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Introduction

Over the past decade, drones have progressed from simple data-gathering platforms into systems
capable of directly interacting with their surroundings. This shift has opened opportunities in areas such
as infrastructure inspection, environmental monitoring, and precision agriculture, where the ability to
physically manipulate or attach to objects greatly expands operational scope. Among these emerging
capabilities, perching, the act of securing a drone to a surface, stands out as a particularly valuable
skill. By perching, a drone can conserve energy, maintain a stable observation platform, and extend its
mission duration well beyond the limits of continuous flight.

Despite these advantages, perching remains technically challenging. Aerial platforms must approach
and interact with a target without the benefit of ground reaction forces, making stability and force con-
trol inherently more complex. Achieving a reliable perch requires precise alignment, the regulation of
contact forces, and adaptability to target surfaces that may be uncertain in position, shape, or orienta-
tion. Traditionally, vision systems have been used to locate and approach perching targets, but they
struggle in close-range scenarios where occlusions occur, lighting conditions vary, or the target is par-
tially hidden by the manipulator itself. As a result, reliance on vision alone often limits the robustness
of perching maneuvers. Tactile sensing offers a complementary pathway by directly measuring the
physical interaction between the drone and its environment. These capabilities can enable the drone
to make corrective adjustments even when visual information is unavailable or unreliable.

This research addresses these limitations by integrating high-resolution optical tactile sensors into a
perching drone. Since the sensors are designed for use as fingertips, grasping is selected as the
preferred method of perching. The aim is to move beyond basic contact confirmation toward richer
contact characterization, enabling the platform to detect both position and orientation errors in real
time and correct them during the perching process. The central objective is to design, manufacture,
and test a system capable of autonomous perching regardless of its initial approach alignment. The
work focuses on four main goals: (1) designing a gripper that enables robust and secure perching,
(2) integrating optical tactile sensors into the perching mechanism, (3) developing a control strategy
that fuses tactile and positional feedback for alignment correction, and (4) evaluating the system’s
performance through both bench-top and in-flight experiments on targets of varying size and material.
The overall research question is:

How can the integration of high-resolution tactile sensors enhance the functionality,
adaptability, and robustness of an aerial grasping drone, enabling contact localisa-
tion, shape inference, and autonomous grasping via tactile-driven control?

The remainder of this report is organized as follows. chapter 2 presents the research conducted to
achieve the goals specified above. chapter 3 provides an extensive literature review on aerial manipu-
lators, perching drones, and tactile sensing in robotics.
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Tactile Aerial Grasping via High-Resolution Touch on Drones

By Muhammad Arham Elahi

Abstract— This thesis presents the design, development, and
experimental validation of a perching drone equipped with an
underactuated robotic gripper and tactile sensing for grasping
onto structures. Perching extends drone endurance for applica-
tions such as long-term monitoring, while tactile sensing enables
precise alignment when visual data is unreliable. A control
strategy combining position-based control with tactile feedback
is implemented using DIGIT tactile sensors for contact-aware
adjustments. Two per-pixel inference models convert RGB
images into tactile information: a sensitive contact model for
binary contact detection and a depth reconstruction model that
estimates surface normals, which is then used to determine the
contact surface orientation. After outlier filtering, the depth
model achieves a mean absolute error of 5.32° in orientation
estimation. Experiments demonstrate reliable grasping with up
to 12cm of position error and successful correction of both
position and orientation using simulated tactile input. These
results highlight the potential of tactile-based strategies for
robust aerial manipulation in uncertain environments.

I. INTRODUCTION

In recent years, aerial robotics has evolved from passive
data collection platforms into systems capable of active
physical interaction with their environment. Applications in
domains such as precision agriculture, environmental mon-
itoring, and infrastructure inspection increasingly demand
drones that can not only observe but also interact with
objects. Aerial manipulators, drones equipped with robotic
appendages, have emerged to meet this challenge. However,
achieving reliable physical interaction, such as grasping or
perching, remains significantly more complex than passive
flight due to the absence of ground reaction forces and the
need for precise control of forces and torques.

Among interaction capabilities, perching, the ability of a
drone to securely attach to its environment, is of particular
interest. Perching enables aerial robots to conserve energy,
extend mission durations, and perform stable long-term
operations such as inspection, monitoring, or surveillance.
Despite its promise, perching presents several technical
challenges, including maintaining stability during contact,
regulating grasping forces, and adapting to uncertain or
dynamic environments. These challenges are compounded by
the limitations of conventional computer vision, particularly
at close range. In such situations, it is prone to occlusions,
affected by poor lighting conditions, and unable to detect
contact forces.

To address these limitations, tactile sensing is identified
as a critical component of more robust aerial manipulation.
Tactile sensors can detect small details of contact interac-
tions, such as force distribution, slip, and surface geometry,
offering complementary capabilities to vision, which can
provide global target position estimates from a distance.
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Fig. 1: Autonomous Perching Overview: The drone initial-
izes by opening its fingers and activating the sensors. It then
takes off and searches for the bar. Upon contact, it adjusts
its position so the base is directly below the branch. Next, it
presses to obtain an orientation estimate and yaws to align
with the branch before closing its fingers to perch. Finally,
it reopens its fingers and lands.

However, while tactile sensing has seen widespread adoption
in ground-based and industrial robotics, its integration into
aerial systems remains rare [1-3]. Early aerial manipulation
studies that used force sensing, such as contour-following
tasks, showed the potential of touch feedback [4, 5]. How-
ever, fully utilizing high-resolution tactile information for
aerial perching is still largely unexplored.

Previous perching drones have relied primarily on vi-
sion for contact detection. Even those incorporating tactile
sensing often use binary touch sensors for basic contact
confirmation. While this enables simple grasp detection, it
requires the drone to approach the perching surface in a
predefined orientation [6]. Capacitive tactile sensors add a
further limitation, as they are sensitive only to conductive
materials, significantly reducing their adaptability.

To overcome these limitations, this research aims to de-
sign, manufacture, and test a novel perching drone equipped
with high-resolution optical tactile sensors, specifically,
DIGIT sensors, at key contact points. By using tactile feed-



back not merely for binary contact confirmation but for richer
contact characterization, the drone can perform autonomous
perching maneuvers as shown in Figure 1.

This work evaluates the performance improvements en-
abled by high-resolution tactile feedback in aerial perching
tasks. Experimental validation involves bench tests of tac-
tile data quality and in-flight perching trials on cylindrical
structures of varying radii and material. Through these ex-
periments, the research seeks to answer the central question:

How can the integration of high-resolution tac-
tile sensors enhance the functionality, adaptabil-
ity, and robustness of an aerial grasping drone,
enabling contact localisation, shape inference,
and autonomous grasping via tactile-driven con-
trol?

The remainder of this paper is structured as follows: sec-
tion II reviews related work on aerial manipulation, perching
strategies, and tactile sensing technologies. section III gives
an outlook on the mechanical design process and aerial
platform assembly. section IV presents the methodology,
including sensor modeling and control strategies. section V
discusses the experimental results obtained, and section VI
offers conclusions and directions for future research.

II. RELATED WORK

The development of aerial manipulators and perching
drones is gaining increasing attention as drones evolve from
passive sensors to active agents capable of interacting with
their environment. This section discusses relevant advances
in aerial perching mechanisms in subsection II-A, the inte-
gration of tactile sensing into aerial systems in subsection II-
B, and the design and use of high-resolution optical tactile
sensors, with particular emphasis on the DIGIT sensor in
subsection II-C.

A. Perching Drone Design

Research on perching drones can be broadly categorized
into three main biologically inspired approaches: grasping
(bird-like claws) [7], attaching (gecko-inspired adhesives)
[8], and embedding (insect-inspired spines) [9].

Notable grasping-based designs include the avian-inspired
perching drone with underactuated claws that passively trans-
form impact energy into grasp force [10], and the OpenHand
gripper from Yale, which uses compliant, underactuated fin-
gers for robust grasping despite lacking tactile sensing [11].
Unique mechanisms such as the SpiderMAYV, which perches
using gas-launched anchors [12], and soft tendril-inspired
grippers [13] also demonstrate the diversity of approaches.

However, most existing perching systems rely on ground
truth or vision to obtain the target pose. This information
is not always available with sufficient accuracy, especially
when the drone is close to the target object. Tactile in-
formation from the environment can maintain closed-loop
feedback, significantly increasing adaptability.

B. Tactile Sensing in Robotics and Aerial Systems

Tactile sensing is a critical component in ground-based
robotic manipulation. It provides real-time information on
contact forces, object geometry, and texture, enabling robust
grasping and reactive control [14]. Technologies for tactile
sensing include resistive, capacitive, piezoelectric, and op-
tical sensors, each with trade-offs in terms of resolution,
sensitivity, stretchability, and environmental robustness.

Capacitive tactile sensors, for example, have been used in
robotic hands and perching drones to detect simple contact
events [6]. However, these sensors often exhibit nonlinear
responses, require careful calibration, and provide limited
spatial information. Their susceptibility to electromagnetic
interference and environmental noise further reduces the
reliability in dynamic environments [14].

In aerial systems, tactile sensing is still emerging. Some
recent studies have explored using force sensors to enable
tasks like contour following and compliant inspection [4,
15]. However, high-resolution tactile sensors remain largely
absent in drone platforms, due to constraints on payload,
power, data processing and other practical limitations.

C. Optical Tactile Sensors

Optical tactile sensors represent a promising direction for
aerial applications due to their high resolution, immunity to
electromagnetic interference, and ability to capture rich con-
tact geometry. These sensors operate by monitoring changes
in light caused by surface deformation. Variants include fiber-
optic, internal reflection, and camera-based systems [16].

The DIGIT sensor, introduced by Lambeta et al. [17], is
a compact, low-cost optical tactile sensor that captures high-
resolution images of contact deformations using a camera
and multicolor LEDs. Its exploded view is shown in Figure 2.
It is particularly well-suited for integration into robot end-
effectors and grippers, offering sub-millimeter detail at a
theoretical maximum of 60 frames per second. Depending
on the sensing task, the elastomer layer in DIGIT can
be customized for reflectivity or even include embedded
features.

The sensor has been successfully used for tasks like slip
detection, object manipulation, and tactile servo control on
ground robots [17, 18]. A derivative known as DigiTac
combines the DIGIT’s base (illumination and camera) with
the TacTip’s soft, curved skin to enhance compliance and
surface tracking [18]. However, stiffness-induced contact
biasing and durability challenges such as skin tearing have
been reported during extended use.

III. MECHANICAL DESIGN

Since the DIGIT tactile sensors are designed for use
as fingertips, the grasping method is chosen for perching.
The drone is designed with the dual objective of enabling
secure interaction with the environment while maintaining a
lightweight construction suitable for aerial deployment. The
goal is to build an underactuated, compliant, three-fingered
grasping mechanism.
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Fig. 2: Exploded view of a DIGIT sensor. A) elastomer,
B) acrylic window, C) snap-fit holder, D) lighting PCB, E)
plastic housing, F) camera PCB, G) back housing [17].

A

A. Gripper Design

The grasping mechanism consists of a three-fingered,
underactuated gripper, with each finger comprising three
phalanges connected via revolute joints and tensioned by
torsional springs. The faces of the middle and base phalanges
are covered with rubber pads, which increase friction and
also serve as a soft, compliant contact surface. This ar-
rangement ensures inherent compliance, allowing the fingers
to passively adapt to irregular geometries without requiring
high-precision control. The design reduces the number of
required actuators, lowering both the system’s weight and
computational load, while maintaining grasp adaptability.
It facilitates secure grasping of cylindrical objects such as
pipes, rods, or branches.

The design goal is to passively conform to cylindrical
perching surfaces of various radii while generating sufficient
grasp force to support the drone’s weight during perching. A
quasi-static force analysis using geometric and mechanical
constraints is used to determine the spring stiffnesses and
phalange lengths.

A static equilibrium model is developed to understand
load distribution across the finger joints, where the following
assumptions are made:

o Each finger supports exactly one-third of the drone’s
total weight W, acting vertically.

« Each finger consists of three straight phalanges, each
making tangential contact with the cylindrical surface.

« The normal and tangential contact forces on each pha-
lange act at the phalange’s midpoint.

o The friction coefficient between the finger and cylinder
is set to u = 0.5, based on a conservative estimate of
the friction between the rubber surface of the finger and
other materials [19].

o The horizontal clamping force that may be present due
to the presence of multiple fingers is neglected.

