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We demonstrate thermo-mechanical relaxation oscillations in a strongly driven quartz crystal.

Dynamic bifurcation leads to two stable oscillation states with a distinct electrical impedance.

Slow Joule-heating, which shifts the susceptibility of the crystal, provides a feedback that leads to

thermally induced oscillations in which the amplitude of the crystal is modulated by a relaxation

cycle. The frequency of the relaxation cycle is roughly a million times lower than the resonance

frequency of the crystal, and it can be adjusted by the detuning from the critical point for dynamic

bifurcation. The experimental observations are reproduced by a simple model that takes into

account the slow dynamics of the system. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928620]

Harmonic oscillators, such as quartz crystals, are used

for timing and sensing purposes, and constitute an indispen-

sable part of modern electronic devices. Besides harmonic

oscillators, other types of oscillators such as the relaxation

oscillator occur frequently.1 Where harmonic oscillators con-

serve energy—they exchange kinetic with potential energy,

as in a mass-spring system—a relaxation oscillator repeti-

tively dissipates energy. It’s dynamic behaviour can be

described by coupled first-order differential equations, with

non-oscillatory steady state limits. The period of a relaxation

oscillator is determined by energy decay rates, which result,

for example, from viscous friction or resistive dissipation.

Canonical examples of relaxation oscillators include

the electronic flip-flop,2 the mammal heart muscle,3 and

the Pearson-Anson neon-lamp oscillator.4 Mechanical relaxa-

tion oscillators have been observed recently in a micro-

electromechanical impact device,5 a field-emitting carbon

nanotube,6 and a system of coalescing nanofluidic droplets.7

Here, we report a dynamic relaxation oscillator, with oscilla-

tory steady states, in which the oscillation amplitude of a non-

linear resonator is modulated by a relaxation cycle. The

period of the relaxation cycle is determined by the thermal

time constant and the mechanical ring-down of the device.

The dynamic relaxation oscillator is implemented

using a commercial AT-cut quartz crystal with a specified

resonance frequency of 4.608 MHz at the fundamental

thickness shear-mode. The crystal is driven by an rf-voltage

generated by a lock-in amplifier, and its motion is trans-

duced using a current probe8 and detected by the lock-in, as

shown in Fig. 1(a). The experiments are performed at room

temperature and in atmospheric pressure.9 Figure 1(b)

shows the response of the weakly driven quartz crystal,

which corresponds to a harmonic resonator, with a reso-

nance frequency of f0¼ 4.607 MHz and a mechanical ring-

down time of sm ¼ Q�1
0 pf0 � 50 ms.

When the driving voltage is increased, the response starts

to deviate from a harmonic oscillator, as the resonance peak

becomes non-symmetric. The resonance frequency shifts to a

higher value: a signature of nonlinear behaviour with a

positive higher order spring constant. The anharmonic behav-

iour of a quartz crystal has been studied previously,10,11 and in

a recent quartz crystal microbalance (QCM) experiment, a

nonlinear response was used to enhance the responsivity to an

added mass.12

When the crystal is driven beyond the critical point, at

Vref¼ 0.02 V and fref¼ 4.6071 MHz, the nonlinearity gives

rise to a bifurcation and hysteresis occurs: two stable states

co-exist, and the crystal oscillates either at a high or at a low

amplitude. Figure 1(c) shows a hysteretic frequency response

of the quartz crystal. When the frequency is swept from a

low to a high value, the crystal susceptibility follows the

upper branch, and it oscillates at a high amplitude. For a

reverse sweep, the low amplitude state is stable. Figure 1(d)

FIG. 1. (a) Schematic of the measurement circuit; inset: photograph of the

quartz crystal. (b) Driven response (amplitude shown only) at the fundamen-

tal shear-mode driven at Vref¼ 0.01 V. The arrows indicate the sweep direc-

tion. (c) Bistable response when driven at 0.3 V. (d) Drive parameters lead

to a bistable shear-mode oscillation. The figure is obtained by superimposing

forward and backward traces, such as the one shown in (c) (horizontal, fast

axis), while varying the drive power (vertical, slow axis). Color scale: sus-

ceptibility of the quartz crystal.a)Electronic mail: w.j.venstra@tudelft.nl

0003-6951/2015/107(7)/073502/3/$30.00 VC 2015 AIP Publishing LLC107, 073502-1

APPLIED PHYSICS LETTERS 107, 073502 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

