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SUMMARY

Scientific visualization of tensor fields is challenging due to the complex and mul-

tivariate nature of tensor data. The visualization of multiple tensor fields becomes even

more difficult, and still in its infancy. This thesis aims at contributing visual analysis

techniques for multiple 3D tensor fields.

We focus specifically on the visual analysis of Diffusion Tensor Imaging (DTI)

datasets. DTI is a magnetic resonance imaging (MRI) based modality, which is com-

monly used in neuroscience to investigate brain white matter in vivo. It requires a long

scanning time compared to other imaging modalities. Acceleration of MRI acquisi-

tions has the potential to improve the applicability of DTI. Compressed sensing (CS)

is a signal reconstruction technique that is used to accelerate MRI acquisitions. The

traditional CS method aims at optimizing the global quality of the reconstructed image.

However, in practice, the quality of local structures is often of more interest. There-

fore, we investigate CS for this purpose and contribute in this direction by adapting the

traditional CS reconstruction method to focus on the quality of local structures.

DTI is able to measure the diffusion profile of water molecules within each voxel,

which is influenced by the underlying fibrous structure of white matter, and models it as

a second-order symmetric positive-definite tensor (i.e., the so-called diffusion tensor).

The diffusion tensor, mathematically expressed as a 3-by-3 symmetric positive-definite

matrix, can be decomposed into scale, shape, and orientation, which are its intrinsic

properties. It is the intrinsic properties of the diffusion tensor that make DTI a uniquely

important imaging modality. Each of them has a biologically meaningful interpretation

for the underlying tissue properties. This thesis makes heavy use of tensor intrinsic

properties in developing visual analysis techniques for multiple DTI datasets because

neuroscientists can put direct interpretations on them.

When comparing two tensor fields in a voxel-wise manner, existing methods are

not very effective in visually expressing the differences. This thesis proposes a compu-

tationally efficient dissimilarity measure to quantify the pair-wise differences between

xi
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diffusion tensors in terms of tensor intrinsic properties. A novel checkerboard-style

glyph is designed, which is able to visually convey the local differences between two

tensor fields.

When analyzing multiple tensor fields as a whole, i.e., an ensemble of tensor

fields, it is impossible to show all the information simultaneously. Therefore, appropri-

ate statistics are needed to summarize essential information. Previous work is mainly

based on the Euclidean mean tensor and the complex fourth-order covariance tensor.

This type of analysis is performed in a general manner by not considering the intrinsic

properties of the diffusion tensor. More importantly, the visual interpretation of the

covariance tensor in particular is difficult. This thesis proposes a representative mean

tensor and tensor ensemble variations based on tensor intrinsic properties. An overview

+ detail visual analysis framework is developed to facilitate the visual exploration of

ensembles of tensor fields in the 3D physical and feature space.

In cases where two ensembles of tensor fields are compared (e.g., a control group

and a patient group), the contradiction between the huge amount of information to be

visualized and the limited number of available visual channels becomes much more

severe. This thesis resolves this contradiction by carefully combining and extending

the checkerboard-style glyph design and the overview + detail framework. A glyph

representation is designed to support the comparison of the tensor ensemble summary

statistics in the spatial domain. The final major contribution of this thesis is to integrate

the level-of-detail concept into the glyph representation, which is able to progressively

reveal more information as neuroscientists zoom in.

The validation of the visual analysis techniques proposed in this thesis is carried

out in the form of user studies and case studies. The design of a user study in this con-

text is a difficult problem since some domain-specific knowledge is necessary, which

restricts the number of available participants. We abstract domain-specific questions

into a domain-independent form whenever possible to include as many participants

as possible. Case studies are performed by neuroscientists with real-world datasets

to confirm already known facts and obtain new findings to generate hypothesis. The

overall evaluation results demonstrate the usability of our visual analysis framework.
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Wetenschappelijke visualisatie van tensorvelden is uitdagend vanwege de com-

plexe en meerdimensionale eigenschappen van tensor data. De visualisatie wordt zelfs

nog moeilijker wanneer meerdere tensorvelden geanalyseerd worden en deze visua-

lisaties staan nog aan het begin van hun ontwikkeling. Deze thesis richt zich op het

bijdragen van visuele analysetechnieken voor meerdere 3D tensorvelden.

We focussen vooral op de visuele analyse van Diffusion Tensor Imaging (DTI)

data. DTI is een vorm van magnetic resonance imaging (MRI), welke vaak gebruikt

wordt in neurowetenschappen om de witte stof hersenen in vivo te onderzoeken. Een

langere scantijd is nodig vergeleken met andere scan methodes. Het versnellen van de

MRI-scans zou potentieel de toepasbaarheid van DTI kunnen verbeteren. Compressed

sensing (CS) is een signaal reconstructie techniek die gebruikt wordt om MRI-scans

te versnellen. De traditionele CS-methode probeert de globale kwaliteit van het gere-

construeerde beeld te optimaliseren. Helaas, in de praktijk is vooral de kwaliteit van

lokale specifieke structuren belangrijk. Daarom onderzoeken we het gebruik van CS

voor dit doeleinde en dragen we bij in deze onderzoeksrichting door de traditionele

CS-reconstructiemethode te laten focussen op de kwaliteit van lokale structuren.

Met DTI is het mogelijk om het diffusieprofiel van watermoleculen in iedere voxel

te meten, deze wordt beïnvloed door de onderliggende vezelbanen van de witte stof en

stileert deze als een symmetrische positieve definiete matrix van de tweede orde (de

zogeheten diffusie tensor). Die diffusie tensor, wiskundig uitgedrukt als een 3 × 3

symmetrische positieve definiete matrix, kan worden onderverdeelt in schaal, vorm en

oriëntatie, welke de intrinsieke eigenschappen van de matrix zijn. Het zijn deze in-

trinsieke eigenschappen die DTI een unieke belangrijke beeldvormende methode ma-

ken. Ieder van deze intrinsieke eigenschappen heeft een betekenisvolle biologische

interpretatie van het onderliggende weefseleigenschappen. Deze thesis maakt veel-

vuldig gebruik van tensor intrinsieke eigenschappen voor de ontwikkeling van visuele

analysetechnieken voor meerdere DTI-datasets zodat neurowetenschappers deze direct

xiii
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kunnen interpreteren.

Wanneer twee tensorvelden vergeleken worden op voxelniveau zijn bestaande me-

thoden minder effectief in het visueel uitdrukken van de verschillen. Deze thesis stelt

een efficiënt berekenbare ongelijkheidsmaat voor om paarsgewijs de verschillen tus-

sen de diffusie tensors te kwantificeren aan de hand van de intrinsieke tensoreigen-

schappen. Een nieuwe schaakbordstijl-glyph is ontworpen die in staat is om de lokale

verschillen tussen twee tensorvelden te visualiseren.

Wanneer meerdere tensorvelden worden geanalyseerd als een geheel, bijvoor-

beeld een ensemble van tensorvelden, is het onmogelijk om alle informatie gelijktijdig

te laten zien. Daarom zijn geschikte statistieken nodig die de essentiële informatie

samenvatten. Eerder werk is voornamelijk gebaseerd op de Euclidische gemiddelde

tensor en de complexe covariantie tensor van de vierde orde. Dit soort analyse wordt

uitgevoerd in een generieke wijze zonder de intrinsieke eigenschappen van de diffusie

tensor mee te nemen. Bovendien is de visuele interpretatie van de covariantie tensor

in het bijzonder moeilijk. Deze thesis stelt een representatieve gemiddelde tensor voor

en tensor ensemble variaties gebaseerd op de tensor intrinsieke eigenschappen. Een

overview + detail visuele analyse framework is ontworpen voor de visuele verkenning

van ensembles van tensorvelden in de ruimtelijke en data ruimte.

In het geval waar twee ensembles van tensorvelden vergeleken moeten worden,

bijvoorbeeld een controle groep en een patiëntengroep, wordt de tegenstelling tussen

de enorme hoeveelheid informatie die gevisualiseerd moet worden en het aantal visuele

kanalen erger. Deze thesis lost deze tegenstelling op door voorzichtig de schaakbord-

glyph en het overview + detail framework te combineren en uit te breiden. Een gly-

phrepresentatie is ontworpen om de vergelijking te ondersteunen van de tensor ensem-

ble samenvattingsstatistieken in het ruimtelijke domein. De laatste bijdrage van deze

thesis is de integratie van het level-of-detail concept in de glyphrepresentatie. Deze

representatie maakt het mogelijk om progressief meer informatie te laten zien wanneer

de neurowetenschapper inzoomt.

De validatie van de visuele analysetechnieken die in deze thesis worden geïntro-

duceerd is uitgevoerd door middel van gebruikersonderzoeken en gevalsanalyses. Het

ontwerp van een gebruikersonderzoek is een lastig probleem omdat bepaalde vakken-

nis nodig is, hierdoor is het aantal gebruikers beperkt. We abstraheren vragen waarvoor

vakkennis nodig in vragen die geen specifieke vakkennis vereisen zodat we zoveel mo-
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gelijk deelnemers konden includeren. Gevalsanalyses zijn uitgevoerd door neurowe-

tenschappers met reële datasets om alreeds bekende feiten te bevestigen en om nieuwe

hypotheses te ontwikkelen. De uitkomst van de totale evaluatie demonstreert de bruik-

baarheid van ons visuele analyse framework.





1
INTRODUCTION

The art of war is of vital importance to the State.

It is a matter of life and death, a road either to safety or to ruin.

Hence it is a subject of inquiry which can on no account be neglected.

Sun Tzu

兵者，国之大事，死生之地，存亡之道，不可不察也。

孙武

1
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2 1. INTRODUCTION

1.1. MOTIVATION
The brain is the most important and complex organ in the human body. The

cerebrum, as the largest and most developed part of the brain, is roughly made up of

two types of tissues, the gray matter and the white matter [1]. A modern imaging

technique, called Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) [2, 3],

provides a unique way to noninvasively investigate the fibrous structure of white matter

in the human brain in vivo by measuring the diffusion profile of water molecules. DW-

MRI, as the name suggests, is a specific kind of MRI technique. MRI acquisition is a

time-consuming process, and DW-MRI is even more time-consuming since it requires

additional scanning sequences. This disadvantage restricts the applicability of DW-

MRI. Compressed sensing (CS) [4] is a signal processing technique that enables the

reconstruction of MR images with fewer samples in k-space, which is termed as CS

MRI. Hence, CS MRI is able to produce high-quality images with relatively short

scanning time. However, in practice, researchers are more interested in the quality

of relevant local structures, instead of the whole image. In this thesis, we adapt the

traditional CS MRI method to take local information of interest into consideration.

In regular MR images the fibrous structure of different white matters is not distin-

guishable. This is where DW-MRI comes in. DW-MRI enables the generated images

to sensitize to different white matter structures by employing a physical phenomenon,

i.e., the Brownian motion or diffusion of water molecules. The diffusion behavior of

water molecules shows directional dependence (i.e., anisotropy) upon the underlying

white matter structure. Specifically, water diffuses more freely (i.e., faster diffusion)

along the direction of nerve fiber tracts of white matter than across it. DW-MRI is

capable of measuring the extent of water diffusion in many directions for each vol-

ume element (voxel) in the brain, which are then used to deduce the underlying fibrous

structure of white matter.

It is hard to interpret the generated DW-MRI images without proper data process-

ing. It yields little insight, for example, by directly looking at hundreds of slices of the

DW-MRI volumetric images. As a result, one needs to summarize these generated DW-

MRI images to make them comprehensible. A widely employed assumption about the

water diffusion is that it follows an anisotropic Gaussian distribution. In this scenario

the local diffusion behavior can be mathematically modeled with a symmetric second-

order tensor D, which is expressed as a 3× 3 symmetric matrix. Consequently, this
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specific modeling technique of DW-MRI images is called Diffusion Tensor Imaging

(DTI) [5]. Other more advanced modeling techniques such as High Angular Resolu-

tion Diffusion Imaging (HARDI) [6] require the acquisition of many more DW-MRI

images, which is a time-consuming process. This makes DTI extensively used in clinic

and research. This thesis focuses on dealing with DTI datasets, which are 3D tensor

fields by nature.

Scientific visualization relies on the high-bandwidth channel of the human vi-

sual system to our brains [7]. Its goal is to turn large and complex data into a visual

representation so that human experts can see the data better. Therefore, scientific vi-

sualization is the technique that human experts can resort to in order to obtain a better

understanding of what information is expressed in the tensor field. There has been con-

siderable progress in this research direction in last decades (cf. Section 3.4), ranging

from the tensor glyphs [8] to fiber tracking [9].

Nowadays, DTI-based analysis is moving beyond a single dataset to two or mul-

tiple co-registered datasets. For example, it is necessary to compare two DTI datasets

in order to explore the effects of different acquisition parameters [10], or evaluate the

registration quality [11]. Figure 1.1a shows that two tensor fields are overlaid with each

other, which is a common strategy for voxel-wise comparison. It is also necessary to

summarize a group of DTI datasets, normally called cohorts or ensembles, in order to

locate variations between subjects that might be caused by natural variations [12] or

uncertainty [13]. In neuroscientific studies, it is quite common to compare two groups

of DTI datasets in order to investigate the influence caused by pathology [14–16], gen-

der [17], different analysis methods [18], or other factors [19]. Figure 1.1b shows the

level-of-detail visualization designed to analyze an ensemble of diffusion tensor fields.

The large number of subjects involved in the analysis together with the multivariate

nature of diffusion tensors impose challenges on both the analysis and the visualiza-

tion. Due to the complexity of multivariate statistical analysis, most of the previous

approaches are based on derived scalar quantities, such as fractional anisotropy [20]

(FA), rather than the multivariate diffusion tensor itself. Well-established visualiza-

tions for scalar data (e.g., slice views or line plots) can be used to show the results. The

primary reason behind this type of visual analysis approaches is simplicity. However,

it provides merely one facet of the full tensor information. This means neuroscientists

run the risk of missing relevant information. Figure 1.1c shows the most commonly
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used visualization, i.e., the slice views, for inter-group comparison. Certain statistical

measures, which are color-coded, are overlaid on the FA background images. When

analyzing multiple tensor fields, there are few available methods that handle the dif-

fusion tensor in its entirety [19, 21–23]. These previous works assume that diffusion

tensors follow a multivariate normal distribution. However, the distribution assump-

tion is not always valid, and more importantly, the summary statistics are difficult to

interpret.

(a) (b) (c)

Figure 1.1: (a) Overlaying two tensor glyphs is a common strategy to compare two tensor fields in a voxel-wise manner.

Image courtesy [24]. (b) shows a relevant work on visualizing a single ensemble of tensor fields at multiple levels of

detail. Image courtesy [23]. (c) shows the results of the commonly used t-statistic quantitative analysis and the slice-

based visualization for DTI group comparison. Image courtesy [25].

1.2. AIM
In this thesis we investigate the adaption of the traditional CS MRI method to

incorporate local information into the reconstruction. However, the main aim of this

thesis is to design understandable visual analysis techniques for ensembles of diffusion

tensor fields while keeping the full tensor information. The main aim can be further

subdivided into three tasks.

T1 design a comparative visualization technique so that the pair-wise differences

between two DTI datasets are presented in a more comprehensive way.

T2 aggregate a single ensemble of DTI datasets so that the summary statistics are

easier to understand and design an ensemble visualization technique to facilitate

the exploration and analysis.

T3 develop an effective visualization to convey the huge amount of information with

a limited number of visual channels when comparing two ensembles of DTI
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datasets, based on the solutions to the first two tasks.

We make these three tasks more concrete by using the DTI group study as a con-

crete example (see Figure 1.2). The first task T1 corresponds to the scenario where

two subjects need to be compared, indicated by the smallest rectangle in Figure 1.2,

in order to investigate their differences. The key challenges are the quantification of

tensor differences that make sense from the perspective of DTI and the visual encoding

of such differences. Neuroscientists are not only interested in comparing two specific

subjects, but also in analyzing an ensemble of subjects as a whole, indicated by the

medium rectangle in Figure 1.2, in order to investigate the variations. This scenario

corresponds to the second task T2. One big challenge is to define suitable statistical

measures to quantify ensemble variation. The other is the visual design, which should

not only provide understandable visual representations of the summary statistics but

also show the original tensors that give rise to the summary statistics. The solutions to

T1 and T2 serve as inspirations to accomplish the third task T3, which corresponds to

the inter-group comparison as indicated by the biggest rectangle in Figure 1.2. The ma-

jor challenge is to resolve the contradiction between the huge amount of information

to be visualized and the limited number of available visual channels.

Figure 1.2: The three visualization tasks to accomplish in this thesis are illustrated in the context of DTI group study.

Each row indicates an ensemble of subjects. Three gradually expanding rectangles correspond to task T1, T2, and T3,

respectively. The size and lightness of the rectangles quantitatively reflect the number of subjects to be analyzed. Image

adapted from © South Park.

After the design process, we need to evaluate the developed visualization tech-

niques. In general, the validation of a visual design is a tricky problem [7] because
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there are so many variables involved. The validation in this thesis is carried out in the

form of user study and case study. The purpose of a user study is to evaluate the effec-

tiveness of the visual encoding. However, the diffusion tensor, the main object to be

visualized, is a relatively complex concept that is not familiar to computer scientists or

even visualization researchers. Consequently, the basic understanding of the diffusion

tensor is compulsory, which severely restricts the number of available participants. The

purpose of the case studies is not only to evaluate the usability of our visual analysis

framework for the task that we aim at, but also to avoid the creation of any artifacts

that do not originate from the data itself. The case studies are performed mainly by the

target domain experts – neuroscientists.

1.3. OUTLINE
This dissertation is organized as follows.

Chapter 2 first introduces the basic principles of MRI in Section 2.1, which is the

basis of DW-MRI, and compressed sensing Section 2.2, an acceleration technique for

MRI acquisition. Our contribution is presented in Section 2.3 which incorporates the

local information of interest into MR image reconstruction, and apply to angiography

images as a proof-of-concept.

Chapter 3 contains three types of background information. Section 3.1 covers the

brain anatomy in a concise way. Section 3.2 presents the fundamental principles of

DTI, which is the imaging technique to characterize the macrostructures of brain white

matter. Section 3.3 gives the mathematical background of diffusion tensor data. Sec-

tion 3.4 summarizes state-of-art visualization techniques related to this thesis, includ-

ing glyph-based visualization, comparative visualization, and ensemble visualization.

Chapter 4 presents a novel glyph design for visually comparing two DTI datasets

in a voxel-wise manner. A thorough task analysis is performed to determine what kind

of information to compare, and a computationally efficient measure is proposed to

quantify the differences between two diffusion tensors in terms of tensor scale, shape,

and orientation. Our difference measure can effectively handle the coupling of ten-

sor shape and orientation. The novel glyph design, inspired by the checkerboard-style

comparison, is described in detail. The effectiveness of the new glyph design is demon-

strated with an informal user study and a case study.

When the total number of DTI datasets to compare goes beyond two to multiple,
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it is necessary to resort to statistical tools to summarize them, again in a voxel-wise

manner. In Chapter 5, the pair-wise difference measure between two diffusion ten-

sors proposed in Section 4.2.2 is generalized to quantify the variation in an ensemble

of diffusion tensors, which are more understandable than the fourth-order covariance

tensor used in previous work. More importantly, Chapter 5 describes the overview +

detail visual analysis strategy for visualizing a single ensemble of DTI datasets. The

glyph-based overview is based on the extension of the superquadric tensor glyph vi-

sualization [8] by visually encoding the variation information. The detail views are

designed to facilitate the exploration of the original tensors in terms of tensor scale,

shape, and orientation. Again, an informal user study and a case study are carried out

to justify the effectiveness of the novel two-level visual analysis approach.

Chapter 6 moves forward to the comparison of two ensembles of DTI datasets

by extending the overview + detail design in Chapter 5. A new overview glyph, the

combination of the checkerboard-style tensor difference glyph proposed in Chapter 4

and the tensor ensemble summary glyph proposed in Chapter 5, aims at facilitating

the visual comparison of summary statistics in the spatial domain. More importantly,

the concept of levels of detail (LODs) visualization is incorporated into the overview

glyph to progressively reveal more information as users zoom in. Furthermore, special

care is taken into consideration in order to suppress visual clutter when comparing the

tensor ensembles in the detail view. This chapter ends with a case study where an

HIV positive group and a control group are compared to illustrate the potential of our

prototype in helping neuroscientists to obtain new findings.

We conclude this dissertation in Chapter 7 where the main contributions of this

dissertation are summarized and possible directions for future work are suggested.
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2
MAGNETIC RESONANCE

IMAGING AND USER-GUIDED

COMPRESSED SENSING

Let your rapidity be that of the wind,

your compactness that of the forest.

Sun Tzu

故其疾如风，其徐如林。

孙武

This chapter is partially based on the following publication:“User-guided compressed sensing for magnetic resonance

angiography”, Changgong Zhang, Martijn van de Giessen, Elmar Eisemann, and Anna Vilanova. In Proceedings of

36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2416–2419,

2014 [1].
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Magnetic resonance imaging (MRI) is the imaging modality on which DW-MRI

is based. Therefore, the presentation of MRI physics in Section 2.1 is needed to un-

derstand the principles of DW-MRI in Section 3.2. This chapter is not focused on

studying MRI from the perspective of physics so the mechanism of MRI is descried

in a simple and concise manner. Compared to other imaging modalities like computed

tomography (CT), one disadvantage of MRI is that it requires longer scan time. A sig-

nal processing technique named compressed sensing (CS) [2, 3], which can efficiently

sample and reconstruct the original signal by exploiting its sparsity, is a candidate to

solve this problem [4]. This chapter is focused specifically on the application of CS

to MRI, rather than the abstract theory of CS. Therefore, a simplified description of

CS MRI is presented in Section 2.2 to give a flavor about how CS integrates into the

pipeline of MRI acquisition. The traditional CS aims at optimizing the overall quality

of the reconstructed images. However, in practice, researchers are normally interested

in the quality of specific local areas. Our contribution is presented in Section 2.3, which

takes user-specified local information into consideration during image reconstruction.

2.1. MRI PRINCIPLES
Magnetic Resonance Imaging (MRI) is an imaging technique to non-invasively

produce tomographic images of the underlying anatomy by exploiting the physical

phenomenon called nuclear magnetic resonance (NMR).