As shown in Figure 3, let the three phalanges be of lengths
L1, Lo, L3, and contact angles with the cylinder be 64, 65, 03,
respectively. The phalange lengths are chosen as:

L; =50mm, Ly=70mm, L3=95mm

Each phalange experiences a normal force F;, and tan-
gential force F;;, for ¢ = 1,2,3. With these assumptions,
the system can be described by the following equilibrium
equations:

—— Phalange 1
—— Phalange 2
—— Phalange 3

63

Fig. 3: Schematic of the Finger Representation used for
the quasi-static analysis showcasing the angles (6;), the
normal forces (F; ) and tangential forces (£} ;) for all three
phalanges.

1) Horizontal Force Balance:

Fiicos(01) + Fat cos(02) + F: cos(63)
+ Fln sin(91) — an Sin(92) — an sin(Og) =0 (1)

2) Vertical Force Balance:

Fip, cos(01) + Fay, cos(02) + Fs,, cos(63)

. . . w
— Fiesin(61) 4+ Foesin(fa) + Fsisin(63) = 3 (2)
3) Moment Balance at the base:

Fi, (% + Lo cos(6y + 02) + L cos(0y + 03))
+ Fy (%2 + Ly cos(03 — 02)) + Fs, (%2)
+ Fit (—Locos(61 + 02) — L3 sin(6y + 63))
4 Foy (—Lysin(03 — 05)) = W - b 3)

These three equations relate six  unknowns:
Fin, Fon, Fsn, F14, Fop, F3;. A numerical solver is
implemented using the cost function shown in Equation 4
with @ > 1, which minimizes reliance on tangential
(frictional) forces in favor of normal forces. The forces can
then be used to calculate the joint torques and the required
stiffness for springs with an initial angle of 270 degrees, as
shown in Equation 5. This approach enables the estimation
of valid solutions across a range of target radii. The results
are presented in Figure 4 for o = 10.

fx) =a- (Fip + For + Fs¢) + (Fin + Fon, + F3,)  (4)



T1 _L1/2 0 0 Fln
To| = |Li/2 L2 0 | |Fy (5)
T |L1/2 L2/2 L3/2| |Fin

k1 _Tl/(%r — 64 *02)
To/(3F + 65 — 05)
ks L T3/(7T+93)

The results as shown in Figure 4 revealed that:

o For small radii (< 40 mm), the second phalange con-
tributes most significantly to weight support (F»,, dom-
inates) with the third phalange also contributing (Fj,
assists).

o As the radius increases, the load progressively shifts to
the first phalange, leading to an increase in F7,,.

o For even larger radii (> 55mm), the required tan-
gential force on the first phalange (F};) increases
significantly. This occurs because Fj, alone can no
longer generate a sufficient counterclockwise moment
to balance the clockwise moments produced by the
other normal forces, particularly Fb5, and Fy. As a
result, F; must compensate to maintain equilibrium.
However, the horizontal force introduced by Fj; must
also be balanced, leading to a further increase in F5,,.
Beyond approximately 60 mm, these constraints make
it impossible for the solver to find a valid solution.

These trends are illustrated even more clearly in Figure 5,
which shows how force loading transitions across a range of
radii.

These trends are used to guide spring selection. The first
two joints (at the base and middle) experience higher torques
due to the greater load-bearing requirement. The fingertip
joint, experiencing lower moments, requires a weaker spring.
In the absence of manufacturer data, spring constants are es-
timated using the standard torsional spring stiffness equation:

o — Ed*
- 10.8D,N
where F is the elastic modulus, d is the wire diameter, D,

is the outer diameter of the spring, and N is the number of
coils. This informed the use of the springs shown in Table I.

(6)

TABLE I: Properties of springs used in the finger joints.

Joint d(mm) | D, (mm) | N (-) | k (Nm/rad)
Base and Middle Joints 1.22 15.24 6.75 0.0695
Distal Joint 1.02 12.98 6.75 0.0398

Actuation of the fingers is provided by three Feetech
STS3032 serial bus servomotors, one for each finger. These
motors are mounted on the baseplate and connected to
the finger digits via routed nylon tendon lines, enabling
coordinated grasping motions through tendon tension.

The gripper is mounted in a top-down configuration, plac-
ing it above the drone’s center of gravity. This design choice
improves passive perching stability, minimizing the motor
thrust required to maintain a perched state. It also eliminates
interference with landing skids and enables perching onto

elevated cylindrical structures, while preserving the drone’s
ability to land conventionally when required.

Each fingertip and the base of the gripper are equipped
with a DIGIT sensor. The sensors are mechanically mounted
using a press-fit clamp design.

B. Aerial Platform

The base platform is constructed around a modified
SpeedyBee FS225 V2 5-inch quadcopter frame, with an
additional platform added to host the flight computer and
enable attachment of the gripper. Each arm of the frame
houses a standard brushless motor for flight control, while
a central compartment accommodates the flight electronics,
battery, and gripper assembly.

The drone is equipped with a MatekSys H743-Slim V3
flight controller running PX4 Autopilot firmware [20]. An
Orange Pi 5B is mounted onboard to run the Finite State
Machine and perform tactile data processing, motor actu-
ation, and flight path computation. An OptiTrack MOCAP
system is utilized for pose estimation. Power is supplied by
a 4S LiPo battery. The total weight of the aerial platform is
1.2 kg, including the battery. The drone is shown in open
and closed positions in Figure 6.

IV. METHODOLOGY

This section outlines the approach used to enable tactile-
based perching. It covers both the processing pipeline for
tactile data and the development of the control strategy.

A. Tactile Data Processing Pipeline

The tactile data acquired from the DIGIT sensors is
processed using supervised learning models trained to extract
two types of information: surface deformation (depth) and
contact regions. Each model operates per pixel, enabling
dense interpretation of the sensor’s high-resolution image
stream.

1) Model Structure: To reduce computational overhead
and accommodate onboard inference on the Orange Pi 5B,
the DIGIT sensors are configured to operate at their lowest
supported settings: a frame rate of 30 Hz and a resolution
of 320x240 pixels. The images are converted from RGB to
HSV color space, as this allows for the separation of inten-
sity and color information. Each input pixel is normalized
and represented by a five-dimensional vector {z,y, h, s, v},
where (x,y) denotes the pixel coordinates and (h, s,v) are
the color channels.

The neural network architecture used for depth and contact
estimation consists of a fully connected feedforward network
with three hidden layers, each containing 32 nodes and ReLU
activation functions as shown in Figure 7. The networks are
trained offline using a labeled dataset of tactile images with
corresponding ground truth outputs, and then exported as
PyTorch scripts for deployment. During flight, inference is
executed live onboard the Orange Pi.
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Fig. 4: Quasi-static analysis results. The far-left plot shows the angle of each phalange when wrapping around a cylinder,
while the left plot shows the corresponding normal forces. The middle plot shows the tangential forces. These forces result
in the joint torques in the right plot and the required spring stiffnesses in the far-right plot.
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Fig. 5: Finger configurations for radii of 30, 40, 50, and 58 mm, showing a clear transition of load from the second phalange

to the first phalange.

(a) Closed (b) Open

Fig. 6: The Drone shown in the closed (left) and open (right)
positions.
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Fig. 7: Neural network architecture for the depth model with
5 input nodes (z, y, h, s, v), three hidden layers with 32
nodes each, and 3 output nodes (n,, n,, n,). The contact

model shares the same architecture, except it has a single
output node (C).

2) Ground Truth Generator: The ground truth generator
produces per-pixel normal vectors and contact masks for
analytically defined shapes. Each training image is paired
with a normal map that describes the surface normal at every
valid pixel (z,y) as a unit vector, mapped from [—1, 1] to
[0,1] for consistency.

For a sphere, the normal vector is defined by an inclination
angle 6,, and an azimuth angle 6,,, as given in Equation 7.

c08(052) cos(0zy)
cos(0-) sin(Ozy) | - @)
sin(f)

The angles are computed from the sphere’s known center
(2, Ye) and radius 7gphere using Equation 8.

n=—=—

d= \/(l‘ - xc)z + (y - yc)2

0. = arccos ( Tspiere ) ®)
0.y = arctan ( %)

Pixels are included only if d < 7gnere. The resulting
normal is then normalized and shifted to the range [0, 1].

For a cylinder, the elliptical contact patch is modeled as
a series of semicircular cross-sections distributed along the
semi-major axis, producing a symmetric dome-like deforma-
tion. Each pixel (z,y) is first mapped to normalized ellipse



coordinates (z.,y.) by projecting its displacement vector
d onto the semi-major and semi-minor axes as shown in
Equation 9.

d— [x — cm]
Y—Cy
d - ay,;
Le = Pmajor = — )
T
d- éminor
Ye = Pminor = —
T's

Here, (cz,cy) is the ellipse center, Amajor and Aminor are
unit vectors along the axes, and 7}, s are the respective
radii. The normalized coordinates (z.,y.) must satisfy
z2+y? <1

At each z., the local cross-section is modeled as a semi-
circle with radius Equation 10.
Ts

Ye = Ye - )
Tcylinder

lye| < 1. (10)
The local depth function and its derivative (the slope) are
defined by Equation 11.

dz .
de) = V192 s=-=——2 D

dyc 1-— Ye
This slope defines the local surface inclination in the 2D
cross-section. The local tangent angle satisfies tan(f) = s,
so the unit normal in the cross-sectional plane is given below:

0 0
n. = |[sin(d)| = ﬁ (12)
1
cos(6) T

To express this normal in the global image frame, the
local slope component is rotated along the semi-minor axis,
yielding Equation 13:

[Zz] = sin(&) Aninor = \/% Aminor (13)
(o
n=| v,
cos(6)

Finally, the normal vector is normalized and shifted to
[0,1]. This ensures that the semi-major axis center line
always produces a normal vector pointing directly outward
(0,0, 1), while the local cross-sectional slope varies smoothly
toward the elliptical boundary. This better approximates the
contact deformation of a soft elastomer under load.

Examples of the generated ground truth data for both
spherical and cylindrical deformations are shown in Figure 8.
For the contact model, the ground truth marks the interior
of the deformation as contact (value 1) and everything
outside as non-contact (value 0). For the depth model, the
background region of each image is assigned a default
normal vector of [0,0, 1], which maps to [127,127,255] in

(a) Sphere

(b) Cylinder

Fig. 8: The image as taken by the sensor (left) with its
corresponding ground truth for the contact model (middle)
and depth model (right).

the RGB color space after normalization and rescaling. This
corresponds to the bluish color visible in the non-contact
regions of the figure. The spherical deformation demonstrates
a red shift toward the right side as the n, component
increases, and a green shift downwards as the n,, component
grows, reflecting the local surface orientation. The cylin-
drical deformation shows a symmetrical pattern across its
centerline: the center points directly outward while the side
regions’ red value gradually shifts, with n, increasing to
the right, indicating the semicircular curvature around the
cylinder’s surface.

3) Training: Each DIGIT sensor uses a different internal
LED lighting configuration as shown in Figure 9, so each
model must be trained separately. The external lighting
conditions are also critical for the accuracy of the sensor.
Therefore, it is essential to include a sufficiently large dataset
that captures a wide range of lighting variations or, if
possible, maintain controlled lighting conditions.

Sensor D20791’s contact model is trained using 264
images, while the depth model is trained using 230 images.
The difference of 34 images is due to deformations caused
by a flat circular shape, which the depth model cannot detect,
as the entire deformation area has a normal vector of [0, 0, 1]
pointing straight down. This results in 5,068,800 data points
for the contact model and 4,416,000 for the depth model. The
data is split into training and testing sets with an 80/20 ratio,
resulting in a training time of approximately 40 minutes.

The depth estimation model is trained using a mean
squared error (MSE) loss function to regress per-pixel surface
normals. Likewise, the contact model is trained with a binary
cross-entropy loss function with logits (BCEWithLogits) to



(a) Sensor D20791

(b) Sensor D20883

Fig. 9: Background images without any deformation show-
casing the completely different internal lighting setup present
for each sensor.

predict a binary contact mask for each pixel. This loss
function includes a weighting factor to compensate for the
dataset’s imbalance between positive and negative samples.

