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ABSTRACT
Adsorption simulations often assume a rigid framework, which can be exploited by replacing the
expensive framework-adsorbate energy/force evaluation by interpolation of a precomputed energy
grid. We present the implementation in RASPA3 of a triquintic interpolation algorithm by Boateng
and Bradach and compare it to the tricubic algorithm of Lekien and Marsden. We extended the
scheme to interpolation in fractional space to facilitate interpolation of non-rectangular frameworks
and evaluated the accuracy. We find that the use of grids is advantageous for larger systems and/or
large cutoffs, but generally the efficiency gains are modest (a factor of 2–5).
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1. Introduction

Crystalline nanoporous materials like zeolites are con-
sidered stable and rigid materials. Since the very early
work of Bezus et al. [1], the zeolite is usually modelled
as a rigid crystal (known as the Kiselev model). Rigid-
framework models enable the use of grid-interpolation
techniques to determine the interaction of an adsorbate
atomwith the framework and avoid having to consider all
framework atoms [2]. This can potentially speed up the
energy calculation because the costly summation with all
framework atoms is replaced with a simple interpolation
that depends on system size and loading. However, the
guest-guest interactions cannot be pre-tabulated.

June et al. used pretabulation of the sorbate atom-
zeolite potentials on a fine three-dimensional grid of
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0.2Å spacing over the asymmetric unit of the unit cell
[3]. Because of the orthorhombic symmetry (space group
‘Pnma’) of silicalite, this computation needed to be per-
formed only over one-eighth of the unit cell. Sorbate-
zeolite interaction potentials needed for the evaluation
of the configurational integrals were then interpolated
at run time from the tabulated potential data with a
three-dimensional cubic spline (see Ref. [4]; The spline
routines had been made available as QCPE 322 from
the Quantum Chemistry Program Exchange, Indiana
University, Bloomington, Indiana). This pretabulation
scheme allowed for ‘a 100-fold reduction’ in compu-
tational effort over the direct pairwise summation of
zeolite-sorbate interactions at every step of the simula-
tion, using four-point Lagrangian interpolation [3].
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Vlugt et al. developed a force field for united atom
alkanes in zeolites using a fixed Lennard–Jones σ =
3.6 Å size-parameter for the framework atoms, and only
allowed the Lennard–Jones strength parameter ε to
change [5]. The strength-parameter ε is just a scaling
parameter, and therefore only a single grid needed to
be stored for ε = 1 and for each united atom (CH4,
CH3, CH2, CH and C) the interpolated value was post-
multiplied with its ε-value. The fixed σ -parameter was
to avoid the huge memory requirements of using a sep-
arate grid for each of the five alkane sorbate atoms. To
interpolate, a fifth order 3D polynomial scheme was used
that interpolated first in z, then in y, and then in x [6]. To
achieve fifth-order interpolation, two additional energy
grid points to either side of the interpolation grid point
were used (six in total).

Bai et al. developed the TraPPE-zeo model for both
polar and nonpolar molecules in zeolites [7, 8]. This
model explicitly included the interaction with the silicon
atoms.Mostmodels up to this point in time only used the
interactionwith the oxygen, assuming the oxygen param-
eters implicitly included the silicon interactions. Using a
probe atom with Lennard–Jones parameters ε = 1, σ =
1, and unit charge q = 1, Bai created two grids for the sil-
icon, tabulating 4ε(σ/r)12 and 4ε(σ/r)6 separately, and
two grids for the oxygen framework atoms, and one grid
for the Coulomb interactions including both real-space
and reciprocal space contributions of the Ewald summa-
tion method. Therefore, instead of a separate grid for
different pseudo-atoms, only five grid files were needed
that could be scaled by εσ 12, εσ 6, and q and used for
screening calculations of any sorbate functional groups.

In RASPA2 [9], we implemented the triclinic grid
interpolation scheme in three dimensions of Lekien and
Marsden [10, 11]. The algorithm is based on a specific
64 × 64 matrix that provides the relationship between
the derivatives at the corners of the elements and the
coefficients of the tricubic interpolant for this element.
In sharp contrast to polynomial interpolation, the cubic
interpolant and its first three derivatives are continuous
and consistent. The same grids can therefore be used for
both Monte Carlo (MC) and Molecular Dynamics (MD)
with no additional energy drift besides the drift due to the
integration scheme, i.e. the energy gradients are the exact
derivatives of the energy at each point in the element.

In 2019, Walker extended triclinic interpolation to a
quadcubic algorithm [12]. The quadcubic interpolation
scheme can be applied to situations where there is one
output, modelled as a function of a four-variable poly-
nomial. For example, it can be applied to model ocean
temperatures as they fluctuate over time. While both
the tricubic and quadcubic interpolation schemes pro-
duce C1 continuous polynomials, the lack of required

free coefficients prevents them from achieving C2 con-
tinuity. C1 ensures continuous energy and forces, while
C2 ensures continuous energy, forces, and Hessians. In
2023, the tricubic algorithm was extended to a triquin-
tic algorithm by Boateng and Bradach that involves a
three-variate polynomial of degree 5 in each variable [13].
This method ensures C2 continuity and, at interpolation,
returns the energy, force, and the Hessian values. C2 con-
tinuity ensures continuity in the Hessian, without which
interpolated Hessian values cannot be deemed reliable.

In this article, we compare the triquintic algorithm
by Boateng and Bradach with the tricubic algorithm by
Lekien and Marsden. Both schemes have been imple-
mented in the RASPA3 code [14]. For the triquintic
scheme, we need derivatives up to order six. Up to order
three can be found in the literature, and here we have
derived expressions for the fourth, fifth, and sixth order
derivatives for pair-potentials. In addition, we perform
our interpolation in fractional space, instead of Cartesian
space, to facilitate easy interpolation on non-rectangular
frameworks. After explaining the methods and details of
the implementation, we show and discuss the results for
the efficiency and accuracy of the methods.