131.180.131.242 On: Fri, 18 Sep 2015 13:33:18

http://dx.doi.org/10.1063/1.4928620
http://dx.doi.org/10.1063/1.4928620
mailto:w.j.venstra@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4928620&domain=pdf&date_stamp=2015-08-17


shows the driving conditions that give rise to a bistable

response. The figure is constructed by superimposing fre-

quency response measurements taken in forward and in

reverse direction (horizontal, fast axis), at a varying drive

amplitude (vertical, slow axis). The hysteretic transitions

between the two oscillating states, which occur at the bifur-

cation frequencies f# and f", form the switching element that

is required for the relaxation oscillator.

The electrical impedance of a quartz crystal depends on

the amplitude of the oscillation, and it is bistable when the

amplitude is bistable, as in the regime visualized in Fig. 1(d).

We measured that Zlow� 800 X in the low state and

Zhigh� 20 X in the high state. Given the constant driving

voltage, the dissipated power then depends on the oscillation

state. Joule-heating of the crystal gives rise to a significant

change in its mechanical properties. In particular, the nega-

tive temperature dependence of the Young’s modulus of sili-

con oxide causes the mechanical spring constant, and thus

the (nonlinear) resonance frequency, to decrease with tem-

perature. As a result, the susceptibility of the crystal at the

driving tone is increased, and this thermo-mechanical cou-

pling presents the feedback that gives rise to relaxation

oscillations.

Figure 2 shows time traces of the crystal amplitude

when driven at Vref¼ 0.5 V at two different fixed frequen-

cies. When driven close to f" at the high-amplitude branch,

as shown in panel (a), the crystal temperature increases,

causing the resonance frequency to decrease and the suscep-

tibility to increase. The response then follows the upper

branch as indicated by the arrows, until f#< fref where the

impedance becomes low. The crystal then cools and follows

the lower branch until it reaches a steady low-amplitude

state. Figure 2(b), right hand panel, shows a measured time

trace of the crystal amplitude, with a single transition to the

low state at t¼ 2 s. A similar process occurs when the crystal

is driven close to f" but outside the hysteretic regime, as in

panel (b), but in this case the temperature further decreases,

until f"> fref forces an upwards transition. Here, the process

repeats, and the crystal enters a relaxation oscillation. Figure

2(b), right panel, shows a time trace of the oscillation, with a

period of approximately 1 s.

To investigate the relaxation oscillator in more detail,

we measured time series of the crystal susceptibility close to

the bifurcation point, f", for a range of driving voltages and

frequencies. Figure 3(a) shows the frequency of the relaxa-

tion oscillation on the color scale, for a range of drive param-

eters. The bifurcation points, as measured in Fig. 1(d), are

indicated by the solid blue lines. In the dark blue area, the

frequency is zero and the relaxation oscillations are absent.

Relaxation oscillations occur in a distinct regime close to f",
at a frequency that can be adjusted over fRO¼ 0–2.5 Hz by

adjusting the drive parameters.

To corroborate the experimental results, a simple model

is developed. While the power and frequency of the bifurca-

tion points in a nonlinear resonator can be modelled following

the analysis by Lifshitz and Cross,13 here we simplify the

problem by taking only the slowest dynamics into account.

We assume a constant susceptibility (dissipation) on the high

and on the low branch of the hysteresis regime, and a linear

dependence of the bifurcation frequencies on the drive

strength, f", f# / Vref. We take a linear dependence of the

bifurcation frequency on the crystal temperature, f", f# / T,14

and model the behaviour using a first order heat equation.

With the dissipation Plow in the lower branch and Phigh

in the upper branch,15 the temperature of the crystal is

described as16

DT tð Þ ¼ P

K
� P

K
� DTi

� �
e
�t
s ; (1)

where t denotes time, s is the thermal time constant of the

crystal, and DTi is the initial temperature difference with

respect to room temperature. When K is the thermal con-

ductance between the crystal and the environment, Thigh

¼Phigh/K and Tlow¼Plow/K represent the two thermal equi-

libria to which the oscillator relaxes. By solving the heat

equation and inserting f / T, one obtains the thermal oscil-

lation period

f�1
RO ¼ sln

fhigh � f"
fhigh � f#

� �
þ sln

f# �flow

f" �flow

� �
: (2)

The relaxation oscillation period is thus set by the differ-

ence between the thermal equilibrium frequencies flow and

fhigh, and the bifurcation points f" and f#. Reducing the

FIG. 2. (a) When the crystal is driven close to the bifurcation point inside

the hysteresis regime, it decays to the low-amplitude state. (b) When driven

close to the bifurcation point outside the hysteresis regime, relaxation oscil-

lations occur.

