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⋆ Shell Global Solutions International B.V., Amsterdam, The Netherlands

ABSTRACT

Unsupervised learning is argued to be the dark matter of hu-
man intelligence1. To build in this direction, this paper focuses
on unsupervised learning from an abundance of unlabeled data
followed by few-shot fine-tuning on a downstream classifica-
tion task. To this aim, we extend a recent study on adopting
contrastive learning for self-supervised pre-training by incor-
porating class-level cognizance through iterative clustering
and re-ranking and by expanding the contrastive optimization
loss to account for it. To our knowledge, our experimenta-
tion both in standard and cross-domain scenarios demonstrate
that we set a new state-of-the-art (SoTA) in (5-way, 1 and
5-shot) settings of standard mini-ImageNet benchmark as well
as the (5-way, 5 and 20-shot) settings of cross-domain CDFSL
benchmark. Our code and experimentation can be found in
our GitHub repository: https://github.com/ojss/c3lr.

Index Terms— Few-shot classification, self-supervised
learning, contrastive learning.

1. INTRODUCTION

Few-shot learning has received an upsurge of attention recently
because it highlights a fundamental gap between human in-
telligence and data-hungry supervised deep learning methods.
We humans can learn in a self-supervised fashion and/or with
very little supervision. To tackle this challenge, few-shot clas-
sification is cast as the task of predicting class labels for a set
of unlabeled data points (query set) given only a small set of
labeled ones (support set). The query and support samples are
typically drawn from the same distribution. Few-shot classifi-
cation approaches are typically comprised of two sequential
phases [1–4]: (i) pre-training on an abundant dataset (some-
times called “base”), followed by (ii) fine-tuning on an unseen
dataset containing “novel” classes. Typically, the target classes
in pre-training and fine-tuning phases are mutually exclusive.
In this paper, we focus on self-supervised (also sometimes
interchangeably called “unsupervised” in the literature) setting
where we have no access to the class labels of the base dataset
in the pre-training phase or their distribution.

The authors thank Delft University of Technology and Shell Global
Solutions International B.V. for permission to publish this work.

1Yann LeCun’s note; Meta AI blog post on self-supervised learning.

The art here is to devise a synthetic class label assignment
technique and corresponding loss function in the pre-training
phase to efficiently transfer the learning to the fine-tuning
phase. To this aim, studies have proposed two different ap-
proaches. The first approach follows a meta-learning strategy
to create (synthetic) “tasks” similar to the the downstream
episodic training in the fine-tuning phase [5–7]. The second
one follows some sort of transfer learning approach, where
a representation learning step in the pre-training phase is fol-
lowed by episodic fine-tuning [1, 8, 9]. In the latter case,
typically a feature extractor (encoder) is trained using metric
learning to capture the global structure of the unlabeled data.
Next, a simple predictor (typically a linear layer) is adopted
in conjunction with the extractor for quick adaptation to the
novel classes in the fine-tuning phase. The better the feature
extractor captures the global structure of the unlabeled data,
the less the predictor requires training samples and the faster
it adapts itself to the unseen classes in the fine-tuning phase.

Recent studies [1, 9, 10] demonstrate that the second ap-
proach based on transfer learning outperforms meta-learning
based methods in cross-domain settings, where the training
and novel classes come from totally different distributions.
Their results also show that a properly-devised transfer learn-
ing based unsupervised approach comes pretty close to the
performance of a fully supervised counterpart [1, 3], some-
thing that we will also confirm through experimentation. Most
recently, a new state-of-the-art (SoTA) in self-supervised few
shot classification has been set by extending the prototypical
networks (ProtoNets) [11] using a contrastive loss [2]. This
approach (called ProtoTransfer [1]) constructs a contrastive
metric embedding that clusters unlabeled prototypical samples
and their augmentations. Inspired by this idea, we propose
class-cognizant contrastive learning (C3LR, Algorithm 1) to
further extend it to incorporate class-level insights from the
global structure of data. This is done via an unsupervised
iterative re-ranking and clustering step resulting in clusters of
unlabeled embeddings followed by a modified contrastive loss
now containing a term that specifically promotes this class-
level global structure. Our experimentation demonstrates that
C3LR outperforms its predecessor ProtoTransfer in (5-way, 1
and 5-shot) settings of Ominglot [12] and mini-Imagenet [13]
benchmarks by about 1% and 2%+, respectively. The per-
formance improvement goes up to 4.5% in the cross-domain
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setting of the CDFSL benchmark [14]. As a result, to our
best knowledge, C3LR sets a new SoTA for most challenging
settings of mini-ImageNet and CDFSL benchmarks.