2. Methodology

2.1. Three-dimensional polynomial grid
interpolation

The most common strategy is to break up the problem
into a succession of one-dimensional interpolation. For
an interpolation of order k−1 in x, y, and z [15]:

• We first locate the k × k × k sub-block that contains
our point x, y, z,

• Loop over the points in x-direction and interpolate
into temporary storage for y

• Loop over the temporary storage points in y-direction
and interpolate into temporary storage for z

• Loop over the temporary storage points in z-direction
and do the final interpolation

Note that the interpolationmight be order-dependent.
The tricubic scheme, discussed next, has a cheaper com-
putational cost and allows for a much easier and more
accurate computation of higher derivatives of the extrap-
olated data [10].

2.2. Tricubic interpolation energy/force grids

Lekien and Marsden have developed a tricubic interpo-
lation scheme in three dimensions which is both C1 and
isotropic [10]. The algorithm relies on a specific 64 × 64
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matrix B that establishes the relationship between the
derivatives at the element corners, stored in vector b,
and the coefficients of the tricubic interpolant aijk for the
respective element. Unlike global interpolation, where
the interpolated function typically depends on the entire
data set, this tricubic local interpolation utilises only the
data within the direct vicinity of an individual element.

The algorithm is defined on a unit-cube with frac-
tional coordinates {x, y, z}. The energy value at this point
is approximated through a summation of polynomials of
degree 3:

U(x, y, z) =
3∑

i=0

3∑
j=0

3∑
k=0

aijkxiyjzk, (1)

The coefficients aijk are determined using

ā = B−1b̄ (2)

where the matrix B−1 is constructed in such a way that
the energy and the gradients are continuous (this 64 × 64
matrix forms the core of the tricubic interpolator), and
the vector b̄ contains for each of the eight corner ver-
tices: the energy, and various energy derivatives, in units
of energy and energy per distance to the power i, j, and
k, respectively. The Supporting information S-I describes
in more detail how the coefficients aijk are defined. The
gradients can be obtained as

∂U(x, y, z)
∂x

=
3∑

i=1

3∑
j=0

3∑
k=0

iaijkxi−1yjzk (3)

∂U(x, y, z)
∂y

=
3∑

i=0

3∑
j=1

3∑
k=0

jaijkxiyj−1zk (4)

∂U(x, y, z)
∂z

=
3∑

i=0

3∑
j=0

3∑
k=1

kaijkxiyjzk−1 (5)

At each of the corner points, 8 values are stored for tricu-
bic interpolation: U, ∂U/∂x, ∂U/∂y, ∂U/∂z, ∂2U/∂x∂y,
∂2U/∂x∂z, ∂2U/∂y∂z, and ∂3U/∂x∂y∂z. The tricubic
method also provides continuous first derivatives and is
symmetric in all three variables (isotropic).

2.3. Triquintic interpolation energy/force grids

Boateng and Bradach developed a triquintic algorithm
that involves a trivariate polynomial of degree 5 in each
variable [13]. This yields a polynomial of degree 15. By
increasing the degree of the polynomial, we ensure that
globalC2 continuity is met. The resulting triquintic poly-
nomial, like the tricubic, is also isotropic but achieves

global C2 continuity. Triquintic interpolation, in three
dimensions, results in a 216 term polynomial:

U
(
x, y, z

) =
5∑

i=0

5∑
j=0

5∑
k=0

aijkxiyjzk (6)

At each of the corner points, 27 values are stored
for triquintic interpolation: U, ∂U/∂x, ∂U/∂y, ∂U/∂z,
∂2U/∂x2, ∂2U/∂x∂y, ∂2U/∂x∂z, ∂2U/∂y2, ∂2U/∂y∂z,
∂2U/∂z2, ∂3U/∂x2∂y, ∂3U/∂x2∂z, ∂3U/∂x∂y2, ∂3U/∂x
∂y∂z, ∂3U/∂y2∂z, ∂3U/∂x∂z2, ∂3U/∂y∂z2, ∂4U/∂x2∂y2,
∂4U/∂x2∂z2, ∂4U/∂y2∂z2, ∂4U/∂x2∂y∂z, ∂4U/∂x∂y2∂z,
∂4U/∂x∂y∂z2, ∂5U/∂x2∂y2∂z, ∂5U/∂x2∂y∂z2, ∂5U/∂x
∂y2∂z2, and ∂6U/∂x2∂y2∂z2. These, like in the tricubic
interpolation scheme, are used to determine polynomial
coefficients as described in Section S-I.

The algorithm is based on a 216 × 216 matrix, which
provides the relationship between the undetermined
polynomial coefficients and the observed data that we
wish to interpolate. The algorithm provides increased
accuracy and smoothness compared to the tricubic inter-
polation scheme with globalC1 continuity. The gradients
can be obtained as

∂U(x, y, z)
∂x

=
5∑

i=1

5∑
j=0

5∑
k=0

iaijkxi−1yjzk (7)

∂U(x, y, z)
∂y

=
5∑

i=0

5∑
j=1

5∑
k=0

jaijkxiyj−1zk (8)

∂U(x, y, z)
∂z

=
5∑

i=0

5∑
j=0

5∑
k=1

kaijkxiyjzk−1 (9)

and the second derivatives can be obtained as

∂2U(x, y, z)
∂x2

=
5∑

i=2

5∑
j=0

5∑
k=0

i(i − 1)aijkxi−2yjzk (10)

