz is the parallel hyperfine coupling constant of electron and
nitrogen at low temperatures. The spin eigenstates are |00〉 , |01〉 , |10〉 , |01〉.

4.5.2 Desired state evolution

Source state preparation

After generating entanglement, we start with the state

|1〉 (|01〉 − |10〉) /
√
2. (4.3)

We perform the desired rotation on the nitrogen spin for the ms = −1manifold, then
apply a π-pulse to the electron and repeat the operation. In this way the operation
on the nitrogen spin is unconditional on the electron state and the electron phase is
protected by a spin-echo. With an RF operation |1〉 �→ α |0〉+ β |1〉 this procedure
yields

1√
2

((
e−iA(t−t0)α |0〉+ β |1〉

)
|00〉+ (α |0〉+ β |1〉) |11〉

)
. (4.4)

Note that the states associated with |00〉 on Alice’s side accumulate a phase during
free evolution time, t, due to the choice of rotating frame. t0 is the time at which the
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π-pulse on the electron is performed during preparation. By chosing the evolution
time such that A(t − t0) is a multiple of 2π the initial state can be factorized. We
implement the unconditional rotation of the electron spin with a CORPSE pulse that
provides a π rotation that is insensitive against detuning over a range of a few MHz24.

Bell-state measurement

The BSM consists of a CNOT rotation around the +Y axis on Alice’s electron spin,
conditional on the nitrogen spin being in |0〉, followed by a π/2 rotation around the
+Y axis on the nitrogen spin. We implement the CNOT by rotating mI = −1 by
π and mI = 0 by 2π, achieved by a pulse with Rabi frequency A/

√
3. During this

pulse Alice’s states |00〉 and |01〉 are not unaffected. In particular, the time-dependent
phase of the state |00〉 is reduced compared to not performing the pulse (or compared
to the case of an ideal CNOT gate in which only a real � operation would be applied
to this state) because some population temporarily leaves this state. Conversely,
|01〉 will acquire some phase because some population will temporarily be in |00〉.
An unconditonal rotation of the nitrogen spin is achieved in the same was as for
preparation, by performing the operation twice, with an electron flip in between. After
these gate operations we have

1

2

[
|00〉 (β |0〉 − eiλα |1〉)

+ |01〉
(
e−iA(t1−t0)−iκα |0〉+ β |1〉

)

+ |10〉 (−β |0〉 − eiλα |1〉)

+ |11〉
(
e−iA(t1−t0)−iκα |0〉 − β |1〉

)]
, (4.5)

where t1 is the time of the π-pulse on the electron and λ, κ are the additional phases
on |00〉 and |01〉.

Phase calibration

We can eliminate the undesired phases before the teleportation experiment by cal-
ibrating the rotation axis of the π/2 operation on the nitrogen in the BSM and the
evolution times. After initializing the nitrogen and electron spin states of Alice into
|1〉 (|0〉 − |1〉)/√2 (equivalent to the entanglement operation on Alice, ignoring Bob),
we prepare the nitrogen in |x̄〉 = (|0〉 − |1〉)/√2 (preparation operation is y) and
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perform the BSM, yielding

1

2
√
2

[
|00〉 (−1− eiλ

)

+ |01〉
(
−1 + e−iA(t1−t0)−iκ

)

+ |10〉 (1− eiλ
)

+ |11〉
(
1 + e−iA(t1−t0)−iκ

)]
(4.6)

before readout (Fig. 4.8). We sweep the rotation axis of the RF pulse on the nitrogen
(affecting the phase iλ) and subsequently the evolution time between the CNOT and
Y operations during the BSM (affecting the phase −iA(t1 − t0)− iκ). Calibration is
achieved by maximizing the probabilities for outcomes |00〉 and |11〉.

Dynamical decoupling of Bob’s electron spin

To protect the target state against dephasing during the BSM, we perform an XY4
decoupling sequence in parallel. The first π-pulse of this echo sequence is the π-
pulse performed during the entanglement generation attempt. The remaining X-Y-X
sequence is executed during the BSM. Taking these additional rotations into account,
the total state before readout, including phase calibration, is

1

2

[
|00〉 (α |0〉+ β |1〉)

+ |01〉 (−β |0〉+ α |1〉)
+ |10〉 (α |0〉 − β |1〉)

+ |11〉 (β |0〉+ α |1〉)
]
. (4.7)

Because we do not intialize the nuclear spin on Bob’s side we perform all electron spin
rotations with CORPSE pulses24.

Feed-forward

The required feed-forward operations to re-create |ψ〉 on the target spin can be taken
straight-forward from Eq. 4.7. For the estimation of the fidelity of the teleported state
with the ideal source state it is sufficient to read out in the basis aligned with the
source state vector. We achieve this readout by modifying the feed-forward operation
such that we rotate the target state Ui,j |ψ〉 directly into the z-basis, conditional on
the outcome of the BSM. The operations we apply in practice are summarized in
Table 4.1.
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4.5.3 Data analysis

For each input state we determine the number of events n0 and n1 that give measure-
ment outcomes ms = 0 and ms = −1, respectively. The probability amplitudes c0 and
c1 for |0〉 and |1〉 are obtained by performing readout correction using the readout
fidelities F0 and F−1 for ms = 0 and ms = −1, respectively. We obtain F0 and F−1

from calibration measurements performed periodically during the experiment. The
teleportation fidelity of the state is given by either c0 or c1 (see Table 4.1).

The uncertainty of c0 and c1 is determined by the standard deviation of the binomial
distribution with probabilities n0/(n0 + n1) and n1/(n0 + n1) = 1 − n0/(n0 + n1),
and the measurement uncertainties of F0 and F−1 (for both readout fidelities the
measurement uncertainties are ≈ 0.005).

4.5.4 Error model

In the following we describe the errors we take into account for modelling our experi-
mental results. Any further errors are considered small in comparison and we ignore
them in this discussion. In particular we assume that the preparation of the source
state |ψ〉 is not subject to errors resulting from RF or microwave pulses.

Note that we model the experimental results numerically with the best guesses of
the empiric parameters described below, without treatment of their uncertainties.

In general we simulate the experimental results by modelling the system by a
2× 2× 2 dimensional density matrix that is subjected to operators that correspond to
the operations physically applied. Treatment of errors is included in the description
of the types of errors taken into consideration in the following. Operations for which
no error is listed are assumed to be perfect.

CNOT pulses

The fidelity of Alice’s electron spin rotations that are selective on the 14N spin state
are limited by the finite linewidth of the electron spin transitions. We simulate the
effect of the pulse on the different hyperfine populations by evaluating the probability
for inversion versus detuning using a master equation solver25, and integrating over
the transition line shapes. In this way we compute the probabilities for an erroneous
inversion for mI = −1 and non-inversion for mI = 0 to be both 0.01. Our calculation
is based on a finite linewidth that is determined by the electron spin dephasing time,
T ∗
2 = 2μs. In our model we assume that in case of an error the spin state is dephased

(i.e., we numerically set the respective coherences in the resulting density matrix to
zero).
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Nuclear spin initialization

When preparing the source state to be teleported, the following errors can occur:
(1) Initialization by measurement into mI = −1 succeeds with a fidelity p−1, and
fails for the initial state in either mI = 0 or mI = +1, with probabilities p0 and p+1,
respectively; (2) After each failed attempt to generate entanglement between Alice
and Bob the electron is reset by optical spin-pumping26. During this reset to ms = 0
the nuclear spin can flip — with ΔmI = ±1 — with a probability pflip

27.

Assuming that the conditional probability for a nuclear spin flop accompanying an
electron spin flip, pflip, is identical for all ΔmI = ±1, the equations describing the
changes of populations in dependence of the number of electron spin flips, n, are

p−1(n)− p−1(n− 1) = pflip (p0(n− 1)− p−1(n− 1))

p0(n)− p0(n− 1) = pflip (−2p0(n− 1) + p−1(n− 1) + p+1(n− 1))

p+1(n)− p+1(n− 1) = pflip (p0(n− 1)− p+1(n− 1)) . (4.8)

The measured population of mI = −1 as a function of n is shown in Fig. 4.9.

From independent calibration measurements we estimate the nuclear spin to be
initialized by measurement with p−1(0) = 0.97, p0(0) = 0.02, and p+1(0) = 0.01.
Together with the nuclear spin depolarization during subsequent entanglement gener-
ation attempts we determine 〈p−1〉 = 0.88, 〈p0〉 = 0.10, and 〈p+1〉 = 0.02 from the
solution of (4.8), for a maximum of 250 entanglement generation attempts before
re-initialization by measurement. Here,

〈pi〉 = 1

N

N∑
n=0

pi(n) (4.9)

is the average population of the nuclear spin state i for a maximum of 2N entanglement
generation attempts. Note that the electron spin is in a superposition before reset, and
thus the number of spin flips is half the number of entanglement generation attempts.
The probability for successful entanglement generation is independent of the attempt
number.

In the simulation of the experimental data we calculate the projected outcomes
for each of the nuclear spin states and determine the combined result by weighing
the average with 〈p−1〉, 〈p0〉, and 〈p+1〉. Because population in mI = +1 is outside
the simulated space of two-level systems we treat this case in a separate simulation
before weighing. The net effect of detuned MW pulses in this case is determined
by calculating the electron spin rotation versus detuning and integrating over the
mI = +1 transition line shape.
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The influence of imperfect nuclear spin initialization can also be approximated
inituitively as follows: for mI = +1 none of the operations on Alice’s side are
performed since all pulses applied are off-resonant, leading to dephasing of the state
and ultimately a fully random outcome of Bob’s readout. Initialization in mI = 0 ≡ |0〉
results in the opposite outcome than the one obtained from correct intialization in
mI = −1 ≡ |1〉. Thus, with probability 2〈p0〉+ 〈p+1〉 the target state is fully mixed.

Readout

The major limitation of the Bell-state measurement fidelity is the finite single-shot
readout fidelity of both electron and nuclear spin on Alice’s side. Electron spin readout
is achieved by resonant optical excitation of Ey. Detection of a least one photon
during this interval is registered as readout result ms = 0, otherwise the result is
ms = ±1. Nuclear spin readout is achieved by re-setting the electron spin to ms = 0,
mapping the nuclear spin state onto the electron spin by a CNOT, and reading out
the electron spin. This procedure is performed twice in order to maximize the readout
fidelity28. Readout result mI = 0 is obtained for detection of at least one photon
during either round.

The electron spin readout is limited by finite photon collection efficiency and electron
spin mixing in the excited state28. For Alice, we measure a mean single-shot readout
fidelity of Fe-RO = 0.963± 0.005. The nuclear spin readout is additionally limited by
the CNOT fidelity. With two readout rounds we estimate a mean readout fidelity of
FN-RO = 0.985 from the electron spin readout and CNOT pulse simulations.

In the simulation of the experimental results we use the single-shot readout fidelities
to determine the conditional density matrices that arise after measuring the electronic
and nuclear spin.

Photon indistinguishability and entangled state fidelity

The entangled state between the two electronic spins can be modeled as

ρ = V |Ψ−〉〈Ψ−|+ (1− V )

2
(|01〉 〈01|+ |10〉 〈10|) , (4.10)

where the visibility V describes the distinguishability between the photons emitted
from Alice and Bob. Here we assume that all other imperfections are negligible
compared to the photon distinguishability. The limitations of the Bell state fidelity
are discussed in detail in Bernien et al.26

For modelling we treat V as a free parameter used to match the average teleportation
fidelity. Using the parameters as described above and setting V = 0.74 (corresponding
to a Bell-state fidelity of FΨ− = 0.87) our simulation yields a mean teleportation
fidelity of F = 0.77.
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4.5.5 Further analysis of the teleporter performance

Effect of the feed-forward operation

Fig. 4.4B shows the teleportation fidelity when no feed-forward is performed. This
data is extracted from the teleportation data including feed-forward in the following
way. We first determine the probability for obtaining the expected readout result
independently for each BSM outcome by postselection. We then invert the readout
result for all operations with a negative rotation sense. In this way we obtain the result
that would have been measured if for each BSM outcome the same qubit rotation was
performed (i.e., no feed-forward). We assume that any experimental errors in the final
readout pulse are small and thus neglect them in this treatment.

Correction for intialization

After determining the entangled state fidelity as described above we can estimate the
actual teleportation fidelity by assuming perfect intialization in our simulation. Setting
p−1 = 1 we compute a mean teleportation fidelity of Fcorrected = 0.86 (Fig. 4.10A).

Teleportation fidelity by Bell-state measurement outcome

Due to the different readout fidelities for each of the four Bell states (see above and
Fig. 4.3) we can expect different teleportation fidelities as well. We find that the
teleportation fidelity by outcome of the Bell-state measurement is consistent with
expectations (Fig. 4.10B), but the statistical uncertainty prevents a more detailed
discussion.

