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Stellingen behorende bij het proefschrift
Focusing Grating Couplers for Integrated Optics

For a perfect focusing grating coupler, the optical path calculated from the
light source through a fixed point at a groove to the focus differs from that
calculated from the same light source through the corresponding point on
an adjacent groove to the focus by one wavelength.

Nils Abramson, “Principle of least wave change,” Journal of Opt. Soc. Am. A, Vol.6,
No.5, pp.627-629, (1989).

Misalignment of optical collimating system OSI will contribute coma to
the reconstructed beam. After minimizing the focal spot size in the ob-
servation plane containing the diffraction focus by adjusting the angle of
incidence between the collimated guided wave and the FGC, the coma
tail points away from the focus either along the propagation direction of
the incident wave or opposite to that, depending upon the tilt angle of
OSI. From this particular orientation, we can determine if system OS1 is
orientated correctly. For a Strehl intensity of 0.8, the tolerances of the tilt
angle are calculated as +0.1° (N.A.=0.6) and £0.2° (N.A.=0.3) for two
FGC’s with the waveguide parameters given in Table 3.1 in this thesis,
Chapter 3.

The residual wavefront error caused by system OSII as calculated at the
recording wavelength A, (see Fig.4.7 of this thesis, Chapter 4) will con-
tribute an aberration to the reconstructed beam at the wavelength of Ao
(Ao>As). The aberration is found to equal the residual wavefront error

multiplied by the wavelength ratio %‘i (not scaled down by the same factor
as mistakenly stated in Ref.[20]).

Consider an oblate spheroidal coordinate system formed by rotating a sys-
tem of mutually orthogonal ellipses and hyperbolas about the minor axis
of the ellipse. These coordinates can be useful to describe the propaga-
tion of a Gaussian beam because of the simplicity of modeling a contour
of constant amplitude in the beam as one sheet of a hyperboloid, being a
coordinate surface in the mentioned system. A family of ellipses confocal
with the amplitude hyperbola form the Gaussian beam wavefronts exactly.

B. Tehan Landesman and H.H. Barrett, “Gaussian amplitude functions that are exact
solutions to the scalar Helmholtz equation,” Journal of Opt. Soc. Am. A, Vol.5,
No.10, pp.1610-1619, (1988). B. Techan Landesman, “Geometrical representation of
the fundamental mode of a Gaussian beam in oblate spheroidal coordinates,” Journal
of Opt. Soc. Am A, Vol.6, No.1, pp.5-17, (1989).
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A diffractive optical element (DOE) has a very large chromatic aberration
as compared to a conventional lens. It has been difficult to use DOE’s
in high-precision optical systems that use a light source with a variable
wavelength (e.g. a diode laser). An achromatic optical system could be
made from two DOE’s similar to a conventional doublet which means that
FGC'’s could work with waveguide grating lenses to reduce the chromatic
aberration.

Masayuki Kato, Satoshi Maeda, Fumio Yamagishi, Hiroyuki Ikeda and Takefumi In-
ageki, “Wavelength independent grating lens system,” Applied Optics, Vol.28, NO 4,
pp.683-686, (1989).

An array of small periodic pillars (whose cross-section may be considered
as a two-dimensional doubly periodic grating) produced on an optical sur-
face can be used to reduce reflection from that surface. This is especially
important for infrared optical components made of high refractive index
materials, which may not be able to tolerate conventional coatings. The
layer with the pillar array structure is equivalent to a quarter-wave an-
tireflection coating, if the pillar height equals a quarter wavelength and
its periodicity is smaller than a chosen wavelength.

M.E. Motamedi, W.H. Southwell, and W.J. Gunning, “Antireflection surfaces in Silicon
using binary optics technology,” Applied Optics, Vol.31, No.22, pp.4371-4375, (1992).

A man should work until he succeeds. If he stops halfway and wastes all
his previous effort, it is usually because his will is not firm, not because
he lacks the strength.

A scientist’s willingness to retract his mistakes honestly and openly is
more important in establishing his scientific stature than a long list of
discoveries.

Richard Muller, “Nemesis, the story of a scientific revolution,” Guild Publishing Lon-
don, (1989).

A teacher can only point at the basic principles of an art, to perform won-
ders in that art the pupil himself must seek to understand the principles
with his heart.

A way of thinking based on stimulation of creativity and on generation of
ideas from imagination, is a reliable way to revive developments that have
got stuck.