FIG. 3. Frequency of the relaxation oscillations (color scale) for a range of

driving parameters, as obtained from experiment (a) and model (b). For each

pixel, one time trace is measured from which the frequency is determined.

In the model, the drive strength, ad, and the frequency detuning, Df, are nor-

malized to the critical drive strength and frequency, acr and fcr, respectively.
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denominator in either of the terms in Eq. (2) increases the

cooling or heating time, and thus the oscillation period, as is

observed in the experiment of Fig. 3(a). Equation (2) was

solved for a range of excitation frequency and amplitudes

with s¼ 1, K¼ 1, Phigh/Plow¼ 40, and the frequency of

the relaxation oscillation, fRO, is plotted in Fig. 3(b). As in

the experiment, relaxation oscillations occur for fref< f".
Moreover, the frequency of the relaxation oscillation increases

with the detuning and it exhibits a maximum. The model

could be refined to capture the experimentally observed fea-

tures in more detail. For instance, the frequency-dependence

of the temperature in the high and in the low amplitude state

could be taken into account, and the kink in the f# branch

could be modeled by accounting for higher-order nonlinear-

ities or multiple (internal) resonance modes.12

The dissipated power can be estimated from the impedan-

ces in the high and low states, and we calculate that Phigh

� 4 W and Plow� 0.1 W, compared to a dissipation of 1 mW in

the linear regime of Fig. 1(b). It is interesting to obtain an indi-

cation of the temperature range during the relaxation cycle. To

this end, the crystal was removed from its package, and its

temperature was measured using an infrared detector,17 facing

the crystal at a distance of 2 mm. Figure 4 shows the tempera-

ture of the crystal during the oscillation. When driven at

fref¼ 4.60727 MHz and Vref¼ 0.55 V in an ambient tempera-

ture of 20 �C, the mean temperature is 35 �C, and the peak-to-

peak value is 7 �C. The frequency of the relaxation oscillation

is slightly shifted compared to a packaged crystal due to a dif-

ferent thermal conductance, and the oscillation is less stable

due to the exposure to the environment.

Relaxation oscillators are very sensitive to their environ-

ment, as is indicated by the frequency fluctuations that can be

observed in the measurements of Figs. 2(b) and 4, in which no

special precautions were taken for stabilization. This sensitiv-

ity could be exploited in detectors:15 the relaxation rates

respond, besides to mass, to changes in the viscosity and the

thermal conductivity of the environment, enabling application

as a viscosity or a pressure sensor. Since the output of the os-

cillator resembles a frequency- and pulse-width modulated

binary signal, the interface to a digital circuit could be simpli-

fied. The quartz crystal may also be used as an experimental

platform for more fundamental studies on dynamic relaxation

oscillations, such as the complex but slow behaviour that

occurs in electrochemical systems.18 Here, the mechanical de-

vice presents interesting dynamics on an experimentally con-

venient time scale. Finally, we note that the thermal time

constant scales linearly with dimension (volume-to-surface ra-

tio) and that for micrometer-sized devices similar processes

could occur at frequencies in the kHz range.

In conclusion, we demonstrate dynamic relaxation oscil-

lations in a strongly driven quartz crystal. The amplitude of

the crystal oscillates at a frequency that is determined by the

thermal relaxation time of the crystal, six orders of magni-

tude lower the fundamental harmonic oscillation frequency

of the crystal. The dynamic behaviour is captured by a model

that takes into account the slow dynamics. The frequency of

the relaxation oscillaton is very sensitive to the susceptibility

of the crystal, which depends on its mechanical properties.

This feature may be deployed in a low-frequency readout

scheme for QCM-based sensors.
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FIG. 4. Temperature of the quartz crystal (red trace, left axis) during the

relaxation cycle (blue trace, right axis), measured after removing the crystal

from the package. The crystal is driven at fref¼ 4.60727 MHz, and the driv-

ing amplitude is Vref¼ 0.55 V.
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