2. CLASS-COGNIZANT CONTRASTIVE LEARNING
(C3LR)

In this section, we first describe our problem formulation. We
then discuss the two phases of the proposed approach: self-
supervised pre-training and few-shot supervised fine-tuning.
The mechanics of the proposed approach and a sketch of the
training procedure is shown in Figure 1.

2.1. Preliminaries

Let us denote the training data of sizeM asDtr = {(xi, yi)}Mi=1

with (xi, yi) representing an image xi and its class label yi.
In the pre-training phase, we take L random samples from Dtr
and augment each sample Q times by drawing augmentation
functions ψq(.),∀q ∈ [Q] from the set A. This results in a
batch of size B = (Q + 1)L total samples. Note that the
data labels are unknown in the pre-training phase. In the
fine-tuning phase, we deal with the so-called episodic training
on a set of tasks T containing N classes each with K samples
per task drawn from the test dataset Dtst = {(xi, yi)}M

′

i=1 of
size M ′. From now on, we refer to this task construct as
(N -way, K-shot) denoted by (N,K). An episode consists of
a labeled support set, S, from which the model learns and an
unlabeled query set, Q, on which the model predicts. Note
that both S and Q contain a set of tasks of the form (N,K).

2.2. Self-Supervised Pre-Training

The fact that we do not have access to class labels calls for
a self-supervised pre-training stage. As discussed earlier, we
build upon the idea of employing contrastive learning for pro-
totypical transfer learning following the footsteps of [1]. The
high-level idea here is to not only enforce the latent embed-
dings of augmented images come close to that of the source
image in the embedding space (the classical contrastive set-
ting), but also enforce embeddings of the images belonging
to each cluster (and their augmentations) come closer to each
other, for which a preceding unsupervised cluster formation
step is required. This can help enforce similar classes into
separate clusters, which will in turn be used as additional infor-
mation in a modified two-term contrastive loss in Algorithm 1.
Let us walk you through the process in further details.

Algorithm 1 starts with batch generation (lines 2 to 7):
each mini-batch consists of L random samples {xi}Li=1 from
Dtr, where xi is treated as a 1-shot support sample for which
we create Q randomly augmented versions x̃i,q as query sam-
ples (line 5). This leads to a batch size ofB = (Q+1)L. Then
embeddings are generated by passing the samples through an
encoder fϕ network. This is where the first major modification
to ProtoTransfer [1] comes into play. Before the contrastive
loss comes into action, we apply re-ranking and clustering

Algorithm 1: Class-Cognizant Contrastive Learning (C3LR)

Require: L, Q, fϕ, A, α, d[·, ·]
1 while not done do
2 Sample minibatch {xi}Li=1

3 forall i ∈ {1, . . . , L} do
4 forall q ∈ {1, . . . , Q} do
5 x̃i,q = ψq(xi); ψq ∼ A.
6 end
7 end
8 R = ReRank

([
fϕ

(
{xi}Li=1

)
, fϕ

(
{x̃i, q}L,Q

i=1,q=1

)])
9 C = {C1,C2, . . . ,CP } ← HDBSCAN(R)

10 M = {mp}Pp=1; mp =

∑
xj∈Cp

xj

|Cp|

11 let r(i, q, p) = − log
exp(−d[fϕ(x̃i,q),mp])∑P

p=1 exp(−d[fϕ(x̃i,q),mp])

12 let ℓ(i, q) = − log
exp(−d[fϕ(x̃i,q),fϕ(xi)])∑L

k=1 exp(−d[fϕ(x̃i,q),fϕ(xk)])

13 L1 = 1
LQ

∑P
p=1

∑L
i=1

∑Q
q=1 r(i, q, p)

14 L2 = 1
LQ

∑L
i=1

∑Q
q=1 ℓ(i, q)