Delft, oktober, 1992 Chieh-wen Wang
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Chapter 1

INTRODUCTION

1.1 The focusing grating coupler (FGC) and

its historical background

Optical components which are constructed as parts of integrated circuits will
improve the reproducibility, reduction of size, weight and cost, and can enhance
the application flexibility. Following the development of micro-fabrication tech-
nology, combination of components into an optical integrated circuit has be-
come possible. Gratings with periodicities comparable to one wavelength or
even smaller, whose operation is based upon diffraction, are widely used as pas-
sive components in applications related to optical telecommunication, optical
computers, optical data storage and optical sensors [1] for realizing deflectors,
wavelength filters, (de)multiplexers and mode converters. All those grating func-
tions can be classified, according to their dependence on optical wave coupling,
as either guided-wave to guided-wave coupling or guided-wave to radiation-wave
coupling. In this dissertation, only the latter is considered. The first grating
coupler with straight and periodic grating lines was produced by M.L. Dakss
in 1970 [2]. Grating couplers similar to prism couplers can either couple a col-

limated guided wave into a collimated radiation wave outside the waveguide



{output coupler) or vice versa (input coupler). Chirped grating couplers with
straight grating lines can be used to couple a beam out of a waveguide form-
ing a focused line parallel to the grating lines [3], acting simultaneously as a
wavefront converter and as an outcoupler. The period of such a chirped grating
decreases monotonically along the propagation direction of the guided wave. In
Ref. [3], chirped gratings were produced by recording the interference pattern of
a plane wave and a convergent cylindrical wave, with a focal line perpendicular
to the plane of incidence of both recording waves, at an Ar-ion laser wavelength
of 457.9nm. Reconstruction occurred at various wavelengths of the same laser.
The chirp rate of the grating was controlled by adjusting the angle between the
two recording waves. However, a sharp focused line cannot be obtained if the
wavelengths during recording and reconstruction are different. To form a sharp
focused line, aberrations caused by the wavelength shift must be compensated
by modifying the wavefronts of the recording beams. In the case that the focal
line of the cylindrical recording waves is rota,ted.over 90° with respect to the
previous case, the grating lines are equally spaced but curved. A cylindrical .
wave, whose focal line is located in the plane passing through the symmetry
axis of the grating line and normal to the planar waveguide, was coupled out of
the waveguide using a grating coupler of this kind [4].

Focusing grating couplers (FGC’s) are designed to focus a guided wave in an
integrated optical circuit onto a point above the waveguide. Often, an FGC has
a chirped as well as curved grating pattern to match the phase condition between
the guided wave and the focused spherical wave at the output [6]. M. Miler and
M. Skalsky produced the first published FGC using two cylindrical waves with
mutually perpendicular focal lines, lying in different planes [5]. D. Heitman
and C. Ortiz [8] produced FGC’s by recording the interference pattern of a
plane wave and a spherical wave at the wavelength 457.9nm. The photoresist
grating itself (without transferring the grating pattern into the dielectric layer

below the photoresist with the aid of etching techniques) directly served as a




output coupler for use at 632.8nm. Their results show that a focal spot width
of 2.2um for an FGC with a focal length 150pm and a grating diameter 100um
(N.A.=0.31) can be achieve. Another grating coupler [8] with a focal length of
Imm and a grating area of 0.5 x 0.6mm? (N.A.~0.24) had an aberrated spot
width of 25um and showed predominant coma and astigmatism. D. Heitman
and C. Ortiz suggested that FGC’s could be used for video disk pick-up heads
and for optical data storage systems.

An integrated-optical disk pickup device as described in [6] is constructed
by integrating an FGC, grating lenses, and photodiodes in a waveguide on an Si
substrate. A guided wave diverging from a butt-coupled laser diode is diffracted
by the FGC onto a spot on a optical disc and the wave reflected by the disc is
coupled into the waveguide by the same FGC. Twin Bragg type grating lenses
which serve as a 50% beam splitter diffract and focus part of the returning
light onto two detectors at either side of the laser. The focusing error signal
is obtained from the photocurrents of the detectors, using push-pull methods.
Electron beam writing has been employed to produce the FGC in that demon-
stration device. This FGC had a focal length of 2.0mm, aperture of 1.0x1.0mm?
and a 3-dB spot width of 3.5um at the wavelength of 790nm (6um at % of the
peak intensity).

