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Automated vehicles used as public transport show a great promise of revolutionizing current transportation systems. Still, there are 
many questions as to how these systems should be organized and operated in cities to bring the best out of future services. In this 
study, an agent-based model (ABM) is developed to simulate the on-demand operations of shared automated vehicles (SAVs) in 
a parallel transit service (PTS) and a tailored time-varying transit service (TVTS). ­e proposed TVTS system can switch service 
schemes between a door-to-door service (DDS) and a station-to-station service (SSS) according to what is best for the service 
providers and the travelers. In addition, the proposed PTS system that allows DDS and SSS to operate simultaneously is simulated. 
To test the conceptual design of the proposed SAV system, simulation experiments are performed in a hypothetical urban area to 
show the potential of di�erent SAV schemes. Simulation results suggest that SAV systems together with dynamic ridesharing can 
signi�cantly reduce average waiting time, the vehicle kilometres travelled and empty SAV trips. Moreover, the proposed optimal 
vehicle assignment algorithm can signi�cantly reduce the empty vehicle kilometres travelled (VKT) for the pickups for all tested SAV 
systems up to about 40% and improve the system capacity for transporting the passengers. Comparing the TVTS system, which has 
inconvenient access in peak hours, with the PTS systems, which always makes available door-to-door transport, we conclude that the 
latter could achieve a similar system performance as the former in terms of average waiting time, service time and system capacity.

1. Introduction

It is being said that we are at the dawn of the next mobility 
revolution with the introduction of automated driving. 
However, there are aspects of the automated vehicles (AVs) 
that still need to be understood, for example, there are many 
legal, regulatory and technical problems that are delaying the 
deployment of AVs. A �eet of shared automated vehicles 
(SAV), which functions as a centralized taxi service system, 
will probably bring the most disruptive changes in urban 
mobility. ­e real potential of SAVs is that they make the 
implementation of an entirely new public transportation sys-
tem possible. ­at is, SAVs might have the power to funda-
mentally transform transportation mobility and revolutionize 
the transport system given the added degrees of freedom of 
operating shared taxi systems [1–10].

A �eet of SAVs operated in a centralized way in SAV sys-
tems could function as an e¡cient taxi system to provide 

demand-responsive service for travel demand during a day, 
especially in urbanized areas. ­e SAV system could be used 
to provide station-to-station (stop-to-stop) service (SSS) to 
transport as many people as possible in busy routes in a 
demand-responsive fashion. However, the SAV system could 
also be operated as a door-to-door service (DDS) giving great 
convenience to travellers as of today’s Transport Network 
Companies such as Uber, Ly�, and Didi Chuxing. In this 
paper, we aim to take into consideration these two ways of 
operating urban automated transport systems, both in parallel 
and in sequence, and propose a simulation tool to assess their 
impact on an urban network.

In addition, SAV systems could facilitate the implemen-
tation of dynamic ride-sharing which aims to pool multiple 
travelers with similar origins, destinations, and departure 
times in the same vehicle. Dynamic ridesharing has the poten-
tial to improve the performance of proposed SAV systems in 
terms of energy saving, waiting time reduction, VKT 
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reduction, etc. [11–17]. More importantly, the dynamic 
ridesharing could enable the SAV system in accommodating 
more travel demand with the same number of vehicles. �e 
proposed SAV systems offering various service schemes with 
dynamic ridesharing could eliminate the problems in past 
attempts to provide demand-responsive transit services [18].

Building upon the on-demand DDS and on-demand SSS, 
two extra on-demand transit service systems are proposed and 
simulated. Time-varying transit service (TVTS) that can 
switch service schemes between DDS and SSS depending on 
the time of day (peak hours and off-peak hours for example), 
and the simultaneous operation of DDS and SSS, allowing 
both of them to operate in parallel (designated as parallel tran-
sit service: PTS).

Few studies have explored the operation of variations in 
the service schemes of SAV systems. As a first attempt to inves-
tigate this problem, the paper constructs an agent-based model 
(ABM) to study different scenarios of operations of different 
service schemes. With the help of ABM, conceptual design 
and a preliminary study are presented for different SAV sys-
tems as defined above: SSS system, DDS system, TVTS system, 
and four PTS systems. �e ABM describes the SAV system 
with its details and complexity by modelling the travel requests 
and vehicle movements, and especially interactions between 
vehicles and travelers. �e model allows us to understand how 
the system components of the SAV system behave over time 
and find the potential of SAV systems by studying the most 
efficient ways of operating them under different service 
schemes. �erefore, the preliminary look at system perfor-
mance of SAV systems could provide useful information for 
transport operators when deciding to adopt a SAV system in 
the future. But it also provides support for future more detailed 
simulation studies whereby these schemes might be important 
to test.

�e remainder of the paper is organized as follows. Section 
2 reviews the existing literature related to SAV systems and 
dynamic ridesharing. Section 3 presents the model specifica-
tions. Section 4 gives a detailed description of the experiments 
that have been run. Section 5 provides an analysis of the sim-
ulation results. Conclusions are drawn in Section 6. �e final 
section lists some model limitations and envisions future work.

2. Background Literature

Given that the possible future existence of SAV will bring the 
most potentially disruptive changes in the urban transport 
system, the exploration of the implementation of these systems 
has been a focal point of transportation research in recent 
years [19–23].