15 L = L1 + L2

16 ϕ← ϕ− α∇ϕL
17 end

(lines 8 to 10) to discover class-level global structure of data
and enforce similar classes into separate clusters in the em-
bedding space. Note that this step remains to be unsupervised
in that the class labels are not required. The re-ranking step
(line 8) makes use of the k-reciprocal nearest neighbors as the
distance metric between latent embeddings [15], which has
been shown to outperform the Euclidean distance [3] when
used for subsequent clustering. HDBSCAN clustering [16]
is then applied on the re-ranked embeddings R and returns a
set of clusters populated in C. HDBSCAN is versatile enough
to discover and create required number of clusters P . With
clusters at hand, we are now in a position to extend the stan-
dard loss proposed in [1] to contain a class-cognizant term
(in lines 11 and 13), with lines 12 and 14 reflecting on the
classical contrastive loss of ProtoTransfer [1]. This new loss
term L1 enables a progressive improvement in class-level clus-
ter formation and in turn learning similar representations for
cluster members, while L2 encourages clustering of the em-
beddings of the augmented query samples {fϕ(x̃i,q)} around
their prototypes {fϕ(xi)}. Here, both terms use an Euclidean
distance metric in the embedding space denoted by d[·, ·]. Fi-
nally, the new loss L = L1 +L2 is optimized with mini-batch
stochastic gradient decent with respect to the parameters ϕ of
the encoder networks fϕ.

2.3. Supervised Fine-Tuning

The pre-trained encoder fϕ will be used for the downstream
few-shot classification task. To this aim, following [1, 11], we
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Fig. 1: C3LR schematic view and training procedure. In the figure, xq
i is an image sampled from the query set Q.

concatenate fϕ with a single-layer nearest-neighbor classifier
fθ (resulting in a similar architecture as in ProtoNet [11]) and
fine-tune this last layer. In this phase, we first calculate the
class prototypes cn (embeddings) for class n using the encoder
fϕ on the support set Sn:

cn =
1

|Sn|
∑

(xi,yi)∈Sn

fϕ(xi).

These prototypes are then used to initialize the classifier fθ
following [1].

3. EXPERIMENTATION

In this section, we first discuss our experimental setup; we
then present our numerical results.

3.1. Experimental Setup

Datasets. We conduct several in-domain experiments to bench-
mark C3LR. For this purpose, we make use of commonly
adopted datasets Omniglot [12] and mini-Imagenet [13] to
compare against unsupervised few-shot learning approaches.
Omniglot contains 1623 different handwritten characters bor-
rowed from 50 unique alphabets out of which we use 1028
characters for training, 172 for validation and 423 for test-
ing. We resize the grayscale images to 28× 28 pixels. Mini-
ImageNet contains 100 classes with 600 samples in each class
amounting to a total of 60, 000 images that we resize to 84×84
pixels. Out of the 100 classes, we use 64 classes for training,
16 for validation and 20 for testing. For both datasets, the
settings are the most commonly adopted ones in literature
[1, 3, 7, 13]. The augmentations (in A) used for the exper-
imentations follow [1]. We also compare our method on a
more challenging cross-domain few-shot learning (CDFSL)
benchmark [14]. This benchmark consists of four datasets
with increasing similarities to mini-ImageNet. In that order,
we have grayscale chest X-ray images from ChestX [17], der-
matological skin lesion images from ISIC2018 [18], satellite
aerial images from EuroSAT [19], and crop disease images
from CropDiseases [20]. We also use Caltech-UCSD Birds

(CUB) dataset [21] for further analysis of cross-domain perfor-
mance. CUB is composed of 11, 788 images from 200 unique
bird species. We use 100 images for training, 50 for validation
and 50 for test.

Training. The Conv4 model [13] is pre-trained on the
respective training splits of the datasets, with an initial learn-
ing rate of 0.001, multiplied by 0.5 every 25, 000 steps via the
Adam optimizer [22]. Based on the derivations in [11] and sim-
ilar usage in [1], we initialize the classification layer fθ with
weights set to Wn = 2cn and biases set to bn = −∥cn∥2. For
validation, we create 15 (N -way, K-shot) tasks using the vali-
dation split from which the corresponding validation accuracy
and loss are calculated. Experiments involving CDFSL bench-
mark follow [1, 14], where we pre-train a ResNet10 encoder
using C3LR on mini-ImageNet images of size 224× 224 for
400 epochs with the Adam optimizer and a constant learning
rate of 0.001.

Evaluation scenarios and baseline. Our testing scheme
uses 600 test episodes on which the pre-trained encoder (using
C3LR) is fine-tuned and tested. All our results indicate 95%
confidence intervals over 3 runs each with 600 test episodes.
The standard deviation values are thus calculated according
to the 3 runs to provide more solid measures for comparison.
For our in-domain benchmarks, we test on (5-way, 1-shot) and
(5-way, 5-shot) classification tasks. While our cross-domain
testing is done using (5-way, 5-shot) and (5-way, 20-shot)
classification tasks. We compare our performance with a suit of
recent self-supervised few-shot baselines such as ProtoTransfer
[1], UFLST [3], LASIUM [23] and CACTUS [6], to name a
few. Furthermore, we also compare with a set of supervised
approaches (such as MAML [5], ProtoNet [11] , etc.) the best
performing of which are obviously expected to outperform
ours as well as other self-supervised methodologies.