The adult human body is around 60% water. The single proton of the hydrogen

atom in the water molecule is positively charged, and has an angular momentum (i.e.,

spin). Each proton then generates a microscopical magnetic field. All of these spins

are randomly orientated, and cancel each other out macroscopically. However, in the

presence of an external magnetic field B0, these spins align with it, either parallel (i.e.,

low energy state) or anti-parallel (i.e., high energy state), with a preference for the low

energy state. These protons do not simply point with or against the direction of B0, they

actually rotate or precess like a spinning top at the Larmor frequency ωL = γB0, where

γ is the gyromagnetic ratio and B0 is the strength of the external magnetic field B0.

Each proton precesses with a random phase, canceling each other out in the transverse

plane, and a net longitudinal magnetization mz is generated, which is the equilibrium

state of the nuclear spin systems.

A radio-frequency (RF) electromagnetic wave at frequency ωL can flip some pro-
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tons from the low energy state to high energy state by energy transmission. Addition-

ally, the RF pulse will synchronize the protons to coherent phases. As a result, the

longitudinal magnetization mz decreases and a rotating transverse magnetization mx y

is created in a plane orthogonal to the direction of B0, which in turn triggers a new

electromagnetic signal that can be measured by the coils within the MRI scanner. In

this case, it is the transverse magnetization mx y that produces the measurable signal.

The longitudinal magnetization mz can be flipped into the transverse plane by a 90°

RF pulse, and thus, it is the longitudinal magnetization mz that produces the measur-

able signal in this case. mz recovers to the equilibrium state while mx y decays in a

exponential way with respect to time, which can be characterized by the traverse relax-

ation time T2 and the longitudinal relaxation time T1, respectively. The term relaxation

means how signals change with respect to time. Therefore, the contrast between dif-

ferent tissues depends on the proton density PD , the traverse relaxation time T2, and

the longitudinal relaxation time T1. Interested readers are referred to textbooks such as

Prince and Links [5] for more details.

In order to locate the underlying MR quantity m
(
x, y

)
for a given voxel in a 2D

slice, two additional magnetic gradients Gx and Gy are applied in the x and y direction,

respectively, apart from the main magnetic field in the z direction. Gy is used to linearly

encode y position to the phase of the magnetization, θ
(
x, y

) = Gy yτ. Gy is on for a

short time τ, and switched off before the application of Gx , which is used to encode the

x position into the Larmor frequency. The Larmor frequency is a linear function of x

as ω
(
x, y

)= γ (B0 +Gx x). The received signal is an integral over the 2D slice, given by

s (t ) =
Ï

m
(
x, y

)
e− j (ωt+θ) d x d y = e− jγB0 t

Ï
m

(
x, y

)
e− jγ(Gx xt+Gy yτ) d x d y,

where m
(
x, y

)
is proportional to either the transverse magnetization mx y or the longi-

tudinal magnetization mz . The exponential part e− j (•) is introduced because the used

magnetization, expressed as one complex quantity, is rotating in the xy plane with fre-

quency ω and initial phase θ.

The received signal will be demodulated to yield the baseband signal

sb (t ) = e+ jγB0 t s(t ) =
Ï

m
(
x, y

)
e− jγ(Gx xt+Gy yτ) d x d y. (2.1)

Equation 2.1 can be interpreted as a 2D Fourier transform of m
(
x, y

)
with spatial

frequencies u = γGx t and v = γGyτ in the x and y direction, respectively. According
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to the MRI terminology, this Fourier frequency space is commonly referred to as the

k-space. In principle, MRI measurements can be viewed as scanning the k-space, and

the image reconstruction algorithm is the inverse Fourier transform. Again, interested

readers are referred to textbooks such as Prince and Links [5] for more details.

2.2. COMPRESSED SENSING MRI

MRI acquisition means a full scanning of the k-space by tuning the frequency

encoding gradient Gx , phase encoding gradient Gy and its application time τ. The k-

space can be traversed in several ways, among which the Cartesian trajectory (i.e., row-

by-row) is the most commonly used one. Normally the size of the k-space is around

512×512, which indicates that the filling of k-space is a time consuming process. On

the other hand, we know that MR images have sparse representations in some transform

domains. For example, brain MR images have sparse representation in terms of wavelet

coefficients, i.e., most of the wavelet coefficients are zero or negligible. Therefore, a

natural question to ask is: is it possible to directly measure the compressed coefficients,

instead of the original complete k-space? The theoretical answer to this question is

referred to as compressed sensing (CS) [2, 3]. Lustig et al. [4] apply the CS technique

[2, 3] to the reconstruction of MR image, called CS MRI for brevity, which enables the

fast reconstruction of images with fewer measurements in k-space than required by the

inverse Fourier transform. Here we briefly introduce the basic principles behind CS

MRI. Interested readers are referred to [4, 6] for detailed information.

There are three requirements for the application of CS. (a) The image to be recon-

structed should have a sparse representation in a known transform domain, and thus

be compressible; (b) The aliasing artifacts, caused by k-space undersampling, should

have noise-like (i.e., incoherent) appearance; (c) The reconstruction algorithm should

enforce both the sparse representation and data fidelity with respect to the measure-

ments. Figure 2.1 illustrates the three requirements and the way that CS MRI works.

Direct inverse Fourier transform of the partially sampled k-space measurements causes

artifacts. However, by taking advantage of the transform domain, the reconstruction

will achieve similar image quality. The reconstruction process is given as an optimiza-



2.3. USER-GUIDED COMPRESSED SENSING MRI

2

15

tion problem:

mi ni mi ze ∥Ψm∥1

s.t . ∥Fum − y∥2 < ϵ ,
(2.2)

where m is the image to be reconstructed, Ψ is the operator that transforms m into the

sparse domain, Fu is the undersampled Fourier transform, and y is the actual measure-

ments. Minimizing the ℓ1 norm can enforce the sparsity while ϵ controls data fidelity.

Figure 2.1: Illustration of the domains and operators of CS MRI as well as the three requirements. The image to be

reconstructed should have a sparse representation in a transform domain. The partially sampled k-space measurements

(indicated by the red dots) should result in incoherent artifacts. The reconstruction method (indicated by the big curved

gray arrow) should enforce the sparsity and be consistent with the partial measurements. F , Fu , and Ψ represent the

Fourier transform, undersampled Fourier transform, and the sparse transform, respectively. ∗ means the inverse of an

operator. Image courtesy [4].

CS MRI actually transfers parts of the cost of MR image generation from hard-

ware (i.e., k-space sampling) to software (i.e., image reconstruction). Therefore, in this

way, CS MRI is able to reconstruct MR images at a higher speed without significantly

reducing the image quality.

2.3. USER-GUIDED COMPRESSED SENSING MRI
We observe that Equation 2.2 used in CS MRI aims at reconstructing the image

as a whole entity. However, in practice, medical researchers are more interested in

the quality of specific structures, instead of the whole image. Therefore, we adapt
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Equation 2.2 to incorporate the information of user-specified region of interest (ROI),

and apply it to angiography as a proof-of-concept.

In vessel diagnosis with angiograms, some low-contrast vessels are essential to the

reliable assess of pathological abnormalities (e.g., stenosis). Even though good recon-

struction results are presented by Lustig et al. [4] for angiograms, which have sparse

representations under finite-difference operation, Milles et al. [7] still observe the fad-

ing of low-contrast vessels in CS reconstructed angiograms. The fading or breaking of

vessels could cause false positives in such diagnostic procedures. In this section, we

propose a method aiming at the good reconstruction of specific low-contrast vessels

by integrating the local information into the optimization function Equation 2.2. The

fading is caused by the fact that ℓ1 reconstruction employed in CS MRI shrinks the

magnitude of the reconstructed sparse coefficients. This results in the reduction of im-

age contrast especially at high undersampling ratios [4]. Then the desired boundaries

between the low-contrast vessels and the background are more likely to fade or even

vanish. To avoid these artifacts, we propose to add weights to the ℓ1 reconstruction

based on local information. Candes et al. [8] have already demonstrated the perfor-

mance gain via weighted ℓ1 minimization in areas of sparse signal recovery and im-

age processing. Chang and Ji [9] extend the weighted ℓ1 minimization to reconstruct

multichannel in-vivo MRI data. Since ℓ1 reconstruction works well for high-contrast

vessels, we weight the ℓ1 reconstruction for specific vessels to maintain their boundary

information.

There are several attempts to improve the quality of certain tissues (i.e., local

quality) of the object being imaged, which could be viewed as the ROI, rather than the

global reconstruction quality. Sharma and Nayak [10] manage to increase the image

contrast within the ROI by imposing the sparsity constraint only outside ROI. How-

ever, the ROI cannot be the entire image. Otherwise their method would turn into an

ill-posed least-squares problem. Oh and Lee [11] derive the visual weight by incorpo-

rating ROI and perceptual characteristics of the human visual system. But their method

could reduce to an ill-posed problem if the ROI is really small such as in the case of

angiography. In our work, there are no limitations about the size of the ROI which

could either be the entire image or empty.
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2.3.1. METHODOLOGY

The pipeline of our method is illustrated in Figure 2.2. The input includes the

partially measured k-space data and an initial image data. The initial image is used

to define the ROI by the users (e.g., radiologists) via semi-automatic or interactive

segmentation [12]. The ROI contains low-contrast vessels which cannot be well pre-

served via traditional CS. The ROI does not need to be precisely defined, and a rough

estimation is sufficient. The initial image can either be a zero-filling reverse Fourier

reconstructed or a traditional CS reconstructed image. In this chapter, we choose to use

the traditional CS reconstructed images but with much fewer iterations. The weights

are constructed based on the gradient information within the ROI. The final images

are reconstructed via weights-incorporated ℓ1 reconstruction. In the following we will

describe construction of the weights and weighted CS reconstruction in more detail.

K-space 

measurements

ROI

Selection

Weights

Construction
Weights

Weighted

CS

Traditional CS w/ fewer iterations

Zero-filling reverse Fourier transform
Initial Image

Weighted CS 

reconstructed image

Figure 2.2: The weighted CS reconstruction pipeline. The partially sampled k-space measurements are used to generate

an initial image where users can specify ROI. The initial reconstruction can be performed with either the zero-filling

reverse Fourier transform or the traditional CS but with much fewer iterations. Gradient-based weights are derived based

on the specified ROI, which are then incorporated into CS to reconstruct the final image.

ROI-BASED WEIGHTS CONSTRUCTION

The primary information of angiograms consists of blood vessels from which we

derive clinically-related parameters such as the diameters and length of vessels. The

boundaries are of special relevance for these parameters. They can be estimated by

calculating the gradient in the initial image using central differences. We do not choose

a smoothed derivative filter, such as the Gaussian derivative filter, in order to capture

low scale vessel features. User-defined ROI is applied to mask the gradients, which are

normalized to the range between 0 and 1 by the maximum gradient magnitude. The

smoothed weights are constructed by reversing the normalized gradients:
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Mi , j =
∥∥∇Ii , j

∥∥ ·ROIi , j

Wi , j = 1− Mi , j

max(Mi , j )+ϵ
,

(2.3)

Here I is the initial image, ∇ is gradient operator, ROI is the binary mask, M is the

gradient magnitude within the ROI, ϵ is a very small numerical value preventing the

division by 0, and W is the final weights.

Figure 2.3a shows the fully sampled 3D angiography which will be used as the

ground truth. Figure 2.3b is the color-coded initial image reconstructed by traditional

CS. Both are under the same rendering settings, and we can clearly observe the break-

ing and fading of vessels marked within the three white polygons. These regions con-

taining this vessel are selected as ROI. Figure 2.3c shows one slice of the generated

weights overlapped with the CS reconstructed data. The weights are color-coded by

perceptually linear yellow-to-blue colormap. Yellow represents low weights while blue

the high weights. Transparency represents the highest weights (i.e., 1.0) for areas out-

side of the ROI.

(a) (b) (c)

Figure 2.3: ROI-based weights construction. (a) fully sampled 3D angiogram; (b) CS reconstructed angiogram with

sampling ratio of 10%; (c) a close-up of the generated weights overlaid with CS reconstructed angiogram.

CS RECONSTRUCTION USING ROI WEIGHT

Lustig et al. [4] present the reconstruction of angiograms using finite-differences

as the sparsifying transform, which is referred as total-variation (TV) minimization.

Besides, unlike Fourier transform, finite-difference provides spatially local information

and has low computational complexity compared to other sparse transforms such as

wavelet. We also employ TV minimization to reconstruct the original angiograms.

The CS reconstruction are performed by solving the following optimization problem:
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argmin
m

∥Fum − y∥2 +λ∥m∥T V

∥m∥T V =∑
i , j

∥(Dm)i , j∥1 ,
(2.4)

where m is the desired image, Fu is randomly-sampled Fourier operator, y are the

k-space measurements, D represents the forward differences operator and λ is the reg-

ularization parameter that determines the trade-off between data consistency and TV

regularization. The ℓ2 norm is defined as ∥x∥2 = (∑
i |xi |2

)1/2 while the ℓ1 norm as

∥x∥1 =∑
i |xi |.

The TV term penalizes intensity variations. This penalization, however, shrinks

the magnitude of the transform coefficients and causes a reduction of image contrast.

The desired boundaries are likely to fade or even vanish. Therefore, we propose to add

weights to the TV minimization. Voxels that are inside the ROI with relatively high

gradients are candidates for boundaries. The weights should be relatively low for these

voxels and vice versa. This means, within the ROI, intensity variations for boundary

candidates can be tolerated. The proposed optimization problem is:

argmin
m

∥Fum − y∥2 +λ∥m∥wT V

∥m∥wT V =∑
i , j

Wi , j∥(Dm)i , j∥1 ,
(2.5)

where Wi , j is the derived smooth voxel-wise weights in the range of [0,1].

2.3.2. RESULTS AND DISCUSSION

RESULTS

We simulated k-space data by computing the Fourier transform of a slab (56

slices) of a high resolution 3DFT TOF angiogram of 0.23 mm × 0.23mm × 0.35mm.

We also used a true fully sampled k-space data of a slab (32 slices) of a low resolu-

tion DFT TOF angiogram of 1mm × 1mm × 1mm. From the full k-space data, five

under-sampled data sets with corresponding sampling ratios of 10%, 15%, 20%, 25%

and 30% were reconstructed.

We compared our methods qualitatively and quantitatively with the method pro-

posed by Lustig et al. [4] (traditional CS) and the fully sampled data set. The nor-

malized mean squared errors (NMSE) is used to evaluate the performance within the

ROI.
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Maximum Intensity Projections (MIP) are frequently used by clinical users for the

visualization of vascular structures. Often a threshold is used to eliminate noisy back-

ground and the visualization of low intensities. For small vessels, if their intensities

are low in certain regions, this threshold might generate breaks and discontinuities. We

used the masks resulting from several thresholds to evaluate the reconstruction results

and compared them with the ground truth. Dice Coefficients (DC) [13] are thus used

as an extra metric to compare the reconstruction results.

DISCUSSION

Table 2.1: ROI NMSE of the high resolution TOF angiogram with various sampling ratios

10% 15% 20% 25% 30%

traditional CS 0.0471 0.0315 0.0241 0.0185 0.0140

ROI-based CS 0.0456 0.0288 0.0208 0.0156 0.0118
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Figure 2.4: ROI-based Dice Coefficient comparison. Left: DC variations with different thresholds under the same sam-

pling ratios (20%); Right: DC variations under different sampling ratios at fixed threshold (10%).

As shown in Table 2.1, the ROI-based NMSE of our method are better than that of

the traditional CS under each of the sampling ratios for the high resolution angiogram.

It means that the vessels within ROI are of better reconstruction quality. Results of

the sampling ratios on DC are shown in Figure 2.4 (right) at threshold 10% of the

maximum intensity while Figure 2.4 (left) shows DC when varying the threshold with

constant sampling ratio of 20%. The DC derived from our method are also better espe-

cially at low sampling ratios. With low thresholds, both show high values because the
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background voxels are segmented as vessels which are shown in Figure 2.5a. As in-

creasing the thresholds, more background voxels are removed. Both show a decreasing

trend when raising the thresholds. But the decline rate is slower for our method. The

above evaluation results demonstrate that our method can better maintain the intensity

connectivity of vessels as shown in Figure 2.5b.

Table 2.2: ROI NMSE of the low resolution TOF angiogram with various sampling ratios

10% 15% 20% 25% 30%

traditional CS 0.1628 0.0870 0.0506 0.0366 0.0280

ROI-based CS 0.0999 0.0562 0.0362 0.0256 0.0207

The ROI-based NMSE for the low resolution angiogram are shown in Table 2.2.

As shown in Figure 2.6 (left), the vessels contained in the white polygons (i.e., ROI)

are marked as the specific reconstruction target. From the close-up views in Figure 2.6

(middle and right), it is clear that our method can maintain the intensity connectivity

better in most areas. The reason why we do not include DC in this experiment is that

even for the fully sampled data set, the vessels within the ROI cannot be segmented

merely based on the thresholds.

Our method does not have limitations on the size of the specified ROI. If no area is

assigned as the ROI, the optimization function coincides with traditional CS. If the ROI

is the entire image, our reconstruction function just tolerates the intensity variations

for voxels with globally large gradient magnitudes rather than reduce to an ill-posed

problem.

The difference of overall NMSE between our method and the traditional CS are

small. This is due the fact that the vessels within ROI normally occupy a relatively

small part of total voxels.

FUTURE WORK

There are still rooms for improvements. We construct the weights from the initial

image and keep it constant during the reconstruction. Weights can be adaptively con-

structed and tuned after each reconstruction iteration. Furthermore, a more extensive

evaluation with more datasets and clinically relevant parameters is necessary to show

the real applicability of the proposed method in clinic.
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(a) MIP renderings with threshold at 6%

(b) MIP renderings with threshold at 10%

Figure 2.5: MIP renderings of the original high-resolution angiogram (left), the traditional CS (middle), our method

(right). Sampling ratio is 20%.
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Figure 2.6: MIP renderings for the low-resolution angiography. From left to right: the overview of traditional CS, the

close-up views of the original image, traditional CS, and our method. Sampling ratio is 20%.

2.4. CONCLUSION
In this chapter, we give an overview of MRI technique, which is the basis of

DW-MRI, and one acceleration technique – Compressed Sensing (CS). Furthermore,

we propose a weighted CS reconstruction method and apply it to preserve the low-

contrast vessels in angiography. Preliminary results show that our method using both

simulated and clinically acquired k-space data can maintain the intensity connectivity

for ROI-based low-contrast vessels better than the traditional CS.
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If you know the enemy and know yourself,

you need not fear the result of a hundred battles.

Sun Tzu

知彼知己，百战不殆。

孙武
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This chapter presents the background knowledge which is necessary to under-

stand the context of this thesis and our main contributions. We first introduce the

macro/micro structures of the brain white matter in an intuitive way in Section 3.1,

and then describe how to measure the fibrous characteristic of white matter in living

tissues with MRI scanning in Section 3.2. Section 3.3 is the mathematical background

related to tensor calculus while Section 3.4 is the technical background, which is con-

cerned with the overview of the visualization techniques that are most relevant to the

contributions of this thesis.

3.1. BRAIN ANATOMY

Figure 3.1: The macroscopic and microscopic view of the brain anatomy. Left: the brain is roughly com-

posed of white matter and gray matter (https://sampurnabuffalo.wordpress.com/2016/11/01/

does-white-matter-matter/). Right: the structure of the neurons, which are the microscopic unit of the brain

(https://en.wikipedia.org/wiki/Neuron).

The human brain is the most complex organ of the human body, and can be

roughly divided into two parts: gray matter and white matter. Intuitively, if the brain

is viewed as a supercomputer in its entirety, the counterparts of gray matter are the

central processing units (CPUs) that are responsible for information processing. The

white matter is responsible for information transmission. It can be regarded as the ca-

bles that connect different parts of the gray matters, The gray matter and white matter

together make the brain work like a coordinated complex system. Figure 3.1 left is

an example of the macroscopic view of the brain anatomy. Microscopically, the dis-

tinction between gray matter and white matter is related to the biological unit of the

central nervous system, i.e., the neurons. A neuron is an electrically excitable cell that

mainly consists of a cell body and an axon (see Figure 3.1 right). Gray matter contains

a large amount of cell bodies and relatively few axons, while white matter contains

https://sampurnabuffalo.wordpress.com/2016/11/01/does-white-matter-matter/
https://sampurnabuffalo.wordpress.com/2016/11/01/does-white-matter-matter/
https://en.wikipedia.org/wiki/Neuron
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relatively very few cell bodies and is mostly composed of long-range axons [1]. The

name and color of white matter arises from the white substance, i.e., myelin, that sur-

rounds the axon. Axon bundles are organized in a coherent way, and thus at large scale

they constitute the so-called fiber tracts, which are the pathways of the central nervous

system.

3.2. DIFFUSION TENSOR IMAGING
In order to quantify the underlying structure of the white matter in living tissues,

we need to resort to a common physical phenomenon, the so-called water diffusion.

Water diffusion refers to the process of random thermal motion of water molecules

(Brownian motion). For example, Figure 3.2 illustrates how the diffusion behaves in

the case of kleenex and newspaper, respectively. The diffusion is isotropic (i.e., no

directional preference) for the kleenex while anisotropic (i.e., directional preference)

for newspaper. Therefore, how the molecules diffuse reflect the fibrous structures of

the underlying materials.

Figure 3.2: An illustration of the diffusion patterns when placing a drop of ink on the kleenex and newspaper, respectively

(http://www.cs.utah.edu/~gk/papers/vis99/ppt/slide03.html).

Einstein in 1905 gave the relationship between the averaged squared displace-

ments of freely diffusing water molecules and the elapsed time t as

〈r 2〉 = 2Dt (3.1)

, where D is the diffusion constant and t is the diffusion time. Molecules start to

spread out from their initial positions as time elapses, and their displacements follow a

Gaussian distribution

p (r, t ) = 1p
4πDt

e−r 2/4Dt (3.2)

http://www.cs.utah.edu/~gk/papers/vis99/ppt/slide03.html
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, where p gives the probability of water molecules that have moved by r over time

interval t . In a word, the motion of freely diffusing water molecules obeys a Gaussian

distribution, the variance of which is a function of the diffusion constant D and time t .

One important aspect of water diffusion is that it leads to MR signal loss in the

presence of the diffusion gradient, as illustrated in Figure 3.3. The application of a hor-

izontal diffusion gradient makes water molecules rotate at different frequencies based

on their horizontal positions. The phases for molecules at different horizontal locations

are different after this horizontal diffusion gradient is switched off. Yellow and green

rectangles indicate the occurrences of horizontal and vertical movements, respectively.