Burns et al. examined the performance of an SAV system 
and cost to explore the feasibility of a fleet of SAVs to serve 
the existing travel demand, they found that the SAV systems 
are compelling due to the shorter waiting time and low oper-
ational cost [24]. Spieser et al. examined the problem of fleet 
sizing of Automated Mobility-on-Demand Systems using the 
actual transportation data of Singapore and found out that the 
fleet sizes of SAVs that serve the entire mobility needs between 

stations in Singapore can be 1/3 of previous passengers’ vehi-
cles while keeping an acceptable waiting time [25]. Fagnant et 
al. investigated the benefits and environmental implications 
of SAV systems in an Austin-sized city, Texas. �eir study 
results indicate that each SAV can substitute 11 and 9 conven-
tional vehicles in order to serve 3.5% and 1.3% of regional trips 
respectively. Although approximately 11% extra empty VKT 
was generated, energy savings and emission reductions may 
overcome those effects [26, 27].

Several studies focus on investigating the potential benefits 
of SAV systems when considering shared rides. Fagnant et al. 
investigated the impact of the dynamic ridesharing in SAV 
systems on vehicle mile travelled (VMT), waiting times and 
travel costs for SAV users. �ey concluded that the dynamic 
ridesharing could result in a reduction of generated VMT up 
to 4.2% and the reduction of the waiting time and average total 
service time up to 4.5 minutes and 0.3 minutes respectively 
[11]. Zhang et al. focused on the potential impact of SAV fleet 
size, dynamic ridesharing and clients’ preference, and vehicle 
cruising on urban parking demand by considering 2% of the 
population as the users of the SAV system in a hypothetical 
city. �eir study indicated that the SAV system could facilitate 
the reduction of parking demand of about 90%, and the reduc-
tion could be further expanded by 1% by considering dynamic 
ridesharing in the SAV system [28].

Other works concern multi-mode transportation in the 
analysis of the impact of an SAV system. Martinez in the 
International Transport Forum investigated the performance 
of shared automated taxis as a supplement to serve requests 
for shared buses offering inter-stop service with prebooking. 
�e benefits of shared taxis and bus systems are the reduction 
of emissions and VKT, peaking at 40% and 30% respectively 
[29, 30]. Zachariah et al. investigated the operation of a fleet 
of autonomous taxis supplementing the transit train service 
among fixed taxi stands in New Jersey. Simulation results 
revealed that shared rides could significantly reduce the VMT. 
In addition, they found that temporal and spatial demand 
variations influence the ride-sharing success rate. �erefore, 
the favorable distribution of the SAV fleet based on the 
demand variations can significantly improve the sharing rate 
and reduce congestion [31]. SAVs as a feeder service to train 
stations have been explored from an operational point of view 
looking at how many vehicles are needed, defining an area of 
operation, and how to charge the vehicles in case they are 
electric [32, 33].

Although studies on SAV systems are now booming, there 
are a limited number of research papers that explore the imple-
mentation of efficient on-demand SAV systems in terms of the 
different service schemes in which they could be operated and 
the potential synergies among those. �at is, it is unclear what 
kind of service schemes the SAV systems should provide in a 
demand-responsive fashion. �is paper attempts to fill that 
gap through a simulation study in a hypothetical city as a first 
approach to the problem. An ABM is used to explore the trade-
offs in different SAV systems between the service levels, cap-
tured by the waiting time and service time (in-vehicle travel 
time) and the system efficiency in terms of VKT, system capac-
ity, and served trips.
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3. Model Specifications and Operations

­e ABM is intended to simulate the operations of SAVs and 
their interactions with travelers’ real-time requests within a 
hypothetical city area. We simulate tailored on-demand SAV 
systems with various service schemes as already described. In 
this study, the �eet operator has no information about the 
travel requests in advance. In other words, the �eet operator 
has no information about travelers before they request service. 
A�er a traveler requests a vehicle, the �eet operator knows the 
information of the traveler. ­e �eet operator only assigns the 
idle vehicles to serve the travelers in a real-time fashion, and 
therefore scheduled assignment in a prebooking fashion is not 
possible. As shown in Figure 1, the �eet operator is responsible 
for real-time vehicle assignment, dynamic ridesharing, and 
managing and monitoring information of travel requests and 
vehicles. In addition, the central operator is designed for route 
assignments for SAVs. Vehicle assignment means that the �eet 
operator �nds idle vehicles to serve real-time travel requests. 
­e route assignment is to �nd a route either for en-route 
pickup vehicles or en-route drop-o� vehicles. We distinguish 
the functions between the �eet operator and the central oper-
ator, enabling the designed system to keep an expanded capa-
bility for multiple operators.

­e interaction of system components in Figure 1 between 
SAVs and time-dependent travel requests are illustrated. ­e 
�eet operator controls the assignment of SAVs to serve real-
time travel requests. A�er the assignment of SAVs, commu-
nications will take place between travel requests and SAVs 
until travellers arrive at their destination. ­at is, a�er SAVs 
received the essential information (origin, destination, iden-
ti�cation) of travel requests, each SAV will communicate with 
targeted travel requests for pickups and drop-o�s. ­e dynamic 
ridesharing module in the �eet operator aims to group trav-
ellers, according to the matching rules. ­e routing module 
in the central operator is responsible for the route calculation 
for real-time vehicle routing. ­e central operator will transit 
routing information to the in-service vehicles. ­e model con-
tents include dynamic generation of time-dependent requests, 
real-time vehicle assignment, and dynamic ridesharing. To 
deal with the lack of some essential information, we list the 
detailed description of model assumptions:

(i)  No induced travel demand is taken into account;
(ii)  All the travelers are willing to share rides with 

strangers;
(iii)  ­e battery capacity can support full-day operations 

for each SAV;
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Figure 1: Interaction between system components.
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Figure 2: ­e state chart that represents the behavior of a travel request.
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when the �eet operator failed in �nding adequate idle vehicles 
as input for the Hungarian algorithm or when there is only 
one request for vehicle assignment in a certain dispatching 
time interval.