Probability of BSM outcomes

We verify in more detail that the teleportation works as intended by examining the
distribution of BSM outcomes obtained from all teleportation events (Fig. 4.10C).
The simulations are in good agreement with the data. The deviation from an equal
probability of 0.25 for all BSM outcomes is mainly due to the asymmetry in the
readout fidelities of the electron spin states28.
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Figure 4.5 — Saturation measurements on SILs with and without antireflection coating. Fluor-
escence count rates as a function of off-resonant green excitation power (kcts = 1000 counts).
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Bob (asynchronously) by applying laser pulses on Ey and E1,2 simultaneously and putting a
lower threshold on the number of phonon side band photons detected during those pulses. If
the threshold is not met we reset the charge state: On Alice, we repump NV0 → NV− using a
laser at 575 nm, on resonance with the ZPL of NV0 29. On Bob, we use off-resonant excitation
at 532 nm. We repeat verification and repump until success. B, Following spin-pumping into
ms = ±1 by excitation of Ey we apply a CNOT on the electronic spin, such that rotation to
ms = 0 is only performed for mI = −1. A PSB photon detected during a short readout pulse
on Ey signals a high-fidelity measurement of ms = 0 and projection of the nuclear spin into
mI = −1. If no photon is detected, we re-try for a maximum of N times (here, N = 100), before
charge and resonance are re-evalutated. In between attempts we apply 50μs of illumination
on both Ey and E1,2 in order to randomise the nuclear spin owed to off-diagonal terms in the
hyperfine interaction in the optical excited state (not shown in the diagram). C, As soon as
both Alice and Bob are initialised, we attempt to generate entanglement between them. Each
attempt starts with an electron spin reset to ms = 0. Two rounds of optical excitation with
optical π-pulses on Ey follow, separated by a MW π-pulse. Detection of exactly one ZPL photon
after each pulse heralds creation of entanglement. We perform a maximum of M attempts before
re-initialisation (here, M = 250). D, When entanglement is created, we prepare the 14N spin of
Alice unconditional on the electron spin state, while preserving the electron spin phase. The RF
pulse that generates the rotation is only resonant for ms = −1; we perform the rotation twice,
separated by a π-pulse on the electron.
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Figure 4.7 — Relevant spin states on Alice’s side. A, Lab frame. B, Rotating frame chosen.
D = 2π × 2.878GHz is the NV electron zero-field splitting, ωB ≈ 2π × 50 MHz is the Zeeman
splitting of the electron, A = 2π× 2.19 MHz is the electron-nitrogen hyperfine coupling constant
and Q = 4.98 MHz the nitrogen quadrupole splitting.
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Figure 4.8 — Calibration of the Bell-state measurement. A, Calibration of the driving phase
of the Hadamard operation, and B, subsequent calibration of the evolution time between the
CNOT gate of the BSM and the electron π-pulse for the unconditional rotation of the nuclear
spin. The solid lines are sinosoidal fits to the BSM outcomes to be maximised. The legend
indicates the correspondence between two-qubit measurement results ij and Bell-state detection.
The calibration is performed with the full teleportation protocol including the MW pulses during
entanglement generation attempts (but without optical π-pulses). Error bars are 1 s.d.
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Figure 4.9 — Nuclear spin state depolarization as function of electron spin flips by optical
spin-pumping. We measure nuclear spin flips that are conditional on electron spin flips when
optically pumping on E1,2. We prepare the nuclear spin in ms = −1 and measure the probability
for its preservation dependent on the number of cycles of electron spin-pumping |1〉 → |0〉 and
re-preparation of |1〉 by a microwave π-pulse. The solid line is a fit to the solution of (4.8) that is
given by p−1(n) = 1/6

(
2 + (1− 3pflip)

N + 3(1− pflip)
N
)
(neglecting initial population in mI = 0

and mI = +1). Because the data shown here is not corrected for finite initialisation fidelity of
the nuclear spin and nuclear spin readout errors we include an offset o and scaling factor A in
the fit function, p−1(n) = A/6

(
2 + (1− 3pflip)

N + 3(1− pflip)
N
)
+ o. The fit yields a nuclear

spin-flip probability of pflip = (0.17 ± 0.01)% per spin pumping cycle, and A = 0.83 ± 0.02,
o = 0.13 ± 0.01. Note that the data shown in Fig. 4.2D has been corrected for nuclear spin
readout errors. Error bars are 1 s.d.
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Figure 4.10 — Further analysis of the teleportation fidelity. A, Correction for imperfect initializ-
ation of the source qubit. We simulate the teleportation outcomes using perfect intialization,
p−1 = 1. The simulation yields and average fidelity of 0.86. B, We determine the average
teleportation fidelity for each outcome of the Bell-state measurement. Within the statistical
uncertainty the fidelities do not differ substantially. C, Probability for each BSM outcome, as
measured (blue) and predicted from the model (orange). The dashed line marks 0.25. Error bars
are 1 s.d.
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Table 4.1 — Feed-forward and readout operations applied for each BSM outcome.

Input |00〉 |01〉 |10〉 |11〉 ideal result
|+z〉 = Y |1〉 � Y � Y |0〉
|−z〉 = � |1〉 Y � Y � |0〉
|+x〉 = ȳ |1〉 ȳ y y ȳ |0〉
|−x〉 = y |1〉 y ȳ ȳ y |0〉
|+y〉 = x̄ |1〉 x̄ x̄ x x |1〉
|−y〉 = x |1〉 x x x̄ x̄ |1〉
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[22] M. Lončar and A. Faraon. Quantum photonic networks in diamond. MRS Bulletin
38, 144 (2013).

[23] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani and S. Wehner. Bell nonlocality.
Reviews of Modern Physics 86, 419 (2014).

[24] H. K. Cummins, G. Llewellyn and J. A. Jones. Tackling systematic errors in
quantum logic gates with composite rotations. Phys. Rev. A 67, 42308 (2003).

[25] J. R. Johansson, P. D. Nation and F. Nori. QuTiP 2: A Python framework for
the dynamics of open quantum systems. Computer Physics Communications
184, 1234 (2013).

[26] H. Bernien et al. Heralded entanglement between solid-state qubits separated by
three metres. Nature 497, 86 (2013).

[27] P. Neumann et al. Single-Shot Readout of a Single Nuclear Spin. Science 329,
542 (2010).

[28] L. Robledo et al. High-fidelity projective read-out of a solid-state spin quantum
register. Nature 477, 574 (2011).

97



4. Unconditional teleportation between remote qubits

[29] P. Siyushev et al. Optically Controlled Switching of the Charge State of a Single
Nitrogen-Vacancy Center in Diamond at Cryogenic Temperatures. Phys. Rev.
Lett. 110, 167402 (2013).

98



Chapter 5

Loophole-free violation of a Bell
inequality using entangled spins

separated by 1.3 km

B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg,
R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell,
M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau and R. Hanson,

For more than 80 years, the counterintuitive predictions of quantum theory have stimulated
debate about the nature of reality1. In his seminal work2, John Bell proved that no theory
of nature that obeys locality and realism1 can reproduce all the predictions of quantum
theory: in any local-realist theory, the correlations between outcomes of measurements on
distant particles satisfy an inequality that can be violated if the particles are entangled. In
the past decades, numerous ingenious Bell inequality tests have been reported3–14. However,
because of experimental limitations, all experiments so far required additional assumptions
to obtain a contradiction with local realism, resulting in loopholes15–18. Here we report on a
Bell experiment that is free of any such additional assumptions and thus directly tests the
principles underlying Bell’s inequality. We employ an event-ready scheme19–21 that enables
the generation of high-fidelity entanglement between distant electron spins. Efficient spin
readout avoids the fair sampling assumption16,17, while the use of fast random basis selection
and readout combined with a spatial separation of 1.3 kilometres ensure the required locality
conditions15. In two experimental tests we find strong evidence against the null-hypothesis
that a local-realist model for space-like separated sites could produce data with a violation
at least as large as we observe, even when allowing for memory18,22 in the devices. With
improvements, our experiment could be used for testing less-conventional theories, and
for implementing device independent quantum-secure communication23 and randomness
certification24,25.

Part of the results in this chapter have been published in Nature 526, 682 (2015).
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5. A loophole-free Bell test

5.1 Introduction

We consider a Bell test in the form proposed by Clauser, Horne, Shimony and Holt
(CHSH)26 (Fig. 5.1a). The test involves two boxes labelled A and B. Each box accepts
a binary input (0 or 1) and subsequently delivers a binary output (+1 or −1). In each
trial of the Bell test, a random input bit is generated on each side and input to the
respective box. The random input bit triggers the box to produce an output value
that is recorded. The test concerns correlations between the output values (labelled x
and y for boxes A and B, respectively) and the input bits (labelled a and b for A and
B, respectively) generated within the same trial.

The discovery made by Bell is that in any theory of physics that is both local (physical
influences do not propagate faster than light) and realistic (physical properties are
defined before, and independent of, observation) these correlations are bounded more
strongly than they are in quantum theory. In particular, if the input bits can be
considered free random variables (condition of “free will”) and the boxes are sufficiently
separated such that locality prevents communication between the boxes during a trial,
then the following inequality holds under local realism:

S = 〈x · y〉(0,0) + 〈x · y〉(0,1) + 〈x · y〉(1,0) − 〈x · y〉(1,1) ≤ 2 (5.1)

where 〈x · y〉(a,b) denotes the expectation value of the product of x and y for input

bits a and b (see also Sec. 1.2.2 and Bell27).

Quantum theory predicts that the Bell inequality can be significantly violated in
the following setting. We add one particle, for example an electron, to each box.
The spin degree of freedom of the electron forms a two-level system with eigenstates
|↑〉 and |↓〉. For each trial, the two spins are prepared into the entangled state
|ψ−〉 = (|↑↓〉 − |↓↑〉) /√2. The spin in box A is then measured along direction Z (for
input bit a = 0) or X (for a = 1) and the spin in box B is measured along (−Z+X)/

√
2

(for b = 0) or (−Z − X)/
√
2 (for b = 1). If the measurement outcomes are used as

outputs of the boxes, then quantum theory predicts a value of S = 2
√
2, which shows

that the combination of locality and realism is fundamentally incompatible with the
predictions of quantum mechanics.

Bell’s inequality provides a powerful recipe for probing fundamental properties of
nature: all local-realist theories that specify where and when the free random input
bits and the output values are generated can be experimentally tested against it.

Violating Bell’s inequality with entangled particles poses two main challenges:
excluding any possible communication between the boxes (locality loophole15) and
guaranteeing efficient measurements (detection loophole16,17). First, if communication
is possible, a box can in principle respond using knowledge of both input settings,
rendering the Bell inequality invalid. The locality conditions thus require boxes A and
B and their respective free-input-bit generations to be separated in such a way that
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0 or 1b0 or 1a
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1 or +1x 1 or +1y

Figure 5.1 — Bell test schematic (a) Bell test setup: Two boxes, A and B, accept binary
inputs (a, b) and produce binary outputs (x, y). In an event-ready scenario, an additional box
C gives a binary output signalling that A and B were successfully prepared. (b) Experimental
realisation. The setup consists of three separate laboratories, A, B and C. The boxes at locations
A and B each contain a single NV centre in diamond. A quantum random number generator
(RNG) is used to provide the input. The NV electronic spin is read out in a basis that depends
on the input bit, and the resultant signal provides the output. A third box at location C records
the arrival of single photons that were previously emitted by, and are entangled with, the spins at
A and B. The detection of two such photons constitutes the event-ready signal.
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signals travelling at the speed of light (the maximum allowed under special relativity)
cannot communicate the local input setting of box A to box B, before the output value
of box B has been recorded, and vice versa∗. Second, disregarding trials in which a
box does not produce an output bit (that is, assuming fair sampling) would allow the
boxes to select trials based on the input setting. The fair sampling assumption thus
opens a detection loophole: the selected subset of trials may show a violation even
though the set of all trials may not.

The locality loophole has been addressed with pairs of photons separated over a large
enough distance in combination with fast settings changes4 and later with settings
determined by fast random number generators6,10. However, these experiments left
open the detection loophole, owing to imperfect detectors and inevitable photon loss
during the spatial distribution of entanglement. The detection loophole has been
closed in different experiments7–9,11,13,14, but these did not close the locality loophole.
So far, no experiment has closed all the loopholes simultaneously.

A Bell test that closes all experimental loopholes at the same time - commonly
referred to as a loophole-free Bell test17,21,28 is of foundational importance to the
understanding of nature. In addition, a loophole-free Bell test is a critical component
for device-independent quantum security protocols23 and randomness certification24,25.
In such adversarial scenarios, all loopholes are ideally closed because they allow for
security breaches in the system29.

An elegant approach for realizing a loophole-free setup was proposed by Bell
himself19. The key idea is to record an additional signal (dashed box in Fig. 5.1a)
to indicate whether the required entangled state was successfully shared between
A and B, that is, whether the boxes were ready to be used for a trial of the Bell
test. By conditioning the validity of a Bell-test trial on this event-ready signal, failed
entanglement distribution events are excluded upfront from being used in the Bell
test.

5.2 Implementation

We implemented an event-ready Bell setup11,20,21 with boxes that use the electronic
spin associated with a single nitrogen-vacancy (NV) defect centre in a diamond chip
(Fig. 5.1b). The diamond chips are mounted in closed-cycle cryostats (T = 4K) located
in distant laboratories named A and B (Fig. 5.2a). We control the electronic spin state
of each NV centre with microwave pulses applied to on-chip striplines (Fig. 5.2a, inset).
The spins are initialized through optical pumping and read out along the Z axis
via spin-dependent fluorescence30. The readout relies on resonant excitation of a
spin-selective cycling transition (12 ns lifetime), which causes the NV centre to emit
many photons when it is in the bright ms = 0 spin state, while it remains dark when

∗Also, the input bits should not be able to influence the preparation of the entangled state.
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it is in either of the ms = ±1 states. We assign the output value +1 (ms = 0) to the
output if we record at least one photo-detector count during the read-out window,
and the output value -1 (ms = ±1) otherwise. Read-out in a rotated basis is achieved
by first rotating the spin, followed by read-out along Z.

We generate entanglement between the two distant spins by entanglement swap-
ping20 in the Barrett-Kok scheme31,32 using a third location C (roughly midway
between A and B; see Fig. 5.2c). First we entangle each spin with the emission time
of a single photon (time-bin encoding). The two photons are then sent to location
C, where they are overlapped on a beam-splitter and subsequently detected. If the
photons are indistinguishable in all degrees of freedom, then the observation of one
early and one late photon in different output ports projects the spins at A and B
into the maximally entangled state |ψ−〉 = (|↑↓〉 − |↓↑〉) /√2, where ms = 0 ≡ |↑〉,
ms = −1 ≡ |↓〉. These detections herald the successful preparation and play the role
of the event-ready signal in Bell’s proposed setup. As can be seen in the space-time
diagram in Fig. 5.3a, we ensure that this event-ready signal is space-like separated
from the random input-bit generation at locations A and B.

The separation of the spins by 1280 m defines a 4.27 μs time window during which
the local events at A and B are space-like separated from each other (see the space-time
diagram in Fig. 5.3b). To comply with the locality conditions of the Bell test, the
choice of measurement bases and the measurement of the spins should be performed
within this time window. For the basis choice we use fast random-number generators
with real-time randomness extraction33,34. We reserve 160 ns for the random basis
choice, during which time one extremely random bit is generated from 32 partially
random raw bits (Sec. 5.9.8). The random bit sets the state of a fast microwave switch
that selects one out of two preprogrammed microwave pulses implementing the two
possible read-out bases (Fig. 5.2a). Adding the durations of each of the above steps
yields a maximum time from the start of the basis choice to the start of the readout
of 480 ns. We choose the readout duration to be 3.7 μs, which leaves 90 ns to cover
any uncertainty in the distance between the laboratories and the synchronization of
the setup (estimated total error is at most 16 ns, see Sec. 5.9.7). For this readout
duration, the combined initialisation and single-shot readout fidelity of sample A is
(97.1± 0.2)% (Fig. 5.3c); sample B achieves (96.3± 0.3)%. In summary, the use of
the event-ready scheme enables us comply with the strict locality conditions of the
Bell setup by using photons to distribute entanglement, while simultaneously using
the single-shot nature of the spin read-out to close the detection loophole.

