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a b s t r a c t 

EEG-correlated fMRI analysis is widely used to detect regional BOLD fluctuations that are synchronized to inter- 

ictal epileptic discharges, which can provide evidence for localizing the ictal onset zone. However, the typical, 

asymmetrical and mass-univariate approach cannot capture the inherent, higher order structure in the EEG data, 

nor multivariate relations in the fMRI data, and it is nontrivial to accurately handle varying neurovascular cou- 

pling over patients and brain regions. We aim to overcome these drawbacks in a data-driven manner by means 

of a novel structured matrix-tensor factorization: the single-subject EEG data (represented as a third-order spec- 

trogram tensor) and fMRI data (represented as a spatiotemporal BOLD signal matrix) are jointly decomposed 

into a superposition of several sources, characterized by space-time-frequency profiles. In the shared temporal 

mode, Toeplitz-structured factors account for a spatially specific, neurovascular ‘bridge’ between the EEG and 

fMRI temporal fluctuations, capturing the hemodynamic response’s variability over brain regions. By analyzing 

interictal data from twelve patients, we show that the extracted source signatures provide a sensitive localization 

of the ictal onset zone (10/12). Moreover, complementary parts of the IOZ can be uncovered by inspecting those 

regions with the most deviant neurovascular coupling, as quantified by two entropy-like metrics of the hemo- 

dynamic response function waveforms (9/12). Hence, this multivariate, multimodal factorization provides two 

useful sets of EEG-fMRI biomarkers, which can assist the presurgical evaluation of epilepsy. We make all code 

required to perform the computations available at https://github.com/svaneynd/structured-cmtf. 
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. Introduction 

Refractory epilepsy is a neurological disorder suffered by 30% of

pproximately 50 million epilepsy patients worldwide ( World Health

rganization, 2019 ), in which seizures cannot adequately be controlled

y anti-epileptic medication. In the preparation of treatment via resec-

ive surgery, interictal epileptic discharges (IEDs) can be localized in the

rain with simultaneous EEG–fMRI, which provides a good surrogate for

apping the seizure onset zone ( An et al., 2013; Grouiller et al., 2011;

an Houdt et al., 2013; Khoo et al., 2017; Lemieux et al., 2001; Thorn-

on et al., 2010; Vulliemoz et al., 2009; Zijlmans et al., 2007 ). This is

ften conducted via EEG-correlated fMRI analysis, wherein a reference

emporal representation of the IEDs is used to interrogate all brain re-

ions’ blood oxygen level dependent (BOLD) signals for significant cor-
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elations; voxels for which a statistical threshold is exceeded can then

e considered part of the epileptic brain network, along which epileptic

eizures are generated and propagated ( Gotman, 2008; Lemieux et al.,

001; Salek-Haddadi et al., 2003; Thornton et al., 2010; Zijlmans et al.,

007 ). 

Since its inception, the workhorse for conducting EEG-correlated

MRI analysis has been the general linear model (GLM) framework

 Friston et al., 1994; Poline and Brett, 2012; Salek-Haddadi et al., 2006 ).

ver the past years, it has become clear that using the GLM comes with

everal hurdles, related to the many modeling assumptions, that may

educe its sensitivity or specificity (increasing Type I errors) when vi-

lated ( Lindquist et al., 2009; Monti, 2011; Poline and Brett, 2012 ).

emedies for several of these issues are not yet widely applied, or are

ot yet available. 
.com (S. Van Eyndhoven). 
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First of all, the adoption of a relevant representation of IED occur-

ences to construct a regressor for the design matrix has proven vital to

he sensitivity. This aspect has been investigated in Rosa et al. (2010) ,

urta et al. (2015) , Abreu et al. (2018) , Van Eyndhoven et al. (2019a) .

n previous work ( Van Eyndhoven et al., 2019a ), we addressed this is-

ue by pre-enhancing the EEG signals using a spatiotemporal filter that is

uned to maximize the signal-to-noise ratio (SNR) of IEDs with respect

o the background EEG. We have shown that taking the time-varying

ower of the filtered EEG leads to a robust regressor, which is more per-

ormant than many other types of regressors, including those based on

tick functions ( Lemieux et al., 2001; Salek-Haddadi et al., 2006 ), ICA

 Abreu et al., 2016; Formaggio et al., 2011 ) or EEG synchronization

 Abreu et al., 2018 ). 

Model mismatch may occur due to the unknown neurovascular cou-

ling from electrophysiological phenomena measured on the EEG to

emodynamic variations captured by the BOLD signals. In many papers

n EEG-correlated fMRI, a canonical hemodynamic response function

HRF) based on two gamma density functions is used to translate IED-

elated temporal dynamics to BOLD fluctuations ( Friston et al., 1998 ).

owever, there is insurmountable evidence that the HRF is not fixed,

ut varies substantially over subjects ( Aguirre et al., 1998 ), over brain

egions ( Handwerker et al., 2004 ), with age ( Jacobs et al., 2008 ), or

ven with stress level ( Elbau et al., 2018 ). For the diseased brain, this

ssue may be even greater: i.e., additional variation, e.g. in brain ar-

as involved in the epileptic network, has been observed compared to

ealthy controls ( Bénar et al., 2002; Grouiller et al., 2010; van Houdt

t al., 2013; Jacobs et al., 2009; Lemieux et al., 2008 ). Plenty of previous

esearch has shown that failing to account for this variability may lead

o substantial bias and increased variance of the estimated activation,

hich in turn inflates Type I and/or Type II error rates ( Calhoun et al.,

004; Lindquist et al., 2009; Lindquist and Wager, 2007; Monti, 2011 ).

Several methods have been devised to deal with this variability. A

idely used approach is to model the HRF as a linear combination of

everal basis functions. Some popular choices for these bases, which are

lso supported by open source toolboxes like SPM are the ‘informed ba-

is set’ ( Friston et al., 1998 ), consisting of the HRF plus its derivative

.r.t. time and its derivative w.r.t. the dispersion parameter (leading

o a Taylor-like extension which can capture slight changes in peak on-

et and width), and the finite impulse reponse (FIR) basis set, in which

very basis function fits exactly one sample of the HRF in every voxel

 Aguirre et al., 1998; Glover, 1999 ). Other researchers have aimed to

nd a basis set by computing a low-dimensional subspace of a large set

f ‘reasonable’ HRFs ( Woolrich et al., 2004 ) or by fitting nonlinear func-

ions to given fMRI data ( Lindquist and Wager, 2007; Van Eyndhoven

t al., 2017 ). Alternatively, multiple copies of a standard HRF, which

iffer only in their peak latencies, can be used ( Bagshaw et al., 2004 ).

inally, approaches exist that aim to be immune to differences in neu-

ovascular coupling, such as those based on mutual information (MI),

hich does not rely on any predefined model or even linearity of the

RF ( Caballero-Gaudes et al., 2013; Ostwald and Bagshaw, 2011 ). Per-

aps surprisingly, the authors of Caballero-Gaudes et al. (2013) found

hat the results based on MI were often very similar to those based on

he informed basis set, leading to the conclusion that the assumption of

 linear time-invariant system, as described by the convolution with an

ppropriate HRF, is sufficiently accurate. Instead, it may be useful to

ot make abstraction of the variable neurovascular coupling, but rather

onsider it as an additional biomarker to localize epileptogenic zones

 van Houdt et al., 2013 ). Indeed, in several studies, HRFs that deviate

rom the canonical model were found in regions of the epileptic network

 Bénar et al., 2002; Hawco et al., 2007; van Houdt et al., 2013; Jacobs

t al., 2009; Lemieux et al., 2008; Moeller et al., 2008; Pittau et al.,

011 ). Several hypotheses have been postulated to explain this varabil-

ty, including altered autoregulation due to higher metabolic demand

ollowing (inter)ictal events ( Schwartz, 2007 ), vascular reorganization

ear the epileptogenic region ( Rigau et al., 2007 ), or the existence of

re-spike changes in neuro-electrical activity which are not visible on
2 
EG and which culminate in the IED ( Jacobs et al., 2009 ). It is thus an

pportunity to map not only regions with statistically significant BOLD

hanges in response to IEDs, but also the spatial modulation of the HRF

aveform itself, in order to discover regions where an affected HRF

hape may provide additional evidence towards the epileptic onset. 

The previous considerations indicate that it is difficult to meet all

ssumptions in the general linear model, which may compromise infer-

nce power ( Handwerker et al., 2004; Lindquist et al., 2009; Monti,

011 ). Data-driven alternatives may relieve this burden, since they

dapt to the complexity of the data more easily compared to model-

ased approaches, and are especially suited for exploratory analyses

 Mantini et al., 2007; Mare ček et al., 2016 ). Blind Source Separation

BSS) techniques consider EEG and/or fMRI data to be a superposition

f several ‘sources’ of physiological activity and nonphysiological in-

uences. Based on the observed data alone, BSS techniques are used

o estimate both the sources and the mixing system, by means of a

actorization of the data into two (or more) factor matrices, holding

ources or mixing profiles along the columns. They naturally allow a

ymmetrical treatment of EEG and fMRI data, enabling true fusion of

oth modalities ( Calhoun et al., 2009; Lahat et al., 2015; Valdes-Sosa

t al., 2009 ), which is in contrast to EEG-correlated fMRI, where EEG-

erived IEDs inform the fMRI analysis. While the information-theoretic

pproach in Caballero-Gaudes et al. (2013) also shares this symme-

ry feature, it purposely avoids the estimation of HRFs, which is our

oal here. Furthermore, BSS techniques naturally accommodate higher-

rder representations of the data in the form of tensors or multiway

rrays, which can capture the rich structure in the data. Indeed, mea-

urements of brain activity inherently vary along several modes (sub-

ects, EEG channels, frequency, time,...), which cannot be represented

sing matrix-based techniques like ICA without loss of structure or in-

ormation ( Acar et al., 2007; Lahat et al., 2015; Sidiropoulos et al.,

017 ). Tensor-based BSS techniques have been used to mine unimodal

EG data by decomposing third-order spectrograms (channels × time

oints × wavelet scales) into several ‘atoms’ (also coined ‘components’

r ‘sources’), each with a distinct spatial, temporal and spectral pro-

le/signature ( Mare ček et al., 2016; Miwakeichi et al., 2004; Mørup

t al., 2006 ), with successful application in seizure EEG analysis ( Acar

t al., 2007; De Vos et al., 2007 ). While a tensor extension of ICA for

roup fMRI data (in the form of subjects × time points × voxels) ex-

sts ( Beckmann and Smith, 2005 ), matrix representations of fMRI re-

ain dominant for single-subject analyses. Moreover, such a tensor-

ased extension implicitly assumes that sources have the same time

ourse over subjects, which is not an adequate model for IED occur-

ences, nor resting-state fluctuations. Coupled BSS techniques can esti-

ate components which are shared between both modalities, providing

 characterization in both domains ( Hunyadi et al., 2017 ). For exam-

le, in Acar et al. (2017) , Acar et al. (2019) , Hunyadi et al. (2016) ,

hatzichristos et al. (2018) , multi-subject EEG and fMRI data have been

nalyzed using coupled matrix-tensor factorization (CMTF), wherein the

subjects’ factor is shared between the EEG trilinear tensor decompo-

ition and the fMRI matrix decomposition. In Hunyadi et al. (2016) ,

he resulting factor signatures revealed onset and propagation zones of

n interictal epileptic network that was common over patients, as well

s the modulation of the default-mode network (DMN) activity. Also

ingle-subject data can be decomposed into distinct components, using

 shared temporal factor for EEG and fMRI. This requires the use of

 model of the neurovascular coupling, to ensure temporal alignment

f EEG and BOLD dynamics. In Martínez-Montes et al. (2004) , a fixed

anonical HRF was used, followed by multiway partial least squares to

xtract components with spatial, temporal, and spectral signatures. In

revious work, we proposed an extension to this technique, where a

ubject-specific HRF is co-estimated from the available data, along with

he components ( Van Eyndhoven et al., 2017 ). 