3.2. Performance Evaluation

In-domain evaluation. Table 1 summarizes our performance
evaluation results on Omniglot and mini-ImageNet datasets for
(N -way,K-shot) scenarios withN = 5 andK = 1, 5. The top
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Table 3: Accuracy (%± std.) of (N -way, K-shot) classification on the CDFSL benchmark. Style: best and second best.

Method(N,K) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20)

ChestX ISIC EuroSAT CropDiseases

UMTRA-ProtoNet [1] 24.94 ± 0.43 28.04 ± 0.44 39.21 ± 0.53 44.62 ± 0.49 74.91 ± 0.72 80.42 ± 0.66 79.81 ± 0.65 86.84 ± 0.50

UMTRA-ProtoTune [1] 25.00 ± 0.43 30.41 ± 0.44 38.47 ± 0.55 51.60 ± 0.54 68.11 ± 0.70 81.56 ± 0.54 82.67 ± 0.60 92.04 ± 0.43

ProtoTransfer [1] 26.71 ± 0.46 33.82 ± 0.48 45.19 ± 0.56 59.07 ± 0.55 75.62 ± 0.67 86.80 ± 0.42 86.53 ± 0.56 95.06 ± 0.32

C3LR (ours) 26.00 ± 0.41 33.39 ± 0.47 45.93 ± 0.54 59.95 ± 0.53 80.32 ± 0.65 88.09 ± 0.45 87.90 ± 0.55 95.38 ± 0.31

ProtoNet [14] (sup.) 24.05 ± 1.01 28.21 ± 1.15 39.57 ± 0.57 49.50 ± 0.55 73.29 ± 0.71 82.27 ± 0.57 79.72 ± 0.67 88.15 ± 0.51

Pre+Mean-Cent. [14] (sup.) 26.31 ± 0.42 30.41 ± 0.46 47.16 ± 0.54 56.40 ± 0.53 82.21 ± 0.49 87.62 ± 0.34 87.61 ± 0.47 93.87 ± 0.68

Pre+Linear [14] (sup.) 25.97 ± 0.41 31.32 ± 0.45 48.11 ± 0.64 59.31 ± 0.48 79.08 ± 0.61 87.64 ± 0.47 89.25 ± 0.51 95.51 ± 0.31

Table 1: Accuracy (%± std.) for (N -way, K-shot) classifica-
tion tasks. Style: best and second best.

Omniglot mini-ImageNet

Method(N,K) (5,1) (5,5) (5,1) (5,5)

CACTUs-MAML [6] 68.84 ± 0.80 87.78 ± 0.50 39.90 ± 0.74 53.97 ± 0.70

CACTUs-ProtoNet [6] 68.12 ± 0.84 83.58 ± 0.61 39.18 ± 0.71 53.36 ± 0.70

UMTRA [7] 83.80 95.43 39.93 50.73
AAL-ProtoNet [24] 84.66 ± 0.70 89.14 ± 0.27 37.67 ± 0.39 40.29 ± 0.68

AAL-MAML++ [24] 88.40 ± 0.75 97.96 ± 0.32 34.57 ± 0.74 49.18± 0.47

UFLST [3] 97.03 99.19 33.77 ± 0.70 45.03 ± 0.73

ULDA-ProtoNet [25] - - 40.63 ± 0.61 55.41 ± 0.57

ULDA-MetaOptNet [25] - - 40.71 ± 0.62 54.49 ± 0.58

U-SoSN+ ArL [26] - - 41.13 ± 0.84 55.39 ± 0.79

LASIUM [23] 83.26 ± 0.55 95.29 ± 0.22 40.19 ± 0.58 54.56 ± 0.55

ProtoTransfer (L = 50) [1] 88.00 ± 0.64 96.48 ± 0.26 45.67 ± 0.79 62.99 ± 0.75

ProtoTransfer (L = 200) 88.37 ± 0.74 96.54 ± 0.41 44.17 ± 1.08 61.07 ± 0.82

C3LR (ours) 89.30 ± 0.64 97.38 ± 0.23 47.92 ± 1.2 64.81 ± 1.15

MAML [5] (supervised) 94.46 ± 0.35 98.83 ± 0.12 46.81 ± 0.77 62.13± 0.72

ProtoNet [11] (supervised) 97.70± 0.29 99.28 ± 0.10 46.44± 0.78 66.33± 0.68

MMC [27] (supervised) 97.68± 0.07 - 50.41 ± 0.31 64.39 ± 0.24

FEAT [4] (supervised) - - 55.15 71.61
Pre+Linear [1] (supervised) 94.30 ± 0.43 99.08 ± 0.10 43.87 ± 0.69 63.01 ± 0.71