A�er the SAV assignment, the vehicle will have the essen-
tial information about requests (location, requested service, 
ridesharing status), and communicate with travellers by send-
ing an assignment message. A�er that, the traveler waits for 
the SAV’s arrival. ­erefore, the waiting time can be composed 
of waiting time for vehicle assignment (due to the unavaila-
bility of a SAV) and waiting for the SAV’ arrival while it is 
en-route for picking up the traveller.

3.2. Dynamic Generation of Time-Dependent Travel 
Requests. Based on the aggregate travel demand, individual 
travel requests are generated with spatial-temporal 
characteristics. In this study, the demand generation process 
can be divided into the following two steps.

(1) Generating a �xed number of time-dependent travel 
requests for each zone over each time interval.

Total production of travel requests for each zone is cal-
culated based on an origin-destination (OD) matrix, and 
then demand production per one-hour interval for each 
zone is estimated by using the departure time distribu-
tion and total demand production per zone for 24 hours. 
At the beginning of each time interval, a �xed number 
of travel requests are generated, and then the generated 
travel requests are distributed within this time interval 
by following a discrete uniform distribution. As a result, 
all the generated requests for each time interval will be 
associated with a speci�ed time.
(2) Finding a destination zone for each travel request.
It is assumed that observations of travel requests in each 
zone over other tra¡c analysis zones in the whole study 
area are known in the OD matrix table. ­at is to say, the 
number of requests ending in every other zone is known. 
Based on these observations of travel requests over tra¡c 
analysis zones in the OD matrix table, the destination zone 
of each travel request will be drawn by using the Monte 
Carlo simulation process. In the end, each request will 
have a destination zone. We give a detailed overview of 
departure time distribution and total travel requests for 
each zone in the section of detailed travel demand.

As shown in Figure 2, statechart diagram as one of the �ve 
Uni�ed Modeling Language diagrams is used to model the 
dynamic nature of the travellers. ­e statechart diagram can 
de�ne di�erent states of a traveler during its lifetime and these 
states are changed by events. By using statecharts, traveler 
behavior can be visually shown. ­e statechart has states and 
transitions. Transitions may be triggered by user-de�ned con-
ditions (timeouts or rates, agent’s arrival, messages received 
by the statechart, and Boolean conditions). For example, a�er 
the SAV assignment, the vehicle will have the essential infor-
mation about requests (location, requested service, rideshar-
ing status), and communicate with the clients by sending an 
assignment message (state transition by receiving a message). 
A�er that, the traveler waits for the SAV’s arrival (state 

(iv)  ­e parking spaces are enough for all the SAVs in 
each station.

For easier model implementation, we simplify the following 
model speci�cations:  

(i)  SAV speed is prede�ned on road segments and 
updated for peak hours and o�-peak hours 
respectively;

(ii)  Cancellation of assigned SAV is not allowed;
(iii)  Travelers will give up a request when the waiting time 

for being assigned a vehicle exceeds a speci�c time 
threshold;

(iv)  Travelers’ choices between door-to-door service and 
station-based service are based on a �xed willingness 
to use a certain service, which is an experimental 
parameter (20%, 40%, 60%, and 80%).

3.1. Real-Time SAV Assignment. In this model, two assignment 
methods are designed. ­e �rst vehicle assignment method is 
to assign the nearest idle vehicles to serve the real-time travel 
requests according to the �rst-come, �rst-served (FCFS) 
principle. We de�ne the �rst vehicle assignment method as 
the FCFS vehicle assignment method. ­e second is an optimal 
assignment method that assigns a group of idle vehicles to 
bundled travel requests with the objective of minimizing the 
total empty travel distance for the pickups.

3.1.1. FCFS Vehicle Assignment Method. We design a �eet 
operator to assign the idle and nearest SAVs to serve real-time 
travel requests. ­e rules of the design are as follows:

(i)  ­e �eet operator will �nd an idle and nearest SAV in 
the same sub-region as the request departure location 
based on the FCFS principle;

(ii)  If there is no available SAV close to the request, the 
�eet operator will �nd an idle SAV from the whole 
study area to serve it;

(iii)  ­e �eet operator only gives top priority to shared 
riders. ­at is, the travelers who will share their rides 
are sorted from the waiting list, and assigned an idle 
and nearest SAV as soon as possible.

3.1.2. Optimal Vehicle Assignment Method. ­e optimal 
vehicle algorithm method can assign a group of idle vehicles 
� = {v1, ⋅ ⋅ ⋅ , v�} to bundled travel requests � = {��1, ⋅ ⋅ ⋅ , ���}. 
­at means that the �eet operators can bundle a certain number 
of travel requests, each of which is speci�ed with a timestamp, 
assign a group of available vehicles to them with the objective 
of minimizing the total empty travel distance of the assignment. 
­e size of bundled travel requests varies along the day according 
to the demand that coincides in the same time interval. ­e 
collection of idle vehicles participating in the optimal assignment 
is found by searching for the nearest vehicles for each travel 
request in the set �. ­e assignment problem can be formulated 
as a bipartite matching problem between bundled travel requests 
and selected idle vehicles in every dispatching time interval. ­e 
Hungarian algorithm [34] is used to solve the problem.

Nevertheless, a travel request can be assigned a vehicle by 
FCFS principle without calling the Hungarian algorithm only 



Journal of Advanced Transportation6

ridesharing agent is created, it is responsible for the interac-
tion with an assigned vehicle. Each ridesharing agent records 
the information of grouped travellers, the OD of the travel-
lers, and the assigned vehicles for grouped travellers. 
According to the designed rules for dynamic ridesharing, 
the �eet operator dynamically adds and removes ridesharing 
agents in the simulation process.