1.2 Scope and organization of this disserta-
tion

We aim at a design of an FGC in which a guided diverging wave is outcoupled
as a spherical wave converging to a point above the waveguide. The incident
guided wave (collimated in the experiments) is generated by prism-incoupling
into the waveguide. The field distribution at the FGC and at the focal plane

are investigated theoretically. FGC’s are produced by holographic recording



and are etched into the waveguide surface by wet chemical etching. The design
of the optical systems, necessary to perform the holographical recording of the
required grating, has been deduced from theoretical considerations. The field
distribution around the focus of the diffracted beam is studied by recording the
intensity.

Chapter 2 presents a model including the vectorial treatment of the elec-
tromagnetic field, in order to calculate the field distributions at the FGC and
around the focal point for estimating the image quality.

Chapter 3 gives a comparison of the results of our model and those from
earlier theories. The field distributions at the FGC and around the focus are
calculated for several typical cases. The Strehl intensity at the diffraction focus
is used to calculate fabrication tolerances and tolerances of the grating align-
ment.

Chapter 4 describes the method to design a holographic setup for recording
FGC’s. Our holographic setup was designed to compensate for the aberration
caused by a wavelength shift between the recording and reconstruction pro-
cesses. The intensity distribution in the recording plane has been calculated to
evaluate the performance of our holographic setup. FGC’s are to be recorded
at the wavelength of 363.8nm for coupling a focused beam out of the waveguide
using an incident collimated wave with a wavelength of 632.8nm.

Chapter 5 presents the experimental work. Multilayer waveguides produced
on two-inch silicon substrate are used to make FGC’s on the waveguides. FGC’s
are etched into the waveguide surface by wet etching. From experimental results,
a focal spot size of 2.9um and a grating diameter of 1.3mm has been obtained.

Chapter 6 summarizes the main results and presents some suggestions for

future investigation.




Chapter 2

THEORETICAL
CONSIDERATIONS

2.1 Introduction

A main problem in analyzing FGC’s is to determine the focal spot quality.
Methods and criteria from geometrical optics are usually employed for this, in-
cluding an estimate of the wave aberration 7] or computation of the transverse
ray aberration [7, 8]. These methods, however, do not allow to calculate the
light intensity distribution around the focus. Such a calculation would be useful
to obtain a better estimate of the image quality. In Ref. [6], an FGC with
low numerical aperture (N.A.=0.24) was modeled assuming a uniform attenua-
tion coefficient across the grating and neglecting the coupling between TE and
TM waves. For an FGC with a high numerical aperture, the coupling between
TE and TM waves becomes significant and has to be taken into consideration.
Seligson [9] devised a method using a vectorial theory to calculate the diffraction
field components at the exit plane of an FGC, assuming a collimated incident
TE guided wave. In that paper Fourier transform was subsequently employed to

compute the field at the focal plane of the grating. The actual grating pattern



was treated as a single entity and the coupling between TE and TM waves was
taken into account. However, the attenuation of the guided wave was neglected
such that the corrugation depth of the grating remained undetermined. Nev-
ertheless, that method provides a simple way to estimate field distributions at
the FGC and at the focal plane.

We'll introduce a different model in which the design of FGC’s is similar to
Seligson’s, but using a more detailed analysis. Specifically, the actual complex
propagation constant of the incident guided wave is taken into consideration,
leading to the optimization of the corrugation depth. The complex propagation
constant of the incident guided wave will be calculated by dividing the FGC into
subgratings. In addition, the coupling between TE and TM waves is taken into
account. If the dimensions of each subgrating are small (about 30x30um?, for
an FGC with N.A.=0.6 and a focal length of 1mm), the local curvature may be
replaced by an average curvature and the chirp rate (usua.lly < 0.04%) can be
ignored. In the cases we consider, the average radius of the curvature is supposed
to be at least forty times larger than the dimensions of the subgrating such that
locally the grating can be replaced by a periodic and straight grating. Then,
the FGC may be regarded as an array of subgratings with different periods and
orientations. A previously published method of calculating the field distribution
at the FGC can be applied directly [10]. Subsequently, the modified Huygens-
Fresnel principle {17} will be employed to calculate the field distribution around
the focus. As will be seen, our model has the advantage that it can tackle cases
including aberrations caused by fabrication errors of the FGC, by a displacement

of the light source and by a wavelength shift of the light.