Before running the Bell test we first characterized the setup and the preparation
of the spin-spin entangled state. Fig. 5.4a displays correlation measurements on the
entangled spin-photon states to be used for the entanglement swapping. For both
location A and B we observe near-unity correlations between spin state and photon
time bin when spin readout errors are accounted for. We then estimate the degree
of indistinguishability35 of the single photons emitted at locations A and B in a
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Figure 5.2 — Bell test experimental realisation. (a) Detailed experimental setup at A and B.
The NV centre is located in a low temperature confocal microscope setup (Obj). Depending on
the output of the RNG, a fast switch (Sw.) transmits one of two different microwave pulses (P0

and P1) into a gold line deposited on the diamond surface (inset, scanning electron microscope
image). Pulsed red and yellow lasers are used to resonantly excite the optical transitions of the NV
centre. The emission (dashed arrows) is spectrally separated into an off-resonant part (phonon
side band, PSB) and a resonant part (zero-phonon line, ZPL), using a dichroic mirror (DM). The
PSB emission is detected with a single-photon counter (APD). The ZPL emission is transmitted
through a beam-sampler (BS, reflection ≤ 4%) and two wave plates (λ/2 and λ/4), and sent
to location C through a single-mode fibre. (b) Setup at location C. The fibres from A and B
are connected to a fibre-based beam splitter (FBS) after passing a fibre-based polarizer (POL).
Photons in the two output ports are detected using single photon counters, and detection events
are recorded. (c) Aerial photograph of the campus of Delft University of Technology indicating
the distances between locations A, B and C. The red dotted line marks the path of the fibre
connection.
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Figure 5.3 — Space-time analysis of the experiment. (a) Space-time diagram of a single
repetition of the entanglement generation. The x-axis denotes the distance along the lines A-C
and C-B. After spin initialization, spin-photon entanglement is generated, such that the two
photons from A and B arrive simultaneously at C where the detection time of the photons is
recorded. Successful preparation of the spins is signalled (bell symbol) by a specific coincidence
detection pattern. Independent of the event-ready signal, the setups at locations A and B choose
a random basis (RNG symbol), rotate the spin accordingly and start the optical spin-readout
(measurement symbol). Vertical bars indicate the durations. The event-ready signal lies outside
the future light cone (coloured regions) of the random basis choices of A and B (see main text
for details). (b) Space-time diagram of the Bell test. The x-axis denotes the distance along the
line A-B. The readout on each side is completed before any light-speed signal can communicate
the basis choice from the other side. The uncertainty in the depicted event times and locations
is much smaller than the symbol size. (c) Single-shot spin readout fidelity at location A as a
function of readout duration (set by the latest time that detection events are taken into account).
Blue (orange) line, fidelity of outcome +1 (-1) when the spin is prepared in ms = 0. (ms = ±1);
green line, average readout fidelity; dotted line, Readout duration used (3.7 μs). The inset shows
the relevant ground and excited-state levels (not to scale).
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Hong-Ou-Mandel36 two-photon interference experiment at location C, that is, after
the photons have travelled through a combined length of 1.7 km of single-mode optical
fiber. Using the observed two-photon interference contrast of 0.90 ± 0.06 and the
spin-photon correlation data we estimate that the fidelity to the ideal state |ψ−〉 of the
spin-spin entangled states generated in our setup is 0.92± 0.03 (Sec. 5.9.3). Combined
with measured readout fidelities the generated entangled state is thus expected to
violate the CHSH-Bell inequality with S = 2.28± 0.08.

As a final characterization we ran the full Bell sequence including random-number
generation and fast readout, but with co-linear measurement bases (ZZ and XX) such
that spin-spin correlations could be observed with optimal contrast. To test the fast
basis selection and rotation, the Z (X) basis measurements are randomly performed
along the +Z (+X) and −Z (−X) axis. The observed correlations, shown in Fig. 5.4c
(orange bars), are consistent with the estimated quantum state and the independently
measured readout fidelities (dotted bars), which confirms that the setup is performing
as expected and that the desired entangled state is generated.

We find a success probability per entanglement generation attempt of about 6.4×
10−9, which yields slightly more than one event-ready signal per hour. Compared
to our previous heralded entanglement experiments over 3 meter32 this probability
is reduced, mainly owing to additional photon loss (8 dB/km) in the 1.7 km optical
fibre. To ensure the required long-term operation, we exploit active stabilization on
different relevant timescales via automated feedback loops (Sec. 5.9.9). We note that
the distance between the entangled electrons is nearly two orders of magnitude larger
than it was in any previous experiment37 with entangled matter systems.

Using the results of the characterization measurements we determine the optimal
readout bases for our Bell test. A numerical optimization yields the following angles
for the readout bases with respect to Z: 0 (for a = 0), +1/2π (for a = 1), −3/4π − ε
(for b = 0), 3/4π+ ε (for b = 1), with ε = 0.026π. Adding the small angle ε is beneficial
because of the stronger correlations in ZZ compared to XX. Furthermore, we use the
characterization data to determine the time window for valid photon-detection events
at location C to optimally reject reflected laser light and detector dark counts. We
choose this window conservatively to optimize the entangled-state fidelity at the cost
of a reduced data rate. These settings are then fixed and used throughout the actual
Bell test. As a final optimization we replaced the photo-detectors at location C with
the best set we had available.

5.3 Results

We ran n = 245 trials of the Bell test during a total measurement time of 220 hours
over a period of 18 days. Fig. 5.5a summarizes the observed data, from which we
find S = 2.42 in violation of the CHSH-Bell inequality S ≤ 2. We quantify the
significance of this violation for two different scenarios (see Fig. 5.5b). First, similar
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Figure 5.4 — Characterization of the setup and the entangled state. (a) The probability to
read out the spin state |↑〉 at location A (left panel) or B (right panel) when a single photon
is detected in the early or late time bin at location C. In the left (right) panel, only emission
from A (B) was recorded. Dotted bars are corrected for finite spin read-out fidelity and yield
remaining errors of 1.4± 0.2 % (1.6± 0.2 %) and 0.8± 0.4 % (0.7± 0.4 %) for early and late
detection events, respectively, from setup A (B). These errors include imperfect rejection of the
excitation laser pulses, detector dark counts, microwave pulse-errors and off-resonant excitation
of the NV. (b) Two-photon quantum interference signal. When the NV centres at A and B emit
indistinguishable photons (orange), coincident detections of two photons, one in each output arm
of the beam-splitter at C, are expected to vanish. The observed contrast between the cases of
indistinguishable (orange) and distinguishable (grey) photons (3 versus 28 events in the central
peak) yields a visibility of (90 ± 6)% (see Sec. 5.9.2). (c) Characterization of the Bell setup
using (anti-)parallel read-out angles. The spins at A (left arrows on the x axis) and B (right
arrows on the x axis) are read out along the ±Z-axis (left panels), or along the ±X-axis (right
panels). Strong correlations (anti-correlations) are observed for the case where the readout axes
are anti-parallel, lower panel (parallel, upper panel), as expected for the

∣∣ψ−〉 state. The numbers
in brackets are the raw number of events. The dotted lines represent the expected correlation
based on the measured readout fidelity and the characterisation measurements presented in panels
a and b (Sec. 5.9.3). Error bars are 1 s.d.

to previous work4,6–10., we analyse the data under the assumptions that the Bell
trials are independent of each other, that the recorded random input bits have zero
predictability and that the outcomes follow a Gaussian distribution. This analysis
(which we term “conventional”) yields a standard deviation of 0.20 on S. In this case,
the null hypothesis that a local-realist model for space-like separated sites describes
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5. A loophole-free Bell test

our experiment is rejected with a p-value of 0.019.

The assumptions made in the conventional analysis are not justified in a typical Bell
experiment. For instance, although the locality conditions outlined earlier are designed
to ensure independent operation during a single trial, the boxes can in principle have
access to the entire history including results from all previous trials and adjust their
output to it18,22. Our second analysis (which we term “complete”) allows for arbitrary
memory, takes the partial predictability of the random input bits into account and
also makes no assumption about the probability distributions underlying the data
(Sec. 5.10). In this case, the null hypothesis that an arbitrary local-realist model of
space-like separated sites governs our experiment is rejected with a p-value of 0.039
(Fig. 5.5b). This P value might be further tightened in future experiments.

5.4 Second run

After finishing the first Bell experiment in July 2015, both the A(lice) and B(ob)
setups were modified and used in various local experiments. In December 2015, we
rebuilt the Bell setup for performing a second run of the Bell test, with three small
modifications compared to the first run:

First, we add a source of classical random numbers for the input choices. A random
basis choice is now made by applying an XOR operation between a quantum random
bit generated as previously33,34 and classical random bits based on Twitter messages,
as proposed by Pironio38. In particular, we generate two sets of classical random
numbers, one for the basis choice at A, and one for the basis choice at B (see details
in the following sections). At each location, 8 of these bits are fed into an FPGA.
Just before the random basis rotation, the 8 Twitter bits and 1 quantum random bit
are combined by subsequent XOR operations. The resulting bit is used as the input
of the same microwave switch as used in the first run39. The XOR operation takes
70 ns of additional time, shifting the start of the readout pulse forward by the same
amount. We leave the end of the readout window unchanged, resulting in the same
locality conditions as in the first test.

We note that the Twitter-based classical random bits by themselves do not close
the locality loophole: the raw data is available on the Internet well before the trials
and the protocol to derive the bits is deterministic and programmed locally. The
only operations that are performed in a space-like separated manner are the XOR
operations between 8 stored bits. Therefore, strictly speaking only the quantum-RNG
is providing fresh random bits. Since a loophole-free Bell test is described solely
by the random input bit generation and the outcome recording at A and B (and in
our case the event-ready signal recording at C), the second run can test the same
null hypothesis as the first run as these events are unchanged. That being said,
the use of the Twitter-based classical randomness puts an additional constraint on
local-hidden-variable models attempting to explain our data.
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Figure 5.5 — Loophole-free Bell inequality violation. (a) Summary of the data and the
CHSH correlations. We record a total of n = 245 trials of the Bell test. The readout bases
corresponding to the input values are indicated by the green (for A) and blue (for B) arrows.
Dotted lines indicate the expected correlation on the basis of the spin readout fidelities and
the characterization measurements presented in Fig. 5.4 (Sec. 5.9.3). Numbers above the bars
represent the number of correlated and anti-correlated outcomes, respectively. Error bars shown

are

√(
1− 〈x · y〉2(a,b)

)
/n(a,b), with n(a,b) the number of events with inputs (a, b). (b) Statistical

analysis for n = 245 trials. We test the null-hypothesis that the data can be explained by any
local realist model of space-like separated sites, using an analysis allowing arbitrary memory in the
devices and taking the measured imperfections of the random number generators into account
(Sec. 5.10). For this analysis, the dependence of the p-value versus the I-value is shown (Complete
analysis, red). Here I := 8( k

n
− 1

2
), with k the number of times (−1)(a·b)x · y = 1. (Note that I

equals S from formula (5.1) , for equal n(a,b)). A small p-value indicates strong evidence against
the null hypothesis. We find k = 196, which results in a rejection of the null-hypothesis with a
p-value ≤ 0.039. For comparison, we also plot the p-value for an analysis (Conventional analysis,
orange) assuming independent and identically distributed (i.i.d.) trials, Gaussian statistics, no
memory and perfect random number generators.
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5. A loophole-free Bell test

Second, we set larger (i.e. less conservative) heralding windows at the event-ready
detector in order to increase the data rate compared to the first experiment. We start
the heralding window about 700 picoseconds earlier, motivated by the data from the
first test (grey line in Fig. 5.7). We predefine a window start of 5426.0 ns after the
sync pulse for channel 0, and 5425.1 ns for channel 1. We set a window length of
50 ns.

Finally, we also use the ψ+- Bell state, which is heralded by two photo-detection
events in the same beamsplitter output arm at the event-ready station. In general the
fidelity of this Bell state is lower than that of ψ− due to detector after-pulsing32 (note
that for ψ− the after-pulsing is not relevant because ψ− is heralded by photo detection
events in different beamsplitter output arms). However, we found the after-pulsing
effect to be small enough for the detectors used in this run. We set an adapted window
length of the second window of 4 ns and 2.5 ns for channels 0, 1 respectively, where
the exponentially decaying NV emission is still large relative to the after-pulsing
probability. As described below, we can combine the ψ−-related and ψ+-related Bell
trials into a single hypothesis test40.

Apart from these modifications, all settings, analysis software, calibrations and
stabilisation routines were identical to those in the first run39.

In this test we set the total number of Bell trials n2 = 300. After 210 hours of
measurement over 22 days during 1 month, we find S2 = 2.35 ± 0.18, with S2 the
weighted average of equation (5.1) for ψ− heralded events (different detectors clicked),
and Sψ+ = 〈x · y〉(0,0) + 〈x · y〉(0,1) − 〈x · y〉(1,0) + 〈x · y〉(1,1) for ψ+ (same detectors

clicked). See Fig. 5.6.

This yields a P -value of 0.029 in the conventional analysis39 (which assumes
independent trials, perfect random number generators and Gaussian statistics), and
with k2 = 237 a P -value of 0.061 in the complete analysis39 (which allows for
arbitrary memory between the trial, partially predictable random inputs and makes
no assumptions about the probability distributions).

5.5 Combined P -value for the two tests

We now turn to analysing the statistical significance of the two runs combined.
Extending the conventional analysis, we take the weighted sum of the CHSH parameters
obtained for both tests to find Scombined = 2.38± 0.136, yielding a P -value of 2.6·10−3.
For the complete analysis, we give here two cases. The first case is where the tests are
considered to be fully independent; we can then combine the P -value using Fisher’s
method, resulting in a joint P -value of 1.7 · 10−2 for the complete analysis. In the
second case we consider the two runs as a single test; we can then combine the data,
and find k1 + k2 = 433 for n1 + n2 = 545, resulting in a joint P -value of 8.0·10−3

for the complete analysis. We emphasize that these are extreme interpretations of a
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Figure 5.6 — Second Loophole-free Bell test results. (a) Summary of the data and the CHSH
correlations. We record a total of n2 = 300 trials of the Bell test. Dotted lines indicate the
expected correlation based on the spin readout fidelities and the characterization measurements
presented in Fig. 5.4. Shown are data for both ψ− heralded events (red, two clicks in different
APD’s at location C), and for ψ+ heralded events (orange, two clicks in the same APD). Numbers
in bars represent the amount of correlated and anti-correlated outcomes respectively, for ψ− (red)

and ψ+ (orange). Error bars shown are

√(
1− 〈x · y〉2(a,b)

)
/n(a,b), with n(a,b) the number of

events with inputs (a, b).

subtle situation and these P -value should be considered accordingly.