3.5. Service Scheme. We have de�ned four types of on-demand 
SAV systems in terms of variations of service schemes as 
described above: DDS system, SSS system, TVTS system, 
and PTS system. In all SAV systems, we did not simulate 
user choices for di�erent services based on attributes such as 
price or travel distance; however, we assume that individual 
requests have various levels of willingness to use the station-to-
station service in the proposed PTS systems. According to the 
willingness to choose the station-to-station service, the PTS 
system can be divided into PTS-20%, PTS-40%, PTS-60%, and 
PTS-80%. ­is would result from the prices of both services; 
otherwise, travelers would naturally prefer to use the door-to-
door system only because it is more convenient.

4. Model Application and Implementation

­e simulation model was developed from scratch in Anylogic 
proprietary ABM platform with Java programming language, 
which is available for research purposes. In this study, SAV 
systems with di�erent service schemes are tested in a hypo-
thetical urban road network.

4.1. Urban Road Network. ­e road network of a city in 
the scale of 5 km × 5 km (roughly the size of Del� in the 
Netherlands) is used for testing the operations of di�erent 
SAV systems. ­e network is taken from the UDES (Urban 
Dynamics Educational Simulator) model (https://www.
researchgate.net/project/­e-Urban-Dynamics-Educational-
Simulator-UDES). ­e road network topology includes 78 
links and 77 nodes (see Figure 3). Stations for the drop-o� 

transition by vehicle arrival). ­e travel request will give up 
waiting for vehicle assignment when waiting assignment time 
exceeds a time threshold (state transition by timeout event).

3.3. Fleet Size. ­e �eet size is an experimental parameter in 
the ABM. We simulate the operations of SAV systems with 
di�erent �eet sizes. In addition, in order to illustrate the 
relations between multiple system characteristics, we estimate 
a small �eet size for keeping an acceptable service quality for 
SAV systems.

3.4. Dynamic Ride-Sharing. ­e SAV can facilitate the 
implementation of dynamic ride-sharing. Dynamic ridesharing 
aims to pool multiple travelers with similar temporal and 
spatial characteristics.

In this model, we design a set of rules for the implementa-
tion of the dynamic ridesharing. Travelers who have common 
OD zones are allowed to share a SAV. Note that the grouped 
travelers with common OD zone may have di�erent departing 
and arriving speci�c locations within each zone. ­e travel 
requests can be served at a service station or at their doorstep.

From the service scheme point of view, we design a set of 
rules for dynamic ridesharing.

(i)  If both of the shared rides need to be served at a sta-
tion, the assigned SAV will pick them up at the origin 
station, and then drop them o� at the destination 
station.

(ii)   If both of the shared rides need to be served in a door-
to-door fashion, the assigned SAV will �rst pick up the 
passenger who is closer to it and then pick up another 
one. Based on the trip distance of the passengers, the 
SAV will �rst drop o� the passenger who has a shorter 
trip distance, and then it will drop o� the second pas-
senger at its speci�c destination of the same zone. If the 
assigned SAV has the same estimated travel distance 
from the two passengers in two di�erent locations, 
the SAV will �rst pick up the passenger who sent the 
request earlier, and then pick up the second passenger at 
his or her doorstep. A�er reaching the �rst passenger’s 
destination, the second passenger will be dropped o�.

(iii)  If one of the shared rides needs to be served at a sta-
tion and the other one is to be served at the doorstep, 
the SAV will �rst pick up the passenger who is closer 
to it and then pick up the other passenger. Based on 
the trip distance of the passengers, the SAV will �rst 
drop o� the passenger who has a shorter trip distance, 
and then it will drop o� the second passenger at its 
destination (designated station or speci�c location) 
of the same zone. If the assigned SAV has the same 
estimated travel distance from the two passengers in 
two di�erent locations, the SAV will �rst pick up the 
passenger who sent the request earlier, and then pick 
up the second passenger at his or her doorstep. A�er 
reaching the �rst passenger’s destination, the second 
passenger will be dropped o�.

In this ABM, a ridesharing agent type is introduced to del-
egate the grouped travel requests. ­at is, once the 

Figure 3: ­e road network.

https://www.researchgate.net/project/The-Urban-Dynamics-Educational-Simulator-UDES
https://www.researchgate.net/project/The-Urban-Dynamics-Educational-Simulator-UDES
https://www.researchgate.net/project/The-Urban-Dynamics-Educational-Simulator-UDES
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the maximum number of travelers in a shared car is two. ­e 
time interval being used for the assignment is 5 seconds.

5. Results and Discussion

5.1. Analysis of the Impact of Vehicle Assignment Methods. To 
look at how the optimal vehicle assignment method impacts 
the performance of di�erent SAVs systems, 70 scenarios for 
di�erent SAV systems with variations of �eet size are simulated 
(see in Table 2).

­e simulation results in Figure 5 indicate that the optimal 
vehicle assignment algorithm can reduce empty VKT. ­e �eet 
operator can optimally assign idle vehicles to serve the trave-
lers while minimizing the total empty travel distance for the 
pickups. ­e degree of reduction of empty VKT greatly 
depends on the �eet size. In Figure 5(a), the optimal assign-
ment can reduce the empty VKT for all the SAV systems in 
about 40%, while there is almost all of the same empty VKT 
for both assignment methods with a 4000-SAV �eet size in 
Figure 5(e).

and pickup service in SAV systems are uniformly distributed 
among the tra¡c analysis zones (TAZs) in the whole study 
area. ­e scale is graphically de�ned in the agent simulation 
environment as: one pixel corresponds to ten meters. ­e SAVs 
shortest paths are computed using the Dijkstra algorithm.