Then a reversed horizontal diffusion gradient is applied to correct the introduced phase

differences. However, due to the random movements in the horizontal direction, the

resultant MR signal is attenuated. Furthermore, the random movements in the vertical

direction have no influence on the signal intensity. Therefore, the resulting signal is

said to be diffusion-weighted.

Figure 3.3: Schematic of the effects of the diffusion of water molecules on the signal intensity. Colored circles represent

water molecules located at different positions. Big black arrows indicate the strengths of magnetic field while small

black arrows in circles indicate the phases of each molecular spin. Yellow and green rectangles represent the random

movements of water molecules. Image courtesy [2].



3.2. DIFFUSION TENSOR IMAGING

3

29

By incorporating the probability of diffusion of water molecules presented in

Equation 3.2, the attenuated signal intensity due to diffusion can be derived, and ex-

pressed as

S = S0e−bD (3.3)

, where S and S0 are the signal intensities with and without the application of diffusion

gradient, respectively. b (the so-called b-value) is the abbreviated aggregate of several

parameters (e.g., the magnitude of the applied diffusion gradient) that are controllable

via MRI scanners. Detailed mathematic derivation about Equation 3.3 can be found in

textbooks such as Mori and Tournier [2].

Equations 3.2 and 3.3 are correct only for 1D diffusion. To model an anisotropic

Gaussian distribution in the 3D physical world, Equation 3.2 generalizes to

p (r, t ) = 1√
(4πt )3 det (D)

e− 1
4t rTD−1r (3.4)

, where D is a second-order symmetric tensor, det (•) and D−1 are the determinant and

the inverse of tensor D, respectively. Consequently, Equation 3.3 generalizes to

S = S0e−bgTDg (3.5)

, where g is the unit vector, indicating the direction of the diffusion gradient mentioned

before. The magnitude of the diffusion gradient is encoded into the b-value.

Due to the utilization of tensor D in the process of diffusion modeling, this imag-

ing and modeling technique is called diffusion tensor imaging (DTI), which was first

proposed by Basser et al. [3]. The diffusion tensor D has six degrees-of-freedom.

Therefore, six measurements (i.e., six different gs) and one baseline measurement S0

are required to uniquely determine the components of D. However, in practice, more

than six acquisitions in different directions are necessary for the sake of robust esti-

mation of D. The assumption that the diffusion of water molecules within a voxel

obeys a Gaussian distribution is not always valid (e.g., in voxels containing crossing

fiber tracts). Therefore, other complex diffusion acquisition techniques have been pro-

posed such as high angular resolution diffusion imaging (HARDI) [4], which normally

requires longer scanning time. DTI is still the most commonly used diffusion model-

ing technique in the clinic and often in medical research. In this thesis, we focus on

developing visual analysis approaches specifically for DTI datasets.
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3.3. SECOND-ORDER SYMMETRIC TENSOR
In the previous section, we explain the physical origin of diffusion tensors. In this

section, we will look at them from the mathematical point of view. Mathematically,

diffusion tensors are second-order symmetric positive-definite tensors. They, rather

than tensors of general forms, are the focus of this thesis. Furthermore, all the second-

order symmetric positive-definite tensors are expressed with respect to an orthonormal

basis in R3. Therefore, only Cartesian tensors are considered in the thesis. Interested

readers are referred to textbooks [5, 6] or other PhD thesis [7, 8] for further information.

A second-order tensor describes a linear relation between vector spaces. The vec-

tor space is R3, representing the physical world. Therefore, a tensor D takes an input

vector v, and generates an output vector w = Dv. Both v and w are in R3. Linearity is

defined by means of the usual vector addition and scalar multiplication. Numerically, a

second-order tensor D can be expressed as a 3-by-3 matrix with respect to an orthonor-

mal coordinate basis B = [b1,b2,b3], which is usually determined by the MRI scanner

in the context of DTI,

[D]B =


D11 D12 D13

D21 D22 D23

D31 D32 D33

 (3.6)

where D i j = bi ·Db j . A tensor D is symmetric
(
D = DT

)
if bi ·Db j = b j ·Dbi , i.e.,

D i j = D j i , which is the case for diffusion tensors.

A second-order symmetric tensor D can be eigen-decomposed to three real eigen-

values λ1, λ2, λ3, and the corresponding unit-length mutually orthogonal eigenvectors

e1, e2, e3, i.e., Dei =λi ei or D =∑3
i=1λi ei ⊗ei where ⊗ is the so-called tensor or dyad

product. If all the three eigenvalues are greater than zero λi > 0, a tensor D is said to

be positive-definite. Unless otherwise noted, a tensor D in this thesis will always be

second-order symmetric and positive-definite. The eigenvalues are normally ordered

as λ1 ≥λ2 ≥λ3 > 0, which are the major, medium, and minor eigenvalue, respectively.

Similarly, e1, e2, and e3 are referred to as the major, medium, and minor eigenvector,

respectively.

Tensor invariants are scalar-valued properties derived from the original tensor D,

which are intrinsic to D itself rather than its matrix representation. In other words, ten-

sor invariants are independent of the given orthonormal coordinate system with respect
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to which D is expressed. For example, eigenvalues are tensor invariants while tensor

components (e.g., D i j ) are not. Apart from the eigenvalues, any scalar-valued func-

tions (e.g., the trace) that take the eigenvalues as input are tensor invariants as well.

Tensor trace equals the sum of the eigenvalues tr(D) =∑3
i=1λi . The Frobenius norm is

given by ∥D∥ =
√∑3

i=1λ
2
i . In the context of DTI, both trace and Frobenius norm rep-

resent the overall amount of diffusion. The fractional anisotropy (FA) [9], expressed

as FA =
√

1
2

p
(λ1−λ2)2+(λ2−λ3)2+(λ3−λ1)2p

λ2
1+λ2

2+λ2
3

, reflects the extent of diffusion anisotropy. A value

of zero means that diffusion is completely isotropic while a value of one means that

diffusion occurs only along one single axis. Westin et al. [10] propose other invari-

ants of anisotropy measures, i.e., cl (linear anisotropy), cp (planar anisotropy), and cs

(spherical anisotropy):

cl = λ1 −λ2

λ1 +λ2 +λ3
cp = 2(λ2 −λ3)

λ1 +λ2 +λ3
cs = 3λ3

λ1 +λ2 +λ3
(3.7)

These three invariants together describe the tensor shape in the so-called barycen-

tric space (see Figure 3.4) since cl + cp + cs = 1.

Figure 3.4: The barycentric space of tensor anisotropies. Image adapted from Kindlmann et al. [11].

3.4. STATE-OF-THE-ART VISUALIZATION
This thesis is dealing with the comparative and ensemble visualization of ensem-

bles of 3D tensor fields. In this section, we first present state-of-the-art visualizations
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designed for a single tensor field (i.e., second-order symmetric positive-definite tensor

fields in the context of DTI). Furthermore, we present the general comparative and

ensemble visualization techniques present in literature for scalar, vector, and tensor

field.

3.4.1. STANDARD VISUALIZATION FOR DTI
This subsection covers a limited amount of representative visualization techniques

for DTI. Interested readers are referred to dedicated book chapters [12, 13] or recent

survey paper [14].

The most commonly used method is to reduce the six dimensional tensor into

one or more scalar-valued quantities that have biological interpretations, and then tra-

ditional scalar visualization such as the slice view can be applied. For example, Fig-

Figure 3.5: Three types of local visualization. (a) slice view of FA scalar map. (b) slice map of the major eigenvector,

weighted by cl . (c) direct volume rendering. Image courtesy [11].

ure 3.5a shows the slice view of FA, which indicates the diffusion anisotropy at dif-

ferent locations. The tensor can also be reduced to the major eigenvector e1, which is

empirically assumed to align with the underlying white matter structure. For the vi-

sualization, the absolute value of each component of e1 =
(
x, y, z

)
is mapped to the R,

G, and B color components as (R,G ,B) = (|x|, |y |, |z|). This color mapping, although

ambiguous due to using the absolute value, is able to convey directional information.

Additionally, for isotropic and planar-anisotropic tensors, the major eigenvectors are

randomly orientated. Some tensor-derived scalar quantities are used to modulate the

color saturation (See Figure 3.5b). Kindlmann et al. [11] extend the traditional volume
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rendering for scalar fields to visualize tensor fields (see Figure 3.5c). The specifica-

tion of color and opacity is performed in the barycentric space, which is based on the

anisotropy indexes cl , cp, and cs [10].

Figure 3.6: Superquadric tensor glyph and the placement strategies. (a) glyphs placed on a regular grid. (c) glyph packing.

Image courtesy [15].

These kinds of visualizations are based on the reduction of the full tensor infor-

mation. If to display the full tensor information, glyph-based visualization is a nat-

ural choice due to its ability to effectively encode multivariate attributes into various

visual channels (e.g., color, size, or shape). Compared to other visualization tech-

niques for multivariate data (e.g., parallel coordinate plots), glyph-based visualization

is able to preserve the spatial context. The straightforward way is to employ ellipsoids

[16, 17]. Westin et al. [18] design a composite glyph to directly show the linear, pla-

nar, and spherical components. Kindlmann [19] propose the superquadric glyph (see

Figure 3.6a) to improve the visual perception and reduce image space ambiguity. If

tensor glyphs are placed at sampling positions of a regular grid, the structure of the

sampling grid, instead of the underlying continuous structure, becomes emphasized.

To solve this problem, Kindlmann and Westin [15] propose glyph packing to make the

continuous structures become more apparent by smartly distributing the glyphs across

the field (see Figure 3.6b). Schultz and Kindlmann [20] propose several general princi-

ples for glyph-based visualization for symmetric tensor data including the preservation

of symmetry, continuity, and disambiguity. High-order tensors can be projected onto

a unit sphere via tensor contraction and thus visualized as a deformed sphere, referred

to as the radial glyph [21]. Several novel glyph designs are proposed for HARDI data

as well. Peeters et al. [22] render HARDI data as a deformed sphere by GPU-based
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ray-casting. Schultz and Kindlmann [23] present the higher-order maximum enhanc-

ing (HOME) glyph for HARDI data by generalizing the tensor ellipsoid. Interested

readers are referred to recent survey papers [24–26] for (tensor) glyph design rules.

Another type of visualization techniques, known as the fiber tracking [27], aims

at reconstructing and displaying the pathways of neural fibers. Fiber tracking can be

divided into two types, deterministic and probabilistic. Deterministic methods intend

to extract the most likely fiber trajectories without considering uncertainties. The most

commonly used method is streamline, the key idea of which is to track along the major

eigenvector e1. Streamlines are commonly visualized as plain polylines, illuminated

polylines [28], or streamtubes [29] (see Figure 3.7a). Some other researchers employ

illustrative rendering [30, 31] to enhance the visual perception. Weinstein et al. [32]

present the tensorline algorithm in order to stabilize the fiber trajectories through re-

gions with low linear diffusion anisotropies. Hyperstreamlines [33, 34] are proposed

to enhance the streamline method by encoding additional information about the ten-

sors into its cross-section. Analogously, hyperstreamline is constructed by sweeping a

varying (super)ellipse [33, 35], determined by the second and third eigenvalues at each

location, along the streamline.

Probabilistic methods attempt to generate a probability volume (see Figure 3.7b)

to indicating the probability that each voxel is connected to a user-specified source

voxel. Several most likely fiber tracts can then be derived based on this probability

volume. For example, Brecheisen et al. [36] present approaches to visualize noise-

induced uncertainty in probabilistic fiber tracking.

This thesis aims at avoiding information reduction and displaying the full infor-

mation of tensor data, and glyph-based visualization is a promising way to encode

multi-variate data in the spatial domain. Therefore, this thesis focus specifically on

glyph-based visualization.

3.4.2. COMPARATIVE/ENSEMBLE VISUALIZATION

Comparative Visualization. Comparative visualization refers to the process of un-

derstanding the differences or similarities between two or more datasets by making use

of an easy-to-interpret visual representation. Gleicher et al. [38] present a general tax-

onomy that groups visual comparison into three categories: juxtaposition (or side-by-

side), superposition (or overlay), and explicit encoding of differences. Juxtaposition
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Figure 3.7: Visualization of (a) deterministic and (b) probabilistic fiber tracking results. (a) deterministic fiber tracts are

visualized as streamtubes. Image courtesy [29]. (b) probabilistic tractography. Yellow represents high probability and

orange lower probability. The source voxel is indicated by the white arrow. Image courtesy [37].

is straightforward to implement but relies on the viewers’ memory for comparison.

Superposition is effective for comparing objects, due to being in the same frame of

reference. However, it is likely to cause occlusions and visual clutter. Explicit encod-

ing is effective for explicitly depicting the differences between objects. However, the

information about the original subjects themselves is lost, and it is not trivial to define

a metric to quantify the difference.

Comparative visualization has been developed to facilitate data comparison in the

spatial domain. For example, Busking et al. [39] propose an image-based implemen-

tation to visually compare two intersecting surfaces by local distance cues (e.g., fog-

ging) and contours. Schmidt et al. [40] introduce a comparative visual analysis system

for multiple 3D meshes that combines explicit encoding, juxtaposition, and parallel

coordinate plots for quantitative measures. van Pelt et al. [41] present an intuitive

details-on-demand glyph set for comparatively visualizing wall-shear stresses between

different stent configurations.

However, few methods are designed specifically for comparing tensor fields. The

most common approach to compare subjects in DTI visualization is to place the re-

sulting images side-by-side. For example, Hotz et al. [42] compare the results of two

tensor interpolation approaches by juxtaposition. Overlaying glyphs [43, 44] is also
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a commonly used strategy. Da Silva et al. [45] depict the differences between two

DTI datasets by overlaying the corresponding extracted streamtubes, rather than the

original diffusion tensor fields. In the quantitative DTI image analysis, the comparison

is more often performed without considering the spatial information. Line charts or

scatter plots of relevant scalar-valued invariants are commonly juxtaposed and/or su-

perposed for comparison in quantitative neuroscientific studies [46]. No glyph-based

technique has been presented to facilitate the visual comparison of two DTI datasets,

and we handle this case in Chapter 4.

Ensemble Visualization. Ensemble data comes from multi-run simulations with dif-

ferent parameter settings [47]. They are commonly used for assessing uncertainty and

variability, for instance, in weather forecasting [48]. Ensemble visualization and uncer-

tainty visualization are often discussed together [47, 49]. For scalar fields, uncertainty

information is often presented as the variation of isocontours, such as the spaghetti plot

[50] or contour boxplot [51], or as isosurfaces as presented by Pöthkow et al. [52, 53]

and Pfaffelmoser et al. [54]. Djurcilov et al. [55] directly visualize scalar field uncer-

tainty in direct volume rendering. For vector fields, curve boxplots [56] and streamline

variability plots [57] focus on the variation of features extracted from the field, rather

than the field itself. Botchen et. al. [58] use a 3D noise texture of different frequencies

to visualize vector uncertainty in flow fields. Otto et al. [59] analyze the global un-

certainty in the 3D vector fields by a topological approach. Brecheisen et al. [36, 60]

propose a visualization tool to explore the uncertainty of an ensemble of fiber tracts.

These methods can be used to visualize the variation of tensor-derived features. How-

ever, we focus on the visualization of the full tensor information without information

reduction.

Glyphs are commonly used to visualize multivariate local attributes of ensemble

data. Potter et al. [61] present a new hybrid summary plot that incorporates descriptive

statistics. Höllt et al. [62] use a glyph, based on the violin plot, to indicate variation

in multiple ensemble variables for time series visualization. Pfaffelmoser et al. [63]

present uncertainty in gradient orientation within scalar-field ensembles using circular

glyphs. Hlawatsch et al. [64] introduce the flow radar glyph to display possible ranges

of flow directions. Jarema et al. [65] use glyphs to show modality information of

circular distributions in 2D vector fields ensemble. We design a new glyph in Chapter 5
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to encode the variation information of ensembles of 3D tensor fields.

There is a limited amount of previous work that focuses on the visual analysis of

ensembles of diffusion tensor fields in their entirety. In order to aggregate the ensemble

information, multivariate statistics should be used. Basser and Pajevic [21, 66] propose

the use of the fourth-order covariance tensor based on the assumption that the set of

diffusion tensors follows a multivariate normal distribution. Basser and Pajevic [21]

use radial glyphs to visualize the fourth-order tensor and its six orthogonal second-

order eigentensors or eigenmodes. In recent work, Abbasloo et al. [43] combine slice

views, volume rendering, and superquadric glyphs [19] to visualize the fourth-order

covariance tensor at multiple levels of detail. For the visual analysis of an ensemble of

orientation diffusion functions, Jiao et al. [67] use direct volume rendering based on

the so-called shape inclusion probability function. Our work in Chapter 5 enriches this

research direction.

The pair-wise comparison of ensembles of diffusion tensor fields adds more com-

plexity in the visual analysis. The standard approach relies on the univariate statistical

analysis of tensor-derived scalar quantities such as fractional anisotropy (FA). Slice

views are then used to display the analysis results, which are some specific highly ag-

gregated scalar values (e.g., the t-statistic) [68]. No visualization technique has been

developed specifically for inter-ensemble comparison, and we handle this case in Chap-

ter 6.
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4
GLYPH-BASED COMPARATIVE

VISUALIZATION FOR

DIFFUSION TENSOR FIELDS

Attack him where he is unprepared,

appear where you are not expected.

Sun Tzu

攻其无备，出其不意。

孙武

This chapter is based on the following publication:“Glyph-based Comparative Visualization for Diffusion Tensor Fields”,

Changgong Zhang, Thomas Schultz, Kai Lawonn, Elmar Eisemann, and Anna Vilanova. In IEEE Transactions on

Visualization and Computer Graphics (Proceedings of Scientific Visualization), 22(1):797–806, 2016 [1].
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In the previous chapter, we present the state-of-art comparative visualization strate-

gies for tensor fields. In previous work, tensor-derived scalar-valued quantities are the

object of comparison, instead of the tensor data itself. From the perspective of the

applied comparison strategy, it is common to use juxtaposition and/or superposition.

In this chapter, we present a glyph-based comparative visualization technique at tensor

level to show the tensor differences in a more effective manner.

4.1. INTRODUCTION
Diffusion tensors are usually reduced to scalar values that have biological inter-

pretations (e.g., fractional anisotropy, FA). Analysts then carry out comparison on the

derived scalar fields, which are compared by juxtaposing slice views [2]. However,

scalar level comparison is based on the reduction of the full information of diffusion

tensors, and thus gives a limited view on the differences.

Alternatively, the comparison can be performed directly on diffusion tensors. The

most commonly employed method for tensor level comparison is to juxtapose the cor-

responding tensor glyphs [3]. Superposing tensor glyphs [4, 5] is also used but can

easily be affected by occlusion. Moreover, Da Silva et al. [6] depict the differences

between two DTI datasets by overlaying the corresponding streamtubes, rather than

the original diffusion tensor fields. However, the difference between the underlying

datasets is not equal to the difference between the extracted streamtubes. Intuitively

speaking, two different DTI datasets might produce exactly the same streamtubes.

Therefore, we decide to compare two DTI datasets at the tensor level.

In Figure 4.1, we illustrate the results of juxtaposition and superposition using

two synthetic DTI datasets. Dataset 1 in Figure 4.1a is defined in the barycentric space

of three geometric anisotropy metrics [7]. Dataset 2 in Figure 4.1b is constructed

by applying a small amount of random variations to dataset 1. Both are visualized

via the superquadric glyphs [8]. With juxtaposition (Figures 4.1a & 4.1b), analysts

need to compare them mentally, and thus it is hard to distinguish subtle differences.

With superposition (Figure 4.1c), it becomes easier to identify whether two tensors are

different or not, if their sizes are comparable. If not, one could be totally enclosed

in the other. Occlusion is another problem when directly overlaying two glyphs. An

option to address this is transparency. However, subtle differences still remain unclear,

as shown in Figure 4.1d. In all the methods mentioned above, the differences are
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(a) (b)

(c) (d)

Figure 4.1: Different comparative visualization styles for two synthetic tensor datasets: (a & b) juxtaposition, (c) super-

position, and (d) superposition with transparency.

integrally, instead of separately, perceived. In other words, even if it is easy to tell

whether two tensors are different or not, it is hard to tell, for example, which aspect

contributes most to the perceived overall difference.

In this chapter, we focus on the local comparison of diffusion tensors and present

the Tensor difference (Tender) glyph to efficiently depict the differences between two

diffusion tensor fields in all the three tensor intrinsic properties (i.e., scale, shape, and

orientation). To this end, we have to design dissimilarity measures to quantify differ-

ences in tensor intrinsic properties. The Tender glyph is inspired by the checkerboard

style visualization [9] and the superquadric tensor glyph [8]. Checkerboard visualiza-

tion, a type of side-by-side visual comparison, is frequently used to evaluate registra-

tion accuracy [10]. Differences result in obvious discontinuities along the checker-
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board edges, which can be readily perceived. The superquadric tensor glyph generates

a strong visual cue for tensor shape and orientation via sharp edges, and largely reduces

visual ambiguity.

The main contributions of this chapter are:

• A tensor dissimilarity measure to quantify individual differences in tensor scale,

shape, and orientation, together with the associated feature space to support

linked brushing;

• A novel glyph design, encoding differences between two diffusion tensors in

tensor scale, shape, and orientation, to facilitate the visual comparison;

4.2. GLYPH DESIGN
The goal of our glyph design is to help analysts gain insight into the differences

between two diffusion tensors beyond what a straightforward juxtaposition or super-

position can provide. The first step to build the glyph is to analyze what we want to

achieve by comparing two DTI datasets. Based on this analysis, we define the dissim-

ilarity measures, and these measures are then encoded into various visual channels of

the glyph. In this section, we present the whole design process.