2.2 The grating pattern equation for the FGC

The planar dielectric waveguide, at which the FGC occurs, consists of a guiding

film with refractive index n; sandwiched between media with refractive indices




n. (cover) on top of it and n, (substrate) below. An FGC is formed by corru-

gating part of the cover/film interface as shown in Fig. 2.1. The corrugation

unperturbed
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Figure 2.1: Geometry of the planar dielectric waveguide with FGC-grooves,

having an arbitrary profile.

depth t, is assumed to be small as compared to the wavelength of the incident
wave and to the average film thickness t;. Outside the grating area, the film
thickness equals ¢; + %g. The FGC covers a rectangular area in the yz-plane,
the origin O of our Cartesian coordinate system lies in the center of the grating.
We’ll use the diffracted field in the plane z = 0 (located at half-height of the
corrugation) as the starting value of our calculations around the focal spot; for
that reason the plane z = 0 will be indicated as the ezit plane of the grating.
The rectangular outline of the grating has sides parallel to the y- and z-axes;
the linear dimensions of the FGC in those directions are L, and L, (see Fig.2.2).
The grating lines are symmetrical around the plane y = 0. Let 7,7 and k be the
unit vectors in the directions of the coordinate axes. The unperturbed planar
guide with its cover/film boundary at the plane z =0 has the refractive index

profile

n, (z > 0),

n(z) =4 ny (—t; <z <0), (2.1)
N (z £ —tj).
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Figure 2.2: Configuration of the FGC.

We suppose that a line source along the z-direction, passing through the
point U(0,0, — Ry), emanates a diverging guided TE wave towards the grating.
The distance Ry is assumed to be much larger than the dimensions of the
FGC. The electric field vector of the incident wave in the unperturbed guide is
approximately characterized by [11]

E(z,y,2) = const.\/}lme"q""’E(m) (% x ;> ) (2.2)

and

Z (&) + (K - B)B(=) =0, (2.3

in which Ryq is the distance between the point U and an arbitrary point
Q(0,yq, zo) of the exit plane, ,Eo has the direction of lm Bo is the propa-
gation constant of the guided wave in the unperturbed planar guide. As an
initial approximation, the small complex correction in the actual propagation
constant of the guided wave inside the grating area is ignored, these corrections
will be reconsidered in the next subsection. ®;, is the phase difference of the

guided wave at Q relative to the phase at O, and equals

9. = Bo(Rug — Ru). (2.4)




If the distance Ry tends to infinity, the light beam becomes collimated. In that
case, Eq.(2.4) must be replaced by

¢|'n = ,BOZ- (2.5)

Since a step discontinuity exists between the unperturbed guide and the guide
outside the FGC (see Fig. 2.1), the incident wave excites new waves at the
FGC’s outline. These consist of guided and radiated waves with TE- and TM-
polarizations whose amplitudes are proportional to the corrugation depth {12].
In the following calculations, the corrugation depth is assumed small enough to
neglect both those secondary waves and the phase step occurring in the incident
wave because of the step discontinuity. This phase step will be reconsidered in
Sec. 2.3. Our model can be readily extended to the case of a diverging guided
TM mode as the incident wave. For that case, an expression for the wave
function similar to Eq.(2.2) can be found (see Ref. [11]).

We aim at a design in which a uniform spherical wave, converging to a point
Fo(focos(7e),0, fosin(7o)) as shown in Fig.2.2 , is diffracted from the grating.
The electric field vector E, of this spherical wave at Q has the amplitude

const.
—e

Es(oastZQ) = Rrq
0

where Ry, q is the distance between Fg and Q, fo is the focal length of the FGC.

-—incko(RFog—fo), (2.6)

The minus sign in front of the exponent of Eq.(2.6) indicates that the wave is
convergent towards Fg.