4.2. Detailed Travel Demand. ­e SAV systems will serve a 
total demand of 110 000 trips in a full day. Figure 4 depicts 
the departure time distribution of the demand and the total 
production of travel requests for each zone that are used as 
input in the simulation model as explained in Section 3.

To mimic the commuting patterns, OD matrices with dif-
ferent assumed observations are used: one in the �rst half of 
the day and the other for the rest of the day. ­e destination 
zones are found by using the Monte Carlo simulation process. 
­erefore, heterogeneous observations in the trip table enable 
the simulation to generate di�erent results.

Travel demand is not only generated and attracted in the 
centroid of each TAZ but speci�c points inside the zones are 
used, in order to simulate the operation of di�erent service 
schemes. ­at means that travellers would walk from/to the 
station when using the station-based service or waiting for 
their pickup at their places of residence if there is a door-to-
door service.

4.3. Simulation Parameters. Table 1 shows basic input 
parameters for the SAV simulation. ­e vehicle speed is 
predetermined in all SAV systems in peak hours and o�-
peak hours respectively. Based on the research conducted by 
Wang et al. [35] in terms of speeds during the di�erent times 
of the day, the reduction of the speed in peak hours range 
between 10% and 30%. ­erefore, we assume that the speed 
of the SAV is 20% lower than that in o�-peak hours. In this 
ABM, we assume the SAV speed in o�-peak hours is 36 km/h. 
­e energy e¡ciency of di�erent electrical vehicles roughly 
ranges from 1 kWh per 7.16 km to 1 kWh per 4.82 km (https://
pushevs.com/electric-car-range-e¡ciency-nedc/). ­erefore, 
for energy consumption, we adopt a rate of electricity 
consumption of 1 kWh per 7 kilometers that is reasonable for 
a two-seat, light-weight vehicle. We assume that travelers will 
give up requesting a SAV when the waiting time for a vehicle 
assignment exceeds 5 minutes. In this paper, we assume that 
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Figure 4: ­e detailed overview of departure time distribution and total demand for each zone. (a) Departure time distribution. (b) Total 
demand for each zone.

Table 1: Input parameters.

Category Value
City scale 5 km × 5 km
Road links 78
Road nodes 77
Travel requests 110 000
Vehicle o�-peak speed 36 km/h
Vehicle peak-hour speed 28.8 km/h
Vehicle capacity 2 persons
Time threshold for client dropout 5 minutes
Time interval for optimal assignment 5 seconds
Operation hours Around the clock
AM peak 7 AM–9 AM
PM peak 4 PM–6 PM
Fleet size [2000, 4500]
Fleet size step 500

https://pushevs.com/electric-car-range-efficiency-nedc/
https://pushevs.com/electric-car-range-efficiency-nedc/
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Table 2: Combinatorial scenarios for the simulation of optimal vehicle assignment.

Assignment method Optimal assignment method FCFS assignment method
SAV systems DDS SSS TVS PTS-20 PTS-40 PTS-60 PTS-80
Fleet size 2000 2500 3000 3500 4000
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Figure 5: Comparisons of generated empty VKT for di�erent assignment methods with variations of �eet size. (a) Comparisons of VKT with 
the 2000-SAV �eet size. (b) Comparisons of VKT with the 2500-SAV �eet size. (c) Comparisons of VKT with the 3000-SAV �eet size. (d) 
Comparisons of VKT with the 3500-SAV �eet size. (e) Comparisons of VKT with the 4000-SAV �eet size.
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in Tables 3 and 4 indicate that the average peak-hour waiting 
time in all systems with dynamic ridesharing ranges from 
8.68 minutes to 13.17 minutes when we adopt the 2000-SAV 
fleet size. For smaller fleet sizes, the service quality would be 
lower. Furthermore, there is little difference in the average 
waiting time in the four-PTS system when the fleet size is 
reduced from 3500 to 2000 as shown in Figure 8. �erefore, 
we could analyze the SAV systems’ performance starting from 
the estimated 2000-SAV fleet size.

5.3. Analysis of the Impact of Dynamic Ridesharing.  SAV 
systems allow travellers to share their rides according to the 
designed rules. In this analysis, we analyse the impact of 
dynamic ridesharing in the SAV system. Compared with a 
nonridesharing system in Tables 3 and 4, SAV systems with 
ridesharing significantly reduce at least 50% of the average 
waiting time, 6.0% of VKT and 4.7% of total SAV trips. �e 
dynamic ridesharing could improve the performance of all 
proposed systems.

�e DDS system reaches a peak of approximately 34.4% 
of shared rides, while the SSS system has the lowest percentage 
of shared rides (around 15.6%). Four-PTS systems have 
slightly high percentages of shared rides from 18.7% to 25.9%. 

�e shape of the polyline depicting the results of the opti-
mal assignment displayed in Figure 5 is similar to that repre-
senting the results of the FCFS assignment. It is evident that 
the trend of the generated empty VKT over different SAV 
systems for both vehicle assignment methods is similar to each 
other. �at means that although the optimal assignment 
method can reduce the generation of empty VKT, the differ-
ence of generated empty VKT across SAV systems remains the 
same to some extent.

Considering the number of drop-outs (unsatisfied trips), 
it is possible to see the simulation results in Figures 6 and 7 
for the total number of dropouts with both vehicle assignment 
methods and for all tested systems. Results indicate that the 
optimal vehicle assignment can enable the SAV systems to 
transport considerably more travelers. �is can be explained 
because of a reduction in the waiting time due to the higher 
efficiency of the optimal vehicle assignment method.