4.2.1. TASK ANALYSIS

Before starting the design process, we must decide what kind of information is

useful to compare. The diffusion scale (e.g., mean diffusivity) represents the overall

diffusion extent. The diffusion anisotropy type is useful for identifying the underlying

fibrous structures. In areas with single fibers such as the corpus callosum, the diffusion

profile is of a linear shape, while in the areas with crossing fibers such as the centrum

semiovale, the diffusion profile is of a planar shape. Since both diffusion scale and

anisotropy do not depend on orientation, they are rotationally invariant. If a tensor is

not spherical, its diffusion orientation can be well defined. The orientation is important

for deducing the pathway of the underlying fiber tracts. Therefore, we decide to divide

the differences into diffusion scale, shape, and orientation. These three components

are independent of each other [11], e.g., a change in orientation will neither cause a

change in scale nor in shape. However, the major challenge is to deal appropriately

with the inherently coupled relation between shape and orientation.
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We adopt two requirements for the glyph design. Firstly, the glyph should be able

to provide information about the amount of differences of the three components (i.e.,

scale, shape, and orientation) separately. Secondly, the glyph for two distinct tensors

should emphasize the visual representation, while that for two nearly equal tensors

should not. In this work, we employ the superquadric glyph, which can guarantee

unambiguous perception and preserve continuity. Some properties of the superquadric

glyph can be found in Kindlmann [8] and Demiralp et al. [12].

4.2.2. TENSOR DISSIMILARITY MEASURE

An important challenge in tensor data comparison approach is to design suitable

measures, which is also an important factor in tensor field segmentation [13].

There is no unique way to calculate the distance between tensors. In literature,

several measures have been proposed to calculate the similarity or distance between

tensors, see Peeters et al. [14] for a detailed discussion. An easy to compute and

widely used measure is the Frobenious norm, which can be applied to all types of ten-

sors. Other metrics have been proposed specifically for symmetric and strictly positive

definite tensors, such as the Riemannian metric [15] or the log-Euclidean approach

[16]. Kindlmann et al. [17] propose a measure built on the geodesic-loxodrome that

divides the overall distance into components that have intuitive meanings for DTI (i.e.,

shape-specific and orientation-specific distances). The fact that these measures pro-

duce intuitive distance components makes it an interesting choice for our glyph design.

In order to define the dissimilarity measure, we decompose a diffusion tensor in

a similar way as Schultz and Kindlmann [18]. A symmetric second-order positive-

definite tensor D can be decomposed to three ordered real eigenvalues λ1 ≥ λ2 ≥ λ3.

The trace of a tensor is defined as |D| = ∑3
i=1λi . Then we get the normalized tensor

D̃ = D/ |D| and the normalized eigenvalues λ̃i =λi / |D|.
The tensor trace |D| represents the overall diffusion scale, while the set of three

normalized ordered eigenvalues (λ1,λ2,λ3) represents the shape of the diffusion profile.

The set of three orthonormal eigenvectors (e1,e2,e3) represents the diffusion orienta-

tion. We define the tensor dissimilarity measures between two tensors D(1) and D(2)

as:

dscl

(
D(1),D(2)

)= ∣∣∣∣∣D(1)
∣∣− ∣∣D(2)

∣∣∣∣∣ (4.1)
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d̃
(
D(1),D(2)

)= ∥D̃(1) − D̃(2)∥ (4.2)

dshp

(
D(1),D(2)

)=√∑
(λ̃i

(1) − λ̃i
(2)

)
2

(4.3)

d 2
or i

(
D(1),D(2)

)= d̃ 2 −d 2
shp (4.4)

where dscl is the scale difference, d̃ is the normalized tensor difference, dshp is the

shape difference, and dor i is the orientation difference.

The main idea is based on the Pythagorean theorem. The difference between two

normalized diffusion tensors can only be due to the shape and/or orientation difference.

If we subtract the shape difference from the normalized difference, only the orientation

difference remains.

The advantage of the difference measures is that they are easy to calculate, and

intuitive. More specifically, the orientation difference measure dor i does not measure a

spurious non-zero value in cases where one of the tensors is isotropic. As a demonstra-

tion, we select D(1) = [0.94 0 0; 0 0.24 0; 0 0.24 0],D(2) = [0.24 0 0; 0 0.94 0; 0 0.24 0].

We keep D(1) fixed, and gradually change D(2) to an isotropic tensor by reducing its FA

to 0 while preserving the scale and tensor mode, as shown in Figure 4.2. This experi-

ment confirms the continuity of our orientation difference measure. Furthermore, the

orientation difference between a linear tensor and a planar tensor is the largest if the

first eigenvector of the linear tensor is perpendicular to the plane spanned by first two

eigenvectors of the planar tensor. More importantly, both shape difference and orienta-

tion difference are bounded. Using the geodesic-loxodromes [17] as the dissimilarity

measure would also provide the desired characteristics to quantify tensor differences

in scale, shape, and orientation individually. However, the computational cost of cal-

culating the geodesics is considerably high, so we opt for the computationally simpler

alternative presented here.

4.2.3. VISUAL MAPPING

In this subsection, we encode the pair-wise differences in scale, shape, and orien-

tation to various visual channels that constitute the Tender glyph.
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Figure 4.2: The orientation difference dor i gradually decreases to 0 when reducing the FA of one linearly anisotropic

tensor (the red one) to 0 while keeping the other (the blue one) fixed. Both tensors are of unit scales.

Shape Difference Encoding. Following the design guideline of intuitive mapping

based on semantics [19], the shape difference dshp can be encoded into the shape chan-

nel of the glyph. However, summarized as a single scalar value, it is impossible to

connect dshp back to the original tensor shapes. For instance, dshp can be the same

between an isotropic tensor and a linear tensor as well as a planar tensor and a linear

tensor. Therefore, we do not use an explicit encoding of the shape difference. Instead,

we preserve the original tensor shapes as much as possible while still facilitating their

visual comparison.

Tensor shape is scale-invariant, and hence, we normalize both tensors before

shape comparison to remove the influence of tensor scale on shape comparison. We

also observe that it is hard to identify the shape difference in terms of three eigen-

values when two tensor glyphs have different orientations. For instance, as shown in

Figure 4.3a, two tensors are of unit scale but different orientations and shapes. No mat-

ter how we compare them, by juxtaposition (see Figure 4.3a) or by superposition (see

Figure 4.3b bottom), it is difficult to identify the shape difference by sight. As soon

as we align them to the orientation of one of these two tensor glyphs (see Figure 4.3b

top), it becomes easier to tell which tensor has larger or smaller eigenvalues. However,
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occlusion still makes it hard to judge the extent of shape differences. Transparency is

used to handle occlusion (see Figure 4.3c), but it remains hard to visually quantify the

shape differences.

Inspired by the checkerboard visualization, we explain our idea in 2D in Fig-

ure 4.4a. One of the superquadric glyphs is first aligned with the other (see Fig-

ure 4.4b). Therefore, we can maintain the original orientation of one tensor. Then,

we divide the 2D space into four quadrants (i.e., eight parts in 3D), each bounded by

two half-axes displayed as dotted black lines in Figure 4.4c, like a checkerboard. We

alternate the displaying of the corresponding parts of superquadric glyphs in each quad-

rant. Figure 4.3d shows the corresponding 3D case. If two tensors have similar shapes,

there will be no significant changes along the axes. Otherwise, abrupt changes appear

which are easy to recognize. The traditional checkerboard visualization introduces in-

formation loss due to its characteristic of alternative displaying. However, there is no

shape-specific information loss in our case, since both the tensor and the superquadric

glyphs are symmetric and one octant contains all information. Furthermore, we still

keep the sharp edges, which serve as strong visual cues for orientation and shape [8].

Note that the use of orthographic projection is necessary since the shape comparison

relies on the correct perception of length differences along the axes.

Figure 4.3: The Tender glyph shows the shape difference between two tensors of unit scale but with different orientations.

(a) shows two tensor glyphs placed side-by-side. (b) bottom shows them overlaid. (b) top shows them overlaid, but the

red glyph is aligned with the blue one. (c) superposition with transparency. (d) the Tender glyph. The differences in terms

of three eigenvalues are more obviously manifested by the "staircases" between two parts of the Tender glyph.
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Figure 4.4: 2D Illustration of the checkerboard style Tender glyph design. (a) shows two 2D glyphs side-by-side. (b)

shows them overlaid but the red glyph is aligned with the blue one. The solid lines represent the visible parts while the

dash-dot lines are the invisible parts due to occlusion. (c) shows the result of our design. The two black dot lines divide

the 2D space into four parts. Two glyphs are displayed alternatively. There are obvious discontinuities between them.

Scale Difference Encoding. Tensor scale is interpreted as the ‘size’, representing

the amount of diffusion. It is intuitive to encode the scale difference dscl to the size

channel of the Tender glyph. However, if so, it is impossible to tell which tensor has

a larger or smaller scale. An alternative is to directly map the original tensor scale

|D| to the size of its corresponding part of the checkerboard superquadrics. However,

these mappings do pose a problem for the perception of tensor scale. The superquadric

glyph inherently introduces volume differences for tensors with the same trace, but

with different shapes. It is then difficult to isolate the diffusion scale differences. More

importantly, if so, it will be hard to compare tensor shapes. Therefore, we decide to

encode either the individual tensor scales
∣∣D(i )

∣∣ or the scale differences dscl into color.

Encoding individual tensor scales enables voxel-wise scale comparison, while

encoding scale differences can facilitate the comparison across the field. Additionally,

we design two colormaps for scale information encoding. We use the same tensor

datasets as shown in Figure 4.1 for illustration. The dual hue colormap is used to

show individual tensor scales (see Figure 4.5a). Hue, as an effective categorical cue, is

used to distinguish tensor datasets. Scale information is reflected by color luminance.

Perceptually, it is easier to compare color luminance than to evaluate size differences

when shapes vary. However, it is hard to compare the subtle luminance differences of

two colors with different hues for a given voxel (see Figure 4.5a). Thus, we introduce

the single hue colormap (see Figure 4.5b). It facilitates detecting subtle luminance

differences for both local individual scales and scale differences across the field (see

Figure 4.5d). Colors of the same hue can facilitate the comparison of luminance. Glyph
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halos are then added for distinguishing datasets. Similarly, Chung et al. [20] use

outline color for distinguishing home or opposition teams in the visual analysis of

rugby events.

When encoding the scale differences dscl , the Tender glyph has the same hue

and luminance for all octants, and it becomes harder to identify the differences in

shapes (see Figure 4.5d). Switching to the dual hue colormap improves the combined

perception of scale differences and shape differences (see Figure 4.5c). Therefore,

the single hue colormap together with the halos is mainly for more accurate scale

comparisons, while the dual hue colormap is for the combined perception of scale

differences and shape differences simultaneously.

(a) (b)

(c) (d)

Figure 4.5: Two scale encoding schemes and two colormaps. (a) and (b) show that individual tensor scales
∣∣D(i )

∣∣ are

color-encoded with the dual hue and the single hue colormaps, respectively. This encoding scheme is suitable for local

voxel-wise scale comparison. (c) and (d) show that tensor scale differences dscl are color-encoded with the dual hue and

the single hue colormaps, respectively. This encoding scheme is suitable for scale comparison across the field. The single

hue colormap is for more accurate comparison while the dual hue colormap is for combined perception of scale and shape

differences simultaneously.
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Orientation Difference Encoding The orientation of a diffusion tensor is repre-

sented by its three eigenvectors. Straightforward visualization of two sets of eigen-

vectors as vectors has several disadvantages. The differences between them are not

easily perceived due to their 3D nature. More importantly, eigenvectors cannot be

uniquely determined for tensors of certain shape types (e.g., isotropic tensors). There-

fore, we decide to explicitly encode the scalar-valued orientation difference dor i , which

is semantically mapped to the angle of a view-aligned sector.

In order to encode the orientation difference dor i to the angle of sectors, we

must define the mapping function. The following example is used to establish a re-

lationship between them. Given two perfectly linear-anisotropic tensors D(1) = D(2) =
[1 0 0; 0 0 0; 0 0 0] (FA = 1.0, mode = 1.0) aligned with each other, if we gradually

rotate tensor one D(1) around vector (0, 0, 1) from 0◦ to 180◦ while keeping tensor two

D(2) fixed, the analytical behavior of the orientation difference is dor i =
p

2si n (θ) with

θ the rotation angle, shown as the red curve in Figure 4.6. Therefore, the mapping

function from orientation difference to the angle is defined as θ = 2arcsin
(
dor i /

p
2
)
.

The scaling factor 2 allows the maximum orientation difference to map to a circle.

If tensors are not perfectly linear, their orientation difference for the same rotation

angle will be smaller. As an example, the blue dots in Figure 4.6 indicate the values

for D(1) = D(2) = [0.99 0 0; 0 0.1 0; 0 0.1 0] (FA = 0.89, mode = 1.0). Figure 4.7a

shows the tensors used in this experiment, and the corresponding sectors are shown

in Figure 4.7b. Note that the left- and right-most sectors disappear since there are no

orientation differences. Figure 4.7c illustrates the sectors for the case of two perfectly

linear-anisotropic tensors.

Since the possible maximum of the normalized eigenvalue λ̃1 is one, the radius of

the sector is set to be slightly larger than one in order to maintain its visibility. Within

certain ranges of viewpoints, those sectors could overlap. Thus, similar to Lie et al.

[21], we add an eye-space fixed-width outline to support the depth perception and in-

dividual identification. Our final design is achieved by adding the checkerboard style

superquadrics, scale-encoded color channels, and the view-aligned sector for orienta-

tion differences together, as shown in Figure 4.8a. The Tender glyphs are applied to

visualize the differences between the same synthetic datasets used in Figure 4.1. The

dual hue colormap is used to encode individual tensor scales.
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Figure 4.6: The red curve and squares together show the analytic behavior of dor i between two perfectly linear-

anisotropic tensors with respect to the rotation angle. Blue dots represent dor i of other two linear-anisotropic tensors

with reduced anisotropies.

Figure 4.7: The sectors for encoding orientation differences. (a) shows a group of linear tensors with gradually varying

orientations (blue) and a reference tensor (red), and (b) shows the corresponding sectors for the orientation differences

between each element tensor with the reference. (c) shows the results for two perfectly linear-anisotropic tensors in the

same manner.

4.3. GLYPH VISUALIZATION
If the glyphs are placed throughout the whole volume, they probably occlude

each other and cause visual clutter. Thus, glyph-based techniques are more suited

for 2D and/or sparse visualization. In this work, we place the glyphs at one or more

selected slices. Furthermore, users can restrict the display of the glyphs at anatomically

meaningful structures of interest (e.g., corpus callosum). A smart glyph arrangement

strategy [22] can remove the distracting effects of the regular sampling grid. However,

this approach requires diffusion tensor interpolation. Therefore, we decide to place the

glyphs at the original grid points.

Since the Tender glyph does not have an intrinsic orientation, we develop vari-
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(a) Aligned with tensor dataset 1. (b) Aligned with tensor dataset 2. (c) View-aligned oblique view.

(d) View-aligned projection view with

the first and second normalized eigen-

values.

(e) View-aligned projection view with

the first and third normalized eigenval-

ues.

(f) View-aligned projection view with

the second and third normalized eigen-

values.

Figure 4.8: Various strategies for orienting the Tender glyphs in 3D space.

ous strategies for its orientation. The options include a) aligned with DTI dataset 1;

b) aligned with DTI dataset 2; c) view-aligned oblique view; d) view-aligned projection

of any pair of two eigenvalues. Aligning the glyphs with respect to one of the datasets

is useful when preserving the original orientations is important. An oblique view is

good to provide the first impression of the differences of all the three eigenvalues,

while the projection of any two eigenvalues can support more accurate comparisons.

How the Tender glyphs look like with these orientation strategies can be seen in Fig-

ure 4.8. Furthermore, we introduce an interaction for manipulating the glyphs, which

is termed as independent rotation. The glyphs can be freely rotated around their own

centers for a better perception of the shape differences without changing the current

camera settings.

To facilitate exploration, we incorporate the visualization of a feature space. It

uses as features: scale difference dscl , shape difference dshp , orientation difference

dor i , normalized tensor difference d̃ and the Frobenius norm of the difference tensor

dF r obeni us =∥ D(1) −D(2) ∥. The scatter plot matrix (SPLOM) approach is used to arrange

the visualizations of these features (see Figure 4.9). Three histograms, placed at the
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main diagonal, show the distributions of dscl , dshp , and dor i , while the histograms of

d̃ and dF r obeni us are shown at the upper diagonal. Logarithmic scale is used for all

the histograms. Three scatter plots at the lower triangular part show the relationship

between any pair of the features dscl , dshp and dor i . For each scatter plot, a density

map generated from the whole dataset serves as the context, while the green dots drawn

on top represent the distribution of the currently selected tensors. Linked views with

filtering are used to support interactive exploration.

Figure 4.9: The feature space is composed of three scatter plots and five histograms. Three scatter plots are for the

relationship of any pair of the features dscl , dshp , and dor i . Five histograms are for dscl , dshp , dor i , d̃ , and dF r obeni us .

4.3.1. IMPLEMENTATION

Our prototype is implemented in C++, combining VTK and OpenGL/GLSL for

visualization, and Qt for the GUI design. The geometries of the checkerboard-style

superquadrics are constructed via a precomputed palette of base superquadric shapes
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[18]. In order to save graphics card memory, we only construct one eighth of each

of the possible glyph geometries due to inherent symmetry. The total number of ge-

ometries for the precomputed palette is 231, which is enough for our goal. The vertex

positions and the normals are stored in card memory. During rendering, the base ge-

ometry is used four times to generate the checkerboard-styled superquadrics for each

tensor with its corresponding transformation matrix. Phong shading is employed to

support the shape perception. The halos are rendered in a similar way to Schultz and

Kindlmann [18]. The sector of the Tender glyph is built in the geometry and fragment

shaders. A view-aligned quad is generated at each seeding point and texture coordi-

nates are assigned to each corner for subsequent processing to get the expected angle.

4× 4 multi-sampling is implemented to relieve the aliasing problem for the outline.

Since the sector is analytically generated, the associated attributes for extra samples

are computed in the fragment shader. This does not introduce any noticeable perfor-

mance loss.

4.4. EVALUATION AND APPLICATION

4.4.1. USER STUDY

We conducted an initial user study in order to find out whether our requirements

have been achieved by the Tender glyph. Since we intended to evaluate the effective-

ness and efficiency of the glyph design on its own, the feature space was not included

in the study. To be able to include more users, we abstracted from the diffusion-related

concepts. We had 13 participants with various backgrounds: computer science (10;

among them, 6 have experiences with computer graphics), DTI image analysis (2), and

applied mathematics (1). The evaluation, which took 90 minutes on average per partic-

ipant, consisted of three phases. In the first phase, we explained the three components

on which the Tender glyph is based, i.e., scale, shape, and orientation. We also intro-

duced the juxtaposition/superposition comparison techniques as well as superposition

combined with transparency. 6 out of 13 did the test with all the three visualization

methods while the rest did without the superposition plus transparency. Finally, we

demonstrated our design in a live demo with our prototype. In the second phase, the

participants themselves tried both the Tender glyph, the juxtaposed/superposed glyph,

and the transparent superposed glyph to get used to the visualization as well as the
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available interactions. In the third phase, 22 or 33 controlled tests were performed de-

pending on whether the superposition with transparency test was added or not. During

each test, the participants had to perform a comparison task and answer one to three

questions as fast and accurately as possible. For all tests except the last three, two

datasets each with 8 tensors were present, forming 8 tensor pairs. Participants needed

to pick one or more pairs out of these 8 pairs as the answer. For example, they needed

to find out which pairs have the smallest shape differences or the largest orientation

differences. For the last three tests, they had to answer similar questions but with rel-

atively large fields (9×9). In order to correctly measure their accuracy in answering

these questions, we allowed them to give no answer when they were uncertain. One

of the three glyph-based methods was randomly assigned to visualize the differences

between the test datasets. None of the test datasets was repeated for the same par-

ticipant. Each test dataset appeared only once during the whole phase. In the end,

open questions designed to collect their impression on the utility of our design were

asked. An overall ranking on a scale from 0 to 10 about the usefulness of the juxtapo-

sition/superposition, superposition with transparency, and the Tender glyph was asked

as the last question.

There were 8, 4 and 8 questions asked for the comparison of orientation, shape,

and scale, respectively. The accuracy and efficiency (i.e., time) results of orientation

difference comparison tests are shown as two boxplots in Figure 4.10a and 4.10d. In

general, they achieved better results with much less time using the Tender glyph. The

results confirm that the perception of orientation differences in terms of angles is easy

to spot and interpret. The accuracy and efficiency of shape-related questions are shown

in Figure 4.10b and 4.10e. In terms of accuracy, the results indicate that the Tender

glyph provides more accurate results, while in terms of efficiency there are no signifi-

cant differences among all the methods. Four participants stated in the open questions

that all the methods worked equally well for the shape comparison, so they had no

preference. But it is interesting to observe that they improved the accuracy and spent

less time with the Tender glyph, despite their perception. There was one participant

who correctly answered all the shape-related questions with both transparent superpo-

sition and the Tender glyph. But this participant spent less time with the Tender glyph

(140s <177s), and also mentioned in the open questions that the checkerboard design

provides stronger visual cues for shape differences, making them easier to recognize.
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The results for scale comparison are shown in Figure 4.10c and 4.10f. In terms of

accuracy, the results do not clearly indicate whether Tender glyphs or superposition

with transparency is superior. The efficiency is clearly better with superposition plus

transparency. 5 out of 6 participants mentioned that for small field comparisons they

preferred superposition plus transparency since they could roughly estimate the scale

differences, as well as decide which tensor has a large or small scale for a specific pair

simultaneously. Using the Tender glyphs to obtain the same information requires extra

interactions, which causes a more time consuming exploration. For large field com-

parisons, they all agreed that it is easier with the colormap-based encoding scheme.

In practice, many comparisons would be performed on large fields, as shown in the

following two case studies. We also realized that the complexity of the interface and

the interaction with the prototype creates a steep learning curve for novice users of the

Tender glyph. An interesting statement from one participant with DTI image analysis

background was that the dual hue colormap is counter-intuitive since blue represents

low values in the rainbow colormap that is commonly used in his research.

Figure 4.10: The results of the user study in terms of accuracy and efficiency. (a), (c), and (e) represent results in terms of

accuracy, while (b), (d), and (f) represent results in terms of efficiency for comparison tasks related to orientation, shape,

and scale differences, respectively.

The results of the questions, in relation to the preferences, are as follows. The

average ranking for superposition is 4.5. This method could cause occlusions, which

makes the comparisons more difficult. They gave 5 on average for juxtaposition. In

this way, they could perceive full information which is helpful for rough comparisons
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in a small field. For accurate comparisons, especially in a large field, it is difficult to

mentally match the corresponding tensor glyphs for comparison. They gave 6.2 on

average for superposition with transparency. The advantage of this method is that the

occlusion problem and the matching problem are relieved. But there are no strong

visual cues for shape comparison. Furthermore, for orientation comparison they had to

mentally imagine how to align two glyphs in order to deduce the orientation difference.