4) Post Processing: The raw outputs of the depth and
contact models require additional processing steps to ensure
that the data is consistent, physically meaningful, and usable
for downstream control logic.

a) Depth Model: The depth estimation network outputs
a normal map, which can be converted to gradients using
Equation 14, which is then converted into a depth map
through Poisson surface reconstruction [21].

This depth map represents the distance from the gel sur-
face to the camera. To produce a physically meaningful de-
formation map, the predicted distance is subtracted from the
reference camera distance and then scaled by the thickness of
the elastomer layer, which defines the maximum measurable
deflection. The resulting map is clipped to the range [0,1]
to eliminate values outside the expected deformation limits.
To estimate the location and orientation of the contact,
contours are extracted from the depth map to approximate
the deformation profile.

dz Ng

d
and 4z _

az ny
dx  n, dy .,

(14)

The system performs a background calibration step to
compensate for model error and any initial surface irregulari-
ties. This is achieved by computing an initial reference depth
map as the average of the first 20 frames recorded by the
sensor before contact occurs. The reference is then subtracted
from all subsequent depth maps to correct for static offsets
and ensure that only actual contact-induced deformations are
retained.

b) Contact Model: The contact detection model out-
puts a per-pixel logit representing contact using a neural
network. A Gaussian blur is applied to the logit map to
reduce noise and incorporate contextual information from
surrounding pixels. A sigmoid function then proceeds to
convert the logit into a probability. A fixed threshold then
converts this probabilistic map into a binary contact mask.

This threshold is selected to minimize false positives, which
are more detrimental to downstream control than occasional
false negatives. Pixels with probabilities above the threshold
are classified as contact points, while all others are set to
zero. Principal Component Analysis (PCA) is applied to
the resulting contact region to estimate the centroid and
orientation of the contact patch, which informs the control
logic.

Flowcharts summarizing the complete data pipeline for
depth estimation and contact detection models are provided
in Figure 10 and Figure 11, respectively.

B. Perching Control Strategy

The perching controller is implemented as a finite state
machine (FSM) that sequences the drone through discrete
flight and interaction phases. The FSM monitors motor states,
odometry, and tactile feedback signals to make decisions at
runtime. The controller combines autonomous search, con-
tact detection, local pose adjustment, alignment correction,
and final validation for the most complete experiment.

1) Initialization and Takeoff: The system starts in the
IDLE state, initializing the gripper servos and opening the
fingers. Once all motors are ready, a signal activates the
optical tactile sensors. When both systems are prepared, the
controller publishes the initial flight pose and transitions to
the TAKEOFF state.

2) Search and Contact Detection: After reaching the
initial setpoint, the FSM enters the SEARCH state. In this
phase, the drone executes a predefined pattern by shifting
laterally and stepping vertically in a zigzag pattern. The
optical tactile sensors stream deformation magnitude and
contact angle measurements at each step. If no contact is
detected, the search continues for a maximum number of
steps, after which the mission is aborted.

If any sensor force exceeds a defined threshold, the con-
troller records the sensor ID and magnitude, then transitions
to the TOUCH state.

3) Touch Alignment: In the TOUCH state, the drone ad-
justs its local pose based on which sensor made contact.
For example, if contact is detected on a side sensor, the
drone shifts laterally to better align with the target bar.
After computing and publishing this new setpoint, the drone
executes a slow press motion normal to the surface to confirm
contact with the base sensor.

4) Alignment Correction and Yawing: After the pressing
phase, the controller transitions to the ALIGN state. Here,
it repeatedly samples the contact angle (bar orientation)
from the base tactile sensor and computes the required yaw
correction. If the detected misalignment exceeds a preset
margin, the drone executes a yaw rotation (YAW state) until
the bar orientation falls within tolerance. If the alignment
remains outside acceptable limits after correction, the drone
switches back to the ALIGN state.

5) Perching and Validation: Once the yaw alignment is
within bounds, the FSM transitions to the PERCH state.
At this point, the drone switches from position control to
velocity control to avoid actively resisting the contact forces
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Fig. 11: Contact detection model processing pipeline. The inference model outputs raw contact logits, which are smoothed
using a Gaussian blur before being converted to probabilities via a sigmoid function. These probabilities are then thresholded
to produce a binary contact map. Finally, PCA is applied to the binary mask to estimate the location and orientation of the

deformation.

during the perching maneuver. The gripper servos are then
commanded to close around the bar. To ensure a stable
attachment, the system checks that all fingertip tactile sen-
sors report a sustained contact force above their predefined
threshold. Additionally, a final manual perch confirmation
can be provided through a user interface. If the validation
conditions are met, the drone reduces its motor thrust to test
the perch connection. Finally, it transitions to the FINISH
state, where the fingers are reopened to release the bar
and the drone executes a controlled, slow landing while
remaining in velocity mode.

V. RESULTS AND DISCUSSION

This section presents the key results from experiments. It
highlights the performance of the contact and depth estima-
tion models, the sensor’s orientation estimation capabilities
and the control strategy’s behavior during flight tests.

A. Verification and Validation of the Sensor Models

To ensure that the developed normal and depth estimation
pipeline works as intended, a series of verification and
validation checks are conducted using a test dataset and
deformation images obtained from the test site. These tests
compare the predicted normal vectors and depth maps against

known ground truth shapes and expected contact patterns.
The goal is to verify the correctness of the implementation,
evaluate the model’s accuracy under representative condi-
tions, and demonstrate its practical capability for detecting
and quantifying contact on the DIGIT sensor.

1) Contact Model Verification: The performance of the
trained contact model is evaluated on an independent
test dataset using the BCEWithLogitsLoss, which averaged
0.2714. The output distribution for the predicted contact
probabilities, shown in Figure 12a, demonstrates that the
model effectively distinguishes between contact and no-
contact regions. This is further supported by the receiver
operating characteristic (ROC) curve, which achieved an
area under the curve (AUC) of 0.9449. For this application,
false positives are more problematic than false negatives,
as they can incorrectly shift the estimated deformation to a
region where no contact exists. False negatives, by contrast,
merely leave occasional gaps in the predicted contact area.
To favor precision over recall, a conservative threshold of
0.7 is applied to the probabilistic output when generating
the binary mask, reducing the likelihood of false positives
while accepting some gaps in the contact prediction. The
final model thus reaches an overall accuracy of 0.8413, with
a precision of 0.9703 and a recall of 0.8213, resulting in an



F1-score of 0.8896.

2) Depth Model Verification: The depth model demon-
strates strong overall performance, with an average weighted
MSE loss of 0.0022 when utilizing the testing dataset. The
residuals for the n, and n, components are symmetrically
distributed around zero, which, combined with high R? and
explained variance values, indicates consistent and unbiased
predictions across a wide range of input conditions. The
normal component n, shows a very low error, but this is
partially due to the dominance of background pixels and mi-
nor deformations where the surface normal is nearly vertical.
As a result, the model frequently predicts n, ~ 1, leading
to a less Gaussian residual distribution and comparatively
lower R? and explained variance scores. The residual errors
for each component are presented in Figure 13a.

TABLE II: Depth Model Quantitative Evaluation Metrics on
the Test Dataset

Component MAE MSE RMSE R? Expl. Var.
Nng 0.0725 | 0.0116 | 0.1078 | 0.7630 0.7649
Ny 0.0668 | 0.0108 | 0.1040 | 0.7742 0.7748
ny 0.0337 | 0.0035 | 0.0589 | 0.5443 0.5443

The network is not explicitly constrained to produce unit
vectors; however, this is inconsequential, as the relative ratios
between normal components, specifically n,/n, and n,/n.,
are used to reconstruct the depth surface, as shown in Equa-
tion 14. The predicted ratio plotted against actual ratios, as
shown in Figure 13b, confirms the model’s reliability within
the typical value range (—0.7 to 0.7) and demonstrates that
it accurately predicts the direction of deformation. However,
in high-slope regions where the true ratio approaches +1
or beyond, the model tends to underestimate the steepness,
typically saturating around +0.7.

3) Validation: To evaluate the generalization capability of
the trained models on unseen data, validation is performed
using full-frame sensor images that are not part of the
training dataset. Figure 14 shows representative results for
three scenarios: a blank background image, and two real
deformations caused by a cylindrical bar placed in both
horizontal and vertical orientations.

In the background case, the contact model successfully
identifies the absence of contact, producing a mostly blank
mask with some false positives. The depth model outputs
a flat map, as expected in the absence of deformation.
In contrast, both deformation cases clearly highlight the
differences in sensitivity and behavior between the two
models. The contact model accurately identifies the full
contact patch. Meanwhile, the depth model localizes the
deformation more conservatively, focusing on the region of
highest displacement.

These results highlight the strengths and trade-offs of
each sensor model. The contact model is highly sensitive
and capable of capturing a broader contact area, but it is
more susceptible to false positives. The depth model provides
more physically grounded and detailed measurements but
requires greater indentation force to activate due to its lower

sensitivity.

4) Base Sensor Angle Estimation: To further evaluate the
accuracy of the base-mounted tactile sensor and validate its
normal vector outputs, a series of controlled ground tests
are performed. An OptiTrack motion capture system is used
to measure both the attitude of the drone and the precise
orientation of a calibration bar. During each test, the bar is
pressed firmly onto the base-mounted DIGIT sensor while
the drone is held stationary on the ground. This procedure
established a known reference contact orientation, which is
then compared to the sensor’s predicted orientation to assess
alignment errors and possible bias in the normal estimation
pipeline.

The results of this experiment are shown in Figure 15.
They indicate that, in general, the sensor performs well at
angle estimation, though it occasionally produces significant
errors. Considering all data, the mean absolute error (MAE)
is 13.61°. However, when the RANSAC algorithm is used
to detect and remove outliers, the MAE drops to 5.32°. The
resulting trendline follows the equation y = 0.87x + 1.49,
indicating a small positive bias of 1.49° and a tendency to
slightly underestimate angles.

B. Flight Results

To evaluate the effectiveness of the proposed perching
system in flight, a series of controlled tests are carried out
in a laboratory environment. These experiments focused on
validating both the accuracy of the tactile sensors and the
drone’s ability to perch securely on cylindrical targets.

Since contact forces are much harder to generate at the
fingertips due to the large moment arm in an open config-
uration, the more sensitive contact model is used on them,
while the base sensor, which can sustain higher forces, runs
the depth estimation model.

However, the DIGIT sensor’s elastomer surface is found
to be too rigid to deform significantly under the contact
forces encountered during flight. As a result, all experiments
are conducted using simulated sensor output to validate
the perching control logic. Additional details regarding this
issue and other sensor-related limitations are provided in the
Appendix L.

The perching trials are conducted using a metal bar,
a plumbing pipe or a natural branch suspended horizon-
tally parallel to the y-axis in midair to replicate typical
cylindrical structures found in outdoor environments. This
setup is shown in Figure 16. The drone approaches the
bar autonomously and engages the grasping mechanism to
secure itself around the target structure. The position and
orientation of the drone are inferred using the OptiTrack
motion capture system, allowing for accurate evaluation of
the control strategy and the stability of the grasp under
realistic conditions.

To focus on particular aspects of the drone individually,
three different experimental variants are designed using the
state machine outlined in subsection IV-B.

In the baseline experiment without tactile feedback, the
SEARCH, TOUCH, ALIGN, and YAW phases are omitted.
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Fig. 13: Verification results for the depth model. (a) shows
the distribution of residuals for each surface normal com-
ponent on the test set. Residuals for n, and n, are almost
symmetrically distributed around zero. The n, residuals are
more skewed due to the dominance of background regions
with nearly vertical normals. (b) compares predicted and
actual slope ratios n;/n, and n,/n., which are used to
reconstruct the depth surface. The model performs well for
smaller slopes, but tends to underestimate steeper slopes.