The required grating pattern is determined from the phase difference ¢ be-
tween the diverging guided wave and the required spherical wave converging to

the point Fg. From Eqs.(2.4) and (2.6), ® equals
o= nekO(RUQ - Rv) + nckO(RFOQ - f0)7 (2-7)

where n, = % is the effective refractive index. If Ry tends to infinity, Eq.(2.7) is
0

replaced by

® = n.koz + ncko(Rryq — fo)- (2.8)



The m-th grating line can be calculated from the grating pattern equation
& =2m~x. In reality, an FGC always causes some aberration in the spherical
wave due to fabrication errors, such that a phase deviation ®,,(y, 2) must be
introduced here to describe this phenomena. Then the phase difference is mod-

ified into

' =0+ dro. (2.9)

2.3 Off-axis image formation and wavefront

aberration

Although a nearly aberration-free FGC pattern can be designed and produced
(according to Eq.(2.7)), deviations in the configuration outside the grating will
degrade the focal spot quality. Therefore, it is necessary to estimate the limits

of the allowable imperfections. Several causes affecting the image quality are:
e A wavelength shift in the incident wave: e.g. from A to X.

o Effective refractive index changes: The effective refractive index of the
unperturbed guide may change from n. to 2. due to the wavelength shift
and to changes in the waveguide parameters, such as the refractive indices
of the media (change to n;,n’;,n;) and the average film thickness (change
to 7). This causes a change from o to § in the propagation constant of

the unperturbed guide.

o The light source displacement: During the system alignment, the position
of the light source may be shifted slightly from the designed position.
Suppose then an off-axis line source along the z-direction passing through
the point U(0, — Rysin(0), — Rycos(8)), as shown in Fig. 2.3. Here, Ry is

the distance between the point U and the origin.

10
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Figure 2.3: Image formation of using an off-axis diverging guided wave.

In this section and in Sec.3.7, the wavefront aberration and the tolerances related
to these deviations will be discussed.

The phase difference @}, of the incident guided wave between the points Q
and O consists of three contributions. The first is simply due to the difference
of two distances between each of those points and the source, if the whole path
had the effective refractive index 7, of the unperturbed guide. The second
contribution ®, accounts for the fact that between the source and the FGC’s
outline the actual refractive index is n!, instead of fie. Then, the third term @,
accounts for the fact that, in the FGC-region, the actual effective index differs
from 71, because £ is changed into 8+ 63(Q) by the presence of the grating. We
write (see Eq.(2.4))

i, = B(Rog — Ro) + @5 + 2,.(68), (2.10)

where 8 = fi.k’. Usually, the magnitude of §3 is four orders less than that of
B. The quantity ®, is calculated from the difference in the distances measured
from U to the intersections of the two rays l~/_(§ and (7_(5 with the front of the
FGC at z = —L,, multiplied by the difference of the propagation constant of
the guided wave nlk’ outside the grating and that of the unperturbed guide 3

11



inside. We obtain

®,=(n, - ﬁe)k’(%’ - Rgcosw»{\/ 1+ (”°°;’j(ﬁ)R;f;§§'§w))z

Rpsin(0)\?
1+ (Rl-,cos(o) . (2.11)
If Ry tends to infinity, &, = (n, — fi.)k'[yotan(8) — z]cos(0) and the first term

at the right-hand side of Eq.(2.10) is replaced by 8z cos(6). The last term in
Eq.(2.10) will be calculated in Sec. 2.4.

If deviations of the configuration outside the FGC or fabrication errors of the
FGC occur, the diffracted wave is aberrated and is no longer focused onto Fyp.
By introducing a new reference sphere with its center at the point of reference
F (which is determined by minimizing the wavefront aberration [13]), the field

distribution of the wave at Q is given by
E;(Q) — E’V’qS(Q)e{—t’nék’(qu—f)+in’ck’W}’ (212)

where E-:‘Q is the complex amplitude vector which will be discussed in the next
subsection. The pupil function S vanishes if Q is outside the grating and equals
unity within. f is the distance between F and O; Ryq is the distance between
F and Q. By comparing the actual wavefront and the reference sphere, the

wavefront aberration W can be obtained. The exponent in Eq.(2.12) is equal to
—in k' (Rpq — f) + inlE'W = —i(&' — ®.). (2.13)

The wavefront aberration has been calculated as [13]

!
c

B, D D4r(68)

) n, e
W = constant — ,u{n—fRUQ + n—cRFOQ} + {;,—qu + Rrq}

2.1
nlk! = nlk! nlk! ' (2.14)
. ko
where i = i the constant term equals
~ e ne ﬁe
”(n_;R”Jrn_;f") - (n—,cRo+f)- (2.15)