5.6 Choosing different heralding window settings in
post-processing

Although the predefined event-ready filter settings were used for the hypothesis tests
presented, the datasets recorded during the Bell experiments contain all the photon
detection times at location C. This allows us to investigate the effect of choosing
different heralding windows in post-processing. Such an analysis does not yield reliable
global P -value(look-elswehere effect), but can give insight in the physics and optimal
parameters of the experiment. In Fig. 5.7 we present the dependence of the recorded
Bell violation S, and number of Bell trials n, if we offset the start of the windows. For
negative offsets, photo-detection events caused by reflected laser light starts to play
an important role, and as expected the Bell violation decreases since the event-ready
signal is in that regime no longer a reliable indicator of the generation of an entangled
state. The observed difference between the runs in offset times at which the laser
reflections start to play a role are caused by the less aggressive filter settings in the
second run. However, we see that in both runs the S-value remains constant up a
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5. A loophole-free Bell test

Figure 5.7 — CHSH parameter S, number of Bell trials n, and post-selected P -value versus
window start offset for the event-ready photon detections at location C, for the first (grey) and
second (orange) dataset. A combined P -value using Fischer’s method is also shown in red. The
time offset shown is with respect to the windows given in Sections 5.9.5 and 5.4 for the first and
second run, respectively. Thus, the dotted line at zero denotes the settings as defined prior to
starting the Bell experiment and used in e.g. Figs. 5.5 and 5.6. Confidence region shown is one
sigma, calculated according to the conventional analysis. Shifting the window back in time, the
relative fraction of heralding events caused by clicks from the excitation laser reflections increases,
thereby reducing the observed Bell violation.

.

negative offset of about 0.8 ns, indicating that the filter settings were still chosen on
the conservative side.

5.7 Bell violation for shorter readout duration

The data presented in Figs. 5.5 and 5.6 considered the maximum integration time
allowed for the spin readout, given a 160 ns time for the generation of a random number,
that still ensures the required locality conditions. By shortening the integration time-
window in post-processing, we can explore testing additional models beyond those
included in our null hypothesis. In particular, shortening the readout window while
still observing a violation can test theories where the inputs are already determined
earlier by some unknown physics. We can shift the proposed determination of the
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Figure 5.8 — CHSH parameter S versus readout integration time at locations A and B, for
the first (grey) and second (orange) dataset. Confidence region shown is one sigma, calculated
according to the conventional analysis.

inputs further back in time, until the event-ready signal will no longer be space-like
separated from the random input at location A (see Fig. 5.3a). At this point we
have 690 ns for the generation of a random bit. Shortening the readout to retain the
required locality conditions given the earlier determined inputs, we find a violation
of S = 2.39± 0.21 and S2 = 2.30± 0.19, which would correspond to a joint P -value
using Fisher’s method of 0.034 for the complete analysis. Note however that our null
hypothesis formulated before the test is based on using a 3700 ns readout duration,
and further analysis may be required to find the actual P -value for shorter readout
durations. Alternatively, one can test theories that predict a maximum speed of
physical influences beyond the speed of light. Fig. 5.8 shows the dependence of the S
parameter on the readout integration time.

5.8 Conclusion

Our experiment realizes the first Bell test that simultaneously addresses both the
detection loophole and the locality loophole. Being free of the experimental loopholes,
the setup tests local-realist theories of nature without introducing extra assumptions
such as fair-sampling, a limit on (sub-)luminal communication or the absence of
memory in the setup. Our observation of a statistically significant loophole-free Bell
inequality violation thus indicates rejection of all local-realist theories that accept
that the number generators produce a free random bit in a timely manner and that
the outputs are final once recorded in the electronics. This result places the strongest
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restrictions on local realistic theories of nature to date.

Strictly speaking, no Bell experiment can exclude all conceivable local-realist theories,
because it is fundamentally impossible to prove when and where free random input bits
and output values came into existence15. Even so, our loophole-free Bell test opens
the possibility to progressively bound such less conventional theories: by increasing
the distance between A and B (for example, to test theories with increased speed
of physical influence); using different random input bit generators (to test theories
with specific free-will agents, for example, humans), or by repositioning the random
input bit generators (to test theories where the inputs are already determined earlier,
sometimes referred to as “freedom-of-choice”10). In fact, our experiment already
enables tests of all models that predict that the random inputs are determined a
maximum of 690 ns before we record them, because the inequality is still violated for
a much shorter spin readout (Sec. 5.7).

Combining the presented event-ready scheme with higher entangling rates (for
example, through the use of optical cavities) provides prospects for the implementation
of device-independent quantum key distribution23 and randomness certification24,25.
In combination with quantum repeaters, this might enable the realization of large-scale
quantum networks that are secured through the very same counter-intuitive concepts
that inspired one of the most fundamental scientific debates for 80 years1,2.

5.9 Supplementary Information - Experimental

5.9.1 Experimental setup

The experiments are performed on individual NV centres that are naturally present
in high purity type IIa chemical-vapor deposition diamond samples (Element Six),
with a 〈111〉 crystal orientation. In its negative charge state, the NV centre ground
state is an electronic spin triplet with total spin 1. The zero-field splitting separates
the |ms = 0〉 and |ms = ±1〉 levels by 2.88 GHz. Additionally we split the |ms = ±1〉
levels by 0.14 GHz using a static magnetic field applied along the defect axis. We
use the two levels |ms = 0〉 and |ms = −1〉, denoted as |↑〉 and |↓〉, respectively. We
use microwave control pulses, applied via a gold stripline deposited on the sample
surface, to rotate the electronic ground state spin. The carrier frequency of the pulses
is resonant with the |ms = 0〉 to |ms = −1〉 ground state transition. The electronic
spin resonance spectrum of both NV centres is split into three lines by the hyperfine
interaction with the host nitrogen nuclear spin of the defect. Therefore, we chose a
Hermite pulse envelope shape, which provides a broad and flat spectral distribution.
In this way, we achieve a π rotation within 180 ns with a fidelity exceeding 99.8%
without initializing the nitrogen nuclear spin state.

The samples are kept at a temperature of 4 K in closed-cycle cryostats (Montana
Instruments) to enable resonant optical excitation of spin-dependent transitions. This
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enables fast single-shot readout and high-fidelity optical initialization of the electronic
spin state. The design of the electronics and optical setup is described in detail
in previous work32,41. To initialize the electronic spin into |↓〉, we apply resonant
excitation on the |ms = ±1〉 ↔ |E′〉 optical transition, achieving an initialization
fidelity of more than 99.8% within 5 μ s. Electronic spin readout is accomplished
by resonant excitation of the Ex(Ey) transition for the sample in setup A (B). To
guarantee a high readout fidelity by minimizing the spin mixing in the excited state,
we chose samples with low transversal strain splitting and additionally use d.c. Stark
tuning by applying d.c. electric fields to the on-chip electrodes (Fig. 5.2a inset). The
average strain splitting during the experiment was 1.8 (2.3) GHz in sample A (B).

A high photon collection efficiency is a prerequisite for high fidelity optical single-
shot readout and high-efficiency entanglement. To overcome the limitation of total
internal reflection of the emitted photons, we fabricate solid immersion lenses in the
diamond surface around preselected NVs (oriented along the 〈111〉 crystal direction)
using a focused ion beam. In addition, we deposit a single-layer aluminium oxide
anti-reflection coating. We select devices with a particularly high phonon-sideband
(PSB, wavelength > 640 nm) photon collection efficiency in our home-built confocal
microscope setups, which we measure to be (13± 2)%. Note that this value includes
the 80% quantum efficiency of the detectors. The zero-phonon line (ZPL) photon
emission of each NV is separated from the PSB using a dichroic long-pass and an
additional tunable bandpass filter. Per optical excitation, we collect on average
2.9 · 10−4 (1.7 · 10−4) ZPL photons at location C after propagation through a single
mode fibre from location A (B). Measured fiber losses are 6 dB from A to C and 9
dB from B to C. On setup A, we use adaptive optics to couple the ZPL emission into
the single mode fiber, increasing the efficiency by about a factor of two, compared to
using standard optics (Sec. 5.9.12). We use two polarisers at C to block unwanted
reflections from the excitation pulse. To compensate for polarization drift inside the
fibers, an automated polarization control feedback loop adjusts two waveplates in
front of the fiber couplers at A and B.

Synchronization of the individual setups is achieved via separate glass fiber connec-
tions. Distances between locations are determined using cartographic and altimetric
data (Sections 5.9.6, 5.9.7).

One of the main challenges in performing the Bell experiment, is to maintain the
required stability of all the involved NV centres, instruments, lasers and detection
optics over a week time-scale. In Sec. 5.9.9 we list the various checks, optimisations
and calibrations performed to achieve this goal.

5.9.2 Two-photon quantum interference (Fig. 5.4b)

Measurement of photon coincidences in different output ports of a beam splitter
has become a standard tool to investigate the indistinguishability of single photons
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generated by different sources. To account for potentially unequal efficiency of the
sources, one can compare the case where the photons are indistinguishable to one
where they are made distinguishable on purpose. In our experimental system, using
orthogonal polarization is prohibited by in-line fibre polarisers. We instead program
the experimental sequence such that setup A generates photons in an ‘early’ time
window and setup B in a ‘late’ time window which is delayed with respect to the early
one by 300 ns. Since this is much longer than the optical lifetime of the NV centre,
this allows us to clearly distinguish which of the setups has emitted a given detected
photon. During the measurement this distinguishable setting is alternated (every 3750
excitation pulses) with the indistinguishable setting, in which both setups produce
photons that arrive at the same time at the beamsplitter.

In the data analysis for the distinguishable setting the arrival times of the photons
in the late time window (coming from setup B) are shifted back by 300 ns in order to
overlap them with those from setup A. In this way, we can present the data in a more
familiar way (Fig. 5.4b). Note also that the data in Fig. 5.4b is taken on a different
NV pair than the one used in the other experiments; the two pairs are very similar
and are therefore expected to yield equivalent results.

5.9.3 Model of the entangled state (Figs. 5.4c and 5.5a)

We estimate the readout fidelities of NV A and B from the daily calibration meas-
urements during the recording of the XX and ZZ entanglement data (Fig. 5.4c).
We find: FA

0 = 0.9536 ± 0.0030, FA
1 = 0.9940 ± 0.0011, FB

0 = 0.9390 ± 0.0034,
FB
1 = 0.9982± 0.0006. Using these values, we correct the spin-photon correlation data

of Fig. 5.4a for readout errors41, to obtain the residual errors made in the spin-photon
correlation, eA,B

early,late presented in the caption of Fig. 5.4a.

To obtain an estimate for the fidelity of the generated entangled state, we model
the state of the two NVs after a successful heralding event by a density matrix of the
following form (See SI of41):

ρ =
1

2

⎛
⎜⎜⎝
1− Fz 0 0 0

0 Fz −V Fz 0
0 −V Fz Fz 0
0 0 0 1− Fz

⎞
⎟⎟⎠ . (5.2)

Here we set

Fz =
1

2

(
(1− eAearly)(1− eBlate) + (1− eBearly)(1− eAlate)

)
, (5.3)

V can be estimated from the measured interference contrast in Fig. 5.4b, in combination
with the expected 3% reduction in phase coherence from the instability in excitation
laser frequency (see section 5.9.11 below). The statistical uncertainty in the estimated
V is large because of the small number of events in the interference experiment. Our
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Figure 5.9 — Pulse sequence of the experiment. First, the spins at A (top) and B (bottom)
are initialized by optical pumping. Then we perform the entangling sequence, consisting of two
microwave and two optical pulses, followed by a dynamical decoupling sequence consisting of two
microwave π-pulses that preserves the spin coherence. Finally, the readout basis is chosen and
implemented and the spins are read out.

best estimate is V ≈ 0.9 ∗ 0.97 = 0.873± 0.060. This yields an estimate for the state
fidelity 〈Ψ−| ρ |Ψ−〉 = 0.92± 0.03. To get the expected correlation values for Fig. 5.4c,
we numerically perform the corresponding final basis rotations Ua,b on ρ and apply
the expected readout-errors on the obtained density matrix. We use the same model
to numerically find the best basis settings for the Bell experiment and to calculate
the expected correlators in Fig. 5.5a. This results in an expected S-parameter of
2.30± 0.07.

5.9.4 Dynamical decoupling sequence

The coherence of the NV centre spins is limited by the interaction with a bath of
13C nuclear spins, resulting in a dephasing time T ∗

2 of a few μ s. To counteract this
dephasing we apply a dynamical decoupling sequence that consists of two microwave
(MW) π-pulses with appropriate spacing. The full experimental pulse sequence is
shown in Fig. 5.9. To quantify the remaining detrimental effect of spin dephasing
during the experiment, we omit the two optical π-pulses used to generate the spin-
photon entanglement and replace the last MW rotation by a π/2 pulse. Ideally, this
sequence should bring the spin to the state |↓〉. The measured probability to end up
in this state is above 99% showing that decoherence is efficiently mitigated.

5.9.5 Event-ready signal settings

The signal that heralds successful entanglement, recorded at location C, consists of
one photon detection event in an early time window and one in a late time window,
each in a different output port of the beam splitter. We have to define the start-
and stop times of these 2× 2 windows. Ideally the windows only contain detection
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events due to photons emitted by the NV centres at location A and B. The start time
of the window should be late enough such that unwanted reflections from the laser
excitation pulse are filtered out, while the stop time should be early enough such that
the background count-rate is not dominating the detection probability.

We use the characterisation data of the ZZ and XX entanglement runs presented in
Fig. 5.4c to decide on time-window settings for the event-ready signal, prior to starting
the Bell experiment. Fig. 5.10 illustrates the method used to obtain a good window
start-time and length, for each of the two channels, for the early time-window. For
the late time-window we use the same settings, but shifted by the fixed time between
the two laser excitation pulses in the entanglement protocol (250 ns).

5.9.6 Location and distances

The experiment comprises three locations, A, B and C, defined as the position of the
three time-tagging devices used. For locations A and B, the random number generators
were located within 1 metre distance from the time-taggers, and the diamond samples
and local photon detectors within 2 metre distance. For location C, the beam-splitter
and photon detectors were located within 1 metre distance from the time-tagger. For
each location X,Y and Z coordinates are determined in the following way:

First, a reference point on the outer wall of the building containing the setup is
chosen. Then, the XYZ coordinates of the reference point are determined using the
Large Scale Standard Map of The Netherlands (GBKN42), which has an accuracy
better than 0.3 m, combined with the current elevation map of the Netherlands
(AHN)43, with a horizontal accuracy better than 0.5 m, and a vertical accuracy better
then 0.1 m. Note that this accuracy is comparable to what can be obtained with GPS
aided measurements. Finally, the relative position of the setup to the reference point
is determined by manual distance measurements. The coordinates obtained in this
manner are shown in Table 5.1. By converting to 3-dimensional Cartesian coordinates,
the relative distances between the three locations is calculated with an uncertainty of
less than ±1.5 m.