They gave 7.8 on average for the Tender glyph. With the Tender glyph, the orientation

comparison is easy to perform. The Tender glyph also provides stronger visual cues

for shape comparison than other glyph-based methods. For scale comparison, several

participants suggested that we should simplify the user interface to make it simpler to

learn. Furthermore, one participant with DTI image analysis background suggested

that the Tender glyph is useful when to avoid presenting and looking at several tensor

scalar images next to each other. With the Tender glyph, one image, containing all the

information about the tensor differences, would be sufficient.

4.4.2. CASE STUDY

One of the main applications of DTI is the imaging of white matter in the brain.

DTI has the potential to provide better understanding of brain connectivity, and im-

prove diagnosis and treatment of diseases such as HIV [23]. Comparison of diffusion

tensor fields is part of the analysis to achieve these goals, e.g., to compare the results of

different acquisition settings to optimize acquisition sequences, or to compare datasets

to find markers that can distinguish pathological tissues.

The main idea of the Tender glyph is to improve the ability to visually reveal local

tensor differences as well as large scale patterns in the datasets. Furthermore, by linked

selection of the associated feature space, interesting pattern identification is facilitated.

In this section, we illustrate the application of Tender glyphs in two scenarios where

two DTI datasets are compared.

B-value is an important parameter in DTI acquisition that defines a trade-off be-

tween signal-to-noise ratio and contrast. It is often unknown what exact output a b-

value change will produce. Two DTI datasets of the same subject, acquired with a

b-value of 1000 and 2000 respectively, are compared. The size is 80 × 80 × 38 at

2.875× 2.875× 3mm resolution. A coronal slice is shown in Figure 4.11(a). Blue

corresponds to the b-value 1000 DTI dataset, while red represents the b-value 2000
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one. It can be immediately observed that only the left bottom and right bottom areas of

the slice show large differences in orientation. Figure 4.11(b) shows the superposition

of the superquadric glyphs without normalization in the area marked with a rectan-

gle in Figure 4.11(a). Due to large variations in tensor scales, most of the red glyphs

are enclosed by the blue ones. Figure 4.11(c) shows the superposition of normalized

glyphs. Since they occlude each other, it is hard to distinguish their shape and orienta-

tion differences. Moreover, the exact tensor scale differences are impossible to deduce

after normalization. Figure 4.11(d) visualizes the tensor differences with the Tender

glyphs. The voxels with the largest orientation differences (i.e., the largest angles) can

be quickly spotted via the sectors of the Tender glyphs, indicating their pre-attentive

capabilities. Most of the angles of the sectors are very small, which reveals that the

orientation differences are quite little within this area. The individual tensor scales

are encoded via the single hue colormap. By comparing lightness, the extent of scale

differences can be estimated. The halos around the glyphs help to identify the corre-

sponding DTI dataset. The single hue colormap together with the halos clearly show

that the tensors from the DTI dataset of b-value 1000 have larger scales than that from

the b-value 2000 dataset, which was expected. The shape differences are conveyed

in terms of the checkerboard style edge differences. With the single hue colormap, it

is difficult to perceive shape differences for tensors of similar scales. Figure 4.11(e)

shows the Tender glyphs with the dual hue colormap which is more suitable for dis-

tinguishing two tensors with similar scales. A closeup of the Tender glyphs within

the area marked as the rectangle in Figure 4.11(e) is shown in Figure 4.11(f) in the

view-aligned projection style of the first and second normalized eigenvalues. Even the

subtle differences, for example for the linear tensors, can be effectively identified.

The feature space selection can be used to find regions with large differences or

outliers. The locations with both large shape and orientation differences are selected,

as shown in Figure 4.12a, while the corresponding feature space is shown at the top left

corner. It can be seen from Figure 4.12b that most of the Tender glyphs are shown at the

bottom of the DTI volume, which are probably in uninteresting regions for analysis.

However, there are two groups of glyphs located inside the volume, as marked by

the white rectangles in Figure 4.12a. Figure 4.12b shows a view of some of these

normalized glyphs located on one coronal slice. Figure 4.12c presents a view for this

region without encoding the tensor scales. The shape differences become more obvious
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Figure 4.11: The application of the Tender glyphs to compare two DTI datasets acquired with different b-values. (a)

Tender glyphs on a coronal slice. (b) Superposition of superquadric tensor glyphs. (c) Superposition of superquadric

glyphs after tensor normalization. (d) Tender glyphs with the single hue colormap. (e) Tender glyphs with the dual

hue colormap. (f) Tender glyphs displayed in the view-aligned projection style with the first and second normalized

eigenvalues.

via the Tender glyphs, and they can be more accurately assessed.

(a) Find interesting areas with

both large shape and orientation

differences via feature space.

(b) Superposed superquadric ten-

sor glyphs.

(c) The Tender glyphs clearly

show the orientation and shape

differences in detail.

Figure 4.12: Feather space filtering together with the Tender glyphs permits the detailed comparison at interesting areas.

As another example of DTI dataset comparison the Tender glyph is applied to

compare a DTI dataset from a healthy subject and from an HIV-infected subject. The

datasets were pre-registered through FSL 1. The size of each dataset is 112×112×55

with an isotropic resolution of 2mm. Two regions of the corpus callosum (CC) on

a sagittal slice are selected as the ROIs shown as white rectangles in Figure 4.13(a).

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Blue represents the DTI dataset of a healthy subject, while red is for the DTI dataset

from an HIV-infected subject. Figure 4.13(b) clearly shows the orientation differences,

compared to the superposed tensor glyphs shown in Figure 4.13(c). Voxels with con-

sistent orientation differences are more efficiently recognized in the posterior region of

the CC. Figures 4.13(d), (e), (f) together show the visualization results for the anterior

region of the CC. From Figures 4.13(e) and (f) we can see that the orientations in the

anterior region do not change a lot, but their shapes do. The Tender glyphs displayed

in the view-aligned style, as shown in Figure 4.13(f), further confirm that tensors of

the HIV dataset are less linearly anisotropic in the indicated region. Further studies are

necessary to see whether these findings remain consistent between larger populations.

Figure 4.13: The Tender glyphs clearly reveal the change of dominant tensor differences in different regions of CC. (a)

Two ROIs selected on the CC. (b) Superposed superquadric tensor glyphs at the posterior area of CC. (c) Tender glyphs

reveal consistent orientation differences at the posterior area of CC. (d) Superposed superquadric tensor glyphs at the

anterior area of CC. (e) Tender glyphs at the anterior area of CC, aligned with the blue dataset. (f) Tender glyphs at the

anterior area of CC in the view-aligned projection style.

4.5. CONCLUSIONS
We present a glyph-based comparative visualization for diffusion tensor datasets.

We decompose the overall tensor differences into differences in shape, scale, and ori-

entation, which have biological interpretations for the underlying tissue. We design a

novel glyph, i.e., the Tender glyph to encode and visually present them in an easy-to-

interpret way. The Tender glyph is composed of two superquadric glyphs arranged in
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a checkerboard style that is efficient for the visual comparison of tensor shapes. The

individual tensor scales or the scale differences are color-encoded, and we also design

two colormaps, each of which has its own advantages for certain purposes. The arcs

encode the orientation differences, which are intuitive and pre-attentive for perception.

We build a feature space that is helpful for the interactive exploration and selection

of relevant features. We present an initial user study that shows that the Tender glyph

allows a more accurate and effective analysis for orientation and shape differences,

although it does not improve the time performance in all tasks. Two cases based on

brain DTI datasets illustrate the potential of the Tender glyph in comparative analysis

of real-world datasets.

In the future, we would like to carry out a more exhaustive user study in a specific

DTI application domain as well as a general evaluation of the Tender glyph in the way

presented in Demiralp et al. [12].

Furthermore, the most well-known problem for the single tensor model is that

it fails to model complex fiber configurations inside a voxel such as fiber crossings.

More sophisticated modeling techniques such as HARDI can be used to describe those

complex situations. How to extend the design idea of Tender glyph to HARDI is an

open problem. The Tender glyph is currently only for pair-wise comparison. Though

in the case study with the HIV dataset we compare two individual subjects from two

groups, the Tender glyph can be applied to visualize the differences between the corre-

sponding group means for inter-group comparison. Furthermore, in practice there are

situations where multiple datasets need to be compared rather than just two. Therefore,

another open problem is how to extend the Tender glyph for comparison beyond two

datasets. The underlying uncertainty of DTI [24], which is caused by the noise and the

incomplete modeling, is another motivation for multiple DTI datasets comparison.
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5
OVERVIEW + DETAIL

VISUALIZATION FOR AN

ENSEMBLE OF DIFFUSION

TENSOR FIELDS

In all fighting, the direct method may be used for joining battle,

but indirect methods will be needed in order to secure victory.

Sun Tzu

凡战者，以正合，以奇胜。

孙武

This chapter is based on the following publication:“Overview +Detail Visualization for Ensembles of Diffusion Tensors”,

Changgong Zhang, Matthan W.A. Caan, Thomas Höllt, Elmar Eisemann, and Anna Vilanova. In Computer Graphics

Forum (Proceedings of EuroVis), 36(3):121–132, 2017 [1].

71



5

72
5. OVERVIEW + DETAIL VISUALIZATION FOR AN ENSEMBLE OF DIFFUSION TENSOR

FIELDS

In the previous chapter, we present a glyph-based comparative visualization for two

tensor fields. In this chapter, we increase the number of tensor fields to be compared

from two to multiple, i.e., an ensemble of tensor fields, and provide an overview +

detail framework to facilitate its visual exploration.

5.1. INTRODUCTION
In neuroscientific studies, it is necessary to summarize a group of DTI datasets,

normally called cohorts or ensembles, in order to locate variations between subjects

that might be caused by natural variations [2] or uncertainty [3].

However, only few available approaches focus on the diffusion tensor in its en-

tirety [4–6]. Basser and Pajevic [4, 5] propose the use of the fourth-order covariance

tensor based on the assumption that the set of diffusion tensors follows a multivari-

ate normal distribution. The fourth-order covariance tensor represents deviations from

the mean tensor, which is built by component-wise averaging. Basser and Pajevic [5]

use radial glyphs to visualize the fourth-order tensor and its six orthogonal second-

order eigentensors or eigenmodes. The six mutual orthogonal eigentensors represent

all modes of tensor variation. However, this visual encoding is difficult to interpret.

In recent work, Abbasloo et al. [6] combine slice views, volume rendering, and su-

perquadric glyphs [7] to visualize the fourth-order covariance tensor at multiple levels

of detail. In order to facilitate the interpretation of the covariance tensor, they use the

decomposition framework proposed by Kindlmann et al. [8]. The framework is based

on the gradients of meaningful tensor invariants. They visualize the six orthogonal

eigentensors, which contain a mixture of different tensor intrinsic properties, through

animation. Eigentensors allow the identification of correlations but also provide po-

tentially misleading interpretations in some situations (e.g., in the cases shown later in

Section 5.7.1).

In this chapter, we integrate concept of the intrinsic properties (i.e., scale, shape,

and orientation) of diffusion tensors into the analysis and visualization of DTI en-

sembles to facilitate their interpretation. A major challenge for this approach is to

deal appropriately with the inherently coupled relation between shape and orientation.

The main contribution of this work is an integrated overview + detail visual analysis

framework for the exploration of DTI ensembles that does not assume any specific

distribution of the underlying data.
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• We propose a representative tensor that is derived by separately aggregating the

intrinsic properties, instead of using the Euclidean mean that treats these proper-

ties collectively.

• Variation within the tensor ensemble is defined based on the pair-wise difference

measures of the three tensor intrinsic properties (see Section 4.2.2).

• We extend two existing glyph-based visualizations [7, 9] to encode variation

uncovered in the ensemble.

• We present a detail visualization that enables intuitive exploration of the ten-

sor ensemble, separately for the tensor intrinsic properties, without assuming a

specific distribution.

5.2. STATISTICAL SUMMARY
In order to aggregate or summarize an ensemble of diffusion tensors, we resort to

statistical tools. In this section, we introduce our statistical analysis approaches.

We define the space of symmetric tensors in R3 as Sym3 and the corresponding

tensor field as F : R3 → Sym3. An ensemble of n diffusion tensor fields is denoted by

{Fi }n
i=1. Since our focus is voxel-wise analysis, the main object of interest is a set of

tensors at a specific location x within the field, denoted by {Fi (x)}n
i=1. For simplicity,

we denote the set as {Di }n
i=1, and refer to it as a tensor ensemble. Notice that most of

the solutions presented in this work are also valid for ensembles of any second-order

positive-definite tensors independent of their origins.

5.2.1. DIFFUSION TENSOR DECOMPOSITION

The exact way of decomposing a tensor is dependent on the application. For

diffusion tensors, an informative and intuitive decomposition consists of three intrinsic

properties (i.e., scale, shape, and orientation). Each of these properties carries a specific

interpretation about the underlying fiber structures. Decomposition into these three

intrinsic properties is well studied in the previous chapter and Ennis and Kindlmann

[10]. Hence, we briefly introduce the decomposition as proposed in Section 4.2.

A symmetric and positive-definite diffusion tensor D can be eigen-decomposed

into three sorted real eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 where λ1 is often referred to as
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the main or major eigenvalue. The orthonormal eigenvectors are ordered accord-

ingly (e1,e2,e3). The tensor trace, tr(D), is defined as the sum of the eigenvalues

tr(D) = ∑3
j=1λ j , and is proportional to a commonly used tensor invariant called mean

diffusivity [11]. Finally, the sorted normalized eigenvalues
(
λ̃1, λ̃2, λ̃3

)
are given by

(λ1,λ2,λ3)/tr(D).

A diffusion tensor has six degrees-of-freedom (DOFs) in total. Tensor scale, one

DOF, can be represented by the trace tr(D) and has a range of [0,∞). It indicates

the overall amount of diffusion. There is more diffusion in regions without fibers (e.g.,

ventricle) than with fibers (e.g., corpus callosum). Tensor shape, two DOFs, can be rep-

resented by the sorted normalized eigenvalues
(
λ̃1, λ̃2, λ̃3

)
with range [0,1], reflecting

the underlying fiber configurations (e.g., a single fiber population or two crossing fiber

populations). Tensor orientation is given by the set of eigenvectors (e1,e2,e3). The

major eigenvector e1 is empirically assumed to be aligned with the underlying fiber

pathways. Shape and orientation are inherently coupled. For example, if the tensor

shape is isotropic (i.e., three equal eigenvalues), the orientation is completely unde-

fined. This fact complicates the decomposition and the subsequent statistical analysis.

5.2.2. DIFFUSION TENSOR ENSEMBLE AGGREGATION

We characterize a tensor ensemble by separately deriving the mean and standard

deviation for scale, shape, and orientation. Given its special characteristics, we also

propose an alternative that does not rely on the mean and standard deviation of the

orientation. Instead, we estimate the diffusion orientation distribution function (dODF)

according to the normal distributions implied by each tensor of the ensemble. This

approach enables the depiction of multiple orientations within the ensemble.

TENSOR ENSEMBLE MEAN

We first consider the special case of calculating the mean on an ensemble consist-

ing of just two tensors. Here, the mean tensor can simply be viewed as an interpolation

between two tensors. Kindlmann et al. [12] illustrate that Euclidean as well as Log-

Euclidean interpolation cannot guarantee a monotonic interpolation of the tensor shape

invariants, and as such can introduce spurious tensor shapes. Extending the Euclidean

mean to more than two ensemble members corresponds to computing a component-

wise average. Although it has been used in previous work [4, 6], the Euclidean mean



5.2. STATISTICAL SUMMARY

5

75

has undesired properties [12]. Let us consider an ensemble of linear anisotropic tensors

with exactly the same eigenvalues but different eigenvectors, as shown in Figure 5.1a.

It can be observed that the Euclidean mean tensor (Figure 5.1b) has a spurious shape

that is not present in the original ensemble. Such a shape can mislead the analyst

to make false assumptions about the underlying ensemble. Therefore, we propose to

derive the mean tensor by computing the average of the three intrinsic properties sep-

arately and then combine them to form the mean tensor. Therefore, the characteristics

are preserved and can be analyzed in the mean tensor. We denote this new mean tensor

as D.

The trace of D is defined as the average of individual tensor traces,

tr
(
D

)= 1

n

n∑
i=1

tr(Di ). (5.1)

Note that tr
(
D

)
is identical to the trace of the Euclidean mean.

Because of normalization, sorting, and positive definiteness, all possible eigen-

value tuples
(
λ̃1, λ̃2, λ̃3

)
, representing the shape, form a triangle in R3 (see Figure 5.2).

Therefore, the shape of D is defined as

(
λ̃1, λ̃2, λ̃3

)D = 1

n

n∑
i=1

(
λ̃1, λ̃2, λ̃3

)Di . (5.2)

The superscript indicates the corresponding tensor from which the normalized eigen-

values are derived. Our idea is similar to Gahm et al. [13], but we aim at summarizing

the tensor ensemble members while they focus on pair-wise tensor interpolation. Fur-

thermore, we work directly with the eigenvalues instead of specific tensor invariants.

So far we have defined scale and shape of the mean tensor, which represent the

mean diffusion amount and mean diffusion shape, respectively. However, the definition

of the mean orientation is not as straightforward as the mean scale and shape because

(a) (b) (c)

Figure 5.1: Two types of mean tensors for (a) 10 linear anisotropic tensors with the same eigenvalues (0.7,0.15,0.15) but

different eigenvectors. (b) is the Euclidean mean and (c) is the ensemble mean calculated according to Equation (5.3).
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Figure 5.2: Tensor shape space is defined by the sorted and normalized eigenvalues λ̃ j . Three glyphs are placed at the

corners as reference, colored according to their λ̃ j .

the eigenvectors are not always well-defined (i.e., in the case of two or three equal

eigenvalues), and do not have a unique sign. In order to construct the complete mean

tensor, a set of eigenvectors (e1,e2,e3)D is required to orient the mean tensor in the

3D domain. Here, we use the eigenvectors of the Euclidean mean (e1,e2,e3)Eu as the

eigenvectors of our mean tensor, as suggested by Gahm et al. [13]. The orientation of

the mean tensor can provide anatomical reference that is relevant for the understanding

of the context. However, strongly diverging orientations in the ensemble can get lost.

Therefore, the orientation has to be analyzed with care.

Finally, the separate components are assembled into the mean tensor as,

D := tr
(
D

) 3∑
j=1

λ̃D
j eD

j ⊗eD
j . (5.3)

By separately handling scale, shape, and orientation, we effectively avoid the introduc-

tion of tensor intrinsic properties that are not present in the tensor ensemble into the

mean tensor. Figure 5.1c shows the mean tensor of the ensemble introduced in Fig-

ure 5.1a, calculated according to Equation (5.3). This new mean tensor preserves the

shape of the tensors in the ensemble.

However, (e1,e2,e3)Eu can be ill-defined and do not give a good representation

of the underlying ensemble orientation. For example, consider a second ensemble of

linear tensors, consisting of orthogonal pairs in Figure 5.3a. The Euclidean mean in

Figure 5.3b of this ensemble has a planar shape. Thus its eigenvectors (e1,e2,e3)Eu

cannot be uniquely defined. The mean tensor, according to Equation (5.3), will have a

clear linear shape, but an arbitrary and meaningless orientation.
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Alternatively, we propose to summarize the orientation based on the diffusion

orientation distribution function (dODF) that can be analytically expressed [14] as

p (r) = 1√
(4πτ)3 det (D)

e− 1
4τ rTD−1r,

dODF(u) =
∫ ∞

0
P (r u)r 2dr = 1

4π
p

det (D)
(
uTD−1u

) 3
2

.
(5.4)

p (r) is the probability density function of a 3D normal displacement distribution,

which is the fundamental assumption underlying DTI. It represents the probability of a

water molecule ending up with displacement vector r after a certain amount of time τ.

dODF is the radial integral of the normal distribution along a given direction u (i.e., the

unit vector). Furthermore, det (•) is the tensor determinant and (•)−1 is the tensor in-

verse. The dODF integrates to one over the unit sphere S2, i.e.,
∫
S2 dODF(u) du = 1. It

is dimensionless, and invariant with respect to det (D) [14]. Note that dODF responds

to the tensor orientation as well as the tensor shape. The mean dODF, denoted dODF,

is defined as the average of individual dODFs,

dODF(u) = 1

n

n∑
i=1

dODFi (u) . (5.5)

Similar to HARDI (e.g., Q-Ball imaging [15]), which models multiple diffusion orien-

tations for the case that a single voxel contains multiple fiber orientations (e.g., fiber

crossing [16]), the dODF models multiple orientations within the ensemble, and as

such provides a faithful representation of the actual diffusion directions. Figure 5.4a

shows the dODF glyph for the tensor ensemble presented in Figure 5.3a, preserving

the two major orientations.

(a) (b)

Figure 5.3: (a) A group of linear tensors with two distinct orientations. (b) The Euclidean mean tensor. A mean tensor

generated according to Equation (5.3) would comprise the same scale and shape as the tensors in a) but with a random

orientation (thus not shown).
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TENSOR ENSEMBLE VARIATIONS

To quantify the variation in the ensemble separately for scale, shape, and orienta-

tion, we generalize the standard deviation σ to the pair-wise tensor difference measures

(see Section 4.2.2), denoted as dscale, dshape, and dorientation, respectively. The pair-wise

difference measures have several desirable properties, especially in relation to the link

between shape and orientation. The orientation difference measure dorientation is de-

signed to smoothly converge to zero as one of the compared tensors becomes isotropic,

ensuring continuity. Furthermore, the difference measures are considerably faster to

compute, compared to the geodesic-loxodromes approach [12]. Using the pair-wise

differences, the standard deviation for each of the intrinsic tensor properties is defined

as

σp =
√

1

n −1

n∑
i=1

(
dp

(
D,Di

))2
, (5.6)

where p is one of the three intrinsic properties {scale, shape, orientation}. The statis-

tical summary contains a mean tensor and three scalar-valued quantities that represent

the variation within each individual property. Although conceptually similar to the

aggregate covariance measures proposed by Kindlmann et al. [8], the {scale, shape,

orientation} variations are defined independently of the covariance tensor. Further-

more, since both dshape and dorientation are bounded, the corresponding variations σshape

and σorientation are also bounded.