∂2U(x, y, z)
∂x∂y

=
5∑

i=1

5∑
j=1

5∑
k=0

ijaijkxi−1yj−1zk (11)

∂2U(x, y, z)
∂x∂z

=
5∑

i=1

5∑
j=0

5∑
k=1

ikaijkxi−1yjzk−1 (12)

∂2U(x, y, z)
∂y2

=
5∑

i=0

5∑
j=2

5∑
k=0

j(j − 1)aijkxiyj−2zk (13)

∂2U(x, y, z)
∂y∂z

=
5∑

i=0

5∑
j=1

5∑
k=1

jkaijkxiyj−1zk−1 (14)

∂2U(x, y, z)
∂z2

=
5∑

i=0

5∑
j=0

5∑
k=2

k(k − 1)aijkxiyjzk−2 (15)



4 Y. A. RAN ET AL.

Note that taking the derivative of the function increases
the error by approximately one order of magnitude. This
is expected, since taking the derivative of a polynomial
reduces the degree by one, via the power rule [16]. To pro-
duce a global C3 continuous polynomial, a polynomial
of degree 7 or higher would be required [16]. To com-
pute the higher order derivatives for pair potentials, it is
convenient to define

f †
1 (r) = 1

r
∂U(r)

∂r
= 1

r
f1 (16)

f †
2 (r) = 1

r
∂f †

1 (r)
∂r

= f2
r2

− f1
r3

(17)

f †
3 (r) = 1

r
∂f †

2 (r)
∂r

= f3
r3

− 3f2
r4

+ 3f1
r5

(18)

f †
4 (r) = 1

r
∂f †

3 (r)
∂r

= f4
r4

− 6f3
r5

+ 15f2
r6

− 15f1
r7

(19)

f †
5 (r) = 1

r
∂f †

4 (r)
∂r

= f5
r5

− 10f4
r6

+ 45f3
r7

− 105f2
r8

+ 105f1
r9

(20)

f †
6 (r) = 1

r
∂f †

5 (r)
∂r

= f6
r6

− 15f5
r7

+ 105f4
r8

− 420f3
r9

+ 945f2
r10

− 945f1
r11

(21)

For the Lennard–Jones potentials, these are given by:

U(r) = 4ε
[(σ

r

)12 −
(σ
r

)6]
(22)

f †
1 (r) = 1

r
∂U(r)

∂r
= −24ε

[
2
(σ
r

)12 −
(σ
r

)6] 1
r2

(23)

f †
2 (r) = 1

r
∂f †

1 (r)
∂r

= 96ε
[
7
(σ
r

)12 − 2
(σ
r

)6] 1
r4

(24)

f †
3 (r) = 1

r
∂f †

2 (r)
∂r

= −384ε
[
28
(σ
r

)12 − 5
(σ
r

)6] 1
r6
(25)

f †
4 (r) = 1

r
∂f †

3 (r)
∂r

= 4608ε
[
42
(σ
r

)12 − 5
(σ
r

)6] 1
r8
(26)

f †
5 (r) = 1

r
∂f †

4 (r)
∂r

= −322,560ε
[
12
(σ
r

)12 −
(σ
r

)6] 1
r10

(27)

f †
6 (r) = 1

r
∂f †

5 (r)
∂r

= 2,580,480ε
[
33
(σ
r

)12 − 2
(σ
r

)6] 1
r12

(28)

For the real part of the Ewald summation, these expres-
sions read

U(r) = q1q2
erfc(αr)

r
(29)

f †
1 (r) = −q1q2

(
2αre−(αr)2

√
π

+ erfc(αr)

)
1
r3

(30)

f †
2 (r) = q1q2

(
2αre−(αr)2 (2(αr)2 + 3

)
√

π
+ 3erfc(αr)

)
1
r5

(31)

f †
3 (r) = −q1q2

(
2αre−(αr)2 (4(αr)4 + 10(αr)2 + 15

)
√

π

+ 15erfc(αr)

)
1
r7

(32)

f †
4 (r) = q1q2

⎛
⎜⎜⎜⎝
2αre−(αr)2 (8(αr)6 + 28(αr)4

+ 70(αr)2 + 105
)

√
π

+ 105erfc(αr)

⎞
⎟⎟⎟⎠ 1

r9
(33)

f †
5 (r) = −q1q2

⎛
⎜⎜⎜⎝

2αre−(αr)2 (16(αr)8 + 72(αr)6
+252(αr)4 + 630(αr)2 + 945

)
√

π

+ 945erfc(αr)

⎞
⎟⎟⎟⎠ 1

r11
(34)

f †
6 (r) = q1q2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2αre−(αr)2 (32(αr)10 + 176(αr)8
+792(αr)6 + 2772(αr)4 + 6930(αr)2

+ 10,395)√
π

+ 10,395erfc(αr)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1
r13

(35)
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The derivatives ofU(r) with respect to Cartesian coordi-
nates are given by

∂U(r)
∂ri

= f †
1 ri (36)

The second derivatives are easily derived as [17]

∂2U(r)
∂ri∂rj

= f †
2 rirj + δijf †

1 (37)

where δij is the Kronecker delta function (δij = 1 if i = j,
and 0 otherwise). The third derivatives can be found in
the manual of GULP [18, 19]:

∂3U(r)
∂ri∂rj∂rk

= f †
3 rirjrk + f †

2
(
δjkri + δikrj + δijrk

)
(38)

To the best of our knowledge, the fourth, fifth, and sixth
order derivatives have not appeared in the literature and
are derived here. The fourth derivatives read:

∂4U(r)
∂ri∂rj∂rk∂rl

= f †
4 rirjrkrl

+ f †
3
(
δijrkrl + δikrjrl + δilrjrk + δjkrirl

+ δjlrirk + δklrirj
)