5.9.7 Synchronisation of the experimental setups

Direct communication between the three labs A, B and C is implemented by means
of electronic-optical converters (Highland Technology J720/J724/J730) and infrared
optical fibres. To synchronize A and B during the Bell test, we send and record a
common start reference time before every entanglement attempt. Towards this end, a
trigger signal is sent by the arbitrary waveform generator (AWG) of B to both the
time-tagger at C and the AWG at A. We calibrate the static trigger delays between
A-B and B-C by measuring the round trip delays, including AWG trigger delay and
local cable delays. The measured values are shown in Table 5.2.
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Figure 5.10 — Obtaining time-window settings for the event-ready signal. Red line: Histogram
of the arrival times of the early time-bin photons from both setups together, during the XX
entanglement characterisation, measured at location C. We can clearly distinguish the 2 ns,
Gaussian shaped excitation pulse, followed by the exponential decaying emission from the NV’s,
and finally the constant background countrate. (The 1 ns plateau observed just before the laser
pulse was caused by a reflection on an optical element in the excitation path of setup A). From
simulations we expect to obtain S > 2 only when the probability to obtain a click from either NV
is at least 10 times larger than the probability to obtain a spurious click from either the laser
pulse or the background. Using the independently measured shape of the laser pulse (blue line),
and the background count-rate fitted from the histogram after 120 ns (green line), we determine
the start and stop of the filter window that satisfies this criterion (upper insets). We find a time
window of 2.55− 55 ns after the centre of the laser-pulse. Before starting the Bell experiment, we
measured the arrival of the laser pulse for the (different) detectors used, for each channel (lower
inset). From the Gaussian fit, we find the centre of the laser pulse to be at 5423.80± 0.01 ns
and 5423.15± 0.01 ns after the arrival of the sync pulse, for detectors 0 and 1 respectively. We
then fixed the window settings for heralding events at C, to be used in the Bell test: the early
window starts 5426.35 (5425.70) ns after the sync-pulse, and stops 5478.80 (5478.15) ns after
the sync-pulse for channel 0 (channel 1). A fit of the exponential part of the curve yields a excited
state lifetime of 12.20± 0.02 ns

119



5. A loophole-free Bell test

Table 5.1 —Coordinates of the relevant locations. RD XY coordinates are Dutch RD coordinate
system 44, Z coordinates are NAP according to the NLGEO2004 definition 44. Latitude, longitude
and height are calculated WGS84, using RDNAPTRANSTM(2008) transformations.

Location
RD X (m)
latitude (◦)

RD Y (m)
longitude (◦)

NAP height (m)
geometric height (m)

A
85441.0
(N 52.001358)

446371.7
(E 4.374233)

-1.75
(41.7)

B
85920.3
(N 51.990753)

445185.0
(E 4.381451)

-3.43
(40.0)

C
85490.9
(N 51.996959)

445881.5
(E 4.375059)

-3.41
(40.1)

As a cross check, we use the independently measured trigger delay between A-C, and
verify that the time delay between the routes B-C and A-B-C matches the expected
value. Any potential instability in the trigger delays during the measurement would
immediately be detected at the time-tagger at C by a shift in the arrival time of the
laser pulse-photons coming from A and B.

Table 5.2 —Trigger delays between lab locations. For A-C, the AWG trigger delay is included.
The given uncertainty values assume a worst case scenario, where all individual uncertainties add
up linearly.

Trigger delays Time (ns) Uncertainty (ns)
A - B 9347 10
B - C 5526 8
A - C 3391 8

5.9.8 Random number generation

We use two accelerated laser phase diffusion quantum random number generators45

(QRNGs) of identical construction, designed and built at ICFO - The Institute of
Photonic Sciences. The design, modelling, and testing of these devices is described in
detail in34. As described there, each QRNG continually generates partially random
“raw” bits at a rate of 200 MHz and performs a running parity calculation to output
processed bits that aggregate the randomness from all previous raw bits. At the time
an output bit is taken for use as a measurement setting, only the most recent k raw
bits will still be space-like separated from the distant measurement station, and thus
only these k bits contribute local randomness. Based on the timing diagram shown in
Fig. 5.3, and subtracting delays in the QRNG device (10 ns), internal delays of the
sampling FPGA (30 ns), and cable delay to the time-taggers (10 ns), the window for
generation of space-like separated raw bits is 160 ns, and thus k = 32.
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The predictability P of the output (ideally P = 1/2 for a perfect random bit source)
is P ≤ 1

2 + τ (k), where τ (k) bounds the excess predictability of the extracted bit. Due

to the parity calculation, τ (k) decreases by roughly a factor of ten for each increment
of k, reaching τ (k) ≤ 10−5 for k ≥ 6. The model uses a 6σ bound on untrusted noise
sources and “fully paranoid” assumptions about how these noises combine34.

While the derived predictability errors P for k = 32 are too small to be tested
(verifying this would require an impractical quantity of data), we can verify the validity
of the predictions up to a given statistical significance. Prior to the experiment the
QRNGs were tested at k = 4, achieved by keeping only every fourth output bit. Note
that k = 4 output should, by the same model, have predictability errors ≤ 10−4. We
applied the test suites NIST SP800-22 (1.5 Gb for each QRNG) and more extensively
TestU01 Alphabit battery (210 Gb and 255 Gb), always finding results consistent with
ideal randomness. The largest files tested contained 233 ≈ 8 Gb and 234 ≈ 17 Gb,
respectively. Using the statistical uncertainty of a test of length 233, we obtain a 2σ
error bound of P < 1

2 + 2 1

2
√
233

= 1
2 + 1.08× 10−5. We use this latter number as the

predictability error τ in the P -value calculation, but note that this is conservative as
the theoretical model predicts that the k = 32 predictability error is smaller.

During the experiment, the continued performance of the QRNGs was monitored
in two ways: First, the regulated reference voltage of the comparator after the pin
photo-diode (see Fig. 1 of34) was checked every 10 seconds to exclude failure of the
phase-locked loop, laser, interferometer, and photo-detector. Second, we recorded a
subset of 223 random bits, generated during the course of the Bell experiment, observing
means of 1

2 +5.8× 10−5 and 1
2 +1.3× 10−4, consistent with the zero bias of a properly

functioning device, considering the statistical uncertainty of 1

2
√
223

= 1.7× 10−4.

5.9.9 Experimental control and stability

A typical experimental run proceeds as follows (see Fig. 5.11): Both Adwin controllers
perform a charge-resonance check (CR check, see below). Adwin A sends a trigger
signal to B when the CR-check is successful. When Adwin B is also ready, it triggers
AWG B, which in turn sends out an initial ‘sync-pulse’ signal, to trigger AWG A. AWG
B waits for the pre-calibrated A-B trigger delay (see Table 5.2), and then proceeds
with 250 repetitions of the programmed pulse sequence (Fig. 5.9). Similarly, AWG
A runs 250 repetitions of its sequence, as soon as it receives the initial sync-pulse.
When finished, both AWGs trigger their Adwin to start the next CR check. This cycle
repeats itself until the run is quit manually, or until the 45 minute run time is over.

A major challenge for our experiment is to keep a complex setup with many critical
components stable over the long integration time necessary to collect data, in order to
ensure entanglement generation, spin rotations and spin readout with a high fidelity
that is required to observe a violation of the Bell inequality. To maintain stable
operation for a period of several weeks, we employ a combination of pre-selection,
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parameter feedback, periodic calibration and optimisation measurements. Additionally,
we monitor various key experimental indicators while running the Bell experiment.
If an indicator is outside of the pre-defined range, the current run is either stopped
completely, or a signal is recorded in the data to indicate that the setup is in an invalid
state (see section 5.9.10). Note that if this happens, no data from previous trials or
the current trial is discarded (only trials that were marked as invalid in advance are
affected).

Below we list all aspects of the setups that were actively stabilized and monitored,
from short to long time-scale.

• Every 250 entanglement attempts (3.75 ms), we ensure that both NVs are
negatively charged and on resonance with the excitation lasers (CR-check, see30).
We excite both the |ms = ±1〉 ↔ |E′〉 and the |ms = 0〉 ↔ |Ex(Ey)〉 optical
transitions during 50 μ s for setups A (B), while counting the number of detected
photons. If no photon is detected, the NV centre is assumed to be in its neutral
charge state NV0 and a yellow laser, resonant to the NV0 zero-phonon line, is
applied to transfer the centre back to NV−. If, however, the number of photons
exceeds a pre-set threshold (between 30-40 counts), the experiment proceeds
with the entanglement sequence. Otherwise, the experiment repeats the check,
until the threshold is met.

• An automated feedback loop stabilizes the NV excitation and emission frequency
to the two red excitation lasers, by tuning the d.c. electric field applied to the
gold gate-electrodes. Before each CR check, the arrival of photon detections are
correlated with a 0.1 V, 50 μ s period modulation of the gate electrode. This
signal is averaged over about 1000 CR checks (few seconds), and serves as the
error signal for the feedback. In a similar manner the laser frequency of the
yellow laser is stabilized to the NV0 zero-phonon line, using a modulation of
the AOM driving frequency, while counting photon detections during the yellow
repump phase.

• Every 10 seconds, both setups check proper functioning of a few key devices
(AWG, wavemeters, laser stabilisation). If a check fails, the run is stopped
and the setup waits for human intervention. Additionally, the control program
monitors:

– The average counts during the CR-check. If too low, we assume that the
automated gate voltage feedback has failed. A slow scan of the gate voltage,
spanning a larger range than the feedback loop, is made to find back the
optimum point. During the scan, the recorded attempts are marked invalid.
If still too low, or too high, we assume that the NV dipole polarization has
drifted. This requires the excitation polarisation to be adjusted manually.
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– The average counts obtained during the yellow repump phase. If too low,
we assume the automated yellow laser frequency feedback has failed. A
slow sweep of the yellow laser frequency is made, and the optimum point is
set. During the scan, the recorded attempts are marked invalid.

– The strain splitting, calculated from the current red laser frequencies. If
this splitting is not within the predefined range (1.5 - 1.8 GHz for NV A,
1.5 - 2.4 GHz for setup B), the subsequent data is marked invalid until
the strain splitting is within range again. This is typically achieved by
manually tuning the readout laser excitation frequency.

– The amount of unwanted reflections of the excitation light from the surface
of the diamond. If this is above a predefined threshold, the setup performs
an automated scan of the waveplate angles in the ZPL emission path (see
Fig. 5.2a) to improve the polarisation rejection of the excitation laser. The
reflections are measured for both setups independently by integrating a
specific time-window of the arrival of photons at location C. During the
spin-initialisation part of the protocol, we identify parts in the histogram
for which only photons from one of the setups arrive. If the amount of
reflections integrated in a time-window corresponding to the arrival of the 2
nanosecond laser excitation pulse is higher than the integrated NV emission,
the subsequent attempts are marked as invalid.

• Every 5 minutes, we scan the spin pumping laser, and set it to the point
producing optimal CR-counts. The data recorded during the scan is marked
invalid.

• After each 45-minute run, the spatial positions of both objectives are optimized
to ensure reproducible NV excitation and photon collection. Furthermore, the
laser powers are recalibrated.

• Every day, we perform a spin-photon correlation measurement as presented
in Fig. 5.4a. If the obtained correlations show errors higher than expected,
the microwave pulses for spin rotations are recalibrated. We also check the
performance of the final basis rotation (fast microwave switch), spin-coherence
and spin readout. Finally, we check the photon detection probabilities per optical
excitation at location C, from both setups. If the detection probability drops
below 2.3× 10−4 (1.4× 10−4) for setup A (B), we re-align the detection optics
of the ZPL emission.

5.9.10 Data recording and processing

The time-tagging devices at locations A and B record the following events:

• R0: a ‘zero’ was generated by the QRNG;
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Figure 5.11 — Control schematic of the experiment. The experiment is performed in three
separate laboratories A, B and C (grey dashed lines). The experiments at A and B use a real-time
control unit (Jäger ADWIN Pro II). Each repetition starts by repeatedly checking whether the NV
emission frequency is on resonance with the excitation lasers (CR). Once this check is successful
on setup A, its ADWIN passes a signal to setup B. When B has also successfully passed the
test, ADWIN B triggers AWG B, which in turn triggers AWG A. Both AWGs then output a
synchronization signal (S) which is recorded by their respective time-taggers, whose signal is
read out in blocks using a PC. The AWGs also output the fast control sequence that is applied
to the NV centres. Towards this end, they control the laser pulses and output two different
microwave (MW) pulses that perform the basis rotations in the Bell experiment. A microwave
switch controls which of these two pulses is applied to the NV centre, depending on the output
of the QRNG. The value of the generated random bit (R0 or R1) is recorded by time-tagging
devices, alongside with the NV spin state readout signal (P) that is detected by single photon
detectors (APD). At location C, two APDs detect upcoming ZPL photons, whose arrival time is
recorded by another time-tagger. Upon consecutive detection of two photons, a programmable
logic device (CPLD) outputs a signal that is used to mark these instances in the time-tagging
data (input E). This allows the PCs at A and B to directly discard experimental runs in which no
entanglement was generated, thus keeping the amount of stored data in reasonable bounds.
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• R1: a ‘one’ was generated by the QRNG;

• P : a click was detected in the local phonon-side band emission;

• E: an entanglement heralding signal was received from the CPLD at location C;

• I: One of the benchmark indicators (section 5.9.9) is outside of the pre-defined
range, which causes the Adwin to send a pulse to this channel every 250
entanglement attempts.

For each of these recorded events, the total number of sync-pulses (S) detected
since the start of the run is saved, as well as the time passed since the last sync-pulse.
Every few hundred milliseconds, the recorded events are transferred to the PC. During
the experiment, about 2 megabyte of data is generated every second. To keep the size
of the generated data-set manageable, blocks of about 100000 events are saved to the
hard drive only if an entanglement heralding event (E) is present in that block.

The time-tagging device at location C records the following events:

• P0: a click was detected in output port 0 of the beam-splitter;

• P1: a click was detected in output port 1 of the beam-splitter;

• E: an entanglement heralding signal was received from the CPLD;

For each of these events, the current number of detected sync-pulses (S) since the
start of the run is recorded, as well as the time passed since the last sync-pulse and the
total time passed since the start of the run. As the data-rate is orders of magnitude
lower here, all data is saved to the hard-drive.

For each run, we first extract the data of those attempts where entanglement
was successfully generated, i.e. all data that has the same sync-pulse number as an
entanglement heralding signal E. We then determine if this is a valid trial of the Bell
experiment, determined by following criteria:

1. At location C, the recorded photon arrival times were within the bounds of the
pre-defined filters (see Sec. 5.9.5).

2. At location A and B, there was no invalid marker I recorded in one of the
previous 250 attempts.

3. At location A and B, no local photon P was recorded in a time-window of 200 ns
after the two optical excitations for entanglement generation.
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We emphasize that all events that determine whether or not an iteration is a valid
Bell trial either are recorded in the past light-cone of the random basis choice (2. and
3.) or are space-like separated from the random basis choice (1.) of both A and B.