In this paper, we extend this latter technique in order to account not

nly for subject-wise variation of the HRF, but also capture variations

ver brain regions. This results in a highly structured CMTF (sCMTF) of
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Table 1 

Clinical patient data. 

patient gender ictal onset zone etiology surgery 

ILAE 

outcome 

follow-up 

time (y) # IEDs 

# TRs 

(# sessions) 

# EEG 

channels IED loc. 

p01 F L temporal HS temporal lobe 

resection 

3 5 15 540 (1) 29 F7–T1 

p02 F L parietal FCD partial 

lesionectomy 

4 5 663 1620 (3) 29 Pz 

p03 F R parieto-occipito- 

temporal 

Sturge-Weber 105 1080 (4) 21 F8 

p04 M R temporal unknown 825 1620 (3) 21 F8–T4 

p05 F L anterior temporal HS temporal lobe 

resection 

1 8 117 1080 (3) 29 F7–T1 

p06 F R frontal FCD partial 

lesionectomy 

5 2 640 1080 (3) 29 Cz–C4 

p07 F L anterior temporal DNET temporal lobe 

resection 

1 4 126 1080 (4) 29 F7–T1 

p08 M L temporo-parietal unknown overlap 

eloquent cx 

11 1080 (4) 21 T5 

p09 F L temporo-occipital FCD overlap 

eloquent cx 

1815 1620 (3) 29 T3–T5 

p10 F R temporal HS refused 226 540 (1) 29 F8–T2 

p11 M L anterior temporal HS temporal lobe 

resection 

1 6 6 1080 (2) 29 F7–T1 

p12 F R temporal CNS infection refused 966 1350 (5) 27 T4 

Abbreviations: F = female, M = male, L = left, R = right, CNS = central nervous system, DNET = dysembryoplastic neuroepihelial tumor, FCD = focal cortical 

dysplasia, HS = hippocampal sclerosis, cx = cortex, IED = interictal epileptic discharge, TR = repetition time, IED loc. = localization of the IED on EEG. 
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a  

s  
he interictal multimodal data, in which HRF basis functions and spa-

ial weighting coefficients are estimated along with spatial, spectral and

emporal signatures of components. By preprocessing the EEG using the

ata-driven filters from Van Eyndhoven et al. (2019a) , we aim to max-

mize the sensitivity in mapping the interictal discharges. We analyze

hether the estimated spatial modulation of the HRF waveform is a vi-

ble biomarker when localizing the ictal onset zone, besides the BOLD

patial signatures themselves. 

. Methods and materials 

.1. Patient group 

We use data of twelve patients, whom we previously studied in

ousseyn et al. (2014a) , Tousseyn et al. (2014b) , Tousseyn et al. (2015) ,

unyadi et al. (2015) , Van Eyndhoven et al. (2019a) . These patients

ere selected based on the following criteria: (1) they were adults which

nderwent presurgical evaluation for refractory focal epilepsy using

EG–fMRI, and for which there was concordance of all the available clin-

cal evidence regarding the epileptic focus; (2) subtraction ictal single-

hoton emission tomography (SPECT) coregistered to MRI (SISCOM)

mages were available for all patients, as well as post-surgery MRI scans

hen patients were seizure-free (international league against epilepsy

ILAE) outcome classification 1-3 (1, completely seizure-free; 2, only

uras; 3, one to three seizure days per year ± auras; 4, four seizure days

er year to 50% reduction of baseline seizure days ± auras; 5, < 50%

eduction of baseline seizure days to 100% increase of baseline seizure

ays ± auras; 6, more than 100% increase of baseline seizure days ±
uras)); (3) IEDs were recorded during the EEG–fMRI recording session.

This study was carried out in accordance with the recommendations

f the International Conference on Harmonization guidelines on Good

linical Practice with written informed consent from all subjects. All

ubjects gave written informed consent in accordance with the Decla-

ation of Helsinki, for their data to be used in this study, but not to

e made publicly available. The protocol was approved by the Medi-

al Ethics Committee of the University Hospitals KU Leuven. For the

atients’ complete clinical data, we refer to Table 1 . 
3 
.2. Data acquisition and preprocessing 

Functional MRI data were acquired on one of two 3T MR scan-

ers (Achieva TX with a 32-channel head coil and Intera Achieva with

n eight-channel head coil, Philips Medical Systems, Best, The Nether-

ands) with an echo time (TE) of 33 ms, a repetition time (TR) of ei-

her 2.2 or 2.5 s, and a voxel size of 2.6 × 3 × 2.6 mm 

3 . EEG data

ere recorded according to the international 10–20 system using MR-

ompatible caps, sampled at 5 kHz, with Cz reference. The EEG signals

ere band-pass filtered offline between 1-50 Hz, gradient artifacts were

emoved using the Bergen plug-in (Bergen fMRI Group, Bergen, Norway)

or EEGLAB ( Moosmann et al., 2009 ) and pulse artifacts were subtracted

ith the Brain Vision Analyzer software (Brain Products, Munich, Ger-

any) ( Allen et al., 1998 ). The signal of every channel was divided by

ts standard deviation. Two neurologists subsequently inspected and an-

otated the EEG signals for IEDs. 

The fMRI images were realigned, slice-time corrected and normal-

zed to MNI space, resampled to a voxel size of 2 × 2 × 2 mm 

3 , and

moothed using a Gaussian kernel of 6 mm full width at half maximum

FWHM). These processing steps were carried out using SPM8 (Func-

ional Imaging Laboratory, Wellcome Center for Human Neuroimag-

ng, University College London, UK) ( Friston et al., 1994 ). We refer the

eader to Tousseyn et al. (2014a) for a detailed description of these pre-

rocessing steps. 

We regress out covariates of no interest from the fMRI data. These

nclude: the six motion-correction parameters (plus their squares and

erivatives); boxcar regressors at moments of substantial scan-to-scan

ead movement (larger than 1 mm based on the translation parame-

ers); the first five principal components of the BOLD time series within

he cerebrospinal fluid and white matter regions ( Behzadi et al., 2007 ).

ubsequently, the BOLD time series are filtered between 0.008–0.20 Hz

sing the CONN toolbox ( Whitfield-Gabrieli and Nieto-Castanon, 2012 ).

or an analysis of the effect of the ordering of these preprocessing steps,

e refer to the supplementary material. 

The dimensionality of the fMRI data is reduced by means of an

natomical parcellation of the brain. The initial 79 × 95 × 68 images are

egmented into regions-of-interest (ROIs) according to the Brainnetome
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tlas, which consists of 246 parcels in the grey matter ( Fan et al., 2016 ).

or every ROI, one BOLD time series is constructed as the average of

he time series of all voxels within the ROI. If multiple acquisition runs

within the same recording session) had been done, the EEG and fMRI

ata of the different runs are temporally concatenated. Further cus-

omized preprocessing steps are treated in Sections 2.3 and 2.4 . 

.3. Multi-channel Wiener filtering for spatio-temporal EEG enhancement 

In previous work ( Van Eyndhoven et al., 2019a ), we have shown that

re-enhancing the EEG signals using a data-driven, spatiotemporal filter

hat is tuned to maximize the signal-to-noise ratio (SNR) of IEDs with re-

pect to the background EEG and artifacts, leads to a BOLD predictor that

s more performant than many other predictors, including those based

n simple stick functions ( Lemieux et al., 2001; Salek-Haddadi et al.,

006 ), ICA ( Abreu et al., 2016; Formaggio et al., 2011 ) or EEG syn-

hronization ( Abreu et al., 2018 ). This pre-enhancement strategy based

n multi-channel Wiener filters (MWF) has error-correcting capabilities

nd produces an IED representation that improves the localization sen-

itivity of EEG-correlated fMRI ( Van Eyndhoven et al., 2019a ). 

In brief, the MWF is estimated by first performing time-delay embed-

ing of the multi-channel EEG signals 𝐱[ 𝑡 ] ∈ ℝ 

𝐼 𝑚 , leading to an extended

ulti-channel, multi-lag signal 𝐱̃ [ 𝑡 ] ∈ ℝ 

2 𝐼 𝑚 𝜏+ 𝐼 𝑚 as 

̃
 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐱[ 𝑡 − 𝜏] 
⋮ 
𝐱[ 𝑡 ] 
⋮ 

𝐱[ 𝑡 + 𝜏] 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(1)

nd subsequently computing the filter coefficients as 

̂
 = 𝐑 

−1 
𝑥𝑥 
( 𝐑 𝑥𝑥 − 𝐑 𝑛𝑛 ) , (2)

here 𝐑 𝑥𝑥 = E 
{
𝐱̃ ̃𝐱 T |𝐻 = 1 

}
is the covariance matrix of the

EG observed during annotated IED segments ( 𝐻 = 1 ), and

 𝑛𝑛 = E 
{
𝐱̃ ̃𝐱 T |𝐻 = 0 

}
is the covariance matrix of the EEG outside

f IED segments ( 𝐻 = 0 ). For the full derivation, we refer the reader to

 Somers et al., 2018; Van Eyndhoven et al., 2019a ). The EEG signals

re then filtered as 𝐖̂ 

T 𝐱̃ . Due to the extension with lagged copies of

he signals, channel-specific finite impulse response filters are found.

ence, 𝐖̂ 

T 𝐱̃ is a set of spatiotemporally filtered output signals, in which

ED-like waveforms are preserved while other waveforms, which are

ot specific to epilepsy, are supressed 1 . 

We train the MWF for each patient individually, after embedding

he EEG signals using 𝜏 = 4 positive and negative lags 2 , and compute

he final filter using the generalized eigenvalue decomposition, which

nsures the positive definiteness property of the subtracted covariance

atrix in (2) ( Somers et al., 2018 ). 

.4. Higher-order data representation 

To preserve the intrinsic multiway nature of the data, we represent

he preprocessed EEG and fMRI as a tensor and matrix respectively,

hich are subsequently factorized jointly. This approach differs from

he mass-univariate treatment in the traditional GLM, where each voxel

s treated individually, and only ‘flattened’ EEG time courses can be en-

ered as regressors. Since epilepsy is manifested with considerable vari-

bility between patients, we handle the multimodal data of each patient

eparately. 
1 To retrieve filtered versions of the original set of channels only (and not of 

heir time-delay embedded copies, which would be redundant), only the middle 

 𝑚 columns of 𝐖̂ are used (cfr. (1) ). 
2 We observed in Van Eyndhoven et al. (2019a) that for most patients, the 

utput SNR saturates around this value, corresponding to an interval of -16 ms 

o +16 ms. 
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4 
.4.1. Spatio-temporal-spectral tensor representation of EEG 

We adopt a tensorization strategy based on time-frequency trans-

ormation of the EEG data to third-order spectrograms (time points ×
requencies × channels). After the pre-enhancement step described in

ection 2.3 , we create a spectrogram using the Thomson multitaper

ethod, applied on nonoverlapping EEG segments with a length equal

o one repetition time (TR) of the fMRI acquisition. The squared Fourier

agnitudes are averaged into 1 Hz bins, from 1 Hz to 40 Hz. Hence, for

very EEG channel, we obtain a spectrogram which is synchronized to

he fMRI time series. The time points × frequencies × channels spectro-

ram  ∈ ℝ 

𝐼 𝑠 ×𝐼 𝑔 ×𝐼 𝑚 is further normalized as described in A.1 , to equal-

ze the influence of each channel and each frequency, and to focus on

elative signal increases or decreases ( Mare ček et al., 2017; 2016 ) 

.4.2. Spatio-temporal matrix representation of fMRI 

The average BOLD time series are stacked in a time points × ROIs

atrix 𝐘 ∈ ℝ 

𝐼 𝑠 ×𝐼 𝑣 , where 𝐼 𝑣 = 246 ROIs. We normalize each ROI’s time

eries by subtracting its mean and dividing by its standard deviation. 

.4.3. Neurovascular coupling in the temporal mode 

EEG and fMRI data are acquired simultaneously per subject, and are

hus naturally coregistered along the ‘time’ mode. This is captured in a

emporal factor matrix that is common between the EEG factorization

nd the fMRI factorization. However, the electrophysiological changes

hat are picked up by EEG vary on a much more rapid time scale than

he sluggish BOLD fluctuations that (indirectly) correspond to the same

eural process. The neurovascular coupling that describes the relation

etween these two complementary signals can be described by a convo-

ution with an HRF 3 . 