Instead, the FSM transitions directly from takeoff to a prede-

fined perch position before closing the gripper. To ensure the

fingers do not collide with the bar, the drone first moves to

a setpoint below the branch and then ascends to the correct ~ Fig. 14: Validation results for three representative cases:

perch position. (a) Background, (b) Horizontal Bar Deformation, and (c)
In the second variant, which uses tactile feedback but Vertical Bar Deformation. Each row shows the raw RGB

assumes correct initial alignment, the drone executes a  image (left), the predicted contact mask (middle), and the

search pattern and performs local position adjustments based ~ computed depth map (right).

on touch detection but skips the yaw correction logic. In this

case, the ALIGN and YAW states are disabled. Once contact is



[ /&

= 75 1
(V]
S i
° 50
o)
S 25-
e)
L o4 e Inliers
E e Outliers
E —25 1 -—- Ideal

7 —— RANSAC

-504 7 .
-50 0 50 100

Expected Angle [deg]

Fig. 15: Base sensor angle estimation results. A RANSAC
algorithm is used to identify inliers and outliers, and a
trendline with equation y = 0.87z + 1.49 is fitted to the
inliers. The model exhibits a small positive bias and a
tendency to underestimate angles.

e~ Y VAL TGN m

|

Fig. 16: Drone Perching Experimental Setup to simulate a
branch or bar suspended in midair.

secured and the pressing phase completes, the FSM proceeds
directly to PERCH.

In the final variant, which utilizes tactile feedback to cor-
rect misalignments, the drone is provided with the correct
position of the branch and therefore skips the SEARCH and
TOUCH states. It performs yaw corrections based on tactile
feedback during the ALIGN and YAW states before proceed-
ing to PERCH. As in the baseline experiment, the drone first
moves to a setpoint below the bar before ascending.

As outlined in subsection IV-B, three experiments are
performed. Fifteen runs of the experiment without tactile
sensing are conducted to evaluate gripper stability and reach.
The results are shown in Figure 17. The data indicates that
the gripper is robust to position errors, successfully perching
at offsets up to 0.12m from the branch. The theoretical limit
is estimated as the distance from the top of the base sensor
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Fig. 17: Successful perching offsets in the XZ plane for
15 runs without tactile feedback. Each point represents the
location where the drone attempted to perch relative to the
branch. The results demonstrate the gripper’s robustness to
positional errors. The dashed boundary indicates the esti-
mated theoretical limit defined by the reach from the top of
the base sensor to the top of the second phalange.

to the top of the second phalange, beyond which the first
phalange can no longer hook onto the bar and pull it into
place. This distance is measured to be 0.14 m.

The second experiment is performed with the correct
initial alignment but an incorrect position. Figure 18 shows
the logs of two representative runs. These runs differ slightly:
in Flight 1, the drone initially moves in the negative z-
direction, while in Flight 2 it moves in the positive z-
direction. As a result, Flight 1 detects (simulated) contact on
the left sensor and adjusts leftward, whereas Flight 2 detects
contact on the right sensor and adjusts rightward. In both
cases, the drone uses the known positions of the fingertip
sensors relative to the base sensor to correct its position and
successfully perch.

The setpoint boundaries are shown, indicating the z-
positions of the provided position setpoints. The z-position
is increased in small increments until contact occurs. It is
observed that the given x-direction setpoints are generally
overshot by the drone. The setpoint boundaries are also used
to illustrate the drone’s reach and to define the zone in
which the branch must be located for successful detection
and perching.

The third experiment is conducted with the correct position
setpoint but incorrect initial alignment. Figure 19 shows logs
from three flights that performed orientation correction. The
plots are time-shifted such that the transition to the yaw
correction phase occurs at ¢t = 0.

In all flights, an initial disturbance is observed due to the
weight imbalance caused by the open-finger configuration.
After stabilizing, the drone performs micro-adjustments be-
neath the bar. It then ascends and presses against the bar, and
once the simulated required yaw angle is received, it corrects
its orientation and completes the perch.
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Fig. 19: Flight logs demonstrating orientation correction
aligned such that the yaw correction occurs at ¢ = 0. Each
flight begins with an initial disturbance due to weight imbal-
ance, followed by small adjustments beneath the branch. The
drone then presses into the branch and corrects its orientation
to align with it.

VI. CONCLUSION

This paper presents a grasping drone equipped with
an underactuated gripper and high-resolution optical tactile
sensors. A control strategy combining position and tactile
feedback is developed to enable robust perching on cylin-
drical structures. Due to the rigidity of the DIGIT sensor’s
elastomer surface, simulated tactile data is used to evaluate
the control system.

Two inference models are trained to process tactile images:
a contact model for binary contact detection and a depth
model for estimating surface normals. After outlier filtering,
the depth model achieves a mean absolute error of 5.32° in
angle estimation. Experimental results show that the gripper
can successfully perch without tactile feedback despite small
position errors. In the case of the designed drone, this
tolerance extends up to 12cm. However, in this case, the
initial orientation needs to be correct. With tactile sensing, by
contrast, the system can start anywhere within its horizontal
reach and still eventually locate the branch, correcting both
position and orientation errors. These findings demonstrate
how tactile sensing enhances the drone’s perching capabili-
ties.

Overall, the results show that tactile sensing enables
reliable aerial perching in uncertain conditions and lays
the foundation for future improvements. Key directions for
further development include modifying the sensor’s hardware
to be more compliant, or integrating other softer tactile sen-
sors, integrating onboard visual sensing to eliminate reliance
on motion capture, developing more advanced perception
models with higher processing rates, adapting the gripper
to a wider range of geometries, and validating the system in
realistic outdoor environments.
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APPENDIX I
LIMITATIONS OF THE DIGIT SENSOR

This appendix outlines the key limitations encountered
when using the DIGIT sensor in the context of aerial
perching experiments. Although the sensor provides high-
resolution tactile data under ideal conditions, several chal-
lenges arose during practical integration with the drone
platform. Two main limitations are discussed in this ap-
pendix: the lack of deformation of the contact surface under
loads commonly experienced during flight, and the dimming
experienced by the sensor cameras under certain conditions.

A. Contact Surface Rigidity

Throughout all experiments, the tactile sensors consis-
tently failed to report any positive contact readings. Upon
reviewing recorded flight data using logs, it is found that the
sensor images showed almost no visible deformation. This
held true even when the drone applied maximum available
thrust, pressed directly against a branch (which has more
texture and should be easier to detect), and is perfectly
aligned at the center. As shown in Figure 20, the deformation
remained minimal.

To validate this observation, a static experiment is con-
ducted where the drone is placed on a scale, and the force
required to produce detectable deformation on the base
sensor is measured. It is found that approximately 30N of
force is needed when pressing with a metal bar and 20N
when pressing with a wooden branch. Given that the drone
weighs about 1.2 kg and requires 60% of its thrust to hover,
it has only about 10N of thrust available for pressing.

These results confirmed that the contact forces encoun-
tered during flight are insufficient to meaningfully deform
the DIGIT sensor’s elastomer surface. As a result, all exper-
iments in this thesis are performed using simulated tactile
data.
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Fig. 20: The maximum deformation observed during flight
(left) despite full thrust (right) and ideal alignment

B. Camera Dimming

Another issue observed during experiments is the sudden
dimming of the sensor camera under consistent lighting
conditions, particularly after large deformations. As shown
in Figure 21, images taken before and after deformation in
a completely dark laboratory setting differ significantly in

brightness, with the post-deformation image appearing much
dimmer.

This dimming often led to false positives in the model, as
most background images used during training are captured
before deformation under normal lighting. Additionally, the
dimming is non-uniform across the image, making it dif-
ficult to normalize or correct using standard preprocessing
techniques.

The issue is more likely to occur after deformations
involving reflective surfaces, such as metal bars, than more
textured, diffuse surfaces like branches. It is also sometimes
triggered if the sensors are initialized while the gripper
fingers are closed, leading to reflections. As a mitigation
strategy, the gripper is now kept open during sensor initial-
ization to reduce the likelihood of this effect.

Simulating dimming in training data could potentially im-
prove robustness, but due to the inconsistent magnitude and
pattern of the effect, and the model’s reliance on brightness
as a key contact indicator, this approach has not yet been
implemented. One possible explanation for the dimming is
an automatic exposure adjustment by the sensor camera,
although further investigation is required to confirm this.

Initial Background Background after Dimming Difference Heatmap

Fig. 21: (Left) Initial background before deformation; (Mid-
dle) dimmed background after deformation; (Right) pixel-
wise brightness difference between the two.
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Abstract— Tactile sensing and perching mechanisms have
gained increasing attention in the development of aerial
robotics, aiming to enhance versatility, robustness, and energy
efficiency. This literature study explores the integration of
tactile sensors, particularly high resolution optical sensors, to
improve grasping and perching capabilities in drones. The
study investigates state-of-the-art tactile sensing technologies,
their benefits and drawbacks, and their proven applications in
ground-based robotics. It further reviews innovative gripper
designs as well as unique drone-mounted perching strategies
that offer lightweight, efficient solutions for autonomous op-
eration. By analyzing advancements and limitations in both
tactile sensing and drone perching technologies, this work iden-
tifies significant opportunities for improving drone autonomy
and stability, bridging the gap between aerial and ground-
based robotic systems. Applications range from energy-saving
perching for environmental monitoring to precision agriculture,
marking a step toward more capable and adaptive aerial
systems.

I. INTRODUCTION

In the rapidly evolving field of drone technology, ver-
satile machines increasingly serve critical roles in domains
such as precision agriculture, environmental monitoring, and
infrastructure inspection [1, 2]. Traditional drones excel in
passive tasks like surveying and image capture, but recent
advancements emphasize developing drones capable of active
physical interactions with their surroundings. This progres-
sion drives the development of aerial manipulators—drones
equipped with robotic appendages that perform complex
tasks, including grasping objects, manipulating tools, and
perching on surfaces [3]. Aerial manipulators provide the
benefit of a larger workspace compared to ground-based
robots; however, their operation requires significantly more
complex control systems. Maintaining stability poses a crit-
ical challenge because forces and moments cannot transfer
to the ground, which necessitates advanced mechanisms to
achieve precision and reliability.

Among the many -capabilities of aerial manipulators,
perching attracts considerable attention. This ability enables
drones to attach to the environment, conserving energy and
enhancing task stability during operations such as long-term
monitoring or inspection [4]. Achieving robust perching,
however, involves several challenges, including regulating
contact forces, correcting orientation, and maintaining inter-
action precision. These challenges emphasize the importance
of advanced sensing technologies to supplement conventional
vision-based methods, particularly in low-visibility environ-
ments.

Tactile feedback emerges as a promising modality in
robotics for enhancing interaction precision. By mimicking
the human sense of touch, tactile sensors deliver detailed

information about physical interactions, including force, tex-
ture, and stiffness [5]. In aerial manipulators, tactile feed-
back provides notable advantages, such as detecting and
adjusting to object slippage, determining object orientation,
and guiding grasp configurations through tactile servoing.
This capability allows drones to perform precise, real-time
adjustments based on environmental feedback, improving
their effectiveness in object manipulation and compliant
grasping tasks.

Tactile feedback, though widely successful in ground-
based and industrial robotics, remains underexplored in aerial
robotics. Research has shown the potential of force sensors
in aerial manipulators for tasks such as contour follow-
ing and force regulation [6, 7]. However, understanding
the full range of applications for tactile feedback, particu-
larly in autonomous perching scenarios, remains incomplete.
Challenges like occlusion caused by grippers or low-light
conditions, which frequently hinder vision-based systems,
can be effectively mitigated through tactile sensing [8].
During manipulation, vision-based systems often suffer from
inherent occlusions that tactile sensors can naturally over-
come, highlighting the complementary nature of these two
modalities.

This literature study examines the integration of the ad-
vanced tactile sensor DIGIT into a perching drone currently
equipped with binary capacitive sensors. The study begins
with an overview of the research background in section II,
followed by a discussion on the current state of the art in
section III. A detailed analysis of the DIGIT sensor and its
capabilities appears in section I'V. Finally, the challenges and
opportunities associated with the project are addressed in
section V, and the study concludes in section VI.

II. BACKGROUND

This report builds on a previous iteration of a grasping
drone design [9]. The earlier design featured a quadcopter
equipped with a three-fingered grasping mechanism. Each
finger was underactuated to ensure inherent compliance,
controlled by three servos per finger, and designed with
three degrees of freedom—mimicking the structure of a
human finger. Tactile feedback was provided by Adafruit
MPR121 capacitance sensors embedded in the phalanges,
functioning as binary touch detectors. However, these sensors
were limited to detecting contact with conductive materials
[10]. A render of the drone design appears in Figure 1.