5.2. Analysis of Fleet Size Variations.  We provide a performance 
analysis of the SAV system for different fleet sizes. In addition, 
a small fleet size for the base scenario to keep an acceptable 
level of service quality is determined to analyze the other 
characteristics of different SAV systems. Simulation results 

Table 3: Performance indicators for DDS, SSS, and TVTS systems with a 2000-SAV fleet size.

SAV system DDS SSS TVTS
Ridesharing No Yes No Yes No Yes
Avg. waiting time (min) 14.79 7.21 9.84 4.41 12.87 6.43
Avg. peak-hour waiting time (min) 20.53 11.22 16.82 8.68 19.68 9.08
waiting time > 10 minutes (trips) 47 849 29 766 42 962 16 624 48 188 23 773
Avg. service time (min) 26.76 19.01 19.15 11.95 23.67 15.311
Avg. peak-hour service time (min) 33.65 24.34 26.94 16.99 28.56 16.22
Total VKT (km) 769 099 681 432 673 892 600 751 661 443 617 767
Energy consumption (KWh) 109 871 97 347 96 270 85 821 94 491 88 252
Total SAV trips 131 355 117 999 141 076 125 544 138 487 131 901
Requests dropouts 24 328 24 554 12 358 12 027 19 066 16 322
Percentage of dropouts (%) 22.1% 22.3% 11.2% 10.9% 17.3% 14.8%
Percentage of shared rides (%) 0% 34.4% 0% 15.6% 0% 20.1%

Table 4: Performance indicators for four-PTS systems with a 2000-SAV fleet size.

SAV system PTS-20% PTS-40% PTS-60% PTS-80%
Ridesharing No Yes No Yes No Yes No Yes
Avg. waiting time (min) 15.07 6.61 14.33 5.78 13.53 5.06 12.06 4.71
Avg. peak-hour waiting time (min) 22.48 13.20 21.79 11.92 21.08 11.11 19.54 9.77
waiting time > 10 minutes (trips) 5 108 2 408 5 078 2 331 5 129 2 123 4 820 1 921
Avg. service time (min) 26.49 16.32 25.22 15.11 23.88 14.01 21.85 13.12
Avg. peak-hour service time (min) 34.88 23.11 33.58 22.14 32.35 20.67 30.18 18.77
Total VKT (km) 651 423 568 632 659 864 564 712 674 841 565 322 675 645 589 666
Energy consumption (KWh) 93 060 81 233 94 266 80 673 96 405 82 022 96 520 84 238
Total SAV trips 136 548 118 441 138 086 118 301 141 295 119 849 141 729 121 721
Requests dropouts 22 130 21 095 20 083 19 290 17 842 17 085 15 103 14 233
Percentage of dropouts (%) 20.1% 19.2% 18.3% 17.5% 16.2% 15.5% 13.7% 12.9%
Percentage of shared rides (%) 0% 18.7% 0% 19.6% 0% 20.1% 0% 25.9%
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(in-vehicle travel time) in case of the 2000-SAV �eet size. 
TVTS system has a similar performance in terms of average 
waiting time and service time with the PTS-20% and PTS-40% 
system. We can infer that the SAV systems, e.g., PTS-20% and 
PTS-40% system, that allows two service schemes to operate 
in parallel with a degree of restricted access to the door-to-
door service could provide a similar system performance than 
the TVTS system which only o�ers station-based service in 
peak hours.

When a total �eet size of 3500 SAVs is adopted (Figure 
8(d)), the average waiting time in the PTS systems with 80% 
willingness to request station-based services could achieve a 
similar value with that of TVTS system with approximately 
22.8% of average service time. ­is means that the system 
performance in terms of average waiting time and average 
service time achieved by the sequential operational rules in 
the TVTS system can be obtained by the proposed parallel 
modes of service schemes in the PTS-80% system.

5.5. Analysis of VKT and Energy Consumption. ­e DDS 
system has more VKT and energy consumption than other 
SAV systems as can be seen in Figures 9(c) and 9(d). Except for 
the DDS system, other proposed systems converge to the same 
amount both in VKT and energy consumption respectively, 
when �eet size approaches 4000 vehicles. Both VKT and 
energy consumption experience is a growing trend in four 
PTS systems with an increase in �eet size from 2000 to 2500, 
while the TVTS system has a high level of energy consumption 
and VKT. Nevertheless, with the continued growth of �eet size 
to 4000, the TVTS system decreases the energy consumption 
and VKT to a relatively low level compared to the energy 
consumption on the PTS systems. TVTS system could operate 
a relatively large �eet size to provide quality service while 
consuming less energy.

Figure 9(a) showing the number of total SAV trips indi-
cates that total SAV trips rise �rst, then fall for each system 
with an increment of �eet sizes for each SAV system. One of 
the possible explanations is that with the increase of the SAV 
�eet size, fewer travel requests drop out of the SAV system. 
­erefore, the SAV system satis�es many more trips that result 
in the increase in the total number of SAV trips. On the other 
hand, the gradually increased �eet size will potentially reduce 
the empty SAV trips for pickup. ­e decline of empty (unoc-
cupied) SAV trips for en-route pickups appears to reduce the 
total SAV trips. As a result, the total SAV trips rise �rst and 
decline for each SAV system. ­e peak number of total SAV 
trips is about 131342 trips in the TVTS system, while the DDS, 
PTS-20% and PTS-40% systems only reach about 118000 trips 
with the 2000-SAV �eet size.