The standard deviation for dODFs, describing the variation in the diffusion prob-

(a) (b) (c)

Figure 5.4: (a) The corresponding dODF glyph for the tensor ensemble in Figure 5.3a. A conventional direction-encoded

colormap is used. (b) The glyph with the threshold set to 60% of the maximum variation. (c) The glyph of (b) min-max

normalized to enhance the direction with a large diffusion probability density.



5.3. VISUAL DESIGN REQUIREMENT ANALYSIS

5

79

ability density in a given direction u, is then given by

σdODF (u) =
√

1

n −1

n∑
i=1

(
dODF(u)−dODFi (u)

)2
. (5.7)

The σdODF is conceptually similar to the variance in Apparent Diffusion Coefficient

(Equation (13) in Abbasloo et al. [6]), and provides a direct interpretation compared to

the fourth-order covariance tensor.

Both dODF and σdODF are functions defined on the unit sphere S2. Hence, dODF

and σdODF can be approximated with spherical harmonics of up to fourth-order [17],

resulting in two sets of spherical harmonics coefficients per voxel, each containing

15 coefficients. Higher-order approximation would provide more accurate results but

at increased computational complexity. For the purpose of numerical computation, an

icosahedron-based fourth-order tessellation is employed to discretize dODF and σdODF.

5.3. VISUAL DESIGN REQUIREMENT ANALYSIS
Following Shneidermans mantra “Overview first, zoom and filter, then details on

demand" [18], we propose a two-level overview + detail visualization. The overview is

used to present the aggregate information on the ensemble, presented in Section 5.2.2.

The detail views allow the exploration of the original tensor data.

The goal of the overview visualization is to enable the analyst to inspect the ag-

gregate ensemble information (i.e., mean and variation) at discrete locations in the

domain, as well as to reveal potential large-scale coherent patterns. Therefore, we

define three requirements for the overview visualization:

O1 It shall show the mean tensor and tensor variations simultaneously in the 3D

domain through a single view, to avoid attention shifts and reduce reliance on

memory during visual exploration.

O2 The mean and variations in each of the three intrinsic properties should be sepa-

rable and, therefore, individually identifiable.

O3 When no variation is present in the ensemble, the visual representation shall con-

verge to a well-known base representation, such as a glyph-based visualization

for a single DTI dataset, to decrease the entry burden for analysts.
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To identify how variations in the ensemble arise and to inspect tensors for different

ensemble members, we define the following requirements for the detail visualization:

D1 It shall show the complete tensor ensemble for voxels of interest without assump-

tions on the ensemble distribution.

D2 It shall allow direct access to the three intrinsic properties separately and facili-

tate interpretations.

D3 It shall allow to identify correlations between the different intrinsic properties.

5.4. GLYPH-BASED OVERVIEW VISUALIZATION
Glyphs principally allow the simultaneous visualization of multiple attributes.

Therefore, it is a natural choice to employ glyphs to encode the multivariate sum-

mary information (O1). Well studied glyph representations (e.g., [7] for DTI, [9] for

HARDI) form the basis to which our new design should gracefully reduce in case no

variation is present in the ensemble (O3).

5.4.1. TENSOR-BASED GLYPH DESIGN

Superquadric tensor glyphs are commonly employed as base geometry for their

ability to reduce ambiguity and preserve continuity [7, 19, 20]. A glyph G is con-

structed following

G (D) = s (tr(D))RΛ̃B
(
λ̃ j

)
, (5.8)

where the superquadric base geometry B
(
λ̃ j

)
is determined according to the sorted

normalized eigenvalues. Λ̃ is a diagonal matrix composed of the normalized eigenval-

ues for scaling the base geometry. R is a rotation matrix, defined by the column matrix

of the eigenvectors [e1,e2,e3]. s is an overall scaling function, which takes the tensor

trace tr(D) as input. Unlike the previous work [19, 20], we can use tr(D) instead of the

Frobenius norm ||D|| because we normalize eigenvalues with respect to tensor trace as

presented in Section 5.2.1.

We indicate the major diffusion direction by the conventional spherical colormap

[21], determined by the absolute values of the components of the major eigenvector

e1. The color is desaturated according to the tensor invariant cl [22]. Unless noted

otherwise, we use this colormap throughout this chapter. In the following, we extend
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the superquadric glyph to incorporate the tensor variation information based on the

fundamental construction rule Equation (5.8).

Figure 5.5: Visualization of the same mean tensor with different types/extents of variations (a): scale, (b&c): shape with

Perline noise and halftone pattern, (d): orientation, (e): all combined. The variation gradually increases from left to right.

Scale Variation. The mapping of data attributes into visual channels of glyphs should

be semantic [23], thus easing the learning process. The influence of the tensor scale

on the glyph appearance is reflected in the scaling part s (tr(D)) of Equation (5.8).

Therefore, we decide to encode the tensor scale variation into glyph halos, similar

to [19]. The larger the scale variation, the thicker is the halo (Figure 5.5a). Extra

benefits brought by halos are the enhancement of depth perception, which is especially

important in the context of orthographic projections, and identification of individual

glyphs [24]. The halos are generated by rendering the same glyph with a larger scaling
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factor, by adding the standard deviation to the trace, s (tr(D)+σscal e ).

Shape Variation. Shape perception is roughly based on two factors, the underlying

geometry, reflected in Λ̃B
(
λ̃ j

)
of Equation (5.8), and the shading information [25]. A

way to show tensor shape variation would be distorting the geometry and/or shading.

However, introducing additional, irregular geometry would lead to a deviation from

the commonly used glyphs. Thus it would potentially increase the learning burden.

Instead we encode σshape by introducing a texture on top of the geometry. We propose

two different approaches with distinct advantages and disadvantages, and allow the

user to select one, depending on the use case.

The first approach adds Perlin noise of increasing frequency to indicate increas-

ing σshape in object space, similar to previous work [26, 27], as shown in Figure 5.5b.

Glyphs encoding large variations will show strong luminance contrast, to which the hu-

man visual system is sensitive [25]. The resulting texture will be invisible for σshape = 0

and, therefore, resembles the appearance of the glyph for a single dataset. The second

approach employs a screen-space halftone pattern [28], as shown in Figure 5.5c. Here,

σshape is encoded into the distances between neighboring dots on the glyph surface.

The distance is inversely proportional to σshape . Smaller variations result in much

larger distances while higher variations result in more densely packed dots.

The halftone pattern provides a more precise estimation of tensor shape variations,

however, at the expense of artifacts during interaction, due to its screen space nature.

The Perlin noise does not suffer from these artifacts, but is harder to interpret and quan-

tify due to its irregularity. A downside for both techniques is their interference with

color, which means that properties encoded by the color (e.g., the major eigenvector or

FA) will become less legible.

Orientation Variation. The orientation information is reflected in the rotation matrix

R of Equation (5.8). One option to visualize σor i ent ati on is to superimpose several

glyphs with perturbed rotations [29]. However, this is likely to cause strong occlusions.

Instead, we explicitly show σor i ent ati on with a sector as shown in Figure 5.5d. Since

there is no inherent orientation for the 2D sectors in the 3D domain, we align them

with the view direction [24] to maintain optimal visibility. The orientation variation

σor i ent ati on is then encoded into the angle of the sector by the same mapping function

as introduced in Chapter 4, with larger sectors indicating larger σor i ent ati on .
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As shown in Figure 5.5, the halo, the surface texture, and the sector, visually en-

coding tensor variations in scale, shape, and orientation, respectively, are individually

recognizable (O2). Furthermore, our design converges to the original superquadric

glyph representation when no variation is present (O3, left column of Figure 5.5).

5.4.2. DODF-BASED GLYPH DESIGN

x

y

z

(a) (b) (c)

Figure 5.6: Three dODF-based glyphs for (a) an ensemble with gradually varying shape and orientation and two ensem-

bles of linear tensors with crossing angle of (b) 60 ° and (c) 45 °, respectively. The variation threshold is set to 60% of

the maximum variation. The ensembles are illustrated by the small black icons on top.

We use the conventional spherical plot, which is commonly used to visualize

HARDI data [9], to visualize dODF. The glyph geometry represents the average diffu-

sion probability density for each direction. Additionally, to emphasize the directional

information, the de facto direction-coded colormap is used. This colormap can influ-

ence the shape perception [30], however, it is familiar to the target users. In order

to incorporate the variation information, we employ a threshold-based method. Di-

rectional variation is encoded into neutral gray if it is greater than the user-specified

threshold. We choose a neutral gray, with lightness value 0.5 in the CIE Lab color

space, which has similar lightness as, but is not part of the direction-coded colormap to

minimize the interference with the perception of the directional and shape information.

Figure 5.4b shows the dODF glyph with the variations incorporated, derived from the

ensemble of linear tensors in Figure 5.3a. This representation preserves the two major

diffusion orientations that are present in the ensemble and the large variation is visible

at the four lobes. Moreover, min-max normalization [9] is used to enhance the visual

perception of directional maxima (e.g., see Figure 5.4c). The extended dODF glyph
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meets the requirements O2 and O3. Figure 5.6 further illustrates the dODF glyph

representation for three different ensembles.

5.4.3. SPATIAL OVERVIEW

To fulfill requirement O1, glyphs are laid out according to their location in the

data in a spatial view. We construct the tensor glyph (Section 5.4.1) and the dODF

glyph (Section 5.4.2) for each voxel. Displaying both simultaneously would result in

occlusion and visual clutter. Therefore, we show only a single, user selected glyph type

at a time. The distinct properties of the two glyphs make them suitable for different

tasks. If the analyst is interested in variations in individual tensor properties, the tensor

glyph is the best choice; for detailed information on the orientation variation the dODF

glyph is more suitable.

5.5. DETAIL VISUALIZATION

(a)

(d)(c)(b)

Figure 5.7: Our framework for the linked detail views. (a) shows a direct visualization of a synthetic set of tensors

containing one isotropic tensor and two planar-anisotropic tensors, similar to small multiples. (b) shows the shape space

view, (c) the scale space view, and (d) the orientation dissimilarity matrix view with a perceptually linear magma colormap

for all the tensors in (a).

Based on the overview glyphs, the analyst can identify regions of interest and se-

lect few individual voxels for detail inspection of the ensemble. For further inspection

of selected voxels, we provide linked detail views. A straightforward way to display

all tensors (D1) within the ensemble are small multiples. However, simply placing

the glyphs next to each, e.g. ordered by their id in the ensemble, hardly brings usable

insights, as shown in Figure 5.7a. For effective comparison, data visualized as small

multiples need to be ordered. Due to their multivariate nature, however, the tensor
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glyphs presented above have no intrinsic order, and imposing an arbitrary order vio-

lates the representation invariance principle [31]. Following the idea of separating the

intrinsic properties, we propose to show scale, shape, and orientation in three linked

views, as shown in Figure 5.7. The separation fulfills D2. Furthermore, linking these

views fulfills D3. To facilitate quantitative analysis, we also display all the statistical

information (e.g., σshape) via graphical user interfaces.

5.5.1. TENSOR SCALE VISUALIZATION

Visualizing the scalar-valued tensor scale is straightforward. We estimate the

probability density function of the tensor scales within the ensemble using a 1D kernel

density estimate. The function is visualized directly in a 1D line plot. The exem-

plary plot in Figure 5.7c clearly shows the distribution of scale within the ensemble in

Figure 5.7a.

5.5.2. TENSOR SHAPE SPACE VISUALIZATION

Figure 5.7b shows the proposed shape space visualization using the ensemble

presented in Figure 5.7a. The tensor shape space is two dimensional and maps to a

right triangle in R3 in Figure 5.2. We show the triangle in the background and draw

the three interpretable extreme glyphs on the corners of the triangle. Additionally we

show the iso-contours of other tensor invariants (e.g., FA) for contextual information,

as the curved lines shown in Figure 5.7b. In principal the shape space visualization

is a scatterplot. However, a mental reconstruction of the actual shape, just from the

position and the extreme glyphs, is challenging. Therefore, we show the glyphs with

unit scale and identical orientation to represent the tensor shape information in the plot.

To reduce clutter, the size of the glyphs is adjustable. In the smallest setting, the shape

space visualization becomes a standard scatterplot. Finally, the color channel is left for

encoding additional information such as the age of the individuals.

5.5.3. ORIENTATION DISSIMILARITY MATRIX VISUALIZATION

The tensor orientation, given by the rotation matrix [e1,e2,e3], is an element of the

manifold of the group SO(3), and as such, has three dimensions. However, if a tensor

has equal eigenvalues its eigenvectors are ill-defined. For example, the orientation of

an isotropic tensor is undefined. Due to this coupling of shape and orientation, it is
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not straightforward to define a space to show the distribution of tensor orientations. To

sidestep this problem, we propose to compute pair-wise differences of the orientation

using dorientation [32]. We visualize the pair-wise differences as a dissimilarity matrix,

as shown in Figure 5.7d, which would allow us to identify patterns in the orientation

behavior. A good ordering is essential to identify clusters of tensors with similar orien-

tations. Thus we arrange the rows and columns of the matrix view using hierarchical

clustering [33].

The orientation difference measure dorientation is not a metric. For example, a pla-

nar tensor has no orientation difference with any tensor that has the same minor eigen-

vector e3. We refer to such a tensor Doc , where dorientation (Doc ,Di ) = 0 for i = 1. . .n,

as an oricentric tensor. Considering the orientation differences dorientation only, ori-

centric tensors have no inherent order and, hence, can be placed at random positions

during ordered hierarchical clustering [34]. Therefore, we propose a custom, top-

down hierarchical clustering approach. We first divide the ensemble into oricentric

and non-oricentric tensors. The oricentric tensors are clustered according to dshape,

which is a metric, using hierarchical clustering with complete-linkage. The group of

non-oricentric tensors is then bisected, using the k-medoids algorithm [35] with k = 2,

based on dorientation. The bisection can cause tensors that were non-oricentric in relation

to the complete ensemble to be oricentric in relation to the new subsets. Therefore, we

recursively apply the separation into non-oricentric and oricentric subsets, followed by

the bisection of the non-oricentric subset, until non-oricentric subset contains at most

one or two tensors.

As suggested by Gruvae and Wainer [34], we concatenate two subsets such that

elements on the edge of different subsets that are most similar are placed next to each

other to show the relation between subsets. To concatenate two non-oricentric subsets,

we choose the pair of edge elements with the smallest orientation difference while for

a non-oricentric subset and an oricentric subset, we choose the pair with the smallest

shape difference.

5.5.4. LINKED BRUSHING

Each of the three views presents only one aspect of the tensor properties in the en-

semble. We use linked brushing to connect all the three views and to reveal correlations

between different tensor properties (D3). Therefore, we propagate selections defined
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in one view to the other linked views. Thus, all the selected tensors in all the three

views will be red highlighted. We also provide the option to render only the silhouettes

of glyphs that are not selected in order to reduce occlusions.

5.6. IMPLEMENTATION
Our prototype is implemented in C++, combining VTK and OpenGL/GLSL for

visualization. We use Qt for the GUI and Teem 1 for tensor data processing.

The glyph rendering is implemented by computing base geometries and storing

them in GPU memory, as proposed by Schultz and Kindlmann [19]. We use three

renderpasses to render the glyphs and corresponding variation information. In the first

pass we draw the mean tensor glyph, including the texture indicating the shape vari-

ation. We linearly scale
[
0,σshape

]
to [0,1]. Since the theoretical maximum of tensor

shape difference dshape is
p

2/3, which corresponds to the length of the hypotenuse of

the right triangle in Figure 5.2, typical σshape values are significantly smaller than 1

and therefore require the scaling. We render the Perlin noise texture by first assigning

a random value r and between −1.0 and 1.0 to every fragment, with the fragments’

object space coordinates and σshape as the input for the Perlin noise generator. To

guarantee that the color-encoded information is legible to some extent, we only apply

the texture to fragments with |r and | < (
1−σshape

)
. We darken the fragments with

negative sign while we brighten those with positive sign. We then render the halos by

redrawing the geometry with increased size in black in the second pass, and finally the

sectors in the third pass.

The dODF-based glyphs are rendered via ray casting [9]. After determining the

intersection point p of the ray with the glyph, we use the unit directional vector, u =
v/∥v∥ with v = p−cglyph and the glyph center cglyph, to compute the diffusion probability

density variation according to Equation 5.7.

5.7. EVALUATION AND APPLICATION
In this section, we compare our design to the work of Abbasloo et. al. [6], which

is the closest to our work. We consider that domain knowledge is essential to under-

stand the presented visual analysis. Unfortunately, this limits the number of possible

1teem.sourceforge.net

teem.sourceforge.net
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participants. Here, we present a qualitative user study with two neuroscientists. We

also present a case study illustrating the potential of our prototype with a real-world

ensemble of 46 DTI datasets.

5.7.1. METHOD COMPARISON

Abbasloo et al. [6] use small multiples for the six eigenmodes, Ek with k = 1, . . . ,6,

of the fourth-order covariance tensor. To illustrate the effects of each eigenmode, they

build a pair of tensors D(t ;k) = DEu ± tµk Ek , where DEu is the Euclidean mean tensor

and µk is the square root of the corresponding eigenvalues of the covariance tensor.

The parameter t can be freely adjusted by users. The pair of tensors is then rendered

(a)

(b) (c) (d)

(e)

(g) (h)(f)
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Figure 5.8: Comparison of two different aggregate visualizations for two different synthetic ensembles ((a) and (e)).

(b) and (f) show the glyph-based eigenmodes visualization and IGRT matrix view. (c) and (g) show our tensor glyphs,

depicting the variations in intrinsic properties. (d) and (h) show the dODF-based glyphs. The directions with large

variations are colored in gray. For the purpose of clear illustration, images are generated from different viewpoints.
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with two complementary colors, blue and orange. The normalized covariance tensor is

decomposed with respect to the spherical invariants set (i.e., Frobenius norm, FA, and

tensor mode) and rotation tangents [8], and displayed via a blue-gray-yellow colormap.

Figures 5.8b and 5.8f show their visualizations. Figures 5.8c and 5.8g show our ten-

sor glyphs while Figures 5.8d and 5.8h show our dODF-based glyphs. The variation

threshold of dODF can be freely adjusted by users as well.

During the experiment, we first gave an introduction with a live demo of the two

visualizations to be compared and the corresponding interaction methods. At this time,

the participants interacted with the prototype to get themselves familiar with the visu-

alizations. The objects of comparison are the aggregated glyphs in Section 5.4 and the

visualizations proposed by Abbasloo et al. [6] of three synthetic datasets. We presented

them to the participants, together with interaction capabilities, in random order. The

participants freely analyzed the visualizations, and then we asked them to describe the

original ensemble based on the aggregated visualizations they were observing in the

form of a questionnaire. The participants had no information on the configuration of

the ensembles apart from the provided aggregated visualizations, beforehand.

The first ensemble in Figure 5.8a comprises most variation in the orientation,

some variation in scale, and no variation in shape. The scale variation is captured by

all visual representations as suggested by the fourth eigenmode in Figure 5.8b and the

visible halo in Figure 5.8c, respectively. The IGRT (i.e., invariant gradients and ro-

tation tangents [8]) matrix of Abbasloo et al. shows high values in the 2nd and 3rd

diagonal entries, corresponding to FA and mode respectively. The first and second

eigenmodes, shown in the small multiples of Figure 5.8b, however, falsely indicates

variation in shape. Our tensor glyph in Figure 5.8c shows no variation in shape. Both

participants could not describe the variation in tensor shapes using the method of Ab-

basloo et al., while with our visualization they readily confirmed that only linear ten-

sors are included in the ensemble. In Abbasloo et al., the third and fourth eigenmodes,

together with the rotation tangents part of the IGRT matrix, i.e., the bottom three di-

agonal entries, show orientation variation in two orthogonal directions. The first and

second eigenmodes show clear simultaneous variation in orientation and shape. One

participant commented that it is really hard for him to combine all the eigenmodes to

deduce information about the ensemble. Both participants deliberately ignored the ro-

tations manifested in the first and second eigenmodes in Figure 5.8b when deducing
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the orientation, and came to the correct conclusion that there are two main directions

of rotation in the ensemble. Our aggregated tensor glyph in Figure 5.8c makes the

orientation variation directly visible as a large sector. Furthermore, the dODFglyph

in Figure 5.8d shows the principle diffusion direction as three orthogonal directions

with high diffusion variation. Combining both glyphs, they came to the conclusion

that a group of linear tensors spreads around the major eigenvector e1 of the mean ten-

sor, which, while not describing the orientation variation exactly, is very close to the

correct description.

The second ensemble in Figure 5.8e shows some variation in scale, shape, and ori-

entation. This simulates the interface between two orthogonally aligned fiber tracts [8].

In Abbasloo et al., the last four eigenmodes correspond to zero eigenvalues. Therefore,

we only keep the first three views in Figure 5.8f. The orientation and scale variation

are manifested in the first and second eigenmode, respectively. The IGRT matrix in

Figure 5.8f, however, indicates no variation in orientation (see the bottom three rows)

but large variation in tensor mode (see the 3rd diagonal entry), which is part of the

tensor shape. This contradiction between the eigenmode views and the IGRT matrix

view causes considerable confusion for both participants. This is caused by the fact

the variation in mode and minor eigenvector, shown as the 3rd and 6th diagonal en-

tries respectively, should be interpreted integrally [8] near a planar mean tensor. Our

tensor glyph in Figure 5.8g shows variation for all the three properties. The dODF

glyph in Figure 5.8h provides additional information, indicating two main orthogonal

directions with high diffusion variation. Both participants speculated that there may be

fiber crossing effects in the underlying ensemble.

After the participants finished the overview analysis we showed them the under-

lying ensemble with our detail views and informally discussed the application. With

regard to the tensor scale, the visualization of Abbasloo et al. and ours work well.

However, our technique is found to be more accurately describing the shapes in the en-

semble. In terms of tensor orientation, both participants remarked that the non-linearity

of tensor orientations makes the covariance-based visualization harder to understand.

With our method they could readily identify orientation variation but both thought it

requires a considerable learning curve to interpret the dODF and to effectively combine

the information of the two aggregated glyphs. Another insight we learn from the user

study is that the visual representation of the shape variation is not optimal. While par-
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ticipants found the noise texture less readable than the half tone texture, they preferred

the stability of the object-space Perlin noise. We intend to explore other visual design

idioms to optimize this in the future.