The grasping mechanism undergoes testing using a metal
rod as the perching target. The drone follows a predefined
elliptical or zigzag search trajectory to locate the rod. Upon
making contact, it aligns itself such that the base of the



Fig. 1. A CAD render of the Original Perching Drone Design in both an
closed (top) and open (bottom) configuration [9]

drone is in line with the rod, it acheives that by using
the touch event to calculate the corresponding offset which
allows for the computation of the goal position for the drone.
Equation 1 shows the computation of £, When Zigychn 1S
the position of the drone at the touch event and s fs¢; is the
adjustment based based upon the touch vector 7 (an array of
binary variables for the touch state of each pad). Figure 2
further demonstrate the conversion from 7 to Zffse¢ from
the center. Once the drone is aligned, it executes a grasping
maneuver, and then verifies it by checking whether the
bottom pads on all three fingers register contact. If the
attempt fails, the drone realigns itself with the rod and
retries the grasp. Once a stable grasp is achieved, the drone
shuts down its motors, allowing it to perch passively without
consuming additional power. Images illustrating all the drone
states appear in Figure 3.

igoal = Ztouch + i'offset where :i'offset = ]:(7-) (1)

To validate the drone’s perching capabilities, multiple
trials were conducted, with the drone employing either a
zigzag pattern or an elliptical pattern to search for the
target rod. Figure 4 presents the results of these trials.
The zigzag pattern consistently demonstrates shorter average
flight times and requires fewer attempts to perch successfully.
Additionally, it results in fewer failed attempts, leading to
the conclusion that the zigzag pattern is more efficient than
the elliptical pattern for the given configuration and perching
application. Figure 5 highlights the drone’s ability to handle
offsets and achieve a position relatively close to the target
object when transitioning from an open state to a closed state
after a touch event. Additionally, Figure 6 demonstrates a
significant improvement in perching performance with the
incorporation of tactile sensing. The experiment employs
three y-offsets (0, 0.05, and 0.14), conducting five trials for
both open-loop and closed-loop implementations. This setup
results in a total of 15 trials per controller [9].

1 : .
: 6 ) 7
y2 : b 3 )

Fig. 2. The gripper configuration and the location of each sensor pad which
maps F for all 9 sensor pads by taking the distances from the center

Evaluate

Fig. 3. The different Perching Drone States used in Jadoenathmisier et al.
[9], the drone searches in a particular pattern until a touch event occurs,
upon which a grasp is attempted and evaluated, if evaluation is successful
drone starts perching otherwise it will move and realign before attempting
another grasp and evaluating it

Despite its functional design, the system exhibits signif-
icant limitations. The capacitance sensors fail to provide
information about the target’s orientation, requiring the ori-
entation to be predetermined before initiating the perching
sequence. This reliance on precise pre-alignment limits the
drone’s flexibility and adaptability in dynamic environments.

To address these limitations, this report proposes integrat-
ing DIGIT sensors, a higher-resolution optical tactile sensing
system [11]. These sensors capture detailed information
about force distribution and contact deformation, enabling
the drone to estimate both the position and orientation of the
target object. This enhancement allows the drone to perform
autonomous perching maneuvers, regardless of its initial
orientation, greatly improving its versatility and effectiveness
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Fig. 4. Distribution plots comparing the perching performance using an
elliptical path and a zigzag path. Each trajectory is assessed through 10 trials
with distribution of the number of attempts before achieving a successful
perch (left) and the distribution of the time taken to successfully perch
(right) [9]
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Fig. 5. The response following a touch event is shown, the drone transitions
to an “open” state upon detecting a touch event, and to a ”closed” state when
attempting a grasp, which can be seen to consistently converge toward the
bar [9]

in real-world applications. The DIGIT sensor appears in
Figure 7.

III. STATE OF THE ART
A. Aerial Manipulators

Aerial manipulators represent a rapidly advancing field
within robotics, combining the mobility of drones with
the functional complexity of robotic manipulators. These
systems suit tasks that require both precision and reach in
environments inaccessible to ground-based robots or humans.
Examples include Figure 8, which shows contact-based in-
frastructure inspection, Figure 9, which depicts the MHYRO
drone performing object retrieval in hazardous areas, and
Figure 10, which illustrates agricultural operations such as
fruit picking or pruning.

The defining feature of aerial manipulators is their ability
to actively interact with the environment, which requires a
combination of lightweight manipulator designs and control
systems. Early designs were simple, relying on rigid grippers
for pick-and-place tasks [14]. However, the field has since
evolved to include underactuated manipulators, which use
fewer actuators than degrees of freedom to balance simplicity
and adaptability. Advanced systems now incorporate fully ac-
tuated arms and compliant mechanisms that ensure precision
in grasping while maintaining safety during interactions with
delicate objects [15].
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Fig. 6. The perching performance with (right) and without (left) tactile

feedback is shown, the evaluation focuses on lateral (y) uncertainty in the
perching object’s position [9]

Fig. 7. The DIGIT sensor to be used in the new drone design, it will
replace the existing capacitive tactile sensors [12]

The integration of compliant grippers, inspired by biolog-
ical systems such as elephant trunks and octopus tentacles,
marks a significant milestone in aerial manipulation. These
grippers use flexible materials or torsional springs to adapt
to object shapes, enabling the safe handling of irregular or
fragile items. Recent designs have also incorporated tunable
stiffness, allowing aerial manipulators to switch between
rigid and compliant behaviors as needed [15, 16].

Aerial manipulators face unique challenges related to flight
dynamics, particularly in ensuring stability during manipula-
tion. Unlike ground-based robots, they cannot rely on fixed
supports to counteract forces and torques generated by the
manipulator’s movement, interactions with the environment,
and aerodynamic effects. To address this, control algorithms
must integrate the dynamics of both the drone and the ma-
nipulator, enabling precise control over position, orientation,
and force application while maintaining stable flight [17].

Aerial manipulators encounter challenges due to the trade-
off between payload capacity and manipulator functionality.
This issue remains critical, as adding sensors or actuators
increases weight and energy consumption. Environmental
factors, such as wind or uneven surfaces, further introduce
variability that complicates precise manipulation. These chal-
lenges emphasize the need for lightweight materials, energy-
efficient actuators, and robust sensory systems to ensure
reliable operation across diverse scenarios [15].



Fig. 8. A Contact-based Inspection Drone demonstrating a use case for
aerial manipulators, uses a fully actuated tilt-rotor system [6]
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Fig. 9. Modular HYbrid RObot (MHYRO) Drone demonstrates another
use case of aerial manipulators, reaching inaccessible locations, in this case
either between a rack of pipes or on a singular pipe, depending on the
landing gear attachment [13]

B. Perching Drones

Perching drones have emerged as a specialized area of
aerial robotics, driven by the need for energy-efficient and
stable operations in challenging environments. Unlike con-
ventional drones, which must remain airborne while per-
forming tasks, perching drones can attach to the environ-
ment, allowing for prolonged operations with reduced energy
consumption. This capability proves particularly valuable for
applications such as environmental monitoring, infrastructure
inspection, and surveillance [8, 18, 19].

Perching drones integrate interaction capabilities through
the use of grasping, attaching, or embedding technologies.
Figure 11 shows the three methods.

Grasping is one of the primary methods of perching and
draws inspiration from birds. It encompasses a wide range
of designs, including grippers and robotic arms. To further
enhance versatility, grasping technologies often employ re-
configurable frames with prismatic joints for linear extension
and revolute joints for rotational adjustments [4].

For tasks that require temporary stabilization or secure
interaction with surfaces, attaching technologies suit better.
These can include magnets for attaching to ferromagnetic
surfaces such as pipelines or steel infrastructure. Dry ad-
hesives, inspired by the microscopic hairs on gecko feet,
provide strong, reusable adhesion on smooth surfaces [20,
21]. Electrostatic adhesives generate electrostatic forces to
adhere to surfaces without requiring specialized materials.

Fig. 10. A precision Agriculture Drone shows yet another use case for
aerial manipulators, fruit harvesting [13]

Graspin Attaching

Perching mechanism Perching mechanism Perching mechanism

B Terrain 0 Terrain 0 Terrain
D E F
I
Grasping Embedding Attaching
Fig. 11. The three main types of perching mechanisms, grasping,

embedding and attaching - all inspired by biological mechanisms exhibited
by birds, insects and lizards respectively [4]

Vacuum cups create a secure grip in environments where
suction works, such as on flat or slightly curved surfaces.
These technologies enable aerial manipulators to perch on
vertical surfaces, cling to ceilings, or stabilize themselves
during interaction [4].

Embedding technologies draw inspiration from nature,
particularly insects, to achieve reliable attachment to irregu-
lar or textured surfaces. Insect-inspired spines, for instance,
mimic the ability of insects to anchor themselves to rough or
porous materials [22]. These technologies extend the range of
environments in which aerial manipulators operate, making
them highly effective in natural settings such as tree trunks
or rock faces [4].

Perching mechanisms in drones can also categorize into
passive and active systems. Passive mechanisms latch onto
surfaces without requiring continuous actuation. These mech-
anisms include compliant gripper mechanisms, dry adhe-
sives, and embedding technologies. Such designs remain
lightweight and energy-efficient but may struggle with pre-



cision or adaptability to various surface types [8, 23]. Active
mechanisms aim to achieve precise control during perching
by utilizing energy throughout the perching process. They
use technologies like actuated grippers and suit irregular sur-
faces better but introduce additional weight and complexity
while also increasing power consumption [18, 19].

Since grasping serves as the primary method for perching
mechanisms, and the previously developed drone also uses
this approach, this report will give special attention to a few
drones with similar designs. The report will then discuss
unique designs that do not fall into the categories of grasping,
embedding, or attaching.

1) Underactuated Compliant Gripper: The first example
is the work done by the GRAB Lab at Yale through its
OpenHand Project on gripper design. The final product
features four fingers with eight degrees of freedom, which
can be either underactuated or fully actuated, depending on
the choice of fingers. When configured with four under-
actuated fingers, the design incorporates compliant flexure
joints driven by a single actuator through a pulley differential
mechanism. Figure 12 shows the final design [24, 25].

Although initially designed for ground-based robots, the
gripper was later applied in a variety of contexts, including
being mounted to the bottom of a helicopter and used
to grasp cylindrical, circular, and planar objects, as the
image in Figure 13 shows. Despite lacking tactile feedback,
the gripper utilized its soft fingerpads and underactuated,
compliant design to successfully carry objects weighing up
to approximately 1.5 kg. The gripper design is modular,
with most of its structure made of PLA material and rubber,
making it highly cost-effective.

Researchers conducted further investigation on the design
optimization of the prismatic-revolute-revolute (PRR) joint
system used in the helicopter-mounted gripper. The findings
suggested that the link lengths should decrease sequentially,
with the first link being the largest and the fingertip link being
the smallest. Additionally, they concluded that underactuated
systems with one motor per finger suffice for the application.
While a fully actuated system enhances the grasping capabil-
ities, it also converts the gripper from a passive to an active
grasping system, thus reducing efficiency [26-28].

2) Avian-Inspired Grippers: The second example features
a perching drone with grippers mounted to its underside. This
avian-inspired design incorporates two compliant, underac-
tuated claws and two folding legs. The folding legs play a
key role in the mechanism, as they use the drone’s weight
to generate tendon tension, enabling it to perch passively
on branches and other cylindrical objects. The design and
its influence appear in Figure 14. The perching mechanism
remains extremely lightweight, which is essential for its
ability to perch passively. The mechanism itself weighs only
478 grams, while the attached drone weighs 388 grams.
Notably, this design does not incorporate tactile sensing or
soft fingerpads. Instead, each individual toe cuts from a
sheet of polyurethane using a waterjet, with notches added
to create flexible joints. Hollow tubing on the underside of
each toe segment allows for tendon routing [29].

Fig. 12. The Yale OpenHand Gripper mounted to a ground-based robotic
arm, it uses underactuated phalanges and soft fingerpads and is modular but
does not utilize tactile sensing [24]

Fig. 13.
a wide range of objects [24]

Yale Gripper mounted below a helicopter and used for grasping

3) Anchor-based Perching: An example of a unique ac-
tive perching mechanism is the SpiderMAV drone, which
draws inspiration from the web construction and locomotion
capabilities of arachnids. It shoots threaded anchors from
launchers using high-pressure gas actuators, allowing the
anchor to reach fixed structures from a distance and attach
to targeted positions. It can also launch multiple anchors at
once, enabling the drone to perch or create an extremely
stable mode for tasks requiring a high degree of precision
[19]. An image depicting the SpiderMAV drone appears in
Figure 15.