Results in Figure 9(b) indicate that the empty trips with a 
2000-SAV �eet size for each SAV system occupy 30–40% of 
the total trips served. ­e percentage of empty trips in the SSS 
system has a minimum of 28.1% of the total served 97973 trips 
with 2000-SAV �eet size, while the DDS reaches a peak of 
42.0% with a total of 83480 trips. ­e percentage of extra 
empty trips in the TVTS system is the second-largest percent-
age (40.6%). With a total �eet size of 2000 SAVs, SAV systems 
seem to generate a higher percentage of empty trips. ­e high 

Especially, the TVTS system is about the same as the PTS-60% 
for the percentage of shared rides with a 2000-SAV �eet size, 
reaching 20.1% of total serviced trips. ­e PTS systems and 
TVTS system, providing two service schemes, can achieve a 
relatively high sharing rate of trips. Although the simulation 
results for dynamic ridesharing may not give conclusive evi-
dence under designed matching rules to group travelers, the 
preliminary investigations of the impact of dynamic rideshar-
ing on di�erent SAV systems provide useful insights into the 
deployment of di�erent SAV systems.

5.4. Analysis of Waiting Time and Service Time. Simulation 
results in Figure 8(a) indicate that the average waiting time 
in the four PTS systems with dynamic ridesharing has little 
di�erence, approximately 40–42% of average service time 
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Figure 6:  Unsatis�ed requests for di�erent SAV systems with 
variations in �eet sizes by optimal vehicle assignment.

0

5000

10000

15000

20000

25000

30000

2000 2500 3000 3500 4000 4500

DDS
SSS
TVTS
PTS-20%

PTS-40%
PTS-60%
PTS-80%

SAV �eet

N
um

be
r o

f d
ro

p-
ou

t r
eq

ue
st

s

Figure 7:  Unsatis�ed requests for di�erent SAV systems with 
variations of �eet sizes by FCFS vehicle assignment.



11Journal of Advanced Transportation

smaller �eet size can roughly keep 75% of the travelers waiting 
10 minutes or less. With the shi�s of SAV �eet size to 3500, 
DDS system still has a peak of 14.1% requests whose waiting 
time is larger than 10 minutes. Results indicate that PTS-20% 
still maintains a high percentage of travelers whose waiting 
time exceeds 10 minutes with a 3000-SAV �eet size (21%). 
­erefore, we can infer that the PTS system with a low will-
ingness to choose the station service will lead to a long wait.

Simulation results in Figure 7 indicate that the number of 
travelers who give up waiting for a SAV assignment has a sig-
ni�cant descending trend with the increase of SAV �ee sizes 
in seven SAV systems. Except for the system with DDS, a �eet 
of 3500 SAVs can accommodate almost all of the requests. ­e 
�eet size that accommodates the total 110000 requests in the 
DDS is approximately 4500 SAVs. ­erefore, ­e SAV system 
only with door-to-door service needs many more SAVs to 
handle the high demand. A large number of vehicles in the 
�eet, has the potential to reduce vehicle utilization. In fact, the 
simulation results in Figure 11 reveals that the DDS system 
has the lowest number of the served trip per SAV in all 
scenarios.

In addition, the numbers of served trips per SAV in 
Figure 11 are from 41.7 trips to approximately 49.0 trips in 
the SAV system with a 2000-SAV �eet size. We �nd out that 

percentage of empty vehicle trips in DDS and TVTS has the 
potential to cause heavy tra¡c congestion.

5.6. Analysis of System Capacity and Drop-Out Requests. With 
the 2000-SAV �eet (Tables 3 and 4), the peak number of 
drop-outs is 24554 trips corresponding to 22.3% of the total 
number of requests (110000) in the DDS system, while in the 
SSS system this number goes down to 12027 drop-outs, only 
accounting for 10.9% of the 110000 requests. ­e dropout 
rate in TVTS system approximates that of PTS-60% system 
with a 2000-SAV �eet size, reaching 15% of the total number 
of requests (110000). ­e PTS-80% system has the lowest 
number of dropouts. It is evident that the PTS system with 
a relatively high percentage of willingness to choose station-
based service would be able to accomplish the performance 
of the TVTS system.

Results in Figure 10 indicate that the number of trips 
whose waiting time exceeds 10 minutes is between 29493 trips 
and 16624 trips, going down from 35.3% to 16.9% of system 
capacity (total number of served trips) with a 2000-SAV �eet 
size. ­e percentage of trips whose waiting time exceeds 10 
minutes is about 25% in both PTS-40% and TVTS system, 
which are slightly larger than that of PTS-60% and PTS-80%. 
Both the TVTS system and PTS system with a relatively 
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Figure 8: Avg. waiting time and Avg. service time with variations of �eet sizes for seven SAV systems. (a) 2000-SAV �eet size. (b) 2500-SAV 
�eet size. (c) 3000-SAV �eet size. (d) 3500-SAV �eet size.
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1715-SAV �eet size within a network in the scale of 12 
miles × 24 miles. ­at is, each SAV can approximately serve 
32.8 trips. ­e served trips per SAV are relatively lower than 
ours. One reason is that the road network in Fagnant and 
Kockelman’s study is relatively larger than that of this study. 
Another reason is that a relatively large number of vehicles 

the PTS-60% and PTS-80% systems present about the same 
number of served trips as the TVTS system at about 47 trips 
per SAV. We compared the number of served trips per SAV 
with Fagnant and Kockelman (2016)’s study. Fagnant and 
Kockelman (2016)’s study indicates that the SAV system con-
sidering ridesharing can serve 56324 person-trips with 
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are deployed in Fagnant and Kockelman study that leads to 
a relatively small average waiting time. ­e average waiting 
times in this paper ranges from 4.41 to 7.70 minutes with a 
2000-SAV �eet size that are relatively larger than the 
1.18-minute average waiting time in Fagnant and Kockelman 
study.