In previous work, we developed a CMTF model in which the HRF

tself is parametrically estimated from the data ( Van Eyndhoven et al.,

017 ), and a matrix multiplication with Toeplitz structure implements

he HRF convolution, as proposed in Valdes-Sosa et al. (2009) . In the

ame paper, we hinted towards an extension based on multiple basis

unctions to account for the variability of the HRF over brain regions.

n the following, we assume that the time course of each EEG source

s convolved with an a priori unknown, ROI-specific HRF, which is a

uperposition of 𝐾 parametrized basis functions, which leads to a mod-

lled contribution of this source to the ROI’s BOLD signal. Hence, in

very ROI 𝑖 𝑣 , the modeled (unscaled) BOLD time course 𝐳 ( 𝑟 ) 
𝑖 𝑣 

of the 𝑟 -th

eural source is 

 

( 𝑟 ) 
𝑖 𝑣 

= 𝐇 𝑖 𝑣 
𝐬 𝑟 ( 𝑟 = 1 …𝑅 ) (3) 

= 

𝐾 ∑
𝑘 =1 

𝑏 𝑘,𝑖 𝑣 
𝐇 𝑘 𝐬 𝑟 (4) 

= 

𝐾 ∑
𝑘 =1 

𝑏 𝑘,𝑖 𝑣 
 
(
𝐡 𝑘 

)
𝐬 𝑟 (5) 

= 

𝐾 ∑
𝑘 =1 

𝑏 𝑘,𝑖 𝑣 
 
(
( 𝜽𝑘 ) 

)
𝐬 𝑟 . (6) 

ere, 𝐬 𝑟 is a factor vector holding the time course of the 𝑟 -th EEG source;

is an operator that transforms a set of parameters 𝜽( 𝑘 ) into a full HRF,

epresented as a vector 𝐡 𝑘 ;  is an operator that transforms 𝐡 𝑘 into a

oeplitz matrix 𝐇 𝑘 by populating the main and lower diagonals with

he HRF samples (see also A.2 ); 𝑏 𝑘,𝑖 𝑣 is the weight for the 𝑘 -th HRF basis

unction in the 𝑖 𝑣 -th ROI; 𝐇 𝑖 𝑣 
is the Toeplitz matrix holding the total

RF in the 𝑖 𝑣 -th ROI. This operation is clarified in Fig. 1 b. 
3 In this paper, we use the term ‘neurovascular coupling’ to describe the cou- 

ling characteristic between EEG and fMRI temporal dynamics, and make the 

ilent assumption that this characteristic is a proxy/surrogate for ‘neurovascu- 

ar coupling’ as it is understood in neuroscience: the model that describes BOLD 

hanges in response to electrical neural ‘events’, which take the form of local 

eld potentials at the synapses. 
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Fig. 1. Structured coupled matrix-tensor factorization (sCMTF) of EEG and fMRI data can reveal neural sources that are encoded in both modalities, as well as capture 

the varying neurovascular coupling between the electrophysiological and BOLD changes. (a) The EEG signals vary over time points × frequencies × electrodes. The 

resulting third-order spectrogram tensor  is factorized according to (8) into 𝑅 rank-1 components, which each consist of a temporal signature 𝐬 𝑟 , a spectral signature 

𝐠 𝑟 and a spatial signature 𝐦 𝑟 . (b) The fMRI data consist of the average BOLD signal in different brain parcels or regions of interest (ROIs), represented in a time 

points × ROI matrix 𝐘 , and are factorized according to (11) . Neurovascular coupling is modeled as a convolution of the EEG temporal dynamics with a ROI-specific 

hemodynamic response function (HRF), as in (11) –(13) . In this example, each local HRF is represented as a linear combination (encoded by coefficients 𝐛 𝑘 ) of 

𝐾 = 3 optimized basis functions, each populating a Toeplitz matrix 𝐇 𝑘 which implements a convolution through matrix multiplication with the temporal signatures 

𝐬 𝑟 . Afterwards, each smoothed component 𝑟 is spatially weighted by a signature 𝐯 𝑟 . This is accomplished by the elementwise product 𝐛 𝑘 ∗ 𝐯 𝑟 of the HRF basis 

function-specific coefficients 𝐛 𝑘 and the component-specific amplitudes 𝐯 𝑟 . 
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This time course 𝐳 ( 𝑟 ) 
𝑖 𝑣 

is conceptually equivalent to a regressor in the

LM’s design matrix. We treat the HRF parameter sets 𝜽( 𝑘 ) , 𝑘 = 1 …𝐾

s unknown variables, which need to be fitted to the data at hand

 Lindquist and Wager, 2007 ). By parametrizing each basis function, we

mbed protection against nonsensical HRF shapes, and against overfit-

ing, since the number of parameters to be estimated is greatly reduced

ompared to the FIR basis in Glover (1999) , Aguirre et al. (1998) . We

mploy a double-gamma HRF, i.e., each HRF basis function 𝑘 is de-

cribed by five parameters as ℎ 𝑘 ( 𝑡 ) = 𝑓 ( 𝑡 ; 𝜽) = Γ( 𝜃1 ) −1 ⋅ 𝜃
𝜃1 
2 𝑡 

𝜃1 −1 𝑒 − 𝜃2 𝑡 −

5 Γ( 𝜃3 ) −1 ⋅ 𝜃
𝜃3 
4 𝑡 

𝜃3 −1 𝑒 − 𝜃4 𝑡 , where we omit the superscript ( 𝑘 ) from the pa-

ameters 𝜽 to not overload the notation. 

.5. Coupled matrix-tensor factorization of EEG and fMRI 

After tensorization, we jointly decompose the EEG tensor  and the

MRI matrix 𝐘 into a set of distinct sources. 

The third-order EEG spectrogram is approximated by a sum of 𝑅

ank-1 terms according to the trilinear canonical polyadic decompo-

ition (CPD) (also referred to as Parallel Factor Analysis (PARAFAC))

s in Miwakeichi et al. (2004) , Mare ček et al. (2016) , Martínez-

ontes et al. (2004) , Van Eyndhoven et al. (2017) . Each rank-1 term

 𝑟 ◦ 𝐠 𝑟 ◦𝐦 𝑟 describes a source (also called ‘component’) in terms of an

uter product ( ◦) of a temporal, spectral, and spatial signature, respec-

ively. Unlike matrix decompositions, the decomposition of a higher-

rder tensor into a set of sources is unique, up to scaling and permuta-

ion ambiguities, without imposing constraints (under mild conditions).
5 
The fMRI matrix is similarly approximated as a sum of rank-1 terms.

oupling arises from the temporal signatures 𝐬 𝑟 , which are shared be-

ween the EEG and fMRI factorization. After processing through a hemo-

ynamic system (as described in Section 2.4.3 ), each source’s BOLD tem-

oral signature is weighted with a spatial signature 𝐯 𝐫 . 
To accommodate additional structured variation in the fMRI data,

hat is not related to electrophysiological dynamics, we allow a low-

ank term to the fMRI factorization which is not coupled with the EEG

actorization. We have empirically found that such a low-rank term can

apture structured noise, preventing it from biasing the estimation of

he parameters which are coupled with the EEG factorization. 

The full sCMTF model is then described as: 

 = ̂ +  𝑥 (7) 

= 

𝑅 ∑
𝑟 =1 
𝐬 𝑟 ◦ 𝐠 𝑟 ◦𝐦 𝑟 +  𝑥 (8) 

= � 𝐒 , 𝐆 , 𝐌 � +  𝑥 (9) 

 = 𝐘̂ + 𝐄 𝑦 (10) 

= 

𝑅 ∑
𝑟 =1 

𝐾 ∑
𝑘 =1 

(
𝐇 𝑘 𝐬 𝑟 

)
◦
(
𝐛 𝑘 ∗ 𝐯 𝑟 

)
+ 

𝑄 ∑
𝑞=1 

𝐧 𝑞 ◦𝐩 𝑞 + 𝐄 𝑦 (11) 

= 

𝐾 ∑
𝑘 =1 

(
𝐇 𝑘 𝐒 

) (
𝐛 T 
𝑘 
⊙ 𝐕 

T 
)
+ 𝐍𝐏 T + 𝐄 𝑦 (12) 
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= 

[
𝐇 1 𝐒 … 𝐇 𝐾 𝐒 

]
⋅
[
𝐁 T ⊙ 𝐕 

T 
]
+ � 𝐍 , 𝐏 � + 𝐄 𝑦 , (13) 

here ̂ and 𝐘̂ are the low-rank approximations;  𝑥 and 𝐄 𝑦 hold the

esiduals of both factorizations; � 𝐒 , 𝐆 , 𝐌 � describes the CPD model com-

osed of factor matrices 𝐒 ∈ ℝ 

𝐼 𝑠 ×𝑅 , 𝐆 ∈ ℝ 

𝐼 𝑔 ×𝑅 , 𝐌 ∈ ℝ 

𝐼 𝑚 ×𝑅 , which hold

he temporal, spectral and EEG spatial signatures in the columns; the

RF matrices 𝐇 𝑘 are constructed as in (3) –(6) ; 𝐕 ∈ ℝ 

𝐼 𝑣 ×𝑅 is the fMRI

patial factor matrix; 𝐁 ∈ ℝ 

𝐼 𝑣 ×𝐾 is the HRF basis coefficient matrix;

 𝐍 , 𝐏 � is a rank- 𝑄 term to capture fMRI-only structured nuisance; ∗ de-

otes the Hadamard or elementwise product; ⊙ denotes the Khatri–Rao

roduct. 

Note that the coupled part of 𝐘 is described by 𝑅𝐾 nonindepen-

ent rank-1 terms, or equivalently, by 𝐾 rank- 𝑅 block terms. Namely,

ach rank-1 term 

(
𝐇 𝑘 𝐬 𝑟 

)
◦
(
𝐛 𝑘 ∗ 𝐯 𝑟 

)
describes the convolution of the

 -th source’s temporal signature with the 𝑘 -th basis function, after

hich a spatial loading with vector 
(
𝐛 𝑘 ∗ 𝐯 𝑟 

)
is performed; in all ROIs,

here is one source-nonspecific relative weight for each basis func-

ion 𝑘 (captured in 𝐛 𝑘 ), and source-specific amplitudes (captured in 𝐯 𝑟 )
 Calhoun et al., 2004 ). 

It is not our aim to estimate HRF variability over sources, but rather,

or the sake of easier interpretation, to estimate only variability over

atients and ROIs. Hence, to limit the degrees of freedom, the HRF in

very ROI does not depend on 𝑟, but is shared between all sources, as

n Makni et al. (2008) , Vincent et al. (2010) , Pedregosa et al. (2015) .

his is expressed by the the Khatri–Rao product in (12) –(13) , which

orms a constraint that has earlier been used to robustify GLM parame-

er estimation ( Pedregosa et al., 2015 ). I.e., there are not 𝑅𝐾𝐼 𝑣 spatial

oefficients, but ( 𝑅 + 𝐾 ) 𝐼 𝑣 , i.e., 𝐾 basis function weights and 𝑅 source

mplitudes in all 𝐼 𝑣 ROIs. In this way, the Khatri–Rao structure also

reaks the curse of dimensionality in the fMRI decomposition if either

he number of sources 𝑅 or the number of basis functions 𝐾 is high (or

oth). 

The model is depicted in Fig. 1 , omitting � 𝐍 , 𝐏 � to not overload the

iagram. 