4) Tendril-based Grasping: Another interesting drone de-
sign for grasping appears in the work by Guo et al. It draws
inspiration from tendril plants and consists of two types of U-
shaped soft eccentric circular tube actuators, one for delicate
grasping and the other for strong grasping. The tubes are
filled with a liquid that has a low boiling point; when a volt-
age passes through a wire, it heats the liquid sufficiently for it
to transition into a gas. The resulting pressure increase causes
the tubes to curl up and grasp any object within reach. This
design allows for adaptable, powerful manipulation without
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Fig. 14. An avian inspired perching mechanism which uses feet that are
solely actuated by the drone’s own weight [29]

Fig. 15. The SpiderMAV drone which shoots threaded anchors into fixed
structures, allowing it to perch[19]

requiring complex grasping planning. However, the tradeoff
is low positioning accuracy [23]. Figure 16 demonstrates
how the mechanism works. Although the design has only
been used for grasping, a sufficiently strong actuator and
lightweight drone could enable it to be used for perching.

5) Challenges of Integrating Tactile Sensing: Sensing
systems play a critical role in the further development of
perching drones. Traditional perching drones rely on cam-
eras or LiDAR for target detection and alignment, which,
while effective in controlled environments, face challenges
like occlusion, glare, or poor lighting [8]. This research
explores the integration of tactile sensors to enhance perching
precision. Tactile sensing provides real-time data on contact
forces, enabling drones to adjust their grip or alignment
autonomously. This approach addresses the limitations of
vision systems, making it ideal for tasks in low-visibility
conditions [11].

Despite significant progress, developers still face several
challenges in the development of perching drones. Achiev-
ing a balance between lightweight design and robust func-
tionality remains a persistent issue, as adding sensors or
actuators increases the payload. Moreover, engineers must
design grippers that can securely attach to a wide range
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Fig. 16. A Tendril actuation mechanism which utilizes the temperature
and pressure increase caused by a voltage change to grasp objects [23]

of surfaces, including smooth or moving targets, which
presents a technical hurdle. Real-time data processing and the
integration of vision and tactile feedback require advanced
algorithms and control systems [8, 23].

6) Applications: The potential applications of perching
drones are numerous. For instance, agricultural tasks like
fruit harvesting or pruning would benefit from drones that
perch on trees for stable operations. Similarly, drones de-
signed for long-term environmental monitoring can conserve
energy by perching between data collection intervals [18,
19].

C. Tactile Sensing

Tactile sensing represents a cornerstone of robotic inno-
vation, allowing systems to perceive and interpret physi-
cal interactions with their environment. Unlike vision-based
sensors, tactile sensors directly measure contact dynamics
such as force distribution, texture, and deformation, enabling
robots to adapt to tasks that require precision, compliance,
or sensitivity to delicate objects. Historically, tactile sensing
has played a central role in advancements in robotic manip-
ulation, particularly in industrial and ground-based robotics.
For example, the Gifu Hand 2, a robotic hand containing
servomotors for each joint, features a six-axis force sensor at
each fingertip, complemented by a distributed tactile sensor
design over the rest of the surface [30]. It is shown in
Figure 17. However, integrating tactile sensors into aerial
systems remains an emerging field with substantial potential
for enhancing performance in unstructured environments [5,
10]. This section provides a detailed breakdown of all major
tactile sensing technologies and their properties, including
resistive sensors, capacitive sensors, piezoelectric sensors,
and optical sensors. The section also concludes by briefly
addressing some other novel technologies.

1) Resistive Sensors: Tactile sensing technologies lever-
age various mechanisms, with resistive sensors being one of
the most fundamental. A resistive sensor can employ con-
figurations such as MEMS strain gauges and piezoresistors
to measure force along specific axes with high sensitivity.
These setups integrate seamlessly with other MEMS and
electronics, offering compact and versatile solutions. Their
working principle is quite simple, as the force is directly
coupled to the strain measured in the gauges and can be
computed with Equation 2 where k is the stiffness of the



Fig. 17.

The Gifu Hand 2, an early demonstration of the benefit of
tactile sensing in robotics, it utilizes six-axis fingerprint sensors while also
containing a distributed tactile sensing system over the rest of its surface
[30]

gauge and e the strain measured. Figure 18 shows an example
of such a sensor configuration. Despite their advantages,
these sensors face several drawbacks, including fragility, high
manufacturing costs, and limited flexibility or stretchability.
Additionally, while the sensor itself may be small, the overall
package often becomes bulky. To address these limitations,
embedding the sensor in an elastomer has proven benefi-
cial. The elastomeric layer mimics human skin, enhancing
grasping quality and providing some degree of flexibility.
However, this approach reduces sensitivity and introduces
challenges such as creep over time [31-33].

F = ke )

Applied force

tactile bump

strain gauge

Fig. 18. Strain gauge and Piezoresistor Sensor Setup, any force applied to
the tactile bump will result in deformation of the diagraphm and thus the
strain gauges which can then be measured [31]

Another variation of resistive tactile sensors involves two
layers of conductive polymer films separated by a highly
porous and much less-conductive layer, such as foam. The
working principle of this sensor is significantly more com-
plicated, it is mainly related to the resistance of the interface
between the electrodes and the film. Figure 19 shows that

the roughness of the film leads to minimal contact area with
the electrodes under zero load, however when a force is ap-
plied, the contact area increases significantly, thus resistance
descreases. This relationship is highly nonlinear and needs to
be calibrated precisely, but if done properly an area function
A(F) = [0, 1] can be defined. Equation 3 can then be used
to express the electrical interface resistance Rg using the
surface resistance of the sensor material Rgp. Equation 4
shows the total resistance which is just the summation of
the Rg of the two electrodes and Ry the volume resistivity
of the sensor material [34].

1
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Fig. 19.
applied, the higher the contact area gets, reducing the resistance of the
electrode interface [34]

Working Principle of a resistive sensor, the more pressure is

These sensors are cost-effective, robust, chemically
resistant, and mechanically flexible, making them suitable
for large-area applications. Nevertheless, they are not
very stretchable, have low sensitivity, and are restricted
to pressure sensing or imaging due to omnidirectional
conductivity. Figure 20 shows an image of such a sensor.
Conductive elastomer composites present another option,
combining the flexibility of soft materials with improved
grasping quality. While stretchable and capable of being
tailored for specific measurement ranges, these composites
are more expensive and may suffer from hysteresis during
operation. Overall, these resistive sensors are relatively
simple, cost-effective, and flexible. However, they depend
heavily on proper calibration, particularly with respect to
variations in temperature and moisture. They are prone
to performance degradation over time and often exhibit
non-linear responses [10, 31, 35-37].

One promising direction of research for resistive sensors
involves modifying them to simultaneously detect both pres-
sure and temperature. This can be achieved by constructing
multimodal sensors through the stacking and layering of
conductive rubber composites. Such a configuration enables
the sensor to be sensitive over a wide range of tempera-
tures and pressures while maintaining stretchability and low



manufacturing costs. However, further research is needed
to explore the limitations and potential drawbacks of this
approach, such as performance degradation, hysteresis, or
sensitivity to other environmental conditions [38].

(d) (e)

Fig. 20. A conductive polymer resistive sensor a) wrapped over a a dummy
face b) white and red spots show the points were pressure is applied c) the
corresponding results for the white spots d) the corresponding results for
the red spots e) shows the results for applying force at two spots [39]

2) Capacitive Sensors: The second type of sensor to be
discussed is capacitive sensors, which consist of two conduc-
tive plates separated by a compressible dielectric material.
When the gap between the plates changes under applied
forces, the capacitance varies. This working principle can be
explained using the capacitance formula shown in Equation 5
where ¢ is free space permittivity, ¢, is relative permittivity,
A is the surface area and dg is the undeformed distance
between the plates. Equation 6 shows how the formula is
adapted for a deformed sensor, since the distance between
the plates is no longer uniform, it needs to be integrated
over the entire area while taking into account the diaphragm
deflection w(x,y) over the surface [40]. The change in this
capacitance due to this deformation is usually quite small,

only amounting to a few femto farads, therefore a complex
signal conditioning electronic is needed for detection [34].
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Capacitive sensors can achieve relatively high sensitivity
depending on the compressibility of the dielectric material
and the sensor’s thickness. Unlike resistive sensors, ca-
pacitive sensors are temperature-independent, making them
advantageous for applications in varying environmental con-
ditions. They are versatile, suitable for both large-area appli-
cations (emulating skin) and small-scale setups (emulating
fingertips). Additionally, they benefit from well-established
manufacturing techniques and are more power-efficient com-
pared to resistive sensors [10, 31, 36, 37].

Capacitive sensors are capable of measuring shear forces
and thus forces in three dimensions by embedding multiple
capacitors within the sensor, as Figure 21 illustrates. When
embedded in an elastomer, capacitive sensors gain stretch-
ability and softness, enhancing their grasping capabilities.
However, this comes at the cost of reduced sensitivity, similar
to resistive sensors. Despite their benefits, capacitive sensors
have several drawbacks. They are highly susceptible to elec-
tromagnetic interference and, like resistive sensors, exhibit
nonlinear responses and hysteresis. Additionally, they suffer
from high data latency, making them less suitable for agile,
real-time applications. Poor repeatability in manufacturing
further complicates their implementation, requiring each
sensor to be individually calibrated. They also suffer from
parasitic capacitance introducing further noise and reducing
their sensitivity. The complex circuitry required for their
manufacture also lends itself to higher costs compared to
resistive sensors [10, 31, 36].

Capacitive sensors rank among the most widely utilized
tactile sensors in real-life applications, with touch screens
exemplifying their practicality [10, 41]. In robotics, these
sensors frequently appear in robotic hand designs, showcas-
ing their effectiveness in replicating human-like dexterity [9].

Advancing capacitive tactile sensors focuses significantly
on developing multi-modal systems. These systems inte-
grate capacitive sensors with complementary technologies
to address their individual limitations. For instance, incor-
porating triboelectric nanogenerators (TENG) into bimodal
tactile sensors helps mitigate electromagnetic interference, a
common drawback of capacitive sensors [42]. Despite these
benefits, multi-modal systems face challenges such as high
power consumption, complex data fusion, and real-time data
transmission [43].

Enhancing the dielectric layer in capacitive sensors
represents another key research direction. Researchers
aim to replace traditional elastomer layers, which often
experience performance degradation, hysteresis, and limited
flexibility, with more robust materials. For example,
thin 3D fabric layers inspired by textile manufacturing



techniques have been proposed as a flexible, durable, and
scalable alternative. This approach addresses mechanical
limitations while simplifying the manufacturing process [44].
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Fig. 21. The working principle for capacitive sensors for 2D measurement
a) cross section of the sensor, an undeformed state yields equal capacitance
for both embedded sensors b) under normal load, the change for both sensors
are equal since both experience equal amounts of compression c) under shear
load, both sensors have completely different readings since one experiences
tension while the other experiences compression [45]

3) Piezoelectric Sensors: Piezoelectric sensors, the third
type, rely on the piezoelectric effect, whose working pricni-
ple is shown in Equation 7. In this equation, () represents
the charge generated by an applied force F, and d is the
charge sensitivity of the piezoelectric material, also known
as the piezoelectric constant. This effect occurs due to
the displacement of cations and anions or the alignment
of the permanent dipole moment within the material. The
piezoelectric constant quantifies the material’s ability to con-
vert mechanical loads into piezoelectric potential. Inorganic
materials like PZT, ZnO, CdS, AIN, and GaN generally ex-
hibit a high piezoelectric constant, making them sensitive to
applied loads. However, their high Young’s modulus restricts
their use in soft tactile sensors. PVDEF, in contrast, offers
intrinsic flexibility but has a lower piezoelectric constant.
Researchers have combined inorganic piezoelectric materials
with polymer matrices to balance dielectric and mechanical
properties [46]. Currently, PVDF-based sensors are the most
popular choice due to their lightweight, robustness, and
chemical inertness, which make them suitable for various
applications. Embedding these sensors in elastomers further
enhances their adaptability for specific use cases. Figure 22
presents an exploded view of a simple piezoelectric sensor
[31, 36, 37, 47].