+ f †
2
(
δijδkl + δilδjk + δikδjl

)
(39)

The expressions for the fifth and sixth-order derivatives
becomemore tedious. The fifth derivatives of an isotropic
(radial) function must be a linear combination of the
fully symmetrised products of {rirjrkrlrm}, {δijrkrlrm},
and {δijδklrm}

∂5U(r)
∂ri∂rj∂rk∂rl∂rm

= f †
5 rirjrkrlrm

+ f †
4 (δijrkrlrm + δikrjrlrm + δilrjrkrm

+ δimrjrkrl + δjkrirlrm
+ δjlrirkrm + δjmrirkrl + δklrirjrm
+ δkmrirjrl + δlmrirjrk)

+ f †
3 (δjkδlmri + δjmδklri + δjlδkmri + δklδmirj

+ δkiδlmrj + δkmδlirj + δlmδijrk + δljδmirk
+ δliδmjrk + δmiδjkrl
+ δmkδijrl + δmjδikrl + δijδklrm + δilδjkrm + δikδjlrm)

(40)

A more compact way to write it is:

∂5U(r)
∂ri∂rj∂rk∂rl∂rm

= f †
5 rirjrkrlrm + f †

4

∑
sym

δijrkrlrm

+ f †
3

∑
sym

δijδklrm (41)

where the notation
∑

sym means the sum over all distinct
ways of contracting the indicated pairs of indices (i.e. over
all permutations of i, j, k, l,m consistent with making the
term symmetric in all five indices). Similarly, the sixth-
order derivatives are derived as

∂6U(r)
∂ri∂rj∂rk∂rl∂rm∂rn

= f †
6 rirjrkrlrmrn + f †

5 (δijrkrlrmrn

+ δikrjrlrmrn + δilrjrkrmrn + δimrjrkrlrn + δinrjrkrlrm
+ δjkrirlrmrn + δjlrirkrmrn + δjmrirkrlrn + δjnrirkrlrm
+ δklrirjrmrn + δkmrirjrlrn + δknrirjrlrm + δlmrirjrkrn
+ δlnrirjrkrm + δmnrirjrkrl)

+ f †
4 (δklδmnrirj + δkmδlnrirj + δlmδknrirj

+ δjlδmnrirk + δjmδlnrirk + δjnδlmrirk
+ δjkδmnrirl + δjmδknrirl + δjnδkmrirl + δjkδlnrirm
+ δjlδknrirm + δjnδklrirm
+ δjkδlmrirn + δjlδkmrirn + δjmδklrirn
+ δilδmnrjrk + δimδlnrjrk + δinδlmrjrk
+ δikδmnrjrl + δimδknrjrl + δinδkmrjrl
+ δikδlnrjrm + δilδknrjrm + δinδklrjrm
+ δikδlmrjrn + δilδkmrjrn + δimδklrjrn
+ δijδmnrkrl + δimδjnrkrl + δinδjmrkrl
+ δijδlnrkrm + δilδjnrkrm + δinδjlrkrm
+ δijδlmrkrn + δilδjmrkrn + δimδjlrkrn
+ δijδknrlrm + δikδjnrlrm + δinδjkrlrm + δijδkmrlrn
+ δikδjmrlrn + δimδjkrlrn
+ δijδklrmrn + δikδjlrmrn + δilδjkrmrn)

+ f †
3 (δijδklδmn + δijδknδlm + δijδkmδln

+ δikδjlδmn + δikδjmδln

+ δikδjnδlm + δilδjkδmn

+ δilδjmδkn + δilδjnδkm + δimδjkδln

+ δimδjlδkn + δimδjnδkl

+ δinδjkδlm + δinδjlδkm + δinδjmδkl) (42)

written more succinctly as

∂6U(r)
∂ri∂rj∂rk∂rl∂rm∂rn

= f †
6 rirjrkrlrmrn + f †

5

∑
sym

δijrkrlrmrn

+ f †
4

∑
sym

δijδklrmrn
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+ f †
3

∑
sym

δijδklδmn (43)

where the first term is just all indices ‘carried’ by r’s, the
second term is the sum over all ways of picking one pair
of indices δij with the remaining four indices carried by
r, the third term is the sum over all ways of picking two
disjoint pairs of indices for two Kronecker deltas δijδkl,
and the last term is the sum over all ways of picking three
disjoint pairs of indices to form three Kronecker delta’s
δijδklδmn.

2.4. Cartesian vs. fractional space

In general, the unit cell is defined by the cell lengths a,
b, c and angles α, β , γ , and by the fractional coordinates
of the atoms within the unit cell. Fractional coordinates
lie in a dimensionless, orthonormal space. The transfor-
mation from fractional space to Cartesian space can be
carried out by the matrix h [20]:

h =
⎛
⎝a b cos(γ ) c cos(β)

0 b sin(γ ) cζ
0 0 c

√
1 − cos2 β − ζ 2

⎞
⎠ (44)

with

ζ = cosα − cos γ cosβ
sin γ

(45)

This aligns the a cell vector along the x axis, b in the
xy-plane. Conversely, the inverse of the box matrix h−1

transforms real coordinates to fractional coordinates,
with a total box length of 1. Our potential force field is
defined in Cartesian space. Therefore, it is convenient
to store positions in Cartesian space, transform them
to fractional space, apply periodic boundary conditions,
and transform back to Cartesian space to compute dis-
tances within the simulation box [20]

s = h−1r

s′ = s − rint (s)

r′ = hs′
(46)

where the ‘rint’-function returns the rounded integer
value of its argument. The smallest perpendicular width
of the unit cell has to be larger than twice the spheri-
cal cutoff in Cartesian space to be consistent with the
minimum image convention.