We do not show correlations between different tensor properties explicitly in our

glyph designs. Correlations can be shown via eigenmodes, and the off-diagonal entries

of the IGRT matrix. However, it is unclear whether it can be reliably interpreted.

For instance, the first and second eigenmodes in Figure 5.8b indicate some relation in

shape and orientation but there is no shape variation in the ensemble. Generally, both

participants deem the proposed mean tensor, based on the separation of tensor intrinsic

properties, as well as our visual design more intuitive.

5.7.2. APPLICATION TO AN DTI GROUP OF HEALTHY SUBJECTS

In this section, we present an exemplary analysis of a cohort DTI study, conducted

with a neuroscientist, who is specialized in DTI-based group analysis and a co-author

of this work. The dataset used for this case study is an ensemble, consisting of 46

DTI scans of healthy volunteers, age 47 to 78, serving as the control group in clinical

research. Each scan has a resolution of 224×224×144 with isotropic voxel size of 2mm.

The diffusion weighting is b= 1000 s/mm2 along 64 uniformly distributed directions

with four non-diffusion averages. The numerical range of the tensor values is scaled by

1000. The datasets are registered with a non-rigid registration approach by DTI-TK,

which takes the whole tensor information into consideration [36].

During the visual exploration with the glyph-based overview in Figure 5.9b, we

find a region of interest (ROI) with both high scale and shape variations. This region

(see green highlight in Figure 5.9a) corresponds to the border between the ventricle,

corpus callosum (CC), and inferior fronto-occipital fasciculus (IFO). The glyph-based

overview in Figure 5.9b shows small variation in orientation (i.e., small sector angle).

The glyphs in the bottom-right have thicker halos, indicating a larger scale variation,

compared to the glyphs corresponding to the fibrous regions, i.e., bright areas in Fig-

ure 5.9a. In contrast, shape variation shown as half tone patterns is stronger in the

top region. We now make a selection and use the detail views for further exploration.

We select one of the voxels with larger shape and scale variation (see orange high-

light in Figure 5.9b). In the detail views, the glyph color encodes the subject age. In

the shape space view in Figure 5.9c, we see a transition from anisotropic tensors to
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Figure 5.9: Visual analysis results for a border region of ventricle, CC, and IFO (a). The glyph-based overview (b) guides

the selection of a voxel of interest for further exploration via shape space (c), scale line plot (d), orientation difference

matrix (e), and age information (f).

nearly isotropic tensors. The scale view in Figure 5.9d shows a right-skewed distribu-

tion with a strong peak at lower scale values, as well as several large values. Selecting

the right tail of the distribution in the scale view reveals the nearly isotropic tensors

in the shape-space view via linked brushing, i.e., red highlighted in the different detail

views. We also highlight the selection in a simple table view in Figure 5.9f, clearly

identifying the older subjects. This confirms the expectation that older people have

larger ventricles [2, 37], resulting in tensors with lower diffusion anisotropies but high

diffusion scales. Somewhat unexpected is a clear separation in the orientation view in

Figure 5.9e, even though differences in orientation are generally small, as already indi-

cated by the glyph-based overview. Interestingly, there seems to be further correlation
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with age, placing the previously selected tensors all in one group on the top right of the

diagonal.

overview(a) shape(b) scale       (c)
0.0
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1.0
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1.5 3.0 4.5
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2.3

1.5 3.0 4.5

Figure 5.10: Identification of potential outliers in a region of the corpus callosum, highlighted in blue in Figure 5.9a. (a)

shows the overview glyph visualization. (b) and (c) show the shape space view and scale line plot for (top) the selected

voxel in (a) and (bottom) the complete ROI, respectively.

For the second analysis, we choose a different ROI (see blue highlight in Fig-

ure 5.9a) in the CC to illustrate that our detail views can be used to identify potential

outliers. The glyph-based overview in Figure 5.10a shows that the variations in the

ensemble are similar throughout the selected region. Slight variation in orientation and

some variation in scale and shape can be identified. We select a voxel in the center,

highlighted in Figure 5.10a, for further inspection in the detail views. An outlier ten-

sor with lower anisotropy, encircled in Figure 5.10b top, becomes apparent. Through

the linked selection we also find this member exhibits a larger scale value (see the

encirclement in Figure 5.10c top) compared to the rest of the ensemble members. To

verify that this behavior is consistent in the complete ROI, we select the 18 voxels in

Figure 5.10a for visualization in the shape space view (Figure 5.10b bottom). We now

select the subject corresponding to the outlier, identified in Figure 5.10b top, through

the table view, highlighting only the corresponding tensors in the shape space view in

Figure 5.10b bottom. The selection highlight clearly shows that all the correspond-

ing diffusion tensors have coherently lower anisotropies (see Figure 5.10b bottom) and

generally larger scale values (see Figure 5.10c bottom). This indicates that the selected

ensemble member as a whole could be regarded as an outlier for this area.
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5.8. CONCLUSIONS

We present an interactive approach for the analysis, visualization, and exploration

of diffusion tensor ensembles. At the core of our visual analysis approach is a novel

way to compute a representative tensor and quantify tensor variation through tensor

intrinsic properties (i.e., scale, shape, and orientation), each of which has a biologi-

cally meaningful interpretation. By adapting the dODF, we provide an alternative for

aggregating orientation variation, for cases where a single representative tensor cannot

properly summarize different orientations in the ensemble. Another core contribution

is the overview + detail visual design to facilitate per-voxel inspection of variation of

tensor intrinsic properties free of assumptions about the underlying distribution. Fi-

nally, we demonstrate the effectiveness of our approach by comparing it to previous

work by means of a qualitative user study with two domain experts and show the po-

tential of our design by a case study.

The conducted user study requires knowledge about diffusion tensor analysis as

well as second-order tensor normal distribution and as such limits the pool of possible

participants. We consider a larger user study that would allow for strong conclusions

on the effectiveness of the presented techniques future work.

We test our detail view system for ensembles of less than hundred members, a

reasonable number for current DTI group studies. However, scaling to much larger

numbers of ensemble members would require other solutions, specifically with respect

to the visualizations of tensor shape space and orientation difference matrix.

Apart from data aggregation, another main task when conducting DTI group stud-

ies is the detection of potential outliers. While we demonstrate outlier detection using

our detail views, our glyph representation currently does not provide any information

on potential outliers. To ease the process of outlier detection a careful adaption of the

glyph design that does not increase clutter is needed.

Finally, our design is targeted at second-order positive-definite tensors. However,

similar rules apply to the glyph construction of second-order symmetric tensors [19].

Investigating the applicability of our design to those or even general second-order ten-

sors would be an interesting future direction.
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6
COMPARATIVE VIS. FOR

ENSEMBLES OF DIFFUSION

TENSOR FIELDS AT MULTIPLE

LEVELS OF DETAIL

If our troops are no more in number than the enemy, that is amply sufficient; it only

means that no direct attack can be made. What we can do is simply to concentrate all

our available strength, keep a close watch on the enemy, and obtain reinforcements.

Sun Tzu

兵非贵益多，惟无武进，足以并力料敌取人而已。

孙武

This chapter is based on the following publication:“Comparative Visualization for Diffusion Tensor Imaging Group

Study at Multiple Levels of Detail”, Changgong Zhang, Thomas Höllt, Matthan W.A. Caan, Elmar Eisemann, and Anna

Vilanova. In Proceedings of the Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM), 53–62,

2017 [1].
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In the previous two chapters, we compare two diffusion tensor fields, and summarize

a single ensemble of diffusion tensor fields. In this chapter, the size of the problem to

solve keeps increasing. Specifically, we will visually compare two ensembles of tensor

fields in the context of DTI group studies. The comparative visualization technique

developed in this chapter is inspired by those proposed in Chapters 4 and 5.

6.1. INTRODUCTION
DTI group studies aim at spatially locating diffusion-related differences between

two groups in order to discover potential markers for white matter structures, and are

normally carried out in a voxel-wise manner. For example, several studies [2–5] com-

pare a control group and a patient group to search for differences caused by certain

pathologies. Compared to the problem we solve in Chapter 5, the amount of infor-

mation to be visualized is hugely increased. Therefore, inter-group comparison adds

much more complexity for the design of comprehensive visual analysis tools.

The standard approach in literature relies on the univariate statistical analysis of

tensor-derived scalar quantities such as fractional anisotropy (FA), rather than the mul-

tivariate diffusion tensor itself. Slice views are commonly used to display the analysis

results, which are some specific highly aggregated scalar values (e.g., the t-statistic).

This type of scalar-based comparative analysis provides merely one facet of the full

tensor information, and leaves a large amount of information unused. If to keep the

full tensor information, one has to resort to the multivariate analysis tools such as

multivariate normal distribution [6, 7]. However, the intrinsic structure of diffusion

tensors is not taken into consideration, and it is also unclear how to effectively com-

pare the generated fourth-order covariance tensors. More importantly, to the best of

our knowledge, there is no comparative visualization technique developed specifically

for inter-group comparison.

Our work extends Chapter 5 to facilitate the visual comparison of two DTI groups

at multiple levels of detail. Our comparative visualization framework is built based

on the Shneiderman mantra “Overview first, zoom and filter, then details-on-demand”

[8]. The spatial overview is for comparing the multivariate statistical summary infor-

mation of tensor ensembles, i.e., mean tensor & tensor variations (see Section 5.2).

We combine the checkerboard style pair-wise tensor difference (Tender) glyph (see

Section 4.2) and the tensor ensemble summary glyph (see Section 5.4) to support the



6.2. COMPARATIVE VISUALIZATION DESIGN

6

101

visual comparison in the spatial domain. More importantly, we integrate the details-

on-demand scheme into the glyph visualization such that, as analysts zoom in, more

statistical information will be progressively revealed. We refer to the visual compari-

son of statistical information in the spatial space as summary comparison. The purpose

of the spatial overview is to guide analysts to locate voxels of interest for the further

detailed comparison of the original tensors without aggregation. We extend the detail

visualization of Chapter 5 by utilizing superposition and explicit difference encoding

to support the comparison in terms of tensor intrinsic properties as the finest level,

and refer to it as feature comparison. The main contributions of this chapter can be

summarized as:

• We present a level-of-detail glyph representation to support the visual compari-

son of tensor ensemble summary statistics between two ensembles of DTI datasets

at different zoom levels in the spatial domain;

• We facilitate the visual comparison of two groups of the diffusion tensors in

terms of tensor intrinsic properties by superposition and explicit encoding.

6.2. COMPARATIVE VISUALIZATION DESIGN
Neuroscientists normally apply voxel-wise analysis to locate diffusion related dif-

ferences between two groups of DTI datasets. Therefore, the main objects to be com-

pared in this work are two groups of diffusion tensors, the so-called tensor ensembles,

at the same spatial location. Each tensor within the ensemble corresponds to one in-

dividual subject. We denote them as {Di }A and
{

D j

}
B with i ∈ [0,m) and j ∈ [0,n),

where m and n are the total number of subjects in the corresponding groups A and B ,

respectively. We use two complementary and colorblind-safe colors, i.e., orange and

blue [9, 10], to identify different groups.

In the following sections, we first develop the visualization for directly comparing

{Di }A and
{

D j

}
B but not considering the field information, and then design the visual-

ization for comparing the ensemble summary information in the 3D spatial domain.

6.2.1. DIRECT TENSOR ENSEMBLE COMPARISON

In Chapter 5, we visualize a single tensor ensemble in terms of three tensor intrin-

sic properties (scale, shape, and orientation), each of which has a biologically meaning-
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Figure 6.1: Direct visual comparison of two tensor ensembles. (a) each row represents a synthetic tensor ensemble,

which is the subject of comparison. All the tensor glyphs are colored according to the major eigenvectors with the con-

ventional spherical colormap [11]. The color is desaturated based on the tensor invariant cl [12]. The major eigenvectors

of these two ensembles are perpendicular to each other. (b) shows the line plots of the probability density function of the

one dimensional tensor scale for the two ensembles. (c) shows the blended 2D density plot in the triangular tensor shape

space, overlaid with the mean tensor glyphs for each ensemble. (d) shows the pair-wise orientation dissimilarity matrix

with the two dODF [13] glyphs. (b–d) blue and orange colors indicate the tensor ensemble at the upper and lower row in

(a), respectively. Note that the glyphs in (a, c, d) are visualized with different viewing settings.

ful interpretation. We extend the detail views (see Section 5.5) to facilitate the visual

comparison of two tensor ensembles, also from the perspective of the tensor intrinsic

properties. Two synthetic tensor ensembles (see Figure 6.1a) are used for illustration

in the following sections.

Tensor Intrinsic Properties. A symmetric positive-definite diffusion tensor D can

be eigen-decomposed into three ordered real eigenvalues (λ1 ≥λ2 ≥λ3 > 0), and the

corresponding orthonormal eigenvectors {e1,e2,e3}. λi and ei (i = 1,2,3) are referred

to as the major, medium, and minor eigenvalue and eigenvector, respectively. The

tensor trace |D| is defined as the sum of the eigenvalues |D| = ∑3
i=1λi . Finally, the

ordered normalized eigenvalues
(
λ̃1, λ̃2, λ̃3

)
are given by normalizing the eigenvalues

with respect to the trace (λ1,λ2,λ3)/|D|.
Tensor intrinsic properties include scale, shape, and orientation. Tensor scale is

mathematically expressed as the trace |D|, which represents the amount of diffusion.

Tensor shape is two dimensional, and mathematically expressed as the set of normal-

ized eigenvalues
(
λ̃1, λ̃2, λ̃3

)
. Tensor shape reflects the underlying fiber configurations.

For example, for regions with coherently aligned fiber tracts, the diffusion tensors are

of linear shape. Tensor orientation is given by the set of eigenvectors (e1,e2,e3), which
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can be used to deduce the pathway of the fiber tracts. Interested readers are referred to

Chapter 4 for more details.

Scale Comparison. In Section 5.5, a 1D probability density function (PDF) is em-

ployed to depict the distribution of tensor scale, which is visualized as a line plot. It is

straightforward to compare two distributions of tensor scale. We use the superposition

strategy to overlay two line plots within the same frame of reference, each of which is

colored according to their group identifier color. For example, as shown in Figure 6.1b,

two line plots largely overlap, indicating that two corresponding distributions are quite

similar to each other.

Shape Comparison. Tensors with all possible shapes are located on a right triangle

(see Figure 5.2), and hence we compare the shapes of two tensor ensembles in this

triangular shape space. However, displaying all the tensor glyphs at once or drawing

them as a scatter plot generates clutter or does not allow an easy understanding of the

actual shapes, respectively. We tackle these problems by combining 2D probability

density estimation [14] with glyph-based visualization. First, we draw the 2D den-

sity plot for each tensor ensemble separately. We then blend the two plots in image

space as ci , j = p A
i , j ∗ cA + pB

i , j ∗ cB , where
(
i , j

)
is the pixel coordinate, p is the den-

sity value, cA and cB are the corresponding group identifier colors (see Figure 6.1c).

Abbasloo et al. [10] employ the same strategy to avoid occlusions for glyph-based vi-

sualization. Blending the colors as described will create an impression of neutral gray,

where the density values are similar. If one of the values is larger, the corresponding

group color will become obvious at this position, and thus allow the identification of

differences in the distribution of the tensor shape between ensembles. However, the

mental reconstruction of the actual tensor shapes is not easy. Therefore, we draw sev-

eral representative glyphs to assist the perception of the blended density plot without

introducing much occlusion. We provide two options. First, the user can select to

simply show the mean tensor for each group, resulting in just two glyphs in total ren-

dered on top of the density plot (see Figure 6.1c). However, the shape distribution can

be multi-modal. Therefore, the second option is based on automatic peak finding in

the density and subsequent clustering. To this end, we apply GPU-based mean shift

clustering based on the generated density plot, similar to previous work by Höllt et al.

[15]. The mean shift algorithm [16] has several useful properties. The density clusters
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will closely match the visual clusters that analysts would identify. Furthermore, since

we compute the density plot for visualization, we can use the same density estimate as

input for the mean shift algorithm. Finally the mean shift algorithm can also function

as a peak finding algorithm on the density plot and the identified peaks can be used

to place one representative glyph for each cluster. To obtain the clusters, based on the

density estimate, we first compute the gradient of the density estimate by calculating

the central differences for each pixel in image space. Then, starting with the initial

position for each glyph, we ascend along the gradient direction until we reach a peak.

All glyphs that ascend to the same peak are considered as belonging to the same cluster

and the peak can be used for placing the representative glyph for that cluster. Finally,

we reconstruct the shapes for the representative glyphs, based on the position of the

peak in image space, and render the glyphs on top of the density plots. An example

with tensor glyphs at cluster centers can be seen later in Figure 6.4d top. By combining

the 2D density plot and the tensor glyphs, we effectively reduce the visual clutter and

provide a straightforward comparison in the tensor shape distribution.

Orientation Comparison. It is challenging to define a space to explicitly convey

the orientation distributions due to the inherent coupling of tensor shape and orien-

tation. As shown in Section 5.5, the pair-wise dissimilarity matrix of tensor orienta-

tions proves to be useful in identifying similar orientation behaviors. Therefore, we

order the elements for each tensor ensemble, in the same way as in Section 5.5, and

then concatenate these two ensembles together to build the final dissimilarity matrix.

The orientation matrix view is therefore composed of three parts (see Figure 6.1d).

A white-to-black perceptually linear colormap is employed to color the matrix. The

lower diagonal part depicts the orientation variation of one ensemble, while the upper

diagonal part shows that of the other. The remaining two parts, which are symmet-

ric with respect to the diagonal, depict the inter-group orientation differences. The

diagonal parts allow exploring the orientation variation within the ensemble, and the

off diagonal parts allow inspecting the inter-ensemble orientation differences, which

belongs to the comparison category of explicit encoding.

In order to support the interpretation of tensor orientation variation of each ensem-

ble, we convert each tensor into the so-called diffusion orientation distribution function

(dODF) [13], and obtain an average dODF glyph for each ensemble. In principle the
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Group 1 Group 2 Level 3 Level 2 Level 1

(d)(a) (b) (c)

Figure 6.2: Level-of-detail glyph representations for tensor ensemble summary comparison. (a) displays the corre-

sponding tensor summary glyphs for the synthetic ensembles shown in Figure 6.1a. (b) shows the new LOD glyph at

zoom level 3 (i.e., the fine level), designed to compare the tensor ensemble summary information. (c) shows the new

LOD glyph at zoom level 2 (i.e., the medium level), used to support the visual comparison of the corresponding mean

tensors alone. (d) shows our LOD glyph at zoom level 1 (i.e., the coarse level) with plain color coding to indicate the

tensor shape difference. (b,c) orange and blue color are for the identification of different tensor ensembles.

dODF glyph is a directional probability density function defined on a unit-sphere. We

apply the superposition strategy to compare two dODF glyphs, and provide the option

to add transparency. We place the dODF glyphs on top of one of the two symmetric off

diagonal parts, which will not cause information loss. The dissimilarity matrix is two

dimensional while the dODF glyphs are three dimensional objects. Therefore, we offer

the option to freely rotate the dODF glyphs to have a comprehensive perception with-

out affecting the viewing settings. Hereby, we not only show the orientation variations

for a single ensemble, but also facilitate the visual comparison between two ensembles.

As shown in Figure 6.1d, both ensembles exhibit a small intra-ensemble orien-

tation variation (i.e., brighter colors), while the inter-ensemble orientation differences

are rather large (i.e., darker colors). Additionally, the superposed dODF glyphs clearly

shows the differences in dODF for every directions.

Linked Brushing. Each view is extended to support the inter-group comparison in

one tensor intrinsic property. Therefore, linked brushing is used to connect all of the

three views. To minimize visual clutter, we only highlight the selected tensor glyphs

with red halos (e.g., see Figure 6.4d bottom). A filled line plot (e.g., see Figure 6.4e) is

drawn to reflect the contributions of selected tensors to the overall scale distributions,

and the corresponding diagonal entries of the matrix view (e.g., see Figure 6.4f) are also

colored red. We use a table view to display the metadata (e.g., age) of each individual

subject, which can also be used for linked selection.
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6.2.2. ENSEMBLE SUMMARY COMPARISON

The extended comparative visualization, described in the previous section is use-

ful for directly comparing the tensor ensembles for voxel(s) of interest. However, this

visualization cannot provide spatial information. Therefore, we use a separate spatial

visualization, described in this section, to show the ensemble differences in the 3D spa-

tial domain. Before performing voxel-wise ensemble comparison information needs to

be aggregated. Chapter 5 summarize the tensor ensemble {Di } into a mean tensor D

and the variations in scale σscale, shape σshape, and orientation σorientation. Furthermore,

they extend the superquadric tensor glyph [17] to visualize the summary information.

We employ the same aggregation method, which handles the tensor intrinsic prop-

erties separately, and design a new glyph to visually compare the summary information

in 3D. Our new design is a combination of the checkerboard style Tender glyph (see

Section 4.2), designed for comparing two diffusion tensors, and the tensor ensemble

summary glyph (see Section 5.4), designed for visualizing the summaries of a single

tensor ensemble. Both types of glyphs are suitable for detailed inspection at close-up

views. In this work, we incorporate the level-of-detail concept by designing different

visual representations at different zoom levels. For a small field of view, it is more

suitable to encode the full information for a limited number of voxels, while for a large

field of view it is more suitable to encode a limited amount of information for a large

amount of voxels to provide an overview. The zoom level is reversely proportional to

the extent of information aggregation; the higher the zoom level, the less aggregation

is needed. Therefore, in the following, we describe the levels from the most detailed

to the coarsest by gradually removing information.

Aggregation Level 1 (Zoom Level 3) : Mean tensors and tensor variations. At

the finest zoom level, the aggregate information to be compared is the mean tensor and

three scalar-valued tensor variations. We apply the checkerboard style Tender glyph

to compare the mean tensors. The original design uses the color channel to compare

tensor scales. However, we decide to reserve the color channel for later usage at the

coarsest zoom level. Therefore, we have to resort to other visual channels to encode

the tensor scale information. We find that the original sector representation, which is

shown both above and below the glyphs, for the orientation difference is redundant.