Q=dF @)

Piezoelectric sensors offer the significant advantage of not
requiring a continuous power supply, making them energy-
efficient and reliable. They also provide high sensitivity
and strong output signals, which are particularly beneficial
for applications such as spiking neural networks (SNN).
Compared to capacitive sensors, piezoelectric sensors are less
complex and more cost-effective, though they remain more
expensive than resistive alternatives. Additionally, their lower

latency enhances their suitability for real-time applications
[31, 36, 47].

Despite their advantages, piezoelectric sensors are lim-
ited to dynamic applications, as they only detect transient
changes in force. While they exhibit high sensitivity within
a specific frequency range, their performance diminishes at
low frequencies, making them unsuitable for static force
measurements. These sensors also require relatively complex
signal conditioning circuitry, such as a charge amplifier,
which increases their overall cost. Additionally, like resistive
sensors, piezoelectric sensors are sensitive to temperature
variations, which can compromise their accuracy [10, 31,
36].

Silicon rubber

PVDF

Conductive
polymer

PCB electrode
matrix

Fig. 22.  Exploded view of a basic Piezoelectric sensing array with
electrodes on the bottom layer, piezoelectric material in the middle and
rubber on the top [48]

4) Optical Sensors: The fourth and final type of sensor
discussed extensively is optical sensors, which operate based
on the principles of light interaction, such as refraction,
reflection, and intensity modulation, in response to exter-
nal forces. They may use a number of properties of light
including but not limited to phase, the propagation path, re-
flection, wavelength, polarization, color, and intensity. They
are usually divided into index and camera-based sensors.
Index-based sensors uses the properties of such as optical
reflection or propagation for tactile sensing. Camera-based
sensors monitors the changes in light intensity or the color
of the device when interacting with the applied force via a
charge coupled device (CCD) or complementary metal oxide
semiconductor (CMOS) camera [46].

One common index-based sensor involves polymer optical
fibers (POFs), where applied pressure causes light from the
LED to scatter. The intensity of the scattered light changes
proportionally to the applied pressure, enabling single-axis
measurements, as illustrated in Figure 23. For greater sen-
sitivity to shear forces, some sensors adopt a nodular fin-
gerprint design, incorporating a dome structure that uses
total internal reflection to direct light into the optofibers.
This setup, shown in Figure 24, supports three-axis force
measurements. The last index-based sensor system discussed
uses Fiber Bragg Grating (FBG) Technology. When a load
is applied, the material’s refractive properties change due



to photoelasticity. By knowing the photoelastic coefficient
P, of the material, one can use Equation 8 to calculate
the strain e and, consequently, the force applied along a
specific axis. To perform this calculation, it is necessary
to first measure \p, the wavelength under zero load, and
then measure the wavelength shift A\p during the load. If
temperature variations AT occur, the calculation must also
account for the material’s thermal expansion coefficient o
and thermo-optical coefficient £ [10, 49-51].

— = (a+ AT+ (1 + P.)e ®)

Photo-

LED detector
~ 4
Fig. 23.  Polymer Optical Fiber (POF) tactile sensor utilizing its working

principle of total internal reflection, when a force is applied it "frustrates”
the process and therefore the intensity of light the detector decreases[52]

Acrylic dome Opto-fiber
Sensing Fiber scope
elements =

o

~ unit:mm

Fig. 24. 3D Optical tactile sensor configuration (left), any deformation of
the sensing elements causes changes in light propogation to the opto-fibers.
The sensors used as fingertips (right) for grasping and manipulating a light
paper box [53]

Other prominent configuration includes camera-based sys-
tems like the TacTip line of sensors. These use an LED ring
and high-resolution cameras aligned to directly capture de-
formation details at the sensing tip. TacTip sensors are mod-
ular, offering various designs, such as nodular fingerprints
or flat tips, to suit specific applications, as demonstrated in
Figure 25 [54].

The primary advantages of optical sensors include their
exceptionally high spatial resolution, as individual camera
pixels deliver distinct and detailed information. This allows
sub-millimeter precision and enables the detection of fine
surface features such as texture and roughness. Properly
configured optical sensors can consistently detect slippage,
making them indispensable for precision grasping tasks.
Additionally, their latency can be low, depending on the
computational delay, which supports real-time applications.
These sensors are immune to electromagnetic interference

Camera 40mm
circuitboard
Bayonet
Base and mount
camera mount
85mm Nodular
LeD ring— &> skin
Lens —t: - > . .
- - Tip
3D-printed
skin Flat
skin
Fig. 25. Exploded View of the improved TacTip Sensor (left), the base

houses a webcam which is illuminated by an led ring. The modular tips with
3D-printed rubber skin (right) can have several configurations including a
nodular fingerprint (above) and flat tip (below) [55]

and remain temperature-insensitive, ensuring reliable oper-
ation across diverse environments and compatibility with
various electronics [10, 31, 54].

Despite these advantages, optical sensors have notable
drawbacks. They are typically bulkier than other tactile
sensing technologies due to the inclusion of cameras, LEDs,
and associated hardware. They also consume significantly
more power, driven in part by the computational demands of
processing the extensive data streams captured by cameras.
Moreover, the elastomer layer used in some designs can
experience hysteresis, causing performance degradation
over time. Depending on the material, external lighting
conditions may also impact sensor performance [10, 55].

5) Miscellaneous Sensors: Several other types of tactile
sensors, while not discussed in detail, offer significant utility
depending on the application.

Magnetic sensors rely on changes in magnetic flux or
field intensity caused by external forces, generating voltage
through the Hall effect. These sensors provide excellent sen-
sitivity, low hysteresis, and good repeatability. However, they
face challenges such as complex manufacturing processes,
susceptibility to electromagnetic noise, and gradual loss of
magnetization over time [36, 50, 56].

Electrical impedance tomography (EIT) exploits vari-
ations in electrical impedance distribution on a deformable
object’s surface under force. The system uses two electrode
sets surrounding a conductive sensing area: one injects elec-
tric current, while the other measures the resulting potential
distribution, which changes based on the applied force [56,
57].

Acoustic sensing transmits ultrasonic signals toward the
contact surface, which reflect back to a receiver film. Surface
deformations alter wave propagation, enabling tactile map-
ping [56, 58]. A notable example is the BioTac sensor, which
combines tactile and vibration sensing. This sensor uses an
incompressible liquid as an acoustic conductor to transmit



vibrations from the contact surface to a wide-bandwidth
pressure transducer. However, this approach requires precise
signal conditioning to suppress noise and detect subtle vi-
brations [59].

Biomimetic vibrissal sensors, inspired by mammalian
whiskers, are lightweight and modular, making them suitable
for applications like real-time contour following on drones.
These whisker-based sensors use MEMS barometers across
three axes to estimate contact distances and surface orienta-
tions with high accuracy [60, 61].

Several tactile sensing systems combine multiple
techniques to address individual weaknesses. For
instance, the GTac sensor, inspired by the multilayered
mechanoreceptors in human hands, features extrinsic and
intrinsic sensing layers. The extrinsic layer integrates an
array of piezoresistive sensors, while the intrinsic layer
employs magnetic Hall sensors. This design enables the
detection of normal and shear forces with high spatial
resolution. Figure 26 shows an exploded view of its layout
[62]. Another biomimetic design merges EIT and acoustic
sensing. In this configuration, EIT sensors detect deep
pressures or deformations, while acoustic sensors capture
dynamic stimuli or vibrations, resulting in a versatile tactile
sensing system [63].
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Fig. 26. Exploded View of a GTac Sensor showcasing the multilayer struc-
ture and components, the GTac sensor combines the extrinsic piezoresistor
sensor with the intrinsic magnetic sensor [62]

6) Conclusion: Despite significant advancements, several
challenges persist in the development and deployment of
tactile sensors. These sensors often add weight and demand
substantial computational resources for real-time data pro-
cessing, which can strain aerial platforms with limited pay-
load capacity and onboard processing power. Environmen-
tal factors such as temperature fluctuations, humidity, and
surface contaminants further degrade sensor performance,
raising reliability concerns in outdoor applications.

Addressing these limitations requires further research
into tactile systems that are lightweight, highly sensitive,
and energy-efficient. These systems must also demonstrate
robustness against electromagnetic interference, temperature
variations, and moisture exposure. Additionally, achieving
minimal performance degradation over time and ensuring
high repeatability remain critical goals. While some sensors
meet a subset of these criteria, none currently fulfill all
of them simultaneously, necessitating trade-offs based on

specific application requirements [10, 36].

IV. DIGIT SENSOR

The DIGIT sensor, developed by Lambeta et al., provides
a compact, low-cost, and high-resolution solution for en-
hancing tactile perception in robotic applications. It departs
from traditional tactile systems, which typically rely on
resistive, capacitive, or piezoelectric sensing methods, by
employing optical sensing principles. This approach enables
the DIGIT sensor to capture high-resolution images of
contact deformations, offering detailed tactile information
such as normal and shear forces, contact geometry, and
texture feedback with exceptional precision. By integrating
the versatility, sensitivity, and spatial resolution of optical
sensors with the affordability and compactness of resistive
and capacitive technologies, the DIGIT sensor paves the
way for advancements in robotic manipulation, dynamic
interactions, and aerial robotics applications [11].

A. Design

The DIGIT sensor consists of a soft elastomer layer,
a camera, and an integrated multicolor LED illumination
system. The elastomer layer, constructed from deformable
and durable materials, acts as the contact surface, where
external forces induce visible deformations. Embedded LEDs
provide uniform illumination for these deformations, which
the onboard camera captures in real time as high-resolution
images. Figure 27 illustrates the sensor’s overall layout.
Optical images are processed to extract critical tactile in-
formation, including force distribution, contact points, and
surface patterns.

For different applications, the elastomer’s properties can
be tailored. A plain, reflective elastomer enhances deforma-
tion visibility, while versions embedded with markers support
optic flow methods for more detailed analysis. Alternatively,
a transparent elastomer is used when external visibility is
crucial. Figure 28 demonstrates how changes in elastomer
properties influence the sensor’s functionality [11].

Ellsth

Fig. 27. Exploded view of a DIGIT sensor. A) elastomer, B) acrylic
window, C) snap-fit holder, D) lighting PCB, E) plastic housing, F) camera
PCB, G) back housing [11]

The DIGIT sensor differentiates itself from other tac-
tile systems in several critical aspects. Unlike capacitive
and resistive sensors, which rely on electrical conductivity
and often face challenges with irregular surfaces or non-
conductive materials, the DIGIT sensor leverages optical



Fig. 28.

Effect of different types of elastomers on a DIGIT sensor, the
three different types chosen here (left to right) are reflective, reflective with
markers and transparent [11]

methods to ensure reliable performance across diverse ma-
terial types. Its sub-millimeter precision captures intricate
surface deformations, significantly surpassing the resolution
of conventional tactile sensors. Figure 29 provides examples
of the detailed information the DIGIT sensor can extract.

Additionally, its modular and lightweight design facilitates
straightforward integration into robotic platforms, such as
end-effectors or grippers, without necessitating substantial
structural modifications. While bulkier systems like the Tac-
Tip sensor offer comparable functionality, the DIGIT sensor’s
compact form factor enhances its adaptability. However, its
size remains a constraint for applications with severe spatial
limitations, such as aerial robotics [11].

One of the most significant advantages of the DIGIT
sensor is its support for real-time tactile feedback. Operating
at frame rates of up to 60 frames per second, the sensor pro-
cesses tactile data dynamically, enabling responsive manipu-
lation tasks. This capability is especially valuable in robotic
applications where fine adjustments are crucial. For instance,
during object grasping and manipulation, the sensor detects
subtle changes in force imbalances and surface deformations,
allowing the robotic system to adjust its grip in real time.
This prevents slippage and excessive force. Lambeta et al.
showcased this ability by integrating the DIGIT sensor into
a robotic hand, where it manipulated small objects, such as
marbles, with remarkable precision and control, as shown in
Figure 30. Such capabilities position the DIGIT sensor as a
transformative tool for robotic manipulation, particularly in
tasks demanding both dexterity and sensitivity [11].

The DIGIT sensor’s performance relies on an initial cal-
ibration process to ensure consistent and accurate results.
During calibration, relationships between observed elastomer
deformations and corresponding applied forces are estab-
lished, often through controlled experiments with known
forces and contact geometries. This step is essential for trans-
lating raw optical images into meaningful tactile information
and minimizing errors caused by sensor variability [11].