The gradient in fractional space g′ can be obtained
from the gradient g in Cartesian space using

g′ = hTg (47)

where subscript T denotes the transpose of the matrix.
Likewise, the Hessian matrix in fractional space H′ can

be obtained from the Hessian matrix in Cartesian space
H by using

H′ = hTHh (48)

In general, the transformations of the first-, second-,
third-, fourth-, fifth-, and sixth-order tensors, converted
from Cartesian space T to fractional space T′, read [21]

T′
i = hipTp (49)

T′
ij = hiphjqTpq (50)

T′
ijk = hiphjqhkrTpqr (51)

T′
ijkl = hiphjqhkrhlsTpqrs (52)

T′
ijklm = hiphjqhkrhlshmtTpqrst (53)

T′
ijklmn = hiphjqhkrhlshmthnuTpqrstu (54)

where the Einstein-summation convention has been used
(repeated indices are implicitly summed over) [22]. For
example, the sixth derivative in fractional space is explic-
itly written out as:

∂6U
∂s2x∂s2y∂s2z

= h2xxh
2
yxh

2
zxTxxxxxx + 2h2xxhyxhyyh

2
zxTxxxxxy

+ h2xxh
2
yxhzxhzyTxxxxxy

+ 2h2xxh
2
yxhzxhzzTxxxxxz

+ h2xxh
2
yxhzxhzyTxxxxyx

+ h2xxh
2
yyh

2
zxTxxxxyy

+ 4h2xxhyxhyyhzxhzyTxxxxyy

+ h2xxh
2
yxh

2
zyTxxxxyy

+ 4h2xxhyxhyyhzxhzzTxxxxyz

+ 2h2xxh
2
yxhzyhzzTxxxxyz

+ h2xxh
2
yxh

2
zzTxxxxzz

+ 2h2xxh
2
yyhzxhzyTxxxyyy

+ 2h2xxhyxhyyh
2
zyTxxxyyy

+ 2h2xxh
2
yyhzxhzzTxxxyyz

+ 4h2xxhyxhyyhzyhzzTxxxyyz

+ 2h2xxhyxhyyh
2
zzTxxxyzz

+ h2xxh
2
yyh

2
zyTxxyyyy

+ 2h2xxh
2
yyhzyhzzTxxyyyz

+ h2xxh
2
yyh

2
zzTxxyyzz (55)

This means that to convert a derivative from Cartesian
to fractional, in general, many elements of the tensor are
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needed. However, for rectangular cells, the expressions
simplify significantly.

The gradient in Cartesian space g can be obtained
from the gradient g′ in fractional space using

g = h−Tg′ (56)

where the subscript −T denotes the transpose-inverse
of the matrix. Likewise, the Hessian matrix in Cartesian
space H can be obtained from the Hessian matrix in
fractional spaceH′ by using

H = h−TH′h−1 (57)

In general, the transformations of the first- and second-
order tensors, converted from fractional space T′ to
Cartesian space T, read

Ti = h−1
ip T′

p (58)

Tij = h−1
ip h−1

jq T′
pq (59)

2.5. Multiple cells in fractional space

The interpolation can be improved by using higher-order
derivatives, but this has a limit and only works for poly-
nomial data. It can also be improved by dividing the unit
cube into many rectangular cuboids (see Figure 1). If we
choose to divide the unit cube into Ncells cells in each
direction, we need Ngrid−points + 1 grid points in each
direction.

It is convenient to start counting from zero. In that
case, we can find the lower bound indices gl and upper
bound indices gu of the grid cuboid as

gl = �s ∗ Ncells� (60)

Figure 1. Rectilinear grid: the fractional unit cell is dividedup into
many rectangular cuboids.

gu = �s ∗ Ncells� = gl + {1, 1, 1} (61)

where � � is the floor of the number (i.e. the largest
integer that does not exceed the argument floating point
number), and � � is the ceiling of the number (the
smallest integer greater than or equal to the argument
floating point number). The fractional position t within
that cuboid is now

t = s ∗ Ncells − gl (62)

The spacing of the lattice is δ = 1/Ncells and the deriva-
tives need to be corrected for this transformation:

∂U
∂tx

= δx
∂U
∂sx

(63)

∂U
∂ty

= δy
∂U
∂sy

(64)

∂U
∂tz

= δz
∂U
∂sz

(65)

∂2U
∂tx∂ty

= δxδy
∂2U

∂sx∂sy
(66)

∂2U
∂tx∂tz

= δxδz
∂2U

∂sx∂sz
(67)

∂2U
∂ty∂tz

= δyδz
∂2U

∂sy∂sz
(68)

∂3U
∂tx∂ty∂tz

= δxδyδz
∂3U

∂sx∂sy∂sz
(69)

and similarly, all the derivatives of the triquintic scheme
can be transformed.

2.6. Tabulating the Lennard–Jones potential

In principle, we need to tabulate 4ε
[(

σ
r

)12 −
(

σ
r

)6]
for

each ε, σ -pair. As pointed out by Bai [8], we can avoid
storing a separate grid for each different σ -value when
using Jorgensen-Berthelot mixing rules:

σij = √σii × σjj (70)

εij = √εii × εjj (71)

We only have to store two Lennard–Jones grids:
(

σ 0

r

)12
and
(

σ 0

r

)6
, where σ 0 is a fixed, chosen reference σ value.