5.7. Analysis of Empty Trips. Unlike human-driven vehicles 
parking at the destinations, SAVs could have an unoccupied 
journey to pick up the next request (no pro-active rebalancing 
in anticipation of future demand are considered in this 
study). ­erefore, additional empty trips will be generated 
to satisfy the next trip. In this study, the additional empty 
trips by the vehicle movement between di�erent zone 
stations are calculated. ­ese empty trips have the potential 
to in�uence tra¡c congestion to a great extent. ­erefore, it 
is of importance to know the number of empty trips by SAVs. 
As shown in Figure 12, dynamic ridesharing can signi�cantly 
reduce the generation of empty trips. PTS systems have 
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Figure 10: System capacity and waiting time > 10 minutes trip number. (a) 2000-SAV �eet size. (b) 2500-SAV �eet size. (c) 3000-SAV �eet 
size. (d) 3500-SAV �eet size.
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6. Conclusions

­is paper developed an agent-based simulation model to 
assess the potential of on-demand SAV systems with various 
service schemes. With the help of the developed ABM, we 
understand what the performance of SAV systems with di�er-
ent service schemes is, and how the associated factors (varia-
tion of �eet size, dynamic ridesharing, di�erent vehicle 
assignment methods) in�uence the service quality of SAV 
systems. Our study shows that the promotion of ridesharing 
can signi�cantly improve the performance of the proposed 
SAV systems in terms of reducing the average waiting time, 
VKT and empty trips. Moreover, compared to the FCFS vehi-
cle assignment method, the optimal assignment can reduce 
the generation of empty VKT for all tested systems and enable 
the SAV systems to transport considerably more travellers.

Although the DDS system brings great convenience of 
doorstep service for real-time requests; it is evident that DDS 
generates almost 13% of extra VKT than that of the PTS sys-
tem with a �eet size of 2000 SAVs. In addition, the DDS system 
generates approximately 42% additional empty trips. ­e per-
centage of dropout requests takes up 22.0% of the total 110000 
person-trips. ­at is, the DDS system cannot transport as 
many more travelers as the other SAV systems do. Compared 
to the DDS system, the TVTS system and PTS systems can 
reduce at least 14.6% and 14.8% of the average waiting time 
respectively. ­e empty trips in the TVTS and PTS systems 
with dynamic ridesharing account for 41.0% and 33.3% of 
total served trips respectively. ­e TVTS and PTS system pro-
vides a signi�cant gain in terms of transport capacity, waiting 
time and additional trips by empty SAVs. In other words, the 
SAV systems that include two di�erent on-demand services 
have the most signi�cant improvements in system 
performance.

DDS system ranks the highest in total energy consumption 
and VKT. Compared to the VKT in the DDS system, the TVTS 
system and PTS system can reduce at least 7.6% and 14.0% of 
the VKT with 2000-SAV �eet size. On the other hand, the 
DDD system transports a relatively small amount of travel 
requests and reduces vehicle utilization that is the average 
number of served trips per day per vehicle. Based on the anal-
ysis of the proposed SAV systems, TVTS and PTS systems are 
a promising alternative to be implemented to satisfy the intra-
city transportation needs. In both systems, a SAV can serve 
many more trips per day with relatively less waiting time. ­e 
PTS systems with a relatively high percentage of choosing sta-
tion-to-station service show a high level of service that could 
transport many more requests with less waiting time and 
empty trips. Although the TVTS system could generate many 
more VKT and consume much more energy, this system still 
has a relatively small waiting time and fewer dropouts with 
providing doorstep convenience. In the future deployment of 
SAV systems, the station-based service combined with the 
door-to-door service parallely in time and space, is of impor-
tance, since blended service could make the system operate at 
a relatively high degree of service quality without the incon-
venient access.

the greatest reduction, reaching a peak of 23% in PTS-60% 
system; however, there is a large number of additional empty 
(unoccupied) trip in all SAV systems. DDS and TVTS system 
with dynamic ridesharing generate many more empty trips 
at around 40.5% of total served trips. ­e PTS systems with 
dynamic ridesharing generate relatively fewer empty trips than 
that of the TVTS system.

Simulation results in Figure 13 indicate the generation of 
empty trips with dynamic ridesharing is sensitive to the �eet 
size. As the �eet size increases, the percentage of empty trips 
experiences a downward trend. ­e percentage of empty in all 
SAV systems drops below 5% when the �eet size is 4500. In 
addition, it depicts that the SSS system, TVTS system, and 
PTS-80% system have low numbers of empty trips by SAV, 
compared with other systems.
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7. Model Limitations and Future Work

In this model, we did not take into account realistic traffic 
dynamics. A traffic flow model can be implemented in the 
model framework to capture the traffic dynamics. Moreover, 
we did not design the optimal ridesharing rules for travelers 
and limited the maximum number of grouped travelers to 
two. It is acceptable to use ultra-compact vehicles with 
designed two seats. �ese low capacity vehicles could keep 
travelers in privacy and comfort. We will study the forma-
tion of vehicle platooning between vehicles with low seat 
capacity in future research. �e small, ultra-compact vehi-
cles could operate together in a platooning fashion to 
improve traffic capacity and eventually save energy 
consumption.

�e fact that we use a synthetic network can introduce 
some limitations in the study however we also believe that by 
having created realistic trip requests and realistic vehicle 
movements the small network allows to compare well the dif-
ferent scenarios for the assumptions that were taken. �is is 
a first study of exploring many different possibilities of oper-
ating the system and in the continuation of this research, we 
will expand the size of the network to be analysed.
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