section compares the performance of the proposed approach
(C3LR) with the most recent relevant self-supervised competi-
tors. As can be seen, for Omniglot, we outperform ProtoTrans-
fer [1] (which we build on) by about 1% in both K = 1, 5 shot
scenarios. We score the second overall best in (5-way, 1-shot)
falling behind UFLST [3]. For the mini-ImageNet benchmark,
to our knowledge, we set a new SoTA outperforming Proto-
Transfer by 2%+. Interestingly, our performance beats some
of the supervised baselines (bottom section of the table) adopt-
ing similar encoder architecture Conv4 for mini-ImageNet and
comes close to K = 5-shot performances on Omniglot. Obvi-
ously, the SoTA supervised few-shot learning approaches have
the advantage of having access to the all the labels, as such
due to the supervision signal, are expected to outperform the
unsupervised approaches like ours.

Cross-domain evaluation. So far we have demonstrated
that the proposed approach excels for in-domain scenarios.
The next step is to assess the performance under more chal-
lenging cross-domain scenarios (Table 2 and Table 3) where
we pre-train on a certain dataset in an unsupervised fashion,
then fine-tune and test on a different dataset. Table 2 illustrates

Table 2: Accuracy (%± std.) for (N -way, K-shot) classifica-
tion on mini-ImageNet with pre-training on CUB.

Training Testing (5,1) (5,5)

ProtoTransfer (L = 50) [1] ProtoTune [1] 35.37 ± 0.63 52.38 ± 0.66
ProtoTransfer (L = 200) ProtoTune 34.67 ± 0.84 51.45 ± 0.72
C3LR (ours) ProtoTune 39.61 ± 1.11 55.53 ± 1.42

the results of a Conv4 encoder trained on CUB and tested on
tasks derived from mini-ImageNet. Here again C3LR shows a
clear improvement of 3%+ compared to ProtoTransfer (with
pre-training sample sizes L = 50, 200). The important mes-
sage here is that the proposed approach enhances ProtoTransfer
in generalizing to truly unseen data. To further investigate the
performance on cross-domain scenarios, we next focus on
CDFSL benchmark [14] containing several datasets. Here, we
pre-train on mini-ImageNet and fine-tune and test on ChestX
[17], ISIC2018 [18], EuroSAT [19], and CropDiseases [20].
We compare the performance against ProtoTransfer and two of
its variants with UMTRA [7] as pre-training strategy (all pro-
posed in [1]). We also compare with a couple of closely related
supervised approaches from [14], for the sake of reference. As
can be seen, except for ChestX where we marginally come
short of ProtoTransfer, for the other three datasets we out-
perform the second best competitor (ProtoTransfer) by about
0.5%+ to 4.5%+ with the most significant improvement in
the case of EuroSAT. Interestingly, once again the performance
of C3LR is not far off that of the related supervised approaches
(bottom of the table) even sometimes outperforming the super-
vised approaches especially in (5-way, 20-shot) scenarios.

4. CONCLUDING REMARKS

Inspired by the idea of using contrastive learning for unsu-
pervised few-shot classification, we build upon the recently
proposed idea of ProtoTransfer [1] by incorporating class cog-
nizance through: (i) an unsupervised iterative re-ranking and
clustering step, followed by (ii) an adjusted optimization loss
formulation. We demonstrate that our proposed approach
(C3LR) offers considerable performance improvement above
its predecessor ProtoTransfer in both in/cross-domain few-shot
classification scenarios setting a new SoTA in mini-ImageNet
and CDFSL benchmarks.
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ing Deep Learning for Image-Based Plant Disease Detection,”
Frontiers in Plant Science, vol. 7, pp. 1419, 2016.

[21] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie,
“The Caltech-UCSD Birds-200-2011 Dataset,” Tech. Rep. CNS-
TR-2011-001, California Institute of Technology, 2011.

[22] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

[23] Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Wei-
jia Wang, Bill Lin, and Ladislau Bölöni, “Unsupervised meta-
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