In this work, the reference σ 0 has been chosen as σ 0 =
1.0 Å. The interpolated value for any εii, σii pair is then

PLJ12−6 = √
εii

[(
σii/σ

0)6PLJ12 − (σii/σ 0)3PLJ6

]
(72)
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For a shifted Lennard–Jones, we have to tabulate(
σ 0

r

)12 −
(

σ 0

rc

)12
and
(

σ 0

r

)6 −
(

σ 0

rc

)6
, where rc is the

cutoff distance. When using Lorentz–Berthelot mixing
rules [23]

σij = (σii + σjj
)
/2 (73)

εij = √εii × εjj (74)

a separate grid is required for each of the σ values.

2.7. Tabulating the electrostatics

A minor complication arises when the framework has
a non-zero net electric charge compensated by counter
ions. Let us assume the framework is kept fixed, but
non-framework cations are allowed to move. Although
the system as a whole may be electrically neutral, the
omission of framework-framework interactions from the
calculation also means that the Ewald Fourier contribu-
tions should be split into separate sums which are each
net charged. Not only should the interactions of a frame-
work atom with other framework atoms be omitted, but
also the interactions with all its images.

Splitting of the potential energy into separate contri-
butions involves computing cross terms between compo-
nents of types A and B [24, 25], for example A as the
framework, and B the adsorbates. In real space, this is
trivially accomplished, but the reciprocal separation is
more difficult. Cross term interaction energies in recip-
rocal space are given by

Urec
A,B = 2π

V

∑
k 	=0

1
k2
e
− k2

4η2

[(∑
i∈A

qi cos (k · ri)
)

×
(∑

i∈B
qi cos (k · ri)

)

+
(∑

i∈A
qi sin (k · ri)

)(∑
i∈B

qi sin (k · ri)
)]

.

(75)

The sums in Equation (75) are stored in memory. It is
important to note that Equation (75) only applies when
both the separate sums over species A and B are charge
neutral. This is, in general, not the case. For example,
in MC adsorption simulations, one often encounters a
negatively charged zeolite charge-compensated by either
cations or protons. All-silica zeolites devoid of cations are
neutral, but framework ions like aluminum induce a net
charge.

It is customary to treat charged periodic systems
via a uniform neutralising background plasma [25].

However, this leads to serious artifacts in both system
energy and pressure and leads to unrealistic behaviour.
Bogusz et al. corrected these artifacts by instituting a net-
charge correction term that consists of subtracting off
the Ewald sum for a single particle with charge equal to
the net charge [25]. This correction implicitly restores η-
independence in net-charged systems. We define Uζ as
the reciprocal energy of a single ion placed at the centre
of charge o

Uζ = 2π
V

∑
k 	=0

1
k2
e
− k2

4η2
[
(cos (k · o))2 + (sin (k · o))2]

− η√
π
. (76)

If only the energy is needed, the particle can simply be
placed at the origin. Note that the term then only depends
on the shape and size of the simulation cell and has to
be computed only once if the cell does not change. The
charge-charge interaction energy UA,B of component A
and B is given by

UA,B = Ureal
A,B + Urec

A,B + Uself
A,B + Ucorr (77)

Uself
A,B = − (1 − δB)

η√
π

∑
i∈A,B

q2i (78)

Ucorr =
(∑

i∈A
qi

)(∑
i∈B

qi

)
Uζ (79)

where δij = 1 if i = j, zero otherwise, denotes the Kro-
necker delta. These expressions are valid in any kind of
net-charge arrangement, including a net charge of the
total system.

Note that it is also possible to precompute the electro-
static potential and use that for the adsorbate-framework
grid interpolation. However, this scheme is more diffi-
cult to combine with the Ewald summation for adsor-
bate–adsorbate interactions when the framework has a
net charge (compensated by mobile cations).

2.8. Expanded ensembles

In the original Continuous Fractional ComponentMonte
Carlo (CFCMC) method [26, 27], and also in this work,
Lennard–Jones interactions uLJ(r) and charge-charge
interactions uCoul are scaled as

uLJ (r, λ) = λ4ε

⎡
⎢⎣ 1[

1
2 (1 − λ)2 + ( rσ )6]2

− 1[
1
2 (1 − λ)2 + ( rσ )6]

⎤
⎦ (80)
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uCoul (r, λ) = λ5
1

4πε0

qiqj
r

. (81)

where ε0 is the dielectric constant in vacuum, r is the
interatomic distance, q is the atomic charge, ε is the LJ
strength parameter and σ is the LJ size parameter. For
an expanded-ensemble scheme on a discrete λ-space, the
values for each λ at a spatial grid point could be tabulated.
However, it will be better to compute all fractional parti-
cles using the explicit computation (i.e. looping over all
framework atoms), as the number of fractional particles
is much lower than the number of integer particles.

Special care is needed when transforming fractional
molecules into integer molecules, and vice versa [27].
Here, the integer molecules are computed using grids
and the fractional molecule using full computation. The
energy difference �U between these two must be taken
into account for the Monte Carlo energy drift. Also, this
energy difference comes back as an additional Boltzmann
factor exp[−β�U] term in the acceptance rule [28].

3. Results

3.1. Polynomial tests

Table 1 reports the maximum absolute error |f (x, y, z) −
P(x, y, z)| of the interpolated P(x, y, z) compared to
the reference function f (x, y, z) for various polynomials
(order 2–6) and nonpolynomial forms. For the tricubic
scheme, polynomials up to order 3 can be represented
exactly (i.e. with zero error to within floating-point pre-
cision on a uniform {1, 1, 1} grid). For higher order poly-
nomials, the tricubic interpolation becomes approximate,
yielding nonzero errors that decrease as the grid resolu-
tion increases. The triquintic interpolation scheme poly-
nomials extend exactness to fifth-order polynomials and,

like tricubic, treats the exponential function only approx-
imately. However, the errors for the triquintic scheme are
consistently smaller than those of tricubic interpolation
for identical resolutions.