All rounds that fulfil the above criteria are a Bell trial, corresponding to t = 1, in
the language of the statistical analysis presented in Sec. 5.10.1 below. For these events,
we extract the generated random numbers and readout results of both setups A and B.
For setup A, an event on channel R0 corresponds to a = 0, an event on R1 indicates
a = 1. The readout result x = +1 is assigned if within the readout integration
time-window (as defined by the spacetime analysis presented in Fig. 5.3), there is at
least one readout detection event (channel P ) recorded and x = −1 otherwise. For
setup B, b and y are assigned analogous.

5.9.11 Stabilization of the excitation laser frequency

In our previous demonstration of entanglement between remote spins separated by
3 meters32, both NV defects were excited by the same laser, and the difference in
optical path length from this laser to either of the NV centres was much smaller than
the coherence length of the laser. Therefore, the relative phase between early and late
time-bin of the photonic wavepacket could be described in a common rotating frame
- that of the laser source. In the present experiment, the large separation between
the two setups requires excitation by two independent laser systems. Retaining the
common reference frame upon interference of the time-bin encoded photonic qubits
requires that the source lasers in both setups imprint the same phase difference between
early and late time bin. To accomplish this, a digital feedback loop is used to stabilize
the frequency of one laser to that of the other.

Fig. 5.12 shows a schematic of this feedback loop. A small fraction of the excitation
laser of setup A is frequency-shifted by 135 MHz by an acousto-optical modulator.
Using a fibre-based beamsplitter, this laser field is interfered with a part of the light
of laser B, which has been transmitted to laboratory A using an additional optical
fibre of 1.6 km length.

To stabilize the relative frequency of the lasers, the interference signal is recorded
using a fast amplified photodetector (Thorlabs PDA10). The beat frequency is
compared to the RF source signal that drives the AOM using a digital phase-frequency
detector (Menlo systems DXD200). The output of this device is applied to the current
of laser diode A, shifting its frequency and thus closing the feedback loop. The
remaining 200 kHz (FWHM) relative frequency deviation is an effect of the limited
short-term stability of the used diode lasers (Toptica TA-SHG pro). An additional
fibre delay line of 1 km length reduces the effect of drifts in the frequency of laser B
on the relative frequency difference of the pulses that excite the NV centres.

In this configuration, we measured the fluctuations in the phase of the driving lasers
using an analog phase detector to be about 0.2π FWHM at the 250 ns time difference
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Figure 5.12 — Schematic of the relative laser frequency stabilization. FM: Laser frequency
modulation input. RF: Radiofrequency source. BS: Beam splitter. FBS: Fibre beam splitter. PD:
Photodiode. PFD: Phase-frequency detector. NV: Nitrogen-vacancy centre. AOM: Acousto-
optical modulator.

between the two excitation pulses. According to our calculations, this should lead to
a fidelity reduction of the XX correlations of about 3%. Further improvement would
be possible by reducing the laser linewidth, e.g. with an external reference cavity, or
by decreasing the temporal separation between the two time-bins.

5.9.12 Adaptive optics

We use a deformable mirror (Boston Micromachines) in the ZPL detection path of
setup A to compensate for optical aberrations due to fabrication imperfections of the
solid immersion lens. To optimize the mirror surface, the NV centre is off-resonantly
excited by a 532-nm green laser and the collected fluorescence signal is optimized by
step-wise varying the mirror surface according to Zernike polynomials up to eleventh
order46. The optimized shape of the mirror surface is represented in the inset of
Fig. 5.13. The increase in collection efficiency is characterized by comparing saturation
curves measured locally on the setup A for a flat and optimized mirror configuration,
as shown on Fig. 5.13. The evolution of the ZPL count rates versus the excitation
power Pe is fit to the function :

Asat
Pe

Pe + Psat
(5.4)

with the maximum count rate Asat and the saturation power Psat as free parameters.
We find Asat = 18(1) kcts when the mirror surface is flat, and Asat = 35(2) kcts after
optimizing. Thus, for this particular solid immersion lens, the use of adaptive optics
allows for an increase in collection efficiency by a factor of 1.9(1).
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Figure 5.13 — Saturation curve. The NV is excited with a green laser of varying power and
the resulting emission into the zero-phonon line is measured with a flat (blue data) and with
an optimized (red data) mirror surface. From the fit curves (red and blue lines), we deduce an
increase in collection efficiency by a factor of 1.9. The inset shows a heat map of the actuator
voltages, where red (blue) rectangles denote positive (negative) excursion.

5.10 Supplementary Information - Statistical Analysis

Local hidden variable models (LHVM) predict concrete limitations on the statistics
that can be observed in a Bell experiment. These are typically phrased in terms of
probabilities or expectation values. Naturally, however, in any experiment we can only
observe a finite number of events, and not probabilities. We thus need to quantify the
statistical evidence against an LHVM given a finite number of events.

A common way to analyse statistics in Bell experiments is to compute the number
of standard deviations that separate the observed data from the best LHVM. However,
this method has well known flaws18,22,47 (see48 for a detailed discussion). In particular,
we would have to assume Gaussian statistics and independence between subsequent
attempts, allowing for the memory loophole. Fortunately, it is possible to rigorously
analyze the statistics even when allowing for memory as was first done by Gill49.
Instead of the standard deviation, intuitively, one bounds the probability of observing
the experimental data, if nature was indeed governed by an LHVM. In the language
of hypothesis testing, this is known as the P -value, where the null hypothesis is that
the experiment can be modelled as an LHVM (see e.g.50). Informally, we thus have

P -value = max
LHVM

Pr

[
data at least as
extreme as observed

∣∣∣∣ experiment is
governed by LHVM

]
. (5.5)

A small P -value can be interpreted as strong evidence against the null hypothesis, that
is, that the experiment was governed by an arbitrary LHVM. There is an extensive
literature regarding methods for evaluating the P -value in Bell experiments18,22,48–60
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and discussions regarding the analysis of concrete experiments and loopholes14,61–67.

Here, we focus on the case of the CHSH inequality as relevant for our experiment.
For the simple case of the CHSH inequality, it has been shown how to derive tight
bounds on the P -value if the settings are chosen uniformly. Such a bound was first
informally derived in18, and later rigorously developed by Bierhorst51 whose approach
we will follow closely with two modifications: First, the analysis of51 was done for
uniform and independent choices of measurement settings. We extend the approach
of51 to the case where A and B use a partially predictable RNG34. Second, although
our experiment can readily be seen to correspond to an event-ready scheme in the
sense of Bell, we formally include the event-ready procedure in our analysis.

5.10.1 How to compute the P -value

See Fig. 5.1a; an event-ready Bell experiment consisted of m entanglement at-
tempts. Let tm = (ti)

m
i=1 denote the output signal of the “event-ready”-box, where

the tag ti = 0 corresponds to a failure (no, not ready) event, and ti = 1 to a successful
preparation (yes, ready) of the boxes A and B. We will reserve the word trial for the
attempts that correspond to a successful preparation. Throughout, we use superscripts
m to remind ourselves a sequence tm has m elements. Let am = (ai)

m
i=1,b

m = (bi)
m
i=1

denote the inputs to boxes A and B in Fig. 5.1a, where ai, bi ∈ {0, 1}. Furthermore,
let xm = (xi)

m
i=1,y

m = (yi)
m
i=1 with xi, yi ∈ {±1} denote the output of boxes A and

B.

We denote by |tm| the number of ones in the binary sequence tm. Since we will use
only the attempts where ti = 1, let us define

n := |tm| =
m∑
i=1

ti (5.6)

to be the number of attempts in which ti = 1, where n is fixed as discussed below.
Given the observed values am,bm,xm,ym, and tm recorded in the experiment, we
can compute the CHSH function

k :=
m∑
i=1

ti · (−1)
aibixiyi + 1

2
. (5.7)

Note that k is the number of times that (−1)aibixiyi = 1. When viewing CHSH as a
non-local game15, k is thus the number of times that Alice and Bob win the CHSH
game. For large n, and uniform distribution of the inputs, we have k ≈ n(S + 4)/8,
where S is the value of the familiar CHSH correlator. We prove that

P -value ≤ Pn,k(�ξ) =
n∑

j=k

(
n

j

)
ξj(1− ξ)n−j , (5.8)
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where Pn,k(�ξ) is the probability that n i.i.d. (independent and identically distributed)
Bernoulli trials with probability

ξ = 3/4 + 3(τ + τ2) (5.9)

have at least k successes. Here τ denotes a partial predictability of the inputs given
the history of the experiment, defined in (5.12) and (5.13) below, where we take
τ = max{τA, τB}. The value for τ used in the experiment is given in Sec. 5.9.8.
We remark that n is fixed in this analysis, i.e., we stop the experiment if a certain
number n of trials have been collected, where n was decided independently of the data
observed.

Even though we allowed that the LHVM could depend on previous attempts, thus
making no extra assumptions on the memory of the devices, the upper bound is the
tail probability of an i.i.d. distribution. This is not at all uncommon for sums of
random variables, and there are many other examples where such a simplification
occurs (see for instance68 and69).

5.10.2 Properties of the tested models

We introduce the sequence of random variables (Ai, Bi, Xi, Yi, Ti, Hi)
m
i=1 in corres-

pondence with the concrete outcomes as described above, where i is used to label
the i-th element: let Am = (Ai)

m
i=1,B

m = (Bi)
m
i=1 denote the inputs to the boxes,

Xm = (Xi)
m
i=1,Y

m = (Yi)
m
i=1 the outputs of the boxes, Tm = (Ti)

m
i=1 the sequence

of event-ready signals, and Hm = (Hi)
m
i=1 the histories of attempts previous to the

i-th attempt. We make no assumptions regarding the statistics of the event-ready
procedure, which may be under full control of the LHVM, and can depend arbitrarily
on the history of the experiment. The random variable Hi models the state of the
experiment prior to the measurement. As such, Hi includes any hidden variables,
usually denoted using the λ symbol15. It also includes the history of all possible
configurations of inputs and outputs of the prior attempts (Aj , Bj , Xj , Yj , Tj)

i−1
j=1.

We consider all models that restrict the random variables in the following way:

1. Local randomness generation. Conditioned on the history of the experiment the
inputs Ai, Bi are independent of each other

∀i, Ai |= Bi | Hi , (5.10)

and of the output of the event-ready signal

∀i, Ai |= Ti, Bi |= Ti | Hi . (5.11)
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We allow Ai and Bi to be partially predictable given the history of the experiment:

∀(i, ai, hi),Pr (Ai = ai|Hi = hi) ≤ 1

2
+ τA , (5.12)

∀(i, bi, hi),Pr (Bi = bi|Hi = hi) ≤ 1

2
+ τB . (5.13)

2. Locality. The outputs xi and yi only depend on the local input settings and
history: they are independent of each other and of the input setting at the other
side, conditioned on the previous history and the current event-ready signal:

∀i, (Xi, Ai) |= (Yi, Bi)|Hi, Ti . (5.14)

3. Sequentiality of the experiments. Every one of the m attempts takes place
sequentially such that any possible signalling between different attempts beyond
the previous conditions is prevented18.

Except for these conditions the variables might be correlated in any possible way.

Given the experimental setup and sequence as described in this chapter and Figs.
5.1, 5.2 and 5.3, all local realist theories that predict that the number generators
produce a free random bit in a timely manner, and that the output is final once
recorded in the electronics, satisfy these restrictions.

5.10.3 Proof outline

Let us briefly sketch the idea of the proof - full details can be found in the online version
of the Supplementary Information of Hensen et al.39, or in Elkouss and Wehner40.
The p-value is the probability that if the null hypothesis were true - i.e. a LHVM can
model the experiment - we observe at least k or more times (−1)aibixiyi = 1, for any
possible LHVM. In the language of non-local games, this means that the p-value is the
probability that Alice and Bob win the CHSH game at least k times, maximized over
all possible LHVM strategies. Note that since we wait until n successful entanglement
events (trials) are made, the LHVM can use a much larger number m of entanglement
attempts than observed in our experiment in order to win at least k times in n trials.
Our proof consists of the following three steps.

Step 1 is to bound the probability that (−1)aibixiyi = 1 for a particular entanglement
attempt i, conditioned on the entire history of the experiment, as well as the value
of the event-ready signal. I.e., we bound the probability that Alice and Bob win
the next game, conditioned on anything in the past. This is essentially a derivation
of the CHSH inequality. The history of the experiment includes any prior state of
the experimental apparatus, hidden-variables and inputs and outputs of the boxes in
previous attempts. To obtain this bound, we use conditions 1,2 in Sec. 5.10.2.
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Step 2 is to replace the conditioning on the entire history of the experiment,
with a conditioning only on values previously recorded in the experiment. This is
a consequence of the law of total probability. The motivation for this step is to
condition on things actually recorded, while the general history is not accessible to an
experimenter.

Step 3 then bounds the probability that Alice and Bob win at least k times on n
trials by an inductive argument: intuitively we peel off trial by trial, where at each
peel we apply the analysis of Step 2 to bound the probability of the next trial given
the previous ones.

5.11 Supplementary Information - Second dataset

5.11.1 Random numbers from Twitter

After each potential heralding event (corresponding to the E-events described in
Sec. 5.9.10), both at location A and B we take 8 new bits from a predefined random
dataset (one for A and one for B) based on Twitter messages, to send to the FPGA-
based random-number combiner.

The random dataset for A was obtained by collecting 139952 messages from Twitter
trending topic with hash-tag #2DaysUntilMITAM, starting from 14:47:58 Novem-
ber 11th, 2015. The messages were collected using the Python Tweepy-package
(www.tweepy.org). Only the actual message text was used (no headers), consisting
of at most 140 Unicode characters. From each message a single bit was obtained by
first converting each character into an integer representing its Unicode code point,
converting the integer to the smallest binary bit-string representing that number
and finally taking the parity of all the resulting bit-strings together (even or uneven
number of ones). The dataset for B was similarly obtained from 134501 messages with
the hash-tag #3DaysTillPURPOSE, streamed prior to the dataset A, starting from
16:52:44 November 10th, 2015.

We note that although one may expect the Justin Bieber and One Direction fan-
bases to be sufficiently disjoint to produce an uncorrelated binary dataset, the hashtag
from dataset B featured in 2 out of 139952 tweets of dataset A, and vice-versa in 4 out
of 134501 tweets. Still, a Fisher-exact independence test of A (first 134501 bits) and
B’s dataset results in a P -value of 0.63. The bias of the 8-bit parity sets were 0.44%
and 0.95%, with statistical uncertainty ( 1

2
√
N
) of 0.38% and 0.39% for A,B receptively.