We estimate all parameters of the model in (8) and (11) by iteratively

inimizing the cost function 𝐽 , composed of two data fitting terms and

wo regularization terms as in ( Acar et al., 2014 ): 

( 𝐒 , 𝐆 , 𝐌 , 𝐁 , 𝐕 , 𝜽) = 𝛽𝑥 || − ̂ ||2 
𝐹 
+ 𝛽𝑦 ||𝐘 − 𝐘̂ ||2 

𝐹 

+ 𝛾𝑥 ||𝝀𝑥 ||1 + 𝛾𝑦 ||𝝀𝑦 ||1 (14) 

s.t. 𝐇 𝑘 =  
(
𝐡 𝑘 

)
=  

(
( 𝜽( 𝑘 ) ) 

)
𝝀𝑥 = 

[
𝜆𝑥, 1 … 𝜆𝑥,𝑅 

]T 
𝜆𝑥,𝑟 = ||𝐬 𝑟 ||2 ⋅ ||𝐠 𝑟 ||2 ⋅ ||𝐦 𝑟 ||2 
𝝀𝑦 = 

[
𝜆𝑦, 1 … 𝜆𝑦,𝑅 

]T 
𝜆𝑦,𝑟 = 

∑𝐾 

𝑘 =1 ||𝐛 𝑘 ∗ 𝐯 𝑟 ||2 , 
(15) 

here the squared Frobenius norm || ||2 
𝐹 

of a tensor  is the sum of

ts squared elements; ||𝐚 ||2 and ||𝐚 ||1 denote the Euclidean or 𝓁 2 -norm

nd the 𝓁 1 -norm or sum of the elements’ absolute values of a vector

 , respectively; 𝛽𝑥 , 𝛽𝑦 , 𝛾𝑥 and 𝛾𝑦 are positive weights; 𝝀𝑥 and 𝝀𝑦 are

ectors which hold the amplitudes with which each source is expressed

n the EEG and fMRI data, respectively. The squared Frobenius norms

f the residuals promote a good fit of the low-rank approximations to

he data, while the 𝓁 1 -regularization terms penalize excessive source

mplitudes and promote a parsimonious 4 model, similar to the group-

ASSO method ( Acar et al., 2014; Yuan and Lin, 2006 ). At the same time,

he latter penalty also tends to prevent the occurrence of degenerate

erms ( Bro, 1997 ). We minimize (14) using the Structured Data Fusion
4 The sparsity-promoting properties of the LASSO penalty are most useful in 

he context of an underdetermined system, with more coefficients than observa- 

ions, e.g. in dictionary learning. Here, the problem is heavily overdetermined, 

nd we do not expect that the amplitudes 𝝀𝑥 an 𝝀𝑦 go exactly to zero. However, 

he 𝓁 1 -penalty is still a useful heuristic to avoid degenerate components in the 

EG’s CP decomposition. 

 

u

2

 

s

6 
ramework in Tensorlab ( Sorber et al., 2015; Vervliet et al., 2016 ), using

 quasi-Newton method based on a limited-memory BFGS algorithm, for

0 independent initializations (see Appendix A for details regarding the

ptimization procedure and parameters). After convergence, each set of

stimated factors needs to be calibrated to remove certain ambiguities,

nd model selection must be performed to pick the best solution, with

n appropriate 𝑅 (see Appendix B for details). 

.6. Statistical inference 

We create statistical nonparametric maps (SnPMs) of the obtained

patial signatures 𝐯 𝑟 to determine which ROIs sources are significantly

de)activated in relation to the found sources ( Nichols and Holmes,

002; Waites et al., 2005 ). Namely, under the null hypothesis of no

ignificant BOLD effect related to the EEG dynamics, the fMRI data may

e temporally reshuffled without a significant loss of fit to the EEG dy-

amics in 𝐬 𝑟 . To this end, we use permutation-based inference, in which

he spatial signatures 𝐯 𝑟 are compared against their empirically derived

istributions, which are obtained via resampling of the fMRI data while

reezing the other estimated sCMTF factors. To account for serial corre-

ations in the fMRI time series, we use the robust wavelet-based resam-

ling approach in Bullmore et al. (2001) to ensure exchangeability and

o preserve spatiotemporal correlation structure of the original data in

he produced surrogate datasets. For each fMRI dataset and every sCMTF

olution, we generate 𝐿 = 250 surrogate fMRI 𝐘̃ 

( 𝑙) datasets using the pro-

edure in Bullmore et al. (2001) . We resample only the adjusted data

 − 𝐍𝐏 T , i.e., after removing the components which model variation

pecific to the fMRI data. We perform inference on a pseudo t-statistic,

hich we compute for every ROI and for every source as follows: 

1. construct a local ‘design matrix’ with all estimated temporal signa-

tures as in (3) : 𝐃 𝑖 𝑣 
= 

[
𝐳 (1) 
𝑖 𝑣 

… 𝐳 ( 𝑅 ) 
𝑖 𝑣 

]
, 

2. find the new ‘betas’ by solving 𝜷
( 𝑙) 
𝑖 𝑣 

= 𝐃 

†
𝑖 𝑣 ̃
𝐲 ( 𝑙) 
𝑖 𝑣 

∀ 𝑙 , 

3. convert the betas to a t-statistic per source by dividing them by their

estimated standard deviation (see Friston et al., 1994; Poline and

Brett, 2012 ). 

Through this procedure, we obtain 𝐿 -point empirical null distribu-

ions for every source and every ROI. We set the significance threshold as

o control the familywise error (FWE) rate at 𝛼 = 0 . 05 , according to the

aximum statistic procedure outlined in Nichols and Hayasaka (2003) .

hat is, for every source 𝑟, we form the empirical distribution of the max-

mal t-statistic over all 𝐼 𝑣 ROIs, and determine source-specific thresholds

 

( 𝑟 ) 
(1− 𝛼) as the 95%-percentile (to test for activation) and 𝑇 

( 𝑟 ) 
( 𝛼) as the 5%-

ercentile (to test for deactivation). Finally, we obtain statistical maps

or all sources 𝑟 by applying these thresholds to the original spatial sig-

atures 𝐯 𝑟 , which can be considered as the betas of the unshuffled data.

Furthermore, we create a map of the HRF variability over ROIs. For

very ROI, we assess how ‘unusual’ the local HRF is, by measuring its

alibrated distance in HRF space to all other ROIs’ HRFs. We use two

etrics to quantify this (see Appendix C for details on the computation).

1. Extremity is computed as one minus the average of the absolute val-

ues of the correlations between a HRF waveform and all other HRFs’

waveforms. 

2. Entropy of the HRF waveform is computed as the negative logarithm

of the conditional probability of the HRF. 

Both for the pseudo t-maps as for the HRF extremity and entropy

aps, we furthermore limit the inspection to the 20 ROIs with the high-

st values, if applicable. 

An end-to-end overview of our pipeline, from data preprocessing up

ntil statistical inference, is depicted in Fig. 2 . 

.7. Model performance 

We use several metrics to quantify the quality of the obtained sCMTF

olutions. 
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Fig. 2. Interictal EEG and fMRI data can be analyzed via structured coupled matrix-tensor factorizations (sCMTF), which reveals both spatial localization of interictal 

discharges (spikes), and also localized deviations in neurovascular coupling between electrical and BOLD fluctuations. (a) fMRI and EEG data are first separately 

preprocessed (yellow block). The fMRI data (top row) are structured as a time points × regions of interest (ROIs) matrix, after BOLD time courses are averaged within 

predefined or data-driven parcels. The EEG data (bottom row) are structured as a channels × time points × frequencies tensor, after the signals are enhanced via a 

multi-channel Wiener filter (MWF) which is calibrated based on spike annotations, and subsequently undergo a time-frequency transform. (b) The sCTMF of the EEG 

and fMRI data (blue block) reveals temporally, spatially and spectrally resolved components, and captures spatially varying hemodynamic response functions (HRFs) 

(cfr. Fig. 1 ). We show the EEG temporal, spatial and spectral signatures in Figs. 4 a and 6 a, and the HRFs in Figs. 4 b and 6 b, for two selected patients. To initialize 

the sCMTF factors, first a canonical polyadic decomposition (CPD) of the EEG tensor is computed, from which the remaining fMRI factors are initialized. The full 

sCMTF model is then computed 𝑁 times, from these 𝑁 different initializations, and the stability of the resulting factors over runs is assessed. (c) Statistical images 

are created for the patient’s data and the corresponding sCMTF factors (green block). From the sCMTF factors, the spike-related component is picked as the one 

with the highest temporal correlation to the filtered EEG signals’s broadband power envelope. A statistical nonparametric map (SnPM) of this interictal spike-related 

component is created, revealing co-activated ROIs in a pseudo-t-map (red). For every ROI, the entropy (and also the extremity) of the HRF is computed by assessing 

its likelihood under the distribution of all other ROIs’ HRFs, and a map of this metric is constructed (blue) to reveal localized HRF abnormalities. Both maps can 

be used to form a hypothesis on the location of the epileptogenic zone, as we show in in Figs. 5 and 7 for the two selected patients. In this paper, we validate our 

technique on a set of patients for which the outcome is known. 
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We compare the statistical maps with a ground truth delineation of

he ictal onset zone (IOZ) to assess their concordance. This ground truth

s the manually delineated resection zone for patients that had under-

one surgical treatment and that were seizure-free afterwards ( An et al.,

013; Grouiller et al., 2011; van Houdt et al., 2013; Thornton et al.,

010; Zijlmans et al., 2007 ), or otherwise the hypothetical resection

one, based on concordant evidence from multiple modalities other than

EG–fMRI (cfr. Section 2.1 ), for patients that were ineligible for or re-

used surgery ( Tousseyn et al., 2014a ). The sensitivity for detecting the

OZ is then computed as the fraction of ‘true positive’ cases, which are

etermined by the presence or absence of significant activation clusters

hich overlap the IOZ in the spatial signatures 𝐯 𝑟 . Following the reason-

ng in Tousseyn et al. (2014a) , we do not consider significantly active

oxels or regions outside of the delineated IOZ as false positives. Ac-

nowledging epilepsy as a network disorder, such active regions might

eflect seizure or IED propagation, despite not being involved in their

eneration. 

Furthermore, we hypothesize that the spatial variation of the HRF

ver the brain might reveal additional localizing information regard-

ng the IOZ, i.e., based on considerations explained in Section 1 , we
b  

7 
ssume that the HRF in or near the IOZ might be distorted compared to

onepileptic brain regions. We test this hypothesis by assessing whether

hose regions correspond to high values in the HRF entropy and HRF ex-

remity maps (cfr. Section 2.6 ). 

Additionally, we inspect the spectral, spatial and temporal EEG sig-

atures of the extracted sources, and we measure whether the spatial

MRI signatures bear any similarity to known networks of resting-state

uman brain activity ( Shirer et al., 2012 ). 

. Experiments 

.1. Patient-specific model selection 

Table B.3 compiles the results of the model selection described in

ppendix B . For each patient, we select the set of sCMTF factors of rank
̂
 , which best fulfill the criteria. In all cases, we found at least one such a

olution, including an IED-related component within that solution. Note

hat sometimes models with different 𝑅 might score well on different

subsets of the) criteria, so the selection of the rank is inevitably am-

iguous. In the next section, we analyze the individual set of results for
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Fig. 3. Goodness of fit of each patient’s EEG tensor  

and fMRI matrix 𝐘 , for varying choices of the rank 𝑅 

in the sCMTF. Naturally, the EEG approximation er- 

ror decreases monotonically for increasing rank (intra- 

patient). For the fMRI data, the fit already plateaus for 

very low 𝑅 . This is due to the presence of additional, 

uncoupled components 𝐧 𝑞 ◦𝐩 𝑞 in the fMRI factorization, 

which can absorb some of the variance when the num- 

ber of coupled components is low, but which lose their 

relevance at higher ranks. 
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5 Alternatively, it is possible to use a pseudo F-statistic, e.g. the squared 

pseudo t-value, to bypass the sign correction altogether. The downside of such 

an approach is that it is then impossible to distinguish activation and deactiva- 

tion, which may be meaningful. 
ach patient, based on the selected rank, and we analyze the sensitivity

f the results to the choice of 𝑅 . 

We show the goodness of fit of the estimated factors for the EEG

ensor  and the fMRI matrix 𝐘 in Fig. 3 . Due to the normalization

teps which have been applied to the data (cfr. Section 2.2 ), the sCMTF

perates in a regime of moderately high relative approximation errors. 

.2. Spatio-temporo-spectral profiles of interictal discharges 

We analyze for each patient the sources which have been estimated

ia the sCMTF model. We discuss the results of two patients in detail in

he next subsections, and include complete results for all other patients

n the supplementary material. 

Every time, we show (1) the thresholded pseudo t-maps of the IED-

elated source in the fMRI domain, both for significant activation as for

ignificant deactivation; (2) maps highlighting the ROIs of high HRF

ntropy and extremity; (3) the temporal profile (time-varying power)

 𝑟 , spatial profile (topography) 𝐦 𝑟 and spectral profile 𝐠 𝑟 of each source

n the EEG domain; (4) the HRF waveforms in the different ROIs, and

he HRF basis functions at convergence of the algorithm. 