3.2. Benchmark

Figure 2 reports the wall-clock time required for a single
evaluation of the Framework-Molecule energy routine.
All simulations are carried out on a AMD EPYC 9554
64-core processor (with 256MB L3 cache) as single-core
jobs. Benchmarks for the Coulomb energy and gradient
routines are shown in Figures S1–S3. Each test computed
the total interaction energy or its gradient forNtest probe
positions distributed throughout a triclinic simulation
box of k × k × k unit cells of CHA-type zeolite.

The interpolated methods have a O(Ntest) scaling,
whereas the full energy computation has a O(NtestNfw)

scaling, for Nfw framework atoms. Figure 2 shows that
increasing the number of unit cells k × k × k does not
increase the computational cost in the interpolated rou-
tine. The cost of these routines scales linearly with
the amount of probe positions. Notably, it is shown
that the tricubic and triquintic interpolation meth-
ods show a minimum execution time of 2ms (tricu-
bic) and 10ms (triquintic), regardless of the number
of probe particles used. Therefore, the speedup is only
achieved for a sufficiently large amount of framework
atoms Nfw.

Figure 3 shows the results of the micro-benchmarks
for grand-canonicalMonte Carlo simulations ofmethane
in k × k × k MFI boxes at 300K and 100 kPa. Interpo-
lating the framework–molecule interaction reduces wall-
clock time by up to a factor of two, with the benefit
increasing steadily from k = 1 to k = 5. Minor improve-
ments are observed for the different implementations

Table 1. Maximum absolute error |f (x, y, z) − P(x, y, z)| of the interpolated value P(x, y, z) com-
pared to the function value f (x, y, z) in the domain [−3.0, 3.0] × [−3.0, 3.0] × [−3.0, 3.0], evaluated
at a 1003 mesh for the triclinic and triquintic scheme and various polynomial (order 2–6) and
non-polynomial forms.

Ncells

function f (x, y, z) order scheme {1, 1, 1} {8, 8, 8} {64, 64, 64}
x2 + y2 + z2 2 tricubic 7.46 × 10−14 2.17 × 10−13 2.04 × 10−13

2 triquintic 1.45 × 10−12 2.27 × 10−11 1.25 × 10−11

x3 + 2x2yz2 − y2z + 1 3 tricubic 1.22 × 10−11 1.85 × 10−12 3.30 × 10−12

3 triquintic 2.57 × 10−9 4.64 × 10−10 1.96 × 10−10

(x2 + y2 + z2)2 4 tricubic 243.0 0.0591 1.44 × 10−5

4 triquintic 1.34 × 10−9 4.08 × 10−10 2.79 × 10−10

x5y3z + 2xy3 + 4x2yz2 5 tricubic 5631.771 20.980 0.005250
5 triquintic 6.00 × 10−6 1.17 × 10−8 1.57 × 10−8

(x2 + y2 + z2)3 6 tricubic 7290.0 8.616 0.00226
6 triquintic 2187.0 0.0083 3.17 × 10−8

(x2 + y2 + z2)e−(x2+y2+z2) – tricubic 0.3678793 0.0083915 1.1920 × 10−5

– triquintic 0.3678750 0.0001741 1.2037 × 10−8



10 Y. A. RAN ET AL.

Figure 2. Benchmark for calculating the framework-particle Lennard–Jones energy. Benchmarks are performed by calculating the
energy for Ntest randomly placed probe methane molecules in CHA zeolite.

Figure 3. Relative speedup of tricubic (blues), triquintic (orange) and 3D polynomial (greens) simulations using interpolation schemes
relative to simulations using the full molecule framework energy computation routines. Simulations are performed for methane adsorp-
tion using CBMC insertions and deletions for a k × k × k unit cells of MFI zeolite at 300 K and 100 kPa. Three different implementations
of tricubic interpolation are shown, where the matrix-vector product is computed using a conventional loop, using Lapack, or by writing
out the non-zero terms terms explicitly.

of the interpolation routine. The implementation where
the matrix-vector product is explicitly written out, using
only the non-zero terms in the sparse matrix, is the
most efficient. For the smallest simulation boxes, the
overhead of the higher per-call cost of the interpolated
routine offsets any gain, whereas for larger boxes the
fraction of CPU time spent in the framework energy cal-
culation becomes dominant, making interpolation com-
putationally favourable. That is, a sufficient amount of
framework atoms is needed before interpolation pays off.
After reaching an optimum, the speedup for larger cells
becomes less, because more and more relative computa-
tional time is spent in computing intermolecular interac-
tions. Figure S5 shows the speedup of Widom insertions

of methane in MFI in an empty framework. Since there
are nomolecule-molecule and only framework-molecule
interactions, the speedup goes up with larger systems
in that case. Splitting the total run time into pressure-
sampling and non-Ewald energy calculations, plotted in
Figure S6, shows that pressure sampling is inexpensive
in small boxes. In RASPA3, the energy decomposition
computation per component and the computation of the
pressure (computed using the same routines) are done
periodically every 10 or so cycles. But its share of CPU
time grows with the box size.

When an entire adsorption isotherm is computed
(Figure 4), tricubic interpolation shortens the calcula-
tion from 24 CPU h to 4 CPU h for Configurational-Bias
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Figure 4. Relative speedup of GCMC adsorption simulations using polynomial, tricubic and triquintic interpolationmethods ofmethane
in 2 × 2 × 2 MFI zeolite. The inset shows the normalised loading isotherm of the CBMC simulation with explicit energy routines,
representative for all loading isotherm (which all lie within the error bar).