As these bits are XOR’ed with bits from the quantum random number generator with
much smaller bias, this has no expected effect on the bias in the used input settings.
Finally, we characterized the performance of the FPGA combiners, which showed no
errors on 108 XOR operations.
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Figure 5.14 — Extracting random bits from twitter messages. Schematic of random input
bit generation by combining bits from a quantum random number generator (QRNG) and classical
random bits from a dataset based on Twitter messages.

5.11.2 APD replacement

After 5 days of measurement, the APD at location C corresponding to channel 0 broke
down during the daily calibration routine and was subsequently replaced. To take into
account the changed detection-to-output delay for the event-ready filter settings, the
laser pulse arrival time was recorded for the new APD before proceeding. Fig. 5.15
shows a laser pulse arrival time histogram taken just before the start of the second
Bell run, and just after replacing the APD. We adapted the start of the event-ready
window for channel 0 accordingly, and used this for all the data taken afterwards.

5.11.3 Joint P -value for ψ− and ψ+ heralded events

Here we expand the statistical analysis given in Sec 5.10 to incorporate the ψ− and
ψ+ events into one hypothesis test. For each of these states we perform a different
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Figure 5.15 — New detector delay Arrival of the excitation laser pulse measured at location C,
with respect of the arrival of the sync-pulse, for the channel 0 APD, before and after replacing
the broken APD. From the Gaussian fits we find that the new detector detects the laser pulse
(700± 14) picoseconds earlier than the initial detector.

variant of the CHSH game, and then use the methods of Elkouss and Wehner40 to
combine the two: The output signal of the “event-ready”-box tm = (ti)

m
i=1 now has

three possible outcomes, where the tag ti = 0 still corresponds to a failure (no, not
ready) event. We now distinguish two different successful preparations of the boxes
A and B: ti = −1 corresponds to a successful preparations of the ψ− Bell state, and
ti = +1 to a ψ+ Bell state. In terms of non-local games, Alice and Bob are playing
two different games, where in case ti = −1 they must have (−1)aibixiyi = 1 in order
to win, and in case of ti = +1 they must have (−1)ai(bi⊕1)xiyi = 1 to win. Note that
both games have the same maximum winning probabilities. This means that we can
take k := k− + k+, with k− the number of times (−1)aibixiyi = 1, and k+ the number
of times (−1)ai(bi⊕1)xiyi = 1; the remainder of the analysis remains the same and
in particular the obtained bound to the P -value is unchanged (see also Elkouss and
Wehner40, in particular the discussion on page 20). We then have for the adapted
CHSH function (Eq. 5.7):

k′ :=
m∑
i=1

|ti| · (−1)
ai(bi+

ti+1
2 )xiyi + 1

2
, (5.15)

and adapted total number of events (Eq. 5.6) then becomes:

n′ := |tm| =
m∑
i=1

|ti|. (5.16)

5.11.4 Statistical analysis of settings choices

For both the Bell tests presented in this chapter, we are testing a single well-defined
null hypothesis formulated before the experiment, namely that a local-realist model
for space-like separated sites could produce data with a violation at least as large
as we observe. The settings independence is guaranteed by the space-like separation
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of relevant events (at stations A, B and C). Since no-signalling is part of this local
realist model, there is no extra assumption that needs to be checked in the data. We
have carefully calibrated and checked all timings to ensure that the locality loophole
is indeed closed.

Nonetheless, one can still check (post-experiment) for many other types of potential
correlations in the recorded dataset if one wishes to. However, since now many
hypotheses are tested in parallel, P -value should take into account the fact that one
is doing multiple comparisons (the look-elsewhere effect, LEE). Failure to do so can
lead to too many false positives, an effect well known in particle physics. In contrast,
there is no LEE for a single pre-defined null hypothesis as in our Bell test.

Formulation and testing of multiple hypotheses can result in obtaining almost
arbitrarily low local P -value, which may have almost no global significance. As an
example, recalculating the P -value for the local realist hypothesis, given the first
dataset for a window start offset of -900 picoseconds compared to the predefined
window starts, results in a local P -value of 0.0081 using the complete analysis (see
Fig. 5.7). Taking this to the extreme by doing a search of the window start offsets
for both channels independently and the joint window length offset, results in a local
P -value of 0.0018. These examples clearly illustrate that without taking into account
that multiple hypotheses are being tested, such local P -value can not be used to assign
significance.

With these considerations in mind we analyse the settings choices in the two
sub-sections below.

Settings choices in the first and second dataset

The distribution of the 245 input settings in the first dataset (see Fig. 5.5) is
(n(0,0), n(0,1), n(1,0), n(1,1)) = (53, 79, 62, 51), with n(a,b) the number times the in-
puts (a, b) were used. This realisation looks somewhat unbalanced for a uniform
distribution, and one could be motivated to test the null hypothesis that the RNGs
are uniform. Performing a Monte-Carlo simulation of 105 realisations of a uniform
multinomial distribution with size n = 245 we find a local P -value of 0.053 to get
such a distribution or more extreme. We can get further insight by looking at all
the setting choices recorded during the test. Around every potential heralding event
about 5000 settings are recorded, for which we find a local P -value of 0.57 (Table 5.3),
consistent with a uniform setting distribution.

Many additional tests can be performed on equally many slices or subsets of the
data, where one or more of the filters (Sec. 5.9.10) is relaxed. In Table 5.3 we list the
individual (local) P -value for a set of 4 hypotheses regarding the settings choices, for
both the first and second dataset.

1. RNG A is uniform
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rehsiFnosraePB&A GNRB GNRA GNRtesatad

Run 1 All recorded data 4938847 4942101 4939328 4942337 19762613 0.872 0.159 0.568 0.956 0.016 0.144

Bell trials 53 79 62 51 245 0.250 0.371 0.054 0.029 0.021 0.121

Run 2 All recorded data 4529615 4530943 4528295 4526440 18115293 0.171 0.901 0.486 0.455 0.016 0.144

Bell trials 69 69 78 84 300 0.184 0.773 0.545 0.817 0.018 0.131

122 148 140 135 545 0.864 0.392 0.452 0.211 0.020 0.138Bell trials of both runs combined

n
(0,0)
n

(0,1)
n

(1,0)
n

(1,1)
n

jointpthresholdp

Table 5.3 —From left to right each column corresponds with: dataset on which statistics
are computed, local P -value for the null hypothesis RNG A is uniform, local P -value for the
null hypothesis RNG B is uniform, local P -value for the null hypothesis RNG A&B is uniform,
Fisher’s test, Pearson’s test, and pthreshold and joint P -valuepjoint. The joint P -value for a set of
hypotheses is the probability that for at least one of the hypotheses we observe a P -value less
than α where here α = 0.05. This captures the fact that the more hypotheses we test, the more
likely it becomes that one of them will fall below the significance threshold. The value pthreshold
the largest threshold for individual tests for which the joint P -value for that row is less than 0.05.
The local P -value in the row should this be compared to this number. This captures the fact
that when testing multiple hypothesis, the local P -value of the individual ones actually need to
be much smaller for the overall test to be significant. The local P -value in columns RNG A, RNG
B, Fisher and Pearson are exact calculations. The columns RNG A&B, pthreshold and pjoint are
approximations obtained via 105, 104 and 104 trials of a Monte-Carlo simulation, respectively.

2. RNG B is uniform

3. RNG A and RNG B are jointly uniform

4. Fisher’s exact test70 for n < 5000, Pearson’s χ2 test71 for n > 5000)

For tests 1 and 2 we evaluate a two tailed binomial test with equal success probability.
For test 3 we perform a Monte-Carlo simulation of 105 realisations of a uniform
multinomial distribution with size fixed to the number of observations in that particular
row, i.e. n = 245 for the second row in Table 5.3.

We observe that only one local P -value is below 0.05: Fisher’s exact test on the
distribution of the settings in the first data set yields a local P -value of 0.029. However,
as described in Sec. 5.11.4 below, when properly taking the look-elsewhere effect into
account this does not result in a significant rejection of the uniform settings hypothesis
at the 0.05 level. Finally, the valid Bell trials of the first and second dataset combined,
shown in the last row of Table 5.3, are also consistent with uniformly chosen input
settings.

Significance and look-elsewhere effect

We now analyse the significance of the local P -value in Table 5.3 by taking into account
the look-elsewhere effect. Say we are looking for correlations between parameters
that are in fact completely independent. Looking at one correlation, it is as if we
take one random sample from a distribution; the probability that it is at 2 sigma or
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more extreme is thus about 0.05. If we look for 4 different correlations (assuming all
parameters are independent), it is similar to taking 4 random samples, and thus the
probability that at least one is at 2 sigma or more extreme is 1− (1− 0.05)4 = 0.18.
In reverse, assuming fully independent hypotheses, the local P -value p′ should have
obeyed roughly 1− (1− p′)4 < 0.05, so p′ < 0.013, to be statistically significant at the
0.05 level.

In our case it is actually more complicated because there can be dependencies
between hypotheses. We can numerically get some of these numbers. For instance,
we have simulated the random number generation (RNG) using Monte-Carlo under
the assumption of independent uniform outputs and calculated local P -value for the
four hypotheses listed above. The probability that at least one of these yield local
P -value p′ < 0.05 turns out to be about 0.13 for the 245 events in the Bell test. This
is different from 1− (1− 0.05)4 = 0.18 because of correlations between the tests, but it
is clearly much higher than 0.05. In reverse, to arrive at an overall probability of 0.05
of finding at least one test yielding local P -value p′ < pthreshold for the data in the first
Bell dataset, we find pthreshold = 0.021. In other words, if we would only be looking at
the settings corresponding to the valid Bell trials, then a local P -value below 0.021
would signal a statistically significant violation of our hypothesis at the 0.05 level. We
do not find such evidence for the valid Bell trial data (see first row in Table 5.3).

The last column gives the probability that at least one of the hypothesis tests on
the data in that row yields a local P -value p′ < 0.05, given uniform settings. In the
one-but-last column we give pthreshold, again only for the data set in that row, for
a significance at the 0.05 level. These values assume that we would only be testing
our hypotheses on that particular row. Since we are now looking at different rows,
pthreshold for each row is a strict upper bound to the pthreshold for the full table, as
we are looking at different cross-sections of the raw data set at the same time; the
pthreshold for the full table will thus be lower but it is not trivial to compute this, given
the large dependence between the subsets of data used for each row. However, since
we do not find any local P -value to be below pthreshold for the corresponding row,
we can conclude that the data does not allow rejection of the settings independence
hypothesis, even without calculating the global pthreshold for the full Table.
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Chapter 6

Conclusions and outlook

B.J. Hensen

6.1 Conclusions

The results of this thesis can be summarized as follows:

• We can generate entanglement between remote NV centre electronic spin qubits
using a photonic heralded entanglement protocol.

• We can use this entanglement in combination with the control over the nitrogen
nuclear spin to teleport an unknown quantum state from a nuclear spin in one
diamond to the electron spin in another, unconditional on the result of the
required local Bell-state measurement.

• The spin-photon entanglement using time-bin encoding makes the entanglement
generation robust over longer fibre links that exhibit polarisation drifts.

• The spin-spin entanglement can be extended to 1.3 kilometres.

• We found strong evidence against the combined assumptions of free choice, local
causality and macro-realism.

This thesis reports the first loophole-free Bell violation, challenging the classical
notion of a non-superdeterministic, realistic, local universe. At the same time, the
result strengthens our trust in the predictions of quantum theory. These results
establish the NV centre spin register as a leading platform for building a - potentially
device independent - quantum network. In the following sections we will discuss an
outlook for future research directions with spins in diamond.
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6.2 Foundational experiments

We have obtained evidence against the combined assumptions of free choice, local
causality and macro-realism. The result triggers us to consider alternative hypotheses,
not reject-able by our current experiment, that could be tested in future Bell-like
experiments.

One option is to surrender local causality and accept that the fundamental limit is
signal-locality: things are fine as long as we cannot actually use the theory (quantum
theory) to signal faster than light. However, as Bell1 writes:

The assertion that ‘we cannot signal faster then light’ immediately provokes the
question: Who do we think we are? We who can make ‘measurements’, we who
can manipulate ‘external fields’, we who can ‘signal’ at all, even if not faster
than light? Do we include chemists, or only physicists, plants or only animals,
pocket calculators or only mainframe computers?

Alternatively, one can challenge the assumptions (1)-(3) in Sec. 1.2.2:

(1) If a macro-reality does not emerge at all or not quick enough (1b), our Bell
violation does not imply nonlocality. Indeed if a macro-reality emerges too late
it effectively opens up a locality loophole2: a local model could postpone its
macro-realistic outcome until it has heard of the setting and outcome of the
other side.

The emergence of a definite macro-reality from quantum theory is closely related
to the traditional problem of quantum measurement. Going back to Bell3:

Thus in contemporary quantum theory it seems that the world must be
divided into a wavy ‘quantum system’, and a remainder which is in some
sense ‘classical’. The division is made one way or another, in a particular
application, according to the degree of accuracy and completeness aimed
at. For me it is the indispensability, and above all the shiftiness, of such a
division that is the big surprise of quantum mechanics.

If one insists on a the existence macro-reality, then in this context a better
description of how or when a macro-reality emerges from our quantum description
is highly desirable. Future experiments that test physical collapse theories4,5

can be studied experimentally6,7 using for instance ultra-long coherence times
of nuclear spins8,9, in combination with long distance entanglement. A Bell-like
test setup provides a natural test-bed for such theories, that do not necessarily
need to assume quantum theory10.

Due to the fundamentally subjective nature of human observation, one intriguing
future Bell experiment could involve humans to do both the basis selection and
the recording of events. Such an experiment would require a large distance to
close the locality loophole, on the order of the distance Earth-Moon. Although
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such a human centred experiment seems somewhat questionable from a scientific
point of view, as Howard Wiseman recently put it11:

Such an Earth–Moon experiment is a worthy challenge for the next 50 years.

(2) One can assume the existence of special structures allowed by Einstein’s theory
of general relativity, such as closed time-like loops12 or wormholes. In this case,
locally, the causal structure of spacetime remains intact, but the space-time
is weirdly shaped. It seems unlikely that such ad hoc appearance of exotic
space-time structures around entangled particles would go unnoticed, perhaps
an experiment could be imagined to exclude such possibility.

On the other hand, v-causal models13–15 explain quantum nonlocality by causal
influences travelling at a finite-speed, but faster than the speed of light. Future
Bell experiments could further restrict the minimum speed, by increasing the
distance between A and B. Recently it was shown that v-causal models imply
access to superluminal signalling distributions of outcomes using 4-partite en-
tangled states16, suggesting an experimental test: such a test could in fact be
embedded in a quantum network structure of 4 spatially separated nodes.