We plot maximally 800 s of the temporal signatures, to ensure read-

bility. For ease of comparison, we always overlay the broadband MWF

nvelope (with an arbitrary vertical offset for visualization only), which

s the reference time course 𝐬 ref for selecting the IED-related component

cfr. B.3 ). For considerations of space, we generally only show the maps

f the fMRI spatial signature 𝐯 𝑟 for the IED-related components, but dis-

uss the maps of other components when relevant. We show five axial

lices of each map: in each case, we show two slices near the highest

nd lowest voxels of the IOZ or significant regions of the fMRI spatial

ignature (whichever lies furthest); if applicable, the middle slice is the

ross-section with most overlap between IOZ and spatial signature, and

he two remaining slices lie halfway between this slice and the extremal

lices; otherwise all three bulk slices are chosen with equal spacing be-

ween the extremal slices. We cross-validate the maps against known

esting state networks (RSNs) of human brain activity from the Stanford

tlas ( Shirer et al., 2012 ). 

We stress again at this point that a subset of the results is prone to er-

ors due to imperfect sign normalization (cfr. B.1 ). While it is relatively

traightforward to unambiguously determine the ‘right’ sign of the EEG

ignatures, this is more challenging for fMRI. That is, frequently, the

olarity of the HRF waveform is ambiguous, and making the ‘wrong’

hoice in a voxel 𝑖 𝑣 (i.e., the HRF has the opposite effect of the true

hysical cerebral blood flow change) immediately leads to the wrong

ign of the spatial coefficients in 𝐯 𝑟 in the respective voxel, and their

seudo t-values, for all sources 𝑟 . To track the occurrence of this fore-
8 
een failure mode, we also investigate the significant deactivations of

he sources 5 . 

Note that we designed the HRF variability metrics so that they are im-

une to the polarity of the HRFs. Hence, any high score of the HRF met-

ics can be reliably interpreted. For each case, we separate the twenty

aveforms with the highest entropy scores, and report how many of

hose are found in ROIs that overlap with the IOZ, along with the prob-

bility (in the form of a p-value from a binomial distribution) that this

ould occur by randomly sampling as many ROIs (under a given frac-

ion of brain that is covered by the IOZ). Hence, this metric is analogous

o one minus the false discovery rate (FDR). 

.2.1. Patient 3 

We analyze the solution with 𝑅̂ = 2 sources, and show the results in

igs. 4 and 5 . Besides one clear IED-related source, there is one other

ource that is substantially correlated to the reference time course, but

ith a homogeneous distribution over the head and an unclear spec-

rum. This may signify that the IEDs do not follow exactly a rank-1

tructure in the spectrogram, and that they may be nonstationary in

ime or space (cfr. the argument made for nonstationary seizures in

unyadi et al., 2014 ). The second source’s pseudo t-map had signif-

cantly active areas symmetrically in the left and right parietal lobe,

uch more focalized than the EEG topography. In the EEG time courses,

e found indeed IED-like waveforms at the times of the peaks in the

emporal signature. Hence, we suspect that both sources may reflect the

nset and propagation of the IEDs to other areas, respectively. Five out

f the twenty ROIs with high-entropy HRFs overlapped with the IOZ,

nd a significant finding is that several of them are highly noncausal,

.e., with a positive peak before zero seconds. Fig. 5 confirms this, and

lso shows that the IED-related source is significantly active in different

OIs of the IOZ. 

.2.2. Patient 10 

We analyze the solution with 𝑅̂ = 5 sources, and show the results in

igs. 6 and 7 . There is a clear IED-related source, and also an artifac-

ual source at ±33 Hz, which is also present in other patients. Due to its

elatively consistent occurrence, we hypothesize that this artifact is due

o the MR acquisition. For example, it may be a remnant of a gradient
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Fig. 4. (a) In the selected solution for patient 3 ( ̂𝑅 = 2 ), both sources have a temporal signature that correlated strongly to the reference IED time course. The first 

source modeled the main onset of IEDs and was low-frequency and topographically focal, while the second source was spatially and spectrally diffuse and captured 

the propagation of IEDs to remote areas (cfr. Fig. 8 ). (b) Five out of the twenty most deviant HRFs were found inside the ictal onset zone (bold lines, 𝑝 < 10 −4 ). These 

HRFs had main peaks before 0 s, i.e., they led to BOLD changes before the corresponding EEG correlate of the IED was seen. 
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rtifact which is not adequately removed from the data of some chan-

els, cfr. the observation made in Mare ček et al. (2016) . Surprisingly,

his source is significantly active in an extended area in the occipital

obe, overlapping with the visual network. Both HRF metrics reached

xtreme values at some (distinct) ROIs within the IOZ. The pseudo-t

ap of the IED-related source shows significantly active ROIs that are

oncordant with the IOZ, and deactivation of a large part of the default

ode network. Furthermore, the IED-related source’s EEG topography

s very consistent with the clinical diagnosis. The fourth source is active

n the default mode network, predominantly in the 𝛼 band (cfr. Fig. 9 ).
 o  

9 
he fifth source had an unclear spectrum, but its temporal signature

orresponds to the occurrence of high-amplitude IEDs. Its pseudo t-map

hows widespread activations over the brain, which did not include the

OZ. We expect that this component captures the propagation of IEDs,

fter onset near the IOZ, similarly to patient 3. 

.2.3. Summary of all patient’s results 

We provide an overview of the results w.r.t. IOZ detection in Table 2 .

ll results taken together, the sCMTF results allow a correct detection

f the IOZ based on the significant IED activation (10/12 cases) and
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Fig. 5. The statistical nonparametric maps of the IED-related component (top two rows) and HRF entropy/extremity maps (bottom two rows) of patient 3 show 

concordance with the ictal onset zone (IOZ). Especially the regions of significant IED activation were accurate, but also five out of the twenty regions with the most 

deviant (highest entropy) HRFs were found in the IOZ (cfr. Fig. 4 b). The ground truth ictal onset zone is highlighted in dark gray with a white contour. ROIs with 

high values for both HRF variability metrics are colored in orange. 

Table 2 

The sCMTF leads to three types of spatial information, which can be cross-validated against the ground truth IOZ, as defined in Section 2.7 and summarized for all 

patients in Table 1 : (1) the EEG topography 𝐦 IED of the IED-related component; (2) the significantly activated and deactivated ROIs in the fMRI spatial signature 

𝐯 IED ; (3) the ROIs with strongly deviating HRF waveforms, as measured via entropy and extremity. Since the EEG topography has a very low spatial resolution, 

and depends on the attenuation properties of the tissue as well as the orientation of the neural sources in the cortex, we only expect partial similarity to the IOZ’s 

spatial focus; hence, we use the term ‘consistent’ rather than ‘concordant’. The patients who had a good outcome after surgery (patients 5, 7 and 11) had a higher 

concordance between the three types of spatial clues than patients with a poorer outcome (patients 1, 2 and 6). 

patient selected 

solution 

EEG topography 

consistent with IOZ? 

spatial signature 𝐯 IED concordant 

with IOZ? 

HRF variability metrics 

complementary to 𝐯 IED ? 

20 highest-entropy 

ROIs 

ID 𝑅̂ activation deactivation entropy extremity # in IOZ (p-value) 

p01 6 ✓ ✓ 1 (0.34) 

p02 3 ✓ ✓ ✓ 1 (0.59) 

p03 2 ✓ ✓ ✓ 5 ( < 10 −4 ) 
p04 4 ✓ ✓ ✓ ✓ 2 (0.32) 

p05 5 ✓ ✓ ✓ ✓ ✓ 6 ( < 10 −3 ) 
p06 2 ✓ 0 / 

p07 4 ✓ ✓ 1 (0.57) 

p08 2 ✓ ✓ 0 / 

p09 2 ✓ ✓ ✓ ✓ 0 / 

p10 5 ✓ ✓ ✓ ✓ 3 (0.02) 

p11 2 ✓ ✓ ✓ ✓ ✓ 4 (0.01) 

p12 2 ✓ ✓ ✓ 7 ( < 10 −3 ) 
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ignificant IED deactivation (6/12 cases). For many patients, some of

he ROIs with the highest HRF entropy (9/12 cases, of which 8 were

omplementary to the SnPM) and highest HRF extremity (8/12 cases)

lso overlapped with the IOZ, which was shown to be (very) unlikely

ue to chance. All cases are covered by at least one of the metrics, and

ll patients besides patient 6 had at least two metrics providing correct

nd complementary localizing info on the IOZ. For nearly all cases, the

ED-related component’s time course was highly correlated to a refer-

nce IED time course, and its spectrum was plausible. In many, but not

ll cases, this component’s EEG topography was also consistent with the

ocation of the IOZ, though this notion is slightly fuzzy because of the

ery different spatial domains of EEG and (f)MRI —hence we do not use

he term ‘concordant’. Analysis of the spatial, spectral, and temporal

ignatures, in combination with inspection of the filtered EEG signals,

eveals the identity of RSN oscillations and/or artifacts in the major-

ty of cases. For several patients, we found sources that are active in

 narrow spectral band near 33 Hz. While these likely reflect a techni-

al artifact as the result of the MR acquisition, we found no concomi-

ant changes at this frequency in the EEG. This may be the result of the

ormalization procedure which we applied prior to the decomposition:

ince every frequency bin was given equal importance, even unnotice-
10 
ble but structured fluctuations at higher frequencies may be captured

n a component. 

.2.4. Sensitivity to model selection 

For many patients, selecting 𝑅̂ is ambiguous, since more than one

olution (with different 𝑅 ) score well on some of the criteria (cfr.

able B.3 ). Therefore, we analyze the impact of the choice of 𝑅 on the

CMTF results. For each patient, we select the solution with the rank

hich is next in line, i.e., which would be a second best (or equally

ood) choice, based on the same criteria. This is the solution with 𝑅 = 1
or patient 12, 𝑅 = 2 for patients 1, 2, 5 and 7, 𝑅 = 3 for patients 3, 4,

, 8, 9 and 10, and 𝑅 = 4 for patient 11. For patients 1, 6 and 8, the

esults deteriorate drastically, as no metric correctly localizes the IOZ.

or patient 11, no ROI within the IOZ is significantly activated due to

EDs anymore, but the HRF metrics are still informative. The results for

atients 9 and 12 improve, since all metrics are now sensitive to the IOZ.

or the other patients, the situation stays more or less the same, i.e., the

ame metrics are valuable for IOZ localization. However, the maximum

alue under the different metrics is generally attained at different ROIs

ompared to the initially selected model. 
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Fig. 6. (a) The sCMTF solution with 𝑅̂ = 5 sources was selected for patient 10. One source’s temporal signature is highly correlated with the reference IED time 

course and is identified as the IED-related source, which has a characteristic low-frequency behaviour and with a frontotemporal topography, consistent with the 

IOZ location. The second source, which has very narrow-band power around ±33 Hz, likely captured an artifact of the MR acquisition. The fourth source captured 𝛼

activity in the default mode network (cfr. also Fig. 9 ). (b) Three out of the twenty most deviant HRFs were found inside the ictal onset zone (bold lines, 𝑝 = 0 . 02 ). 
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. Discussion 

 novel EEG–fMRI data fusion framework 

We have proposed an integrated and structured coupled matrix-

ensor factorization (sCMTF) framework, which can be used to make

nferences on the localization of the ictal onset zone in refractory focal

pilepsy based on simultaneous EEG and fMRI recordings. Our approach

ims to perform blind source separation of the neural activity related to

nterictal epileptic discharges (IEDs), and to characterize it in the spa-

ial, temporal, and spectral domain. To this end, we developed a pipeline

onsisting of (1) semi-automated EEG enhancement based on annota-
11 
ions of the IEDs; (2) modality-specific preprocessing and tensorization

teps, which lead to a third-order EEG spectrogram tensor varying over

lectrodes, time points, and frequencies, and an fMRI matrix with BOLD

ime courses for a predefined set of regions of interest or parcels; (3)

oupled matrix-tensor factorization of the EEG tensor and fMRI matrix

long the shared temporal mode, while accounting for variations in the

ocal neurovascular coupling; (4) automated selection of a robust, and

elevant IED-related component, and nonparametric testing to infer its

patial distribution in the brain. 

We have stressed the importance of and accounted for the variability

f the hemodynamic response function (HRF) over different patients
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Fig. 7. The statistical nonparametric maps of the IED-related component and HRF entropy/extremity maps of patient 10 show concordance with the ictal onset zone 

(IOZ). IED occurrences were associated with significantly active (red) regions in and near the IOZ, and at the same time with a deactivation (blue) in a part of the 

default mode network. Three out of the twenty regions with the most deviant (highest entropy) HRFs were found in the IOZ (cfr. Fig. 6 b). The ground truth ictal 

onset zone is highlighted in dark gray with a white contour. ROIs with high values for both HRF variability metrics are colored in orange. 