Hence, we divide the sector into two parts, i.e., the upper and lower parts. Then, the
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angles of the upper and lower part are used to encode orientation-related and scale-

related differences, respectively. Figure 6.3 illustrates the idea of sector representation

by analogy with the 1D normal distribution. At zoom level 3, two bands are drawn

with the identification color. The center of the band is aligned with the mean value

(i.e., the vertical dashed line) while the length of the band is determined by the stan-

dard deviation. As shown in Figure 6.3a, if these two bands overlap, the overlapping

region will be colored white (i.e., the addition of orange and blue). Otherwise, if there

is a gap between the two bands, the in-between region is colored to with a dark gray

(Figure 6.3b). We create the sectors for the glyph visualization by replacing the length

with the angle of the arc. Figures 6.3a and 6.3b at zoom level 3 are analog to the lower

and upper sectors in Figure 6.2b, respectively, with the standard deviation correspond-

ing to scale and orientation variations (see Section 5.2). The major benefit with this

visual design is that it facilitates the direct evaluation of the overlap between the two

distributions in scale and orientation.

For the comparison of mean tensor shapes, we place them in a checkerboard style

as presented for the Tender glyph. For the visual comparison of tensor shape variations

σshape, we employ the halftone textures due to their ability to provide a more precise
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Figure 6.3: Illustration of the sector construction by analogy with one dimensional normal distributions for (a) a large

and (b) small distribution overlap. Blue and orange colors are used to identify the corresponding normal distributions. At

level 3, two colored bands are drawn, the length of which are proportional to the standard deviation of the distribution.

The center of the bands are based on the mean value. (a) if these two bands are overlaid, white color is generated. (b)

Otherwise, the color in-between is kept to gray. At level 2, a single gray band is drawn, the length of which indicates the

difference in the mean values of the distributions. (a) and (b) are analog to the lower and upper sectors, respectively, in

Figures 6.2b and 6.2c.
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estimation (see Section 5.4). In this way, we convert the comparison of tensor shape

variations into that of the density of the colored dots.

Figure 6.2b shows the final glyph representation at this zoom level, which com-

bines the two ensemble summary glyphs in Figure 6.2a. Please note that Figures 6.1a

and 6.2a are generated with different viewing settings. The shape differences between

the two mean tensors are manifested as the discontinuities between the glyphs. The

orange ensemble exhibits a slightly larger shape variation (i.e., the dots are packed

slightly more dense). The upper gray sector shown in Figure 6.2b indicates a large ori-

entation difference between the mean tensors while the two small colored sections on

both sides indicate little orientation variation within both ensembles. From the lower

sector shown in Figure 6.2b, we can deduce that two ensembles have similar scale

variations (i.e., two small orange and blue ends on both sides) and largely overlap with

each other (i.e., the white region).

Aggregation Level 2 (Zoom Level 2) : Mean Tensors. As users zoom out, more

voxels are shown, and hence fewer pixels are assigned per voxel. Accordingly, we

reduce the amount of information to be displayed. Prior to comparing the associated

tensor variation information, neuroscientists are normally interested in comparing the

mean tensors. If the mean tensors are different, neuroscientists prefer to dive further to

assess the overlap between the distributions of the tensor ensembles. Therefore, at this

zoom level, we decide to compare the mean tensors alone. More specifically, we leave

out the visual channels that are used to encode tensor variation information, and show

the glyphs to only support the comparison of the mean tensors. Figure 6.2c shows

that the glyph at this level is a simplified representation of the glyph at zoom level

3. Specifically, the textures are removed. The sectors are simplified to encode only

the pair-wise scale/orientation differences to the angles, which are analog to the visual

representation at level 2 in Figure 6.3. Furthermore, the sectors are colored using a

neutral gray. At zoom levels 2 and 3 the glyph color is employed to explicitly encode

the difference of the ensembles, as described in the next paragraph.

Aggregation Level 3 (Zoom Level 1): Difference Measure between Mean Tensors.
At the coarsest zoom level, each voxel occupies a very limited number of pixels, and

therefore requires a higher level of aggregation. The goal of this level is to help analysts

to gain a first overview and identify areas of interest, into which they can dig deeper.
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Consequently, we decide to reduce these two mean tensors to single scalar values that

can then be encoded into the color channel, which is still visible even if only few pixels

are available per voxel. At this level, it is most important to choose an appropriate

difference measure between the mean tensors. Such measures are strongly application-

dependent. For example, Abbasloo et al. [10] use slice views to show the overall

variance and generalized FA of the fourth-order covariance tensor to provide a first

impression of the DTI ensemble. We allow analysts to choose among a set of pre-

defined difference measures between the mean tensors d
(
DA ,DB

)
, depending on the

task at hand. For example, the analyst can chose the difference in a specific tensor

intrinsic property such as the tensor shape difference dshape. Furthermore, statistical

measures like the t-statistic, with which neuroscientists are familiar in their routine

research, can be used. We decide to use the shape of the glyphs instead of simple view-

aligned quads to show the color at this zoom level. This guarantees a smooth transition

between different glyph representations as much as possible. Since usually only a few

pixels are used for the glyph at this zoom level, the shape of individual glyphs is barely

noticeable, making it unnecessary to apply an illumination model. Figure 6.2d shows

the glyph representation at the coarse level, which is colored according to the shape

differences between the mean tensors.

6.2.3. SUMMARY

We have introduced the three zoom levels in reverse order for the sake of the

easy explanation of the aggregation of tensor ensembles. The actual visual exploration

workflow starts from zoom level 1. The coarse zoom level utilizes the explicit encod-

ing strategy to depict application-dependent difference measures between two mean

tensors. This level provides a first impression for a large field of view, and hence can

guide analysts to voxels of interest (e.g., Figure 6.4a). Analysts can then zoom into

level 2, which is based on juxtaposition and explicit encoding. At this level, analysts

can visually compare the mean tensors in all the three aspects of tensor intrinsic prop-

erties. If analysts would like to further compare the tensor ensemble variations, they

can continue to zoom level 3, which is also based on juxtaposition and explicit encod-

ing. At this level, analysts can scrutinize a small amount of voxels, harnessing the full

tensor ensemble summary information. Finally, this zoom level serves as the bridge

between the comparison of the tensor ensemble summaries in spatial domain and the
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comparison in tensor intrinsic properties for voxels of interest. This level-of-detail

glyph visualization enables the gradual exposure of the differences between two tensor

ensembles in a voxel-wise manner.

6.3. APPLICATION
We demonstrate the usefulness of our visual analysis prototype by an exemplary

comparison of two groups of diffusion tensor fields. The two groups consist of a group

of 75 HIV positive (HIV+) patients and a control group with 46 subjects. Each DTI

dataset has an original resolution of 224×224×144 with an isotropic voxel size of 2mm.

We uniformly crop each dataset to 121× 161× 111 voxels in order to remove those

outside of the skull. The diffusion weighting is b= 1000 s/mm2 along 64 uniformly

distributed directions with four non-diffusion averages. The numerical range of the

tensor values is scaled by 1000. The case studies were conducted and interpreted

together, by the first and the third author, who is a neuroscientist specialized in DTI

group analysis. Throughout the examples, we indicate the HIV+ group by orange color

and the control group by blue color.

All datasets are registered with a non-rigid approach provided by DTI-TK [18],

which takes the whole tensor information into consideration. The registration qual-

ity is important for voxel-wise analysis, however, here, we focus on the comparative

visualization of DTI group studies only. Therefore, the influence of the registration

quality on the analysis results is beyond the scope of this work. Although we do not

explicitly show the detail level comparison for several selected voxels, it is possible

to do this with our prototype. Therefore, this type of local averaging can to some ex-

tent reduce the influence of potential mis-registration. Please note that for our detail

level comparison it makes no difference whether a single voxel or multiple voxels are

selected.
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6.3.1. CASE STUDY 1: FORNIX

The neuroscientist starts the analysis with the visualization of the coarsest zoom

level (Figure 6.4a) to identify voxels of interest. This zoom level is constructed based

on the tensor shape difference dshape, which represents the difference in the mean dif-

fusion anisotropy profiles between two groups. We can see that the highlighted region

is largely white, indicating that the voxels exhibit only small differences in shape. This

region roughly matches the ventricle of the brain (see the dashed line in Figure 6.4a).

Therefore, these small differences in shape are not surprising, since the diffusion ten-

sors in the ventricles are nearly isotropic. We can see a small region in the center,

highlighted by the rectangle in Figure 6.4a, which is notably darker, indicating a larger

shape difference. The neuroscientist selects this region, which turns out to be the body

of the fornix, for further analysis in zoom level 2 (Figure 6.4b). The fornix is a C-

shaped bundle of fibers that roughly travel anteriorly. Note that in zoom level 2 the

glyphs are rotated without changing the viewing settings for the sake of a clearer illus-

tration. Here, we can see that the more elongated glyphs exhibit larger pair-wise shape

differences (i.e., darker colors). For example, in the central voxels, the discontinuities

between the checkerboard sides of the glyphs can be readily perceived (due to size

limitations of the figure, see the inset in Figure 6.4b for a clearer view). Glyphs with

orange sidefaces have larger normalized major eigenvalues λ̃1 but smaller normalized

medium λ̃2 and minor eigenvalues λ̃3. This implies that, on average, the HIV+ group

has larger linear anisotropies in the fornix. This finding surprises the neuroscientist, as

it conflicts with the common hypothesis that diseases of the nervous system reduce the

extent of diffusion anisotropy by damaging the underlying fiber tracts. Furthermore,

we can observe that the orientation differences are consistently small for this region,

while scale differences (i.e., the angles of the lower sectors) are proportional to the

shape differences (i.e., the darkness of the color). The neuroscientist further zooms

into the finest level to inspect variations in a three by three voxel area in the center, as

marked in Figure 6.4b. In Figure 6.4c we can see that variation in orientation is small

and similar for both groups, as indicated by the angles of the upper sectors. The glyphs

corresponding to the HIV+ group exhibit larger scale variations (i.e., larger angles in

the orange part of the lower sectors) and larger shape variations (i.e., more densely

packed orange dots). The fornix on the axial slice consists of only a few voxels and,

therefore, partial voluming effects and/or mis-registration can lead to a contamination
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by voxels from the surrounding ventricles which normally have larger diffusion scales.

The larger variation in the diffusion scales could be an indicator that the HIV+ group

is more vulnerable to such contamination. More surprising is the large difference in

shape variation between two groups (see the purple rectangle in Figure 6.4c). There-

fore, the neuroscientist selects this voxel to compare the original tensor ensembles at

the detail level.

First, the neuroscientist inspects the shape distribution. Figure 6.4d top shows

the density plot of the shape distribution, overlaid by the glyphs corresponding to the

automatically generated density cluster centers. We can see that the tensor shapes are

mainly linear for both groups. The overall span is quite large, with FA values ranging

from 0.2 to 0.9, as indicated by the glyph locations relative to the background FA con-

tours. Therefore, we select all the tensor glyphs corresponding to large anisotropies

(i.e. the glyphs marked by the red arrow in Figure 6.4d, bottom). It can be seen that

most of the selected glyphs originate from the HIV+ group (orange color) while only

one is from the control group (blue). The neuroscientist speculates that this could be

attributed to the scanner shift, as some subjects were scanned with two different scan-

ners. However, we could exclude this hypothesis by inspecting the origin of each scan,

which showed that 1) both groups contain subjects scanned with either scanner and 2)

the selection includes tensors originating from either scanner (see the supplementary

video). Inspecting the detail visualization for the scale (Figure 6.4e), we can see that

all of the selected tensors also exhibit small values for tensor scale (see the colored re-

gion in Figure 6.4e). The orientation matrix view (Figure 6.4f) does not exhibit such a

strong clustering. Overall, we see that, based on the average dODF glyphs with added

transparency, the HIV+ group has larger diffusion probability in the vertical direction.

We also find two tensors in the HIV+ group (red circle in Figure 6.4f) exhibiting larger

orientation difference compared to the rest of the group and some subjects from the

control group.

This example demonstrates that our prototype is able to help the neuroscientist

to obtain new findings, i.e, the HIV+ group presents both larger linear anisotropies

and tensor shape variations for the fornix structure. While the interpretation of the

described findings is out of the scope of this article, they inspired the neuroscientist to

further verify these findings with a quantitative analysis.
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6.3.2. CASE STUDY 2: CORPUS CALLOSUM

In the second case study we inspect the corpus callosum (CC), which is a flat bun-

dle of fibers connecting the left and right cerebral hemispheres. It is indicated by the

dashed line in a sagittal slice shown in Figure 6.5a. The neuroscientist starts with the

overview visualization on zoom level 1, employing the commonly used scalar-valued

statistical measure, i.e., t-statistic. The neuroscientist hypothesizes that the FA values

are higher in the control group than in the HIV+ group. A positive/negative t-statistic

provides evidence for/against the hypothesis. The absolute value of the t-statistic indi-

cates the extent to which the FA values are significantly different between two groups.

Significant difference intuitively means large difference in the FA values of the mean

tensors and small distribution overlaps. The voxel-wise t-statistic is constructed fol-

lowing the standard routine in FSL based on the FA values. We use a diverging green-

white-violet colormap to encode t-statistic results (green=negative, violet=positive),

since the values for the t-statistic are centered around zero and specifically this green

to violet one, as it does not interfere with the blue and orange colors used for the dif-

ferent groups. In zoom level 1 (Figure 6.5a), it can be seen that the anterior part of CC

(i.e., the genu) appears to be more violet while the posterior part (i.e., the splenium)

exhibits some green. The neuroscientist is specifically interested in these voxels with

negative t-statistic values and zooms into level 2 for this region (Figure 6.5b). We ob-

serve that the HIV+ group, indicated by orange sidefaces (see the inset in Figure 6.5b),

has larger normalized major eigenvalues λ̃1 and smaller normalized medium and mi-

nor eigenvalues, similar to what we have found in the fornix. Furthermore, the scale

and orientation differences are quite small, as indicated by the small lower and upper

sectors, respectively. For further comparison of the group variations, we then zoom

into level 3 (see Figure 6.5c). It can be seen that the variations in scale, shape, and

orientation are quite similar between the two groups. We now inspect the complete

distributions for a single voxel, indicated by the square in Figure 6.5c. In the shape

space visualization (Figure 6.5d), we can immediately see that the two mean tensor

glyphs are placed at some distance. In combination with the emphasized blue and or-

ange tones on the ends of the density plot this confirms that the FA is indeed larger for

the HIV+ group, as indicated by the green color in Figures 6.5a–c. As discussed be-

fore, diseases like HIV damage the fiber structures, which then makes the water diffuse

more freely. Consequently, we expect the HIV+ patients to exhibit a larger amount of
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diffusion [19]. However, inspecting Figure 6.5e, we find that the distribution of the

tensor scale for the HIV+ group (orange line) is slightly more skewed towards a lower

scale value compared to the control group (blue). This means that a subject from the

HIV+ group has a higher probability to present a small amount of diffusion, compared

to a subject from the control group. This finding contradicts the expectation that HIV+

patients would exhibit a larger amount of diffusion. While we cannot present a solid

interpretation for this finding in the scope of this chapter, it shows that our prototype is

able to reveal more information compared to the standard FA-based statistical analysis

of DTI inter-group comparison.

6.4. CONCLUSIONS AND FUTURE WORK
In this work, we present a level-of-detail comparative visualization technique to

support the comparison between two groups of diffusion tensor fields. The comparison

is divided into two parts, i.e., the comparison of tensor ensemble summaries in the spa-

tial domain and that of the original tensor ensembles in terms of tensor intrinsic prop-

erties. For the comparison of tensor ensemble summaries, our glyph representation is

based on the combination of two existing glyph designs in Chapters 4 and 5, respec-

tively. More importantly, we integrate the details-on-demand concept to present more

information as users zoom in. The coarse zoom level is designed to show large scale

patterns of user specified scalar-valued difference measures, mimicking slice views.

The medium zoom level facilities the comparison of the mean tensors of the two groups

in terms of their tensor intrinsic properties. The glyph representation at this level is a

variant of the Tender glyph. The finest zoom level additionally supports comparison

of variation information of each group. The glyph representation at this level is an

extension of the tensor ensemble summary glyph. Here, the glyph-based comparative

visualization helps analysts to locate voxels of interest for further comparison in tensor

intrinsic properties at the detail level. Therefore, we extend the detail visualization in

Chapter 5 to support the visual comparison of two original tensor ensembles by exploit-

ing the superposition and explicit encoding strategy. We performed two case studies

together with a neuroscientist to illustrate the usefulness of our prototype by compar-

ing an HIV+ patient group and a control group. Our prototype successfully reveals

new findings that are otherwise unknown with standard scalar-based comparison. The

case studies triggered the neuroscientist’s interest to perform a formal study to further
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inspect these new findings.

There is still room for improvement as future work. Regarding the glyph design,

the sector representation is not intuitive since it relies on the users’ memory of the cor-

respondence to tensor scale or orientation. Furthermore, although the image-space tex-

tures, used to indicate shape variation, provide a good estimation of the variation, their

image-space nature can cause annoying effects during interaction. Research regarding

these issues could further improve the glyph representation. In the spatial visualiza-

tions, the glyphs are placed on a regular grid, which is likely to hide the underlying

continuous structures of the field. The combination of a smart sampling scheme [20]

with the level of detail glyph representations could further improve the overview vi-

sualizations. Finally, the next logical step would be the comparison of more than two

groups.
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7
CONCLUSION

We have to change from doubters to believers. Now!

Jürgen Klopp

7.1. CONTRIBUTIONS
The analysis of multiple 3D tensor fields is an important but challenging task in

the context of DTI-based neuroscientific studies. However, not much work has yet

been done due to the complex and multivariate nature of tensor data. In this thesis,

we have presented several novel visual analysis methods to assist the exploration and

analysis of multiple 3D tensor fields.

The acquisition of DTI datasets relies on MRI technique. One major disadvantage

of MRI is that it is a time-consuming process, which restricts the applicability of DTI.

Compressed sensing (CS) has the potential to accelerate MRI acquisition. Therefore,

a brief introduction of MRI and CS is given in Chapter 2. In Section 2.3, this thesis

contributes by adapting the traditional CS MRI reconstruction method to incorporate

121
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local information, and applies it to preserve low-contrast vessels in MR angiography

as a proof-of-concept.

The main aim of this thesis is to design understandable visual analysis techniques

for multiple 3D tensor fields while keeping the full tensor information. The main

contributions are summarized as follows.

• The dissimilarity measures proposed in Chapter 4 enable the quantification of

pair-wise differences of diffusion tensors in tensor scale, shape, and orientation.

Compared to previous method [1], the new dissimilarity measures are compu-

tationally more efficient. More importantly, these dissimilarity measures can be

readily interpreted by neuroscientists. To visually encode such differences in

scale, shape, and orientation, a checkerboard-style glyph is designed by exploit-

ing the fact that human eyes are more sensitive to discontinuity. Thus, this new

glyph is able to facilitate the visual comparison between two DTI datasets in a

voxel-wise manner compared to straightforward juxtaposition and/or superposi-

tion.

• We extend the pair-wise differences measures in Chapter 5 to quantify the vari-

ation in tensor scale, shape, and orientation of an ensemble of diffusion tensors.

Compared to the fourth-order covariance tensor [2] that is commonly used to

characterize tensor variations, our measures provide a more direct interpreta-

tion. An overview + detail framework is proposed in Chapter 5 to visualize an

ensemble of diffusion tensor fields. We extend the superquadric glyph [3] to ad-

ditionally encode the variation information in order to provide an overview of

the voxel-wise tensor ensemble in the spatial domain. The glyph-based overview

comprehensively manifests the multi-variate ensemble summary statistics (i.e.,

mean tensor and tensor variations). The detail visualization is composed of

three linked sub-views, each of which depicts the original tensor ensembles for

user specified locations from exactly one aspect of the tensor intrinsic properties

(scale, shape, or orientation). By doing so, we manage to support the exploration

and understanding of the tensor ensemble without assuming a specific distribu-

tion.

• The checkerboard-style glyph and the overview + detail framework are combined

and extended in Chapter 6 to support the visual comparison of two ensembles of
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DTI datasets. In particular, the level-of-detail concept is integrated into the glyph

design to progressively reveal information as users zoom in so that the glyph-

based visual comparison is improved. In this way, tensor ensemble summary

statistics can be effectively compared at multiple levels.

• We carefully design the user studies and case studies to evaluate the visualization

techniques presented in Chapters 4, 5, and 6 to validate the effectiveness of the

visual encodings and show the potential usability of the whole visual analysis

framework. Since not much work has yet been done concerning the design of

a user study for glyph-based tensor field visualization, the user studies in this

thesis can serve as a reference for other tensor field visualization work.

7.2. FUTURE WORK
Possible directions of future work related to specific visualization techniques are

listed at the end of each individual chapter, and all the possible directions are summa-

rized here to provide a compact overview.

In this thesis, the main object of research is the diffusion tensor, which mathe-

matically is a second-order symmetric positive-definite tensor. Therefore, one natural

question to ask is whether the analysis and visualization techniques proposed in the

thesis can be extended to second-order symmetric positive-definite tensors but not in

the context of DTI, second-order symmetric tensors (not necessarily positive-definite),

general second-order tensors (not necessarily symmetric), or even higher-order ten-

sors. Since second-order symmetric tensors have six degrees-of-freedom, the pair-

wise dissimilarity measure can be directly extended. The major issue is that whether

the quantification of tensor dissimilarity in the three aspects (i.e., scale, shape, and

orientation) is useful or not is application-dependent. The tensor ensemble summary

glyph design in Chapter 5 can be directly extended to second-order symmetric tensors.

However, the extension of the checkerboard-style comparison strategy to second-order

symmetric tensors requires additional efforts. For general second-order tensors and

higher-order tensors, the visualization of a single field itself is already quite challeng-

ing [4], not to mention that of multiple fields. One well-known disadvantage of the

diffusion tensor model is that it fails to model complex diffusion pattern for regions

with crossing fibers while HARDI data is able to do. However, HARDI data generally
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has more degrees-of-freedom than second-order symmetric tensors. This makes the

extension of comparative and ensemble visualization techniques much more difficult.

From the perspective of neuroscientific studies, multiple group comparisons are

commonly conduced. The next logical step would be the comparison of multiple en-

sembles of diffusion tensor fields. From the perspective of validation, the user/case

studies conducted in this thesis normally require knowledge about diffusion tensor

analysis, which limits the pool of available participants. Therefore, we consider an ex-

tensive evaluation that would allow for strong conclusions on the effectiveness of the

presented visual analysis techniques as future work.

We believe the visual analysis techniques presented in this thesis will promote

research in the direction of visual analysis of multiple tensor fields.
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