Monte Carlo (CBMC) insertions [29]. Triquintic inter-
polation results in a 25% increase in efficiency for all
protocols at k = 2, consistent with the similar bench-
mark timings in Figure S4. Greater speedup is expected
for both schemes as system size increases. The more
marginal efficiency benefits observed for the schemes
involving fractional molecules are attributed to the fact
that all energy routines involving the fractional molecule
must be computed explicitly. Overall, the simpler tricubic
scheme offers the best cost–accuracy trade-off for routine
GCMC production runs.

3.3. Precision

The highest precision for the interpolation needs to be
achieved for the lowest energies (since these are expo-
nentially preferred in the Boltzmann ensemble). Hence,
we employ an error measure through Boltzmann weight-
ing of the energy estimates [5]. The Boltzmann weighted
mean squared error is defined as:

error =

√√√√√√
∑ntrials

i
(
Ufull(ri) − U interp. (ri)

)2
× exp

[−βU full(ri)
]

∑ntrials
i

(
Ufull(ri)

)2 exp [−βUfull(ri)
] , (82)

where Ufull is the explicit energy method, U interp. the
interpolated energy, and ri a uniformly sampled random
position inside the simulation box. Figure 5 shows the
error computation for 105 randomprobe positions for the

energy grid of Lennard–Jones particles in IRMOF-1 as a
function of ε andσ . The estimatedweighted relative error
for the energy calculation does not exceed 0.9% for tricu-
bic and 0.03% for triquintic interpolation. Higher errors
are seen for lower values of σ , where the highest error is
observed for values of σ lower than the grid spacing of
0.15Å. Although these values are rarely used in simula-
tions, it is important to be aware of high errors when the
particle size approaches the grid spacing.

To compare whether the computed properties lie
within the error bar, we define the Z-score based on the
estimated mean and variance of the observable:

Z = μfull − μinterp.√
σ 2
full + σ 2

interp.

, (83)

for the mean μ and variance σ 2. In Figure 6 we show
the Z-score for the estimation of observables in a GCMC
simulation of methane inMFI for 2 × 105 cycles. For low
grid spacings (≤ 0.2 Å) only some deviations within one
σ are observed, which is to be expected. At higher grid
spacings, the error increases and the triquintic interpo-
lation scheme shows a structural underestimation of the
framework-molecule energy (i.e. more negative), lead-
ing to an overestimation of the loading. Clearly, it is
important that appropriate grid spacing is selected when
employing interpolation methods to prevent structural
errors occurring.
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Figure 5. Lennard–Jones particles (ε, σ) in IRMOF-1: relative error of the measured energy (a,c) and gradient (b,d) of the tested grids,
computed by 105 random trial points for tricubic (a,b) and triquintic (c,d) interpolation with a grid spacing of 0.15 Å.

Figure 6. Z-score error for tricubic (top) and triquintic (bottom) interpolation, for three observables: loading (left), enthalpy (middle) and
framework-molecule energy (right). The unshaded area shows the 95% confidence interval. Isotherm simulations are carried out using
CBMC simulation of methane in 2 × 2 × 2 MFI at 300 K.
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4. Conclusions

In this work, we have implemented and benchmarked
two local interpolation schemes – tricubic and triquin-
tic – for rapid evaluation of framework-molecule inter-
actions in nanoporous materials. We have extended
RASPA3 code to support the tricubic interpolation
scheme by Lekien and Marsden [10] and the more
recent triquintic extension of Boateng and Bradach [13].
Across polynomial test functions and realistic methane-
zeolite systems, we observed that triquintic interpolation
achieves global C2 continuity and lower interpolation
error at fine grid resolutions. The simpler tricubic inter-
polation, also implemented in the earlier RASPA2, offers
superior computational speed and efficiency.

The benefits of the interpolation methods lie in the
scaling behaviour of the computational efficiency. Every
full computation of the energy is associated with a few to
a dozen multiplications and a division (per framework-
molecule interaction), whereas every interpolated energy
calculation involves calculating a sparse matrix-vector
product of size 64 × 64 and 216 × 216 respectively.
While not cheap, the benefit lies in the fact that the
interpolation cost shows no scaling with the total num-
ber of unit cells. The interpolation schemes, especially
the triquintic scheme, therefore only have added value
starting from a sufficiently large number of framework
atoms. Note that using a larger cutoff also leads to an
increased number of unit cells. In addition, the more
complex and computationally expensive the computed
potential is, the higher the benefit of grid interpola-
tion. The accuracy of grid interpolation is dependent
on both the strength-parameter ε and size-parameter
σ of the Lennard–Jones potential, and on the details
of the framework. For most adsorbates and frame-
work structures, a grid-spacing of 0.15–0.2Å will be
sufficient.

Although triquintic interpolation requires additional
computational effort and is significantly slower than
tricubic interpolation, it offers distinct advantages in
certain contexts. In tasks such as force-field fitting or
machine-learning potential training, the Hessian is nec-
essary for the optimisation schemes and therefore the
C2 continuity is required. This full continuity guaran-
tees well-defined, continuous first and second derivatives
throughout the simulation cell, enabling accurate Hes-
sian evaluation at arbitrary points. By contrast, explicit
models for direct Hessian computation impose a sub-
stantial overhead. The Hessian is also of use in advanced
energy minimisation techniques [30], transition state
optimizations [31], and the computation of vibrational
properties (infra-red spectra and mode analysis). Look-
ing forward, we expect that tricubic interpolation will

remain themethod of choice for high-throughput screen-
ing and large-scale adsorption studies, where millions of
energy evaluations are required. The triquintic scheme
will enable fast force field development, automatic differ-
entiation, and hybrid ML-physics workflows that rely on
smooth, differentiable potential energy surfaces.
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