Fig. 8. The second component in patient 3 likely captured the propagation of IEDs from the irritative zone, given its relatively large correlation to the MWF envelope 

(cfr. Fig. 4 a). The ground truth ictal onset zone is highlighted in dark gray with a white contour. 

Fig. 9. The fourth component in patient 10 seemed to pick up activity in the Default Mode Network (DMN), predominantly in the 𝛼 band (cfr. Fig. 6 a). 
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c  
nd brain regions, by equipping the CMTF with the required expressive

ower via a set of adaptive basis functions. Moreover, after estimating

he EEG and fMRI factor signatures, as well as the HRF parameters, we

ave computed different summary metrics (entropy and extremity) that

easure the local deviance of a ROI’s HRF compared to other HRFs in

he same brain, and have cross-validated the spatial map of these metrics

gainst the ground truth localization of the ictal onset zone. 

The sCMTF pipeline proved to be sensitive in detecting the IOZ in all

welve patients in this study. The statistical nonparametric map (SnPM)

f the spatial signature of the IED-related component’s activation, ob-

ained with the sCMTF, is the best biomarker, which is in line with

he traditional EEG-correlated fMRI approach ( Lemieux et al., 2001 ).

n the large majority of patients, several of these significantly active

OIs overlapped with the IOZ. When used in conjunction with the IED-

elated SnPM, also the HRF entropy and extremity, as measures of how

nlikely an HRF is within a specific set of other HRFs, are promising

iomarkers, which identified regions of the IOZ that were complemen-

ary to those already found by tracking significant IED activation for
12 
ine out of twelve patients in this study. In roughly half of all cases,

e also found regions within the IOZ that significantly deactivated in

ssociation to IEDs. The patients who had a good outcome after surgery

patients 5, 7 and 11) had a higher concordance between the three types

f spatial clues (EEG topography, fMRI (de)activation, HRF variability)

han patients with a poorer outcome (patients 1, 2 and 6). While the

umber of patients is too low to draw conclusions, this observation sup-

orts the hypothesis that the degree of such concordance might help to

redict surgical outcome. In its current form, the pipeline still predicted

oo many ROIs that did not overlap with the IOZ. This might in part be

ue to IED propagation throughout the epileptic network, as postulated

n Tousseyn et al. (2014a) , but is likely also a result of inherent limita-

ions of the model. Hence, the output of this analysis is only to be used

n conjunction with other modalities (e.g. SISCOM) during presurgical

valuation, in order to assess cross-modality agreement, as is already

ommon for EEG–fMRI. 

We previously studied the same patient cohort using classical EEG-

orrelated fMRI analysis, using different types of EEG-derived regres-
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y  
ors, in Van Eyndhoven et al. (2019a) . There, we concluded that the

ime-varying power of MWF-enhanced EEG was preferable over regres-

ors based on ICA, EEG synchronization, or simple stick functions, al-

owing a sensitivity of the IED activation map for IOZ localization of

leven out of twelve cases. Compared to this prior study, the current

ipeline yielded an additional correct detection for patient 11, but failed

o correctly predict ROIs that overlap with the IOZ for patients 1 and

2. However, for patient 12, the HRF entropy and extremity metrics

ere very informative, in that they predicted many IOZ ROIs correctly.

ence, the additional flexibility of this pipeline was probably key to

he IOZ detection for patient 11. Yet, the two ‘misses’ for the other two

atients indicate that the robustness of the current design still needs im-

rovement. For comparison, we include in the supplementary material

he statistical maps which we obtained via the analysis in Van Eynd-

oven et al. (2019a) . It is worth noting that both patient 1 and patient

1 had only few IEDs (15 and 6, respectively), which makes mining

f their EEG–fMRI data for BOLD activation difficult a priori ( Salek-

addadi et al., 2006; 2003; Zijlmans et al., 2007 ). Hence, also for our

ore flexible method, the probable yield scales with the number of IEDs

uring recording. We inspected the 20 HRFs and ROIs with the high-

st extremity and entropy. Hence, it is inevitable that some or most of

hese ROIs are not within the IOZ, or the IOZ might even not have a

eviant HRF. Standalone HRF metrics would hence have a high false

iscovery rate, even though for several patients, the high proportion of

OZ-covering ROIs among the 20 selected ROIs was very unlikely due to

hance (as measured with p-values). Still, it is not always the case that

he HRF inside the IOZ is measurably different than in the rest of the

rain, in which case these metrics would not be very sensitive. 

However, the ROIs that were highlighted by the HRF metrics were

ften distinct from the ROIs identified as significantly activated to the

EDs. Hence, the SnPMs of the IEDs and the entropy metrics provide very

omplementary information, and when analyzed jointly, they may infer

he location of the IOZ with more certainty, by selecting brain areas

here both IED-related and HRF-related metrics have a high value. 

We envision that this approach, with minor modifications, may also

e used to analyze resting-state EEG–fMRI activity, since also the estima-

ion of extended networks of correlated spontaneous BOLD fluctuations

an be biased by spatially varying HRFs. Since in such a case, no IEDs

re present, EEG-enhancement like we have done in this study would no

onger take place. However, an MWF may still be used to clean up the

EG, e.g. by annotating artifactual periods, which can be removed from

he data by the MWF in its dual form (or another tool) ( Somers et al.,

018 ). Similar to the method in Martínez-Montes et al. (2004) , the cur-

ent method could then allow to extract RSNs which are reflected in

oth EEG and fMRI data, given that sufficiently many components 𝑅

re extracted. 

RFs vary strongly over subjects and brain regions 

There were substantial differences in (estimated) neurovascular cou-

ling over patients and brain regions, as expected. Since we used ‘regu-

arized’ basis functions, which are parametrized as smooth gamma den-

ity functions, the resulting HRFs generally had a plausible shape. How-

ver, in some cases we found nonsensical shapes, in which, e.g., the

aveform ahad the same polarity over the whole time course, poten-

ially with a bimodal shape (cfr. patient 4). This serves as a humble

eminder to not blindly trust the outputted HRFs (or other factor sig-

atures, for that matter). While we have empirically verified that the

ptimization algorithm converges properly to the true factor signatures

nd HRFs for synthetic data under mild conditions, there is no guaran-

ee that this holds true for real-life data, which are orders of magnitude

ore complex, so that a linear generative model like the sCMTF may

ot be sufficient to describe the interplay between EEG and fMRI. More-

ver, the proper behavior of the sCMTF estimation depends on careful

reprocessing, and on a proper selection of hyperparameters (in casu: a

ood value for the number of sources 𝑅̂ ). Hence, manual inspection of

he data quality and the solution is still required. Even if the estimated
13 
RFs or factor signatures may not fully reflect the ‘correct’ underlying

hysical phenomena, we have demonstrated that they offer actionable

nformation. Not in the least, via summarizing metrics such as HRF en-

ropy and extremity, our algorithm manages to be reasonably robust

o subtle changes in the waveform —which is less of interest here than

patial cues towards the IOZ. We reckon that other parametrizations for

RF than the one we have used, might be better suited for the task.

hese basis functions could even be picked a priori, e.g., from a set

f sensible generating parameters ( Woolrich et al., 2004 ). This would

ven simplify the optimization problem, since the parameter vectors 𝜽𝑘 
o longer need to be estimated, at the expense of being less data-driven.

The algorithm used its modeling freedom to fit ‘noncausal’ HRFs,

hich are ahead of the EEG by as much as 10 s. Generally, we indeed

ound that many of the estimated HRFs had significant positive or neg-

tive amplitudes already before the neural correlate visible on the EEG.

his is in line with recurrent findings on BOLD changes that precede

he IEDs which were observed in the EEG ( Hawco et al., 2007; Jacobs

t al., 2009; Moeller et al., 2008; Pittau et al., 2011 ). We stress that this

oncausality may only be in the observation, and not in the underlying

hysical chain of events: here, it strictly means that we observed BOLD

hanges in the fMRI data that occur before the corresponding observed

eural correlate on the EEG. Despite the fact that many of the HRFs dif-

ered substantially from the canonical HRF, which is causal and peaks

pproximately 6 s after its neural input, we obtained good results as

ell with the latter HRF as a nonadaptive model for neurovascular cou-

ling ( Van Eyndhoven et al., 2019a ). The same conclusion was reached

y Caballero-Gaudes et al. (2013) for the comparison of the canoni-

al HRF and an information-theoretic approach for BOLD mapping. The

eason for this agreement between these different models —which differ

ubstantially in terms of flexibility —is likely that the canonical HRF is

ositively correlated to the true HRFs which are found inside the IOZ,

nd as such the resulting activation maps may still be sufficiently infor-

ative. In our data and sCMTF results this is indeed the case for many

atients. 

rior EEG signal enhancement aids analysis 

Importantly, our pipeline heavily relies on a prior enhancement of

he interictal spikes in the EEG data, which would otherwise have a too

ow SNR for the sCMTF algorithm to pick up IED-related sources. We

mploy multi-channel Wiener filters, which solely rely on the annota-

ion of a sufficient amount of IEDs in the data itself, or in related data

e.g., data from the same patient, recorded outside the MR scanner).

hile this task still frequently relies on the skill of human EEG readers

nd neurologists, advanced automated solutions for interictal spike de-

ection are available ( Scheuer et al., 2017; Wilson et al., 1999 ). Within

ach solution of a specific rank, we picked the IED component as the

ne with the highest correlation with a reference time course directly

erived from the enhanced EEG. Some of the presented results make

lear that this reference time course is not completely free from arti-

acts, hence caution is warranted when many high-amplitude artifacts

re still present in the reference. In this study, however, we have not

ncountered any issues that seemed to be the direct results of a noisy

eference during IED component selection. For the fMRI data, we have

arried out a relative strict, but unsupervised ‘enhancement’, by regress-

ng out multiple potential confounds. Hence, it would be worthwhile to

erform the fMRI cleanup according to a task-based or supervised crite-

ion as well, e.g., using ICA combined with noise component identifica-

ion ( Salimi-Khorshidi et al., 2014 ). 

he interpretation of components 

Overall, the sCMTF pipeline succeeded in extracting meaningful IED-

elated components, alongside components that modeled resting-state

eural fluctuations and physiological and technical artifacts. The fact

hat the sCMTF can estimate signatures and statistical maps for multiple

omponents is a powerful advantage over classical EEG-correlated anal-

sis. As we demonstrated in the experiments, artifactual influences may
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h

e isolated in separate components, which could reduce their impact

n IED mapping in the brain. Additionally, we encountered cases where

wo components were correlated to the IED occurrences: the component

ith the highest temporal correlation to a reference IED time course then

orrectly revealed the localization of the IOZ, while the other component

resumably modeled the propagation of IEDs to remote brain regions.

his observation is analogous to the finding in Hunyadi et al. (2016) ,

here a different type of CMTF was applied to average EEG waveforms

f IEDs and statistical BOLD maps, which revealed a dissociation be-

ween the early IED spike and the subsequent wave, which were related

o the onset and spread of the IEDs, respectively. Since we transformed

he data with a time-frequency transform that used windows of length

R, our algorithm is unable to unravel different phases within one IED,

ince they occur in a shorter time frame. However, we identified these

ifferent IED-related sources by their significantly correlated temporal

ignatures, and their distinct spatial and spectral profiles. While we did

ot impose nonnegativity constraints, many estimated EEG spectral and

patial signatures were approximately nonnegative. This need not be the

ase, however, since the EEG data are normalized in a way such that the

esulting signatures would reveal relative increase/decrease, rather than

bsolute time-varying spectral power ( Mare ček et al., 2016 ). For exam-

le, if a certain component is associated with a power increase in one

pectral band, and a simultaneous power decrease in another band, this

ould be reflected in a spectrum with both a positive and a negative

eak. 

ractical considerations 

The end-to-end sCMTF pipeline can provide a richer set of results

ompared to classical EEG-correlated fMRI analysis. In this respect, it is

 more powerful data exploration tool. The tradeoff to be made is that

ignificant computation time goes into the sCMTF and subsequent in-

erence —if one wants to apply it as rigorously as we have done in the

urrent experiments. We seem to be doing a lot of unnecessary work,

y computing the sCMTF factors for several numbers of sources, and by

epeating the optimization several times for a fixed number of sources.

nfortunately, both ways of repetition seem required to obtain robust

esults, as we have argued in Appendix A and Appendix B . However, the

EG-only CP decomposition, which lies at the heart of our initialization

trategy, seemed very robust: we found highly similar EEG signatures

or almost all random initializations. Probably, this is thanks to the use

f the powerful Gauss–Newton-type optimization. Hence, fewer repeti-

ions of the sCMTF may be already sufficient to arrive at the same robust

esults. Despite the very reproducible EEG signatures in the initial CP

ecompositions, we still performed 50 repetitions of the sCTMF, each

ime slightly varying the initial HRF parameters. As such, we believe

ur findings are reasonably robust to poor initialization of the HRFs. Per-

orming the sCMTF for many choices of 𝑅 may still be required, as the

uality of the result depends on the extraction of an appropriate num-

er of sources. In our study, no prohibitive computations were needed,

ince the heuristic selection procedure preferred low ranks, which was

till sufficient to model the IED-related dynamics. To also capture more

esting-state activity, the candidate ranks and the model selection pro-

ess could be chosen differently. Furthermore, we have demonstrated in

ur experiments that the summary metrics (sensitivity for localizing the

OZ based on different statistical scores) are fairly robust to the choice

f 𝑅, although the estimated signatures themselves differ. 