(3) Theories that predict that the settings used in the Bell test were determined
by some earlier event, can explain the observed correlations locally, because the
locality loophole effectively opens again2,17. Future Bell experiments could push
the occurrence of such an event back in time by physically separating the sources
of the setting-choices and the recording of the choices∗. Again, using human
setting choices is intriguing from a philosophical perspective, as we perceive
ourself to have some kind of free choice.

Finally, note that full rejection of the free choice of input settings requires a
conspiracy on a very large scale. Such a rejection goes beyond for example
simple determinism, as even in a deterministic world one should not expect the
extremely fine-tuned correlations of physical randomness devices and Twitter
messages, required to explain the observed Bell violation. Such models are called
super-deterministic, and are deemed beyond the reach of experimental methods.

6.3 Towards quantum networks with spins in diamond

A quantum network19 refers to a model for quantum information processing that
consist of nodes, containing stationary quantum systems that can be used as memory
or small processing units, linked to other nodes by entanglement generated by exchange
of flying quantum systems, generally photons. Such a quantum network provides an
ideal setting for various implementations of secure quantum communication, as well as

∗One such proposed experiment18, that uses variations in light emitted by quasars on opposite
sides of the universe, additionally requires the assumption that the light was not altered along the
way.
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a way of connecting future quantum computing nodes together, or even allowing secure
execution of a client’s programs on a larger quantum server. A recent proposal to
implement a topological error correcting code using this quantum network architecture
showed that the fault-tolerance thresholds of the entanglement generation process
can be reasonably high (≈ 10%) if the local error rates for initialization, control and
measurement are on the order of one percent20. Finally a quantum network could
be a test bed to test our notions of nonlocality in multipartite-, or otherwise more
extreme scenarios16,21.

An ideal node for a future quantum network consists of a stationary, few qubit
register that can be initialized, controlled and projectively read out with high fidelity.
It possesses an optical interface that allows high-fidelity spin-photon entanglement.
At least part of the register should remain undisturbed by the operation of the optical
interface, and have a long coherence time. The optical interface of each node should be
able to emit indistinguishable photons, preferably with a short lifetime, a wavelength
in the telecom-band and a efficient collection into single-mode fibre optics. Other
desirable features are a somewhat scalable setup, with preferably no free-space optics
and operation at liquid helium- or even room temperature.

The NV centre does not score top marks on the above wish-list, but does score
averagely on all its individual points. The NV centre shows photoluminescence under
excitation with visible light and is a stable single-photon emitter22. It has an electronic
spin that can be initialized and read out optically, and manipulated with standard
magnetic resonance techniques23. The NV’s electronic spin naturally couples to
a register of 3-10 nuclear spin qubits that can be initialized, controlled and read
out via the electron spin with fidelities exceeding 90%24–26. The electron spin can
be entangled with a single photon27. The results presented in this thesis further
highlight the possibility of creating spin-spin entanglement though an optical link28–30.
Recent results suggest that the nuclear spin-register can preserve its coherence for a
significant number of rounds of entanglement generation31. The optical emission is
at 637 nm, resulting in about 8 dB loss per kilometre of fibre. The optical lifetime
of 12 nanoseconds results in reasonable count-rates, however the branching ratio of
the phonon-side-band versus the zero-phonon line results in only 4% of the emission
suitable for entanglement generation. Most characterized NV centres found in bulk
diamond have similar properties, but not identical, and about 10% can currently be
brought onto resonance using current DC stark tuning methods. The optical setup
is currently free-space, and requires cooling of the diamond sample to liquid helium
temperatures.

To improve the score and suitability of the NV centre as the node in a future
quantum network, the foremost challenge to overcome is the optical interface efficiency.
Both the non-ideal wavelength for fibre connections, and the small fraction of resonant
photons should be targeted.

To change the branching ratio of the phonon-side-band versus the zero-phonon
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line of the NV centre emission, the NV’s interactions with either the vibrational or
optical modes have to be altered. The most straightforward solution is to include the
NV centre in an optical cavity. The Purcell effect can enhance the emission into the
cavity mode relative to the other decay paths. If the cavity is resonant with the ZPL
emission, this will increase the fraction of ZPL photons. Increased emission into the
cavity mode can also enhance the collection efficiency, compared to the omnidirectional
dipole emission. Various approaches to embed the NV in an optical cavity are being

pursued32–34. To obtain a Purcell enhancement, (FP ∼ Qλ3

V � 1) a high quality
factor Q or small mode volume V with respect to the optical wavelength λ have to be
attained. To obtain a small mode volume using photonic crystal or other solid-state
cavities, the bulk diamond in general has to be micro-structured and NV’s have to be
implanted, or nano-sized diamond crystals have to be used. Obtaining table optical
emission properties for NV’s in such structures can be challenging35,36. A promising
approach uses bulk diamond that is thinned down to micrometer thickness, coupled
to a fibre based Fabry-Perot cavity37–39.

To reduce fibre losses during the photonic entanglement generation, ideally the
photon wavelength should be in the telecom-bands around 1300 or 1500 nm. This
could be achieved by down-converting the single photons emitted by the NV centre
using non-linear frequency difference generation40,41. Challenges in implementing this
novel method are obtaining a high conversion efficiency, signal-to-noise ratio, and
stable operation.

Finally, to further increase the coherence time of the register during the remote
entanglement operation, a system could be envisaged consisting of two NV’s spaced
close enough to be dipole-coupled42. Here the nuclear spin register of one NV could
form a memory that is very robust against optical manipulation of the other NV, that
would be used for remote entanglement generation.
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Summary

In this thesis we experimentally investigate quantum nonlocality: entangled states of
spatially separated objects. Entanglement is one of the most striking consequences of
the quantum formalism developed in the 1920’s; the predicted outcomes of independent
measurements on entangled objects reveal strong correlations that cannot be explained
by classical physics. Early on, such predictions led physicists to doubt the validity and
completeness of quantum theory. At the same time, entanglement is a key resource
for applications in quantum information processing and a pre-requisite for many tasks
in quantum communication and computation.

This thesis attempts to answer two application driven questions: Firstly, can we
generate useful entangled states of solid state spins for applications in quantum
information processing? Secondly, can we use such entangled states as a resource to
teleport an unknown quantum state?

Finally, we ask a foundational question: Are our entangled states indeed inconsistent
with the classical notions of free choice, locality and realism? Can we prove this
experimentally, under the minimal assumptions of a loophole-free Bell test?

To answer these questions we use single spins in ultra-pure diamonds. In particular,
we use the electronic and nuclear spins associated with single nitrogen-vacancy (NV)
defects. The NV centre is a point defect in diamond, consisting of a substitutional
nitrogen (N) atom and a neighbouring missing carbon atom (vacancy, V). The NV
centre possesses bound electronic states, whose energy levels lie well within the
bandgap of the diamond host and whose spin degree of freedom can be used as a
quantum bit (qubit). Because of the large diamond bandgap and the 99% spin free
12C environment, the electronic spin qubit has exceptional coherence properties even
at room temperature. Optical and microwave fields allow control of the electronic
spin, which in turn allows control of nearby nuclear spins (the host nitrogen nuclear
spin, and nearby 13C spins). At liquid helium temperatures, spin-preserving optical
transitions provide a powerful optical interface to the electronic spin, allowing, for
example, projective readout of the spin state.

By employing a protocol where entanglement is heralded by the detection of a
single photon from each of two NV centres in diamonds separated by three metres, in
Chapter 3 we find we can answer the first question in the affirmative. We show for
the first time heralded entanglement between solid state quantum systems separated
by a human-scale distance.

Then, by combining the heralded entanglement with a deterministic local Bell
state measurement and fast feed-forward, in Chapter 4 we show for the first time
unconditional quantum teleportation over human-scale distances. We teleport an
unknown quantum state from a nuclear spin in one diamond to an electronic spin in a
diamond three meters away.
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Finally, in Chapter 5, by employing techniques from the previous chapters, we
implement the first loophole-free Bell test. We separate two diamonds by 1.3 kilometres
and optimize all operational fidelities, collection efficiencies and rates. This allows
us to generate heralded entanglement between them approximately once an hour.
The distance provides us with time to read out the electronic spin state in each
diamond, faster than any lightlike signal could travel between them. The high-fidelity
entangled state preparation and spin readout are sufficient to violate the Clauser-
Horne-Shimony-Holt Bell-inequality. Combined with fast random number generators
and a robust statistical analysis, we find a significant rejection of the local-realist
hypothesis, without requiring additional experimental assumptions.

The results in this thesis open the door to various applications in quantum informa-
tion processing. In particular, a remote photonic entangling operation may enable
future quantum networks. In such a network the nodes would be formed by the NV
centre’s combined electronic and nuclear spin register. The nodes would be linked by
photonic entanglement operations. Such a network could be used for long distance
secure communication, provide a connection between separated quantum computers,
or form the basis of a fault tolerant quantum computer by itself. Furthermore, a
loophole-free Bell test demonstrates the possibility to do device independent ran-
domness generation and key distribution, that could form the basis for future secure
communication channels.
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Samenvatting

In dit proefschrift bestuderen we met behulp van experimenten de niet-lokale structuur
van de quantum theorie: ruimtelijk van elkaar verwijderde deeltjes in een verstrengelde
toestand. Verstrengeling is een van de meest opvallende eigenschappen van het
quantum-formalisme, zoals dat zich in de jaren twintig van de vorige eeuw ontwikkelde.
De voorspelde uitkomsten van onafhankelijke metingen op verstrengelde deeltjes zouden
sterke correlaties vertonen, die geen klassieke uitleg verstonden. Al snel leidden deze
voorspellingen tot twijfel bij natuurkundigen over de juistheid en compleetheid van
de quantum theorie. Tegelijkertijd bleek verstrengeling een kerningrediënt te zijn
voor vele toepassingen in de quantum informatie technologie en zelfs een vereiste voor
bepaalde onderdelen van de quantum computer.

Het proefschrift tracht twee toepassingsgerichte vragen te beantwoorden: Ten eerste,
is het mogelijk verstrengelde toestanden te genereren tussen spins in de vaste-stof,
die nuttig zijn voor toepassingen in de quantum informatie technologie? Ten tweede,
kunnen we dergelijke verstrengelde toestanden inzetten om een onbekende quantum
toestand te teleporteren? Daarnaast stellen we een fundamentele vraag: Zijn onze
verstrengelde toestanden inderdaad in conflict met de klassieke premissen van vrije
keuze, lokaliteit en realisme? Kunnen we dit experimenteel aantonen, met de minimale
aannames van een loophole-free Bell test?

Om deze vragen te beantwoorden gebruiken we individuele spins in ultra-puur
diamant. Om precies te zijn gebruiken we de elektronspin en kernspins horende bij
individuele stikstof-holte defecten (Nitrogen-Vacancy centres, NV ). Het NV-defect
bestaat uit een stikstofatoom op de plek van een koolstof atoom in het diamant kristal-
rooster, met een naburig missend koolstofatoom. Het defect beschikt over gebonden
elektronen-toestanden, waarvan de energieniveaus ruimschoots binnen de band gap
van het diamant liggen. De spintoestand van deze elektronen kunnen tevens gebruikt
worden om een quantum-bit (qubit) in te coderen. Door de beschermende band gap en
de 99% kernspin-vrije 12C omgeving heeft zo’n elektronspin-qubit uitzonderlijk goede
coherentie-eigenschappen, zelfs bij kamertemperatuur. Met behulp van optische- en
microgolfvelden kunnen we controle uitoefenen op de elektronspins. Tevens kunnen we
via het elektronspin ook de kernspin van het stikstof atoom en nabijgelegen 13C kerns-
pins controleren en gebruiken als qubit. Bij vloeibaar helium-temperaturen kunnen
we spin-behoudende optische transities gebruiken van het elektronspin, waarmee we
bijvoorbeeld de spin projectief kunnen uitlezen. Met behulp van een protocol waarbij
verstrengeling wordt aangekondigd door de detectie van een enkel foton van elk van
twee NV-centra in verschillende diamanten, drie meter van elkaar verwijderd, kunnen
we in Hoofdstuk 3 de eerste bovenstaande vraag bevestigend beantwoorden. We
demonstreren voor het eerst aangekondigde verstrengeling over menselijke afstanden
tussen vaste-stof quantum systemen.

Daarna combineren we de verstrengelingsoperatie met een deterministische lokale
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meting in de Bell basis en snelle feed-forward, zodat we in Hoofdstuk 4 voor het
eerst onvoorwaardelijke quantum teleportatie over een menselijke afstand kunnen
demonstreren. We teleporteren een onbekende quantum toestand van een kernspin in
een diamant naar een elektronspin in een diamant drie meter verderop.

Ten slotte implementeren we in Hoofdstuk 5, met behulp van de technieken
ontwikkeld in de voorgaande hoofdstukken, de eerste loophole-free Bell test. We
plaatsen twee diamanten 1.3 kilometer uit elkaar en optimaliseren de accuraatheid van
de gebruikte operaties, de collectie-efficiëntie en snelheid van herhalingen, resulterend
in een succesvolle verstrengelingsoperatie tussen de elektronspins, ongeveer eens per
uur. De afstand is voldoende om onze elektronspins uit lezen voordat een signaal met
de lichtsnelheid van de een naar de ander kan reizen. De accuraatheid van de ver-
strengelde toestand en spinuitlezing zijn voldoende om de Clauser-Horne-Shimony-Holt
Bell ongelijkheid te schenden. In combinatie met snelle random nummer generatoren
en een robuuste statistische analyse vinden we dan een significante afwijzing van de
lokaal-realistische nulhypothese, zonder verdere experimentele aannames te hoeven
doen.

De resultaten in dit proefschrift bieden verscheidende mogelijke toepassingen op het
gebeid van de quantum informatie technologie. Een verstrengelingsoperatie die met
behulp van fotonen over een grote afstand verstrengeling tot stand kan brengen kan een
toekomstig quantumnetwerk mogelijk maken. In zo’n netwerk zouden de knooppunten
gevormd kunnen worden door de qubits van het NV-defect: elektronspin en kernspins.
De knooppunten zouden verbonden kunnen worden door de verstrengelingsoperatie
die met behulp van fotonen. Een quantum netwerk kan gebruikt worden voor inherent
veilige communicatie over lange afstanden, een verbinding vormen tussen toekomstige
quantum computers, of zelf de basis vormen van een quantum computer. Daarnaast
toont een loophole-free Bell test aan dat het mogelijk is quantum protocollen voor
veilige communicatie en random nummer generatie op zo’n manier te doen dat men
geen aannames hoeft te doen over de apparaten die het protocol fysiek implementeren.
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