Additionally, the high-resolution tactile images captured
by the DIGIT sensor require advanced data processing tech-
niques to extract useful information, such as force distribu-
tion and contact patterns. Modern machine learning methods,
particularly Convolutional Neural Networks (CNNs), play
a crucial role in this process. CNNs identify intricate de-
formation features and correlate them to specific physical

properties, such as pressure magnitude and direction. These
algorithms enhance the sensor’s ability to detect subtle
changes, such as shear forces or slip events, which are critical
for tasks like object manipulation. By incorporating machine
learning, the DIGIT sensor achieves reliable and efficient
data interpretation [11].

The DIGIT sensor’s high-resolution tactile feedback also
enables applications in texture recognition and surface map-
ping. By analyzing the deformation patterns produced upon
contact, the sensor distinguishes between materials of vary-
ing stiffness, textures, and geometries. This capability has
significant implications for tasks such as material sorting
in manufacturing environments, quality control in industrial
processes, and tactile exploration in unknown environments.
The sensor’s ability to detect subtle surface variations further
enhances its potential for precision tasks that require detailed
tactile information, such as inspecting fragile or irregularly
shaped objects [11].

Despite its many strengths, the DIGIT sensor is not
without limitations. Its reliance on optical sensing principles
makes it vulnerable to environmental factors such as lighting
variability, temperature fluctuations, and contamination of the
elastomer surface. External light sources or dirt can interfere
with image quality, potentially degrading performance in
uncontrolled or outdoor settings. Additionally, processing
high-resolution tactile images imposes significant computa-
tional demands, particularly for real-time applications. This
requirement may strain robotic platforms with limited on-
board processing capabilities, such as drones or lightweight
autonomous systems.

While the elastomer layer is designed to withstand re-
peated use, it remains subject to wear and tear over time,
posing challenges for long-term durability, especially in
harsh or high-stress environments. However, this is somewhat
mitigated by the modular design, as the elastomer layer can
be replaced independently of the rest of the sensor. Compared
to simpler tactile systems, the DIGIT sensor’s current form
factor, though compact, may still be considered bulky for
ultra-constrained platforms like small drones.

Nevertheless, the DIGIT sensor’s modular construction
and low manufacturing cost make it a highly accessible and
scalable solution for both research and industry. Its design
democratizes access to advanced tactile sensing technolo-
gies, which have historically been expensive or difficult to
implement. Looking forward, improvements in elastomer
materials would enhance the sensor’s durability and re-
silience to environmental contaminants as well as reduce
hysteresis upon repeated load cycles, while advancements in
processing algorithms would reduce computational overhead.
Additionally, integrating the DIGIT sensor with other sens-
ing modalities—such as temperature, vibration, or magnetic
sensing—would create multi-modal tactile systems capable
of delivering even richer feedback. Such developments would
further expand the sensor’s utility across diverse applications,
including robotic manipulation, aerial robotics, and human-
robot interaction
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Fig. 29.

A

Object under test and corresponding raw measurements taken using DIGIT, the sensor is able to capture sub-millimeter details which gives

detailed information information about the texture of the test surface, this also highlights the advantage of a multicolored led array as small details are

more pronounced [12]

Fig. 30. Marble manipulation using DIGIT sensors mounted on an Allegro
multi-finger hand. The robotic hand pinches the marble between its thumb
and another finger and rolls it over its finger to manipulate it to the desired
location [11]

B. Applications

Since the DIGIT sensor is a recent innovation, there have
not been many research papers exploring its use in various
applications. However, a few notable examples demonstrate
its capabilities. One such example is the DigiTac sensor,
a hybrid system that combines the strengths of both the
DIGIT and TacTip sensors. DigiTac utilizes the DIGIT’s base
design, including its lighting, camera board, and housing,
while integrating the TacTip’s nodular fingerprint sensing
module, which features a 3D-printed skin/mount, window,
and soft gel. The adapted TacTip module is illustrated in
Figure 31. The motivation behind this hybrid design is to
compare the relatively flat and inelastic sensing surface of
the DIGIT sensor to the soft, curved sensing surface of the
TacTip. A visual comparison of the outputs produced by all
three sensors is provided in Figure 32 [64].

In experiments focused on pose prediction and pose-
based tactile servo control, all three sensors demonstrated
satisfactory performance. However, the design of the DIGIT
housing introduced biasing of the contact angle during servo

control tasks. This issue arose because the DIGIT’s stiff
and relatively non-compliant design was less capable of
adapting to asymmetrical loading. For the edge-following
task, all three sensors performed well. However, the DIGIT
sensor struggled in the surface-following task due to its
flat and stiff elastomer layer, which was not well-suited
for sliding smoothly over surfaces. During the experiments,
which included thousands of sliding contact cycles to train
and test their models, the team encountered durability issues.
Specifically, one DigiTac sensor failed when the skin tore at
the junction with its housing, and one DIGIT sensor was
damaged when its elastomer layer sheared off following a
collision with the test object [64].

Side view (CAD/print)

Bottom view (CAD/print)
=

Fig. 31. The 3-D printed DigiTac sensing module utilizing a press-fit
housing which can be used to attach it to the normal DIGIT base, it offers
the compact design of the DIGIT while offering a curved, elastic sensing
surface[64]

Another application utilizes DIGIT sensors to manipulate
objects while simultaneously performing Simultaneous Lo-
calization and Mapping (SLAM). This allows the system to
map the entire model of an object autonomously without
needing to move its base. The object reconstruction was
found to be highly precise, achieving F-scores of 81% with
pose drifts of just 4.7 mm, which were further reduced to
2.3 mm when using known CAD models. Additionally, the
approach significantly outperformed vision-based methods
under heavy occlusion, demonstrating up to a 94% improve-
ment in pose tracking. The setup involving ground-based
robots used for the experiments, along with the correspond-



Fig. 32. DIGIT, DigiTac and TacTip sensor readings when pressed against
an edge, all three are able to detect it clearly. The normal DIGIT sensor
(left) shows a color shift at the edge, the DigiTac (middle) and TacTip (right)
show a shift in the pattern to signify an edge [64]

ing reconstructions, is shown in Figure 33 [65].

Fig. 33.

3D reconstruction of an object using a DIGIT SLAM implemen-
tation, it estimates the pose and shape of objects from a stream of visual,
tactile and proprioceptive data [65]

V. CHALLENGES AND OPPORTUNITIES

Through an analysis of the existing research in this field,
it becomes evident that while significant progress has been
made in developing grasping drones, perching drones remain
a relatively new and underexplored area. Furthermore, the
perching drones that do exist tend to be rudimentary, lacking
closed-loop feedback systems. Another limitation is that
nearly all perching drones with grippers or claws position
these mechanisms at the bottom of the drone. This design
choice necessitates large landing skids or other creative
solutions to ensure the drone can land on the ground.

Mounting the perching mechanism at the top of the drone
eliminates interference with landing, thereby reducing the
need for additional structural components. This, in turn, saves
weight, improves flight efficiency, and simplifies the task of
the perching mechanism. Additionally, a top-mounted perch-
ing system 1is likely to achieve a more stable passive perch,
making it more robust against external disturbances such
as wind. This presents a significant opportunity to explore
a unique design with clear advantages over conventional
approaches.

Similarly, the DIGIT sensor remains largely under-
investigated, with minimal research exploring its applica-

tions, particularly in aerial manipulators. From the studies
conducted so far, it is evident that the DIGIT sensor requires
a Convolutional Neural Network (CNN) to be trained for
calibration. However, once calibrated, the sensor has shown
strong performance in pose estimation and pose-based tactile
servo control. These findings are encouraging for its use in
a perching application.

At present, most aerial manipulators do not integrate
tactile sensing into their control systems. Applying tactile
data—similar to its use in ground-based robotics—represents
an excellent opportunity for innovation. However, the DIGIT
sensor is relatively bulky, which poses a challenge for aerial
applications. To compensate for its weight, the rest of the
drone design must be extremely lightweight. The current plan
involves using four DIGIT sensors to maximize the tactile
sensing domain, with one sensor placed at each of the three
fingertips and one at the base of the gripper.

While full force or pose-based servo control may not be
achievable, the integration of pose and force estimation will
still provide significant information about the bar’s position
relative to the drone and the security of the grasp before
shutting down the motors. Therefore, the control strategy
will likely be relatively simple, with the tactile sensors not
directly serving as closed-loop controllers but still offering
highly valuable feedback to the system.

If this drone successfully integrates tactile sensing for
secure and autonomous perching from any orientation, it
will represent a major advancement in aerial robotics. This
innovation will help bridge the gap between aerial and
ground-based robotics in terms of robustness and utility. Such
a system will have a wide range of applications, from energy-
saving perching for environmental surveying to applications
in precision agriculture.

VI. CONCLUSION

This literature study explores the advancements and chal-
lenges associated with tactile sensing and perching mech-
anisms, particularly in the context of aerial robotics. The
analysis covers a wide range of topics, including the evolu-
tion of aerial manipulator and gripper designs, the limitations
of vision-based and radar-based systems, different tactile
sensing technologies and the role of tactile feedback in
enabling robust interaction with the environment. It aims to
build upon a previous design of a perching drone which uti-
lized an underactuated compliant mechanism with capacitive
tactile sensors. It emphasizes the usage of higher resolution
DIGIT sensors, providing information on their capabilities,
shortcomings, and potential applications in aerial perching
tasks.

The review identifies a significant gap in the integration of
tactile sensing within aerial robotics, a domain still heavily
reliant on vision-based systems despite their inherent limi-
tations in occluded and low-light scenarios. While ground-
based robotics have made substantial progress in leveraging
tactile feedback for manipulation tasks, aerial systems remain
in the nascent stages of adopting such technologies. The
DIGIT sensor, despite its bulk, weight and rigid design when



compared to other sensing technologies, shows promise in
providing accurate pose and force estimation when combined
with machine learning algorithms. This will further aid in
adding functionality to the perching drone.

In the context of perching mechanisms, the study high-
lights the predominance of bottom-mounted grippers and
their associated trade-offs, such as added weight and com-
promised landing stability. Novel approaches, such as mount-
ing grippers on top of drones, are proposed as promis-
ing alternatives that could enhance stability, reduce energy
consumption, and enable more efficient perching in varied
environments. It also notes that for the few perching mecha-
nisms that have been designed, none of them integrate tactile
sensing and rather rely on an open-loop control system which
is not very robust or effective.

This comprehensive analysis underscores several opportu-
nities for future research. First, integrating tactile feedback
into aerial robotic systems offers the potential to bridge
the gap between aerial and ground-based robotics in terms
of control and robustness. Second, lightweight, modular
designs are crucial for compensating for the added weight
of higher resolution sensors. Finally, the study advocates for
exploring the synergy between vision and tactile sensing to
create robust multimodal systems capable of addressing the
complex challenges of aerial manipulation.

Research Question

The resulting primary research question from this literature

study is: How can the integration of high-resolution tactile

sensors enhance the functionality, adaptability, and ro-

bustness of a perching drone, enabling it to autonomously

perch regardless of its initial position and orientation?
o Sensor Integration and Capabilities

— What are the limitations of the previous tactile sens-
ing system, and how do higher resolution sensors
address these shortcomings?

— How can the chosen high-resolution sensors be
integrated into the drone’s gripper design while
maintaining inherent compliance and lightweight
properties?

— What type of data can the sensors provide, and how
can this data be processed to inform the perching
maneuver?

o Performance Evaluation

— How does the performance of the perching drone
with the new sensors compare to the previous
iteration in terms of accuracy, reliability, and adapt-
ability?

— What metrics can be used to evaluate the drone’s
performance?

o Design and Weight Optimization

— How can the drone’s design, including the gripper
and tactile sensor placement, be optimized for
weight reduction while maintaining functionality?

— What materials and manufacturing techniques can
be employed to ensure the drone is lightweight and
efficient for perching tasks?
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— Beyond bar perching, how can the drone’s en-
hanced tactile sensing capabilities be leveraged for
other applications?

— What are the potential limitations or constraints of
using the chosen sensors in real-world scenarios,
such as environmental conditions or payload re-
strictions?

— How can the system be scaled or adapted for more
complex tasks, such as perching on non-cylindrical
or moving objects?
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