For many patients, the available data were split across multiple runs

i.e., with a few minutes break in between), and we opted to tempo-

ally concatenate data over runs, as explained in Section 2.2 . While this

iolates the coupling model based on HRFs for time samples near the

oundaries, we consider the effect minimal, given that the number of

hose ‘affected’ time samples represents a very tiny fraction of the whole

ime series. However, a more rigorous approach would be to ‘inverse-

mpute’ these samples and consider them as missing values: as such,

hey are ignored during the sCMTF optimization and will not affect the

esults. 
14 
trategies to alleviate the computational demand 

Due to the repeated decomposition and the nature of the nonpara-

etric inference, the computations are highly parallellizable. For a typ-

cal dataset with available IED annotations, and with the parameters we

ave used for this study, the end-to-end computation for one patient

ook at most five hours on a machine with twelve cores. To alleviate the

omputational burden, we have parcellated the fMRI data into 246 re-

ions, based on the Brainnetome atlas ( Fan et al., 2016 ). This is clearly

uboptimal, as the atlas is not patient-specific, and is mostly designed to

tudy healthy brains. There is a serious risk for partial volume effects,

n which the IOZ is scattered over several ROIs. As such, the IED-related

OLD changes in the part of the IOZ that falls within a certain ROI may

et swamped by the remaining BOLD fluctuations within the ROI de-

ineation. Hence, we hope to be able overcome this problem, either by

lgorithmic improvements, including a speed up of the optimization, or

y the use of a patient-specific parcellation or PCA-like compression of

he fMRI data. As of yet, it is hard to say whether the fixed atlas had an

dverse effect on the results, and it is not so straightforward to compare

he statistical maps from this study to maps which are voxel-based. We

re currently pursuing experiments in which we employ a hierarchical

arcellation: in a first step, the BOLD time series are grouped (but not

et averaged) according to the Brainnetome atlas; subsequently, we use

pectral clustering to further refine each Brainnetome parcel based on

he correlation matrix of its BOLD time series. As such, this hybrid ap-

roach combines a fixed, coarse-grained atlas with a further data-driven

ubdivision, which can mitigate partial volume effects, while still pro-

iding a significant data compression. For patients with lesions, a cus-

omized parcellation can be used, in which the lesion itself coincides

ith one parcel or with the union of several parcels. Alternatively, it

s possible to achieve a data reduction while still preserving voxelwise

OLD signals, by limiting the scope of the sCMTF to an a priori defined

OI (e.g., based on a clinical hypothesis stemming from other modali-

ies). 

ummary 

In summary, we have developed and empirically validated a fully

ntegrated framework for EEG–fMRI data fusion, which yielded a rich

haracterization of the interictal activity in time, space, and frequency,

nd which accounts for variations in neurovascular coupling over the

rain. Such spatial variation can be exploited to obtain complemen-

ary information for IOZ localization. The ability to separate local

de)activation of IEDs from local deviations in the HRF makes the sCMTF

 powerful tool for exploratory analysis of interictal EEG and fMRI data.

his approach may also be used for RSN analysis, a field where estima-

ion bias due to HRF variation has so far largely been ignored. 

Our complete MATLAB code to execute the pipeline is available at

ttps://github.com/svaneynd/structured-cmtf. 
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Fig. A1. Different initializations of the HRF basis functions are used in every 

repetition of the sCMTF fitting procedure. In each repetition, one early-peaking, 

one mid-peaking and one late-peaking HRF were sampled from probability dis- 

tributions of the HRF’s generating parameters ( 𝜽(1) , 𝜽(2) and 𝜽(3) , respectively) 

that was created by applying some multiplicative noise to baseline parameters 

(shown as the bold waveforms). The support extends to four negative samples, 

which gives the model the freedom to fit noncausal HRFs (relatively to the syn- 

chronized EEG). 

Algorithm 1. Tensor scale normalization 
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ppendix A. Nonlinear fitting of the sCMTF model 

1. Normalizing the EEG–fMRI data 

After construction of the EEG spectrogram tensors and BOLD signal

atrix, we perform a normalization procedure, to ensure that each fre-

uency bin, each channel, and each ROI contribute the same variance

o the data (cfr. Sections 2.4.1 and 2.4.2 ). From all mode-1 fibers in the

EG tensor and fMRI matrix (i.e., in the temporal mode), we subtract

he mean. Subsequently, for the fMRI data, we divide each ROI’s time

eries by its standard deviation. For the EEG data, we carry out this

atter step alternatingly over the spectral and spatial mode, until con-

ergence, since normalizing over one mode generally does not preserve

ormalization in the other modes ( Bro, 1997 ). 

This normalization is less stringent than z-scoring each mode-1 fiber,

ince contrary to the latter, the former does not enforce equal variance

or each time course, but only equal variance for whole spatiotemporal

r spectrotemporal slabs of the tensor. After computing the structured

actorization, the signatures in 𝐆 and 𝐌 can be converted back to the

riginal scale of the data by premultiplying with 𝚺−1 
𝑔 

and 𝚺−1 
𝑚 
, if desired

which we have not done). 

2. Accommodating noncausal HRFs 

In Section 2.4.3 , we derived the implementation of the convolution

ith an HRF as a left multiplication of the temporal signatures 𝐒 with

 Toeplitz matrix, whose diagonals hold the HRF samples. For a causal

onvolution, in which the BOLD signal strictly lags its neural correlate,

 𝑘 ( 𝑖, 𝑗 ) = ℎ 𝑘 ( 𝑖 − 𝑗 ) if 𝑖 − 𝑗 ⩾ 0 , 𝐇 𝑘 ( 𝑖, 𝑗 ) = 0 otherwise, hence the matrix is

ower triangular. This is the situation depicted also in Fig. 1 . 

However, a recurring observation is that BOLD changes can be ob-

erved that precede the IEDs themselves ( Hawco et al., 2007; Jacobs

t al., 2009; Moeller et al., 2008; Pittau et al., 2011 ). Hence, we allowed

oncausal HRFs that start at most 4 samples before the EEG, which al-

ows for BOLD responses preceding the IEDs by up to 10 s at a typical

R of 2.5 s. 

3. Initialization and optimization 

Since the cost function 𝐽 in (14) is nonconvex, any optimization pro-

edure can only guarantee to converge to a local optimum, hence select-

ng a good starting point is crucial to obtain a reliable solution. 

Firstly, we decomposed the EEG data  individually according to the

P or PARAFAC model ( Miwakeichi et al., 2004; Mørup et al., 2006 ), to

btain a good initialization for the factors � 𝐒 , 𝐆 , 𝐌 � in the sCMTF model.

o this end, we used a Gauss–Newton algorithm ( cpd_nls with 2000

terations, 400 conjugate gradient iterations for the step computation,

nd tolerance on the relative cost function update of 10 −8 , in Tensor-

ab 3.0 ( Vervliet et al., 2016 )), which we ran 50 times, from randomly

rawn initial factors. We observed that the resulting factors lied very of-

en close together over runs, indicating the algorithm had found a robust

olution. 

We always employed 𝐾 = 3 HRFs, which we manually initialized.

o assess whether the eventual sCMTF solution was also robust to the

nitialization of the HRF basis functions, we used a slightly different set

f HRF-generating parameters 𝜽( 𝑘 ) in each repetition of the optimiza-

ion. Fig. A.10 shows some typical HRF waveforms, which are used to

enerate the Toeplitz blocks in Fig. 1 b. 

From there, we initialized also the fMRI factors in the sCMTF

odel in (11) –(13) . We constructed a flattened ‘design matrix’ 𝐃 =
𝐇 1 𝐒 … 𝐇 𝐾 𝐒 

]
in (13) and obtained a rough estimate for 𝐁 T ⊙ 𝐕 

T as

 

T = 𝐃 

†𝐘 via regression —albeit this does not yet disentangle 𝐁 and 𝐕 .
15 
o obtain initializations for the individual spatial factors, we exploit the

act that in every ROI 𝑖 𝑣 , the Khatri–Rao product of the 𝑖 𝑣 -th columns of

 

T and 𝐕 

T corresponds to a rank-1 constraint when folded into a 𝐾 × 𝑅

atrix ( Beckmann and Smith, 2005; Boussé et al., 2018 ); hence, a rank-

 truncated singular value decomposition of the folded 𝑖 𝑣 -th column of

 

T leads to the desired vectors ( Beckmann and Smith, 2005 ), which

re further refined via a constrained Gauss–Newton algorithm ( Boussé

t al., 2018 ). We approximated the residual of the fMRI data under the

nitialized (coupled) factors using a rank- 𝑄 truncated SVD to capture

MRI nuisances. The parameter 𝑄 was chosen as twice the number of

cquisition runs that had been done for a subject. 

After each of the 50 runs of the initialization procedure, we itera-

ively optimized (14) with a quasi-Newton algorithm ( sdf_minf with

000 iterations, and tolerance on the relative cost function update of

0 −8 , in Tensorlab 3.0 ( Vervliet et al., 2016 )). Both  and 𝐘 were divided

y their Frobenius norm, such that afterwards || ||
𝐹 
= || ||

𝐹 
= 1 , and
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6 CorConDia is a popular and robust model selection tool for tensor decompo- 

sitions ( Acar et al., 2007; Liu et al., 2016; Miwakeichi et al., 2004; Mørup and 

Hansen, 2009; Papalexakis, 2016 ). To compute it, first the core tensor which is 

most appropriate (in minimum mean squared error sense) for the given data and 

CPD-derived factors is estimated. Subsequently, CorConDia is computed as the 

fraction of the core tensor’s sum of squares which is due to off-superdiagonal 

elements. When, for a given set of factor matrices, the CP structure is indeed 

ideal, the core tensor is superdiagonal and CorConDia equals 100%. Note that 

for a rank-1 model, this notion is meaningless, since the core tensor is a scalar, 

and CorConDia would trivially be 100% always. 
e chose 𝛽𝑥 = 𝛽𝑦 = 1 , such that their fit had equal contribution to the

ost function. For the regularization penalties, we pick 𝛾𝑥 = 𝛾𝑦 = 10 −3 ,
s in ( Acar et al., 2014 ). 

ppendix B. Model selection 

We fitted the sCMTF model to each patient’s data for varying num-

er of sources (rank), i.e., 𝑅 = 1 …6 . For each choice of 𝑅, we ran the

ptimization procedure 50 times, as explained in A.3 . Afterwards, the

esults need to be aggregated, such that clear conclusions on the sources

f interest can be drawn. This involves several steps, which we explain

elow in chronological order. 

1. Sign and scale standardization of factor estimates 

Some of the factors that are estimated via minimization of (14) are

ubject to sign and scale ambiguities, which are inevitable in many BSS

ontexts ( Kolda and Bader, 2009; Sidiropoulos et al., 2017 ). In the EEG

actor model in (8) , the factor vectors 𝐬 𝑟 , 𝐠 𝑟 and 𝐦 𝑟 belonging to the same

omponent 𝑟 may be multiplied with arbitrary scaling factors whose

roduct is one, without altering the goodness of fit. Similarly, in the

MRI factor model in (11) , sign and scale are exchangeable between

orresponding columns of 𝐒 and 𝐕 , and between rows of 𝐕 and rows of

 . However, to conduct proper statistical inference on each source 𝑟 ’s

patial amplitudes, the elements in 𝐯 𝑟 must be calibrated, in the sense

hat it must be possible to compare them across ROIs, and determin-

ng the sign is crucial to distinguish local activation from deactivation.

ence, we sequentially fix these ambiguities as follows: 

1. For every component 𝑟 : 

(a) 𝐬 𝑟 and 𝐠 𝑟 are rescaled to unit 𝓁 2 -norm, and 𝐦 𝑟 is counterscaled 

(b) for both 𝐬 𝑟 and 𝐠 𝑟 , the sign is flipped if the sum of squares of the

negative elements exceeds that of the positive elements; the sign

of 𝐦 𝑟 is adjusted to preserve the global sign of the EEG rank-1

term 

(c) if the sign of 𝐬 𝑟 was flipped, also the sign of 𝐯 𝑟 is flipped to pre-

serve the global sign of the 𝑟 -th fMRI block term 

2. For every ROI 𝑖 𝑣 (cfr. also ( Calhoun et al., 2004 )): 

(a) the local HRF 𝐡 𝑖 𝑣 is reconstructed using (6) 

(b) the 𝑖 𝑣 -th row of 𝐁 is rescaled and sign-corrected as to make 𝐡 𝑘 
unit 𝓁 1 -norm and as to ensure that the HRF’s largest overshoot

precedes the largest undershoot; the 𝑖 𝑣 -th row of 𝐕 is counter-

scaled 

2. Stability analysis 

To assess the reproducibility of the factors, we use the graph-

tructured clustering algorithm that we proposed in Van Eynd-

oven et al. (2019b) and briefly summarize here. We represent the fac-

or sets for all 50 repetitions of the fitting procedure as � 𝐒 , 𝐆 , 𝐌 , 𝐕 � , and

se a threshold of 0.85 to construct a binary link matrix that encodes

imilarities between components from different runs of the optimization

empirically, we found that this threshold led to acceptable cluster def-

nitions in this context). Via low-rank matrix approximation of this link

atrix, we then obtained clusters of components that were encountered

n varying numbers of repetitions. High cardinality of a cluster is then a

ign that the involved component is very reproducible or ‘stable’, since

t is part of the factor set upon convergence, in many repetitions. We

uggest to assign higher trust in such components, as opposed to com-

onents in small clusters, which are likely specific to one (potentially

oor) local minimum. For the further steps, we condensed each cluster

o one of its components, i.e., its centroid. In each cluster, the centroid
16 
omponent is defined as the component which has the largest accumu-

ated similarity with all other components in the cluster. By extension,

he centroid repetition is defined as the repetition to which the centroid

omponent belongs. 

3. IED component selection 

Out of the centroids of the clustered components, we identified the

most) IED-related component as the one whose temporal signature 𝐬 𝑟 
as most correlated to a reference time course, which is constructed as

he average over channels of the MWF’s output signal’s time-varying

broadband) power. This reference is the BOLD predictor we have

roposed for EEG-correlated fMRI analysis in ( Van Eyndhoven et al.,

019a ), and which provides a good baseline for identifying temporal

ynamics that are timelocked to the IEDs. 

4. Choice of the rank 𝑅 of the factorization 

After the previous steps have been carried out for each setting of 𝑅,

e are left to select the rank 𝑅 ∈ {1 , 2 , 3 , 4 , 5 , 6} whose set of results we

roceed with. We heuristically determined an appropriate value 𝑅̂ by

electing the model which fulfills several criteria: 

1. high core consistency of the EEG decomposition 

We compute the core consistency diagnostic (CorConDia) ( Bro and

Kiers, 2003 ) for the EEG tensor in combination with its estimated

factor set � 𝐒 , 𝐆 , 𝐌 � from the centroid repetition. The consistency de-

scribes how suitable a rank- 𝑅 CPD is for the given tensorial data and

given factors, and is expressed as a percentage (100% being a very

adequate model, and percentages below 70–80% indicating that the

model is not appropriate) 6 . 

2. reproducible IED-related component 

We count the number of repetitions in the cluster that was most

related to the IED (cfr. B.2 and B.3 ), and used this as a measure

of reproducibility. We rejected clusters whose cardinality was lower

than 10. 

3. similarity to a reference IED time course 

We track the correlation between the IED-related component’s tem-

poral signature 𝐬 IED and the reference temporal signature 𝐬 ref , as ex-

plained in B.3 . We expect higher correlations to signify a more suit-

able model, since 𝐬 ref generally led to good results in our previous

study ( Van Eyndhoven et al., 2019a ). 

4. high significance in the IED-related spatial map 

We track the highest pseudo t-value in the SnPM that was created

based on the IED-related component’s spatial signature 𝐯 IED (cfr.

Section 2.6 ). A high statistical score indicates a good model fit for

the IED-related component ( Abreu et al., 2018 ). 
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Table B1 

For every patient (ID 1–12), the sCMTF model can be fitted for a varying number of sources or rank 𝑅 . We select a ‘good’ value for 𝑅 post hoc, based on four criteria which are checked intra-patient: 1) the core 

consistency of the EEG tensor decomposition should be high ( > 70% ); 2) the IED-related source should be found in sufficiently many ( ⩾ 10 ) of the 50 repetitions of the estimation procedure; 3) the correlation of the 

IED-related source’s temporal signature with the reference time course, namely the MWF’s broadband envelope, is preferably high; 4) the maximal pseudo t-statistic for the IED-related source’s spatial signature is 

preferably high. 

ID core consistency 

diagnostic (%) 

reproducibility 

(# repetitions in IED cluster) 

correlation of 𝐬 IED with 

reference MWF envelope 𝐬 ref 

maximal t-statistic 

of 𝐯 IED 

selected 

rank 

𝑅 = 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

p01 - 100.0 99.6 97.1 90.0 76.8 25 19 14 7 16 20 0.35 0.91 0.38 0.94 0.97 0.97 14.2 20.0 21.5 16.0 7.7 20.1 𝑅 = 6 

p02 - 100.0 94.9 58.0 19.6 7.2 14 23 27 26 17 18 0.10 0.93 0.95 0.83 0.96 0.88 8.7 17.0 23.4 22.6 17.7 16.9 𝑅 = 3 

p03 - 100.0 95.6 70.7 29.0 28.4 29 23 24 21 23 19 0.29 0.93 0.92 0.93 0.93 0.93 15.2 16.5 14.9 14.3 13.9 15.0 𝑅 = 2 

p04 - 100.0 87.0 74.4 37.3 12.3 25 22 15 27 15 20 0.09 0.20 0.61 0.71 0.68 0.81 9.7 6.7 15.4 14.3 11.7 23.4 𝑅 = 4 

p05 - 100.0 98.7 94.2 93.2 89.7 3 14 14 21 13 17 0.28 0.85 0.00 0.01 0.92 0.01 19.6 5.5 6.5 4.4 9.0 4.6 𝑅 = 5 

p06 - 100.0 94.6 80.9 33.8 −409 15 21 14 14 11 13 0.55 0.92 0.87 0.80 0.80 0.22 9.9 17.1 9.9 9.6 16.4 36.9 𝑅 = 2 

p07 - 100.0 97.7 96.7 −76 . 0 −0 . 6 18 17 12 15 11 12 0.09 0.74 0.80 0.80 0.80 0.22 7.4 10.0 9.4 8.6 11.2 9.9 𝑅 = 4 

p08 - 100.0 99.7 30.6 −67 . 2 −178 12 21 21 11 14 23 0.61 0.95 0.44 0.95 0.94 0.94 13.8 16.0 10.1 20.3 15.5 18.0 𝑅 = 2 

p09 - 100.0 98.8 95.9 90.1 23.6 21 27 21 15 19 19 0.19 0.66 0.67 0.13 0.48 0.49 14.7 22.5 21.9 10.1 8.0 19.2 𝑅 = 2 

p10 - 100.0 98.0 95.0 91.7 80.3 23 34 13 24 25 14 0.47 0.29 0.96 0.96 0.96 0.19 11.9 12.9 10.0 8.6 9.9 12.8 𝑅 = 5 

p11 - 100.0 97.9 78.3 −307 49.1 21 18 12 22 13 12 0.65 0.91 0.50 0.74 0.66 0.67 18.8 12.8 12.0 28.9 18.6 12.6 𝑅 = 2 

p12 - 100.0 97.3 89.0 59.3 69.4 23 14 14 12 15 12 0.78 0.79 0.60 0.07 0.47 0.50 15.8 15.0 10.9 7.9 10.2 5.5 𝑅 = 2 

1
7
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ppendix C. Computing HRF deviation metrics 

1. HRF extremity 

The extremity of a specific ROI’s HRF is computed as one minus the

verage of the absolute values of the Pearson correlation between the

RF waveform and all other ROIs’ HRFs waveforms. I.e., for the 𝑗 𝑣 -th

OI, the extremity is computed as 

xtremity ( 𝑗 𝑣 ) = 1 − 

1 
𝐼 𝑣 − 1 

∑
𝑖 𝑣 ≠𝑗 𝑣 

|corr ( ℎ 𝑖 𝑣 , ℎ 𝑗 𝑣 ) | (C.1)

nly the first twenty samples ( ∼50 s) are considered. Note that the ex-

remity does not change if the (global, not samplewise) sign (polarity)

f one or more HRFs changes. 

2. HRF entropy 

The entropy of a specific ROI’s HRF is computed as the negative

ogarithm of the probability of this HRF, conditional on all other ROIs’

RFs. For example, we first estimated a probability density in HRF space

ased on all other ROIs’ HRFs, and then evaluated this density at the HRF

f the ROI under inspection. From every HRF, we considered the first

wenty samples, and then estimated a nonparametric multivariate ker-

el density in 20-dimensional space, by placing a multivariate Gaussian

robability kernel at the location of each HRF except one. We made this

ntropy metric insensitive to the signs of the HRFs, by extending the

et of HRF waveforms by their flipped counterparts, and computing the

onparametric density using the resulting 2( 𝐼 𝑣 − 1) HRFs in a leave-one-

OI-out fashion. 

entropy ( 𝑗 𝑣 ) = 

− log 
(

1 
2( 𝐼 𝑣 −1) 

∑
𝑖 𝑣 ≠𝑗 𝑣 

(
𝐾( ℎ 𝑖 𝑣 , ℎ 𝑗 𝑣 ; 𝚺) + 𝐾( ℎ 𝑖 𝑣 , − ℎ 𝑗 𝑣 

; 𝚺) 
))

, 
(C.2) 

n which 𝐾( ℎ 𝑖 𝑣 , ℎ 𝑗 𝑣 ; 𝚺) is a Gaussian kernel distance, which is propor-

ional to 

xp 
(
− 

1 
2 
( 𝐡 𝑖 𝑣 − 𝐡 𝑗 𝑣 ) 

T 𝚺−1 ( 𝐡 𝑖 𝑣 − 𝐡 𝑗 𝑣 ) 
)
, (C.3)

n which 𝐡 𝑖 𝑣 and 𝐡 𝑗 𝑣 are column vectors that store the twenty first sam-

les of the HRFs ℎ 𝑖 𝑣 ( 𝑡 ) and ℎ 𝑗 𝑣 ( 𝑡 ) , and 𝚺 is a diagonal covariance or

andwidth matrix. We used Silverman’s heuristic to set the kernel band-

idths for each individual dimension, corresponding to one HRF time

ample ( Silverman, 1986 ). I.e., the 𝑛 -th bandwidth 𝜎2 
𝑛𝑛 
, which corre-

ponds to the HRF amplitudes at sample 𝑛, is given by 

2 
𝑛𝑛 

= 

( 4 
20 + 2 

) 2 
20+4 (2( 𝐼 𝑣 − 1) 

) −2 
20+4 𝑠 2 

𝑛 
, (C.4)

n which 𝑠 2 
𝑛 

is the observed variance (over ROIs) of the HRFs’ amplitudes

t the 𝑛 -th sample. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.neuroimage.2020.117652 
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