12




Let the point Q be determined by the position vector R‘oq, pointing from O to

Zq 0
ROQ: Yo | = | resin(fq) | » (2.16)
2q rqcos(fs)

where rq is the distance between the point Q and the origin O, 8, is the angle
between Roq and the unit vector k.
Using the binomial expansion of Rpg(D is either U, U, Fo, or F), the wave-

front deviation W can be written as

W=—q>PD+ 2 q>g,(5/3 ]{p[—au+ ] [’Z—Za,—,+ap]}
|

n::kl I kl I kl

__:;_ nel—a?,+&1—ao El“ao 1-—a?
s il Ry T n. Ry 7
3 Nea —a na—a fie @ — af a—a3
Q )~ e U |: Fy e F
—— — 2.1
i m e e

in which ap follows from
ap = mpsin(8y) 4+ npcos(8g) (D =U,U, Fy, F), (2.18)

where mp and n, are two components of the unit vector (I, mp,n,) along
Rop. The terms of order ré and higher are combined to the term W,. Here,
the constant term mentioned in Eq.(2.14) is exactly cancelled. The first term
at the right-hand side of Eq.(2.17) may be represented by Zernike polynomials
[14]:

o { neko Sio Licy Aubh(ro)sin(lfe)  (1>0) .19

neko 1 0 AuBL(ro)eos(lfe) (1 < 0),
where N is the degree of the polynomial. According to Eq.(2.11), ®, con-
tributes a small tilt to the wavefront aberration if the light source is far away

from the grating, but appears to describe astigmatism when the light source

13




moves closer to the grating. This astigmatism term is approximately propor-
tional to (rqsin(fy))? and its magnitude is usually less than -5—(; The third term
in Eq.(2.17) also causes aberration in the final image of the FGC. Fortunately,
it will appear to describe a uniform tilt only. After using the displacement theo-
rem concerning a change of the reference sphere [15] to minimize this aberration,
the remaining wavefront aberration is usually less than 5—(; The displacement
of the center of the reference sphere is in the order of 0.1um in practical cases.
The point of reference is chosen by minimizing the wavefront deviation while ne-
glecting the second and third terms in Eq.(2.17) . The off-axis image formation
is characterized by [13]

m m mp — A fie | ™Mo
N R B R P “Ze T, (2.20)
np e | ny Re | ng — A1 e | ng
1 1 e (14+2) n. ((148B) e (14 12)
Frm Pl ()| R e

Eq.(2.20) has been obtained by equalizing the coefficient of the first order term
in rq to zero, and specifies the direction of OF. If, at the right-hand side of
Eq.(2.21) , the terms of order r§ and higher are neglected, it appears that
the only contributions independent of §, arise from the second-order terms.
Minimizing the aberrations means that the sum of these terms must vanish.
From Eq.(2.21) follows the length f of OF. Now the position of F has been
specified, the remaining wavefront aberration can be calculated according to

Eq.(2.14) without further approximation.

2.4 The field distribution of the focused wave
in the exit plane

To calculate the field distribution of the focused wave, the FGC is divided into

subgratings by covering it with a network consisting of (J+1) radial lines and

14




(K+1) circular arcs around the point U (note that in Eq.(2.12) the actual
rectangular shape of the FGC is ascertained through the pupil function S).
The radial lines are separated by equal angles (dy) between subsequent lines,
whereas the circular arcs shows equal increments (dr) in their radii of curvature
(see Fig. 2.4a). Subsequent lines and arcs form meshes; we assume that their
total numbers in the radial and tangential directions, J and K, to be even such
that a distinct central point O (the origin of our coordinate system) occurs at
the intersection of j = % +1, k= 3 + 1. The network has nodes which are
the intersections of the radial lines and the circular arcs. Around an arbitrary

node @i a corresponding subgrating Gji exists as shown in Fig. 2.4b. That

subgrating is delimited by lines at a distance from the k-th arc of :i:% in the

- dy . .
r-direction and under an angle around the j-th line of +52 in the @-direction.

2

The purpose of constructing this network in the exit plane is to determine the
field amplitude A(j,k) and the power P(j,k) per unit length in the -direction,
carried by the incident guided wave at the node Q. In this dissertation, the
amplitude distribution over the wavefront of the incident guided wave before
entering the FGC is assumed to be uniform. Along a radial line, the fields at
the nodes are calculated node after node, following the sequence of subgratings
to increasing values of k. During the calculation, the diverging guided wave in-
cident upon the nearly rectangular subgratings is locally regarded as collimated,
supposing that the distance between the light source and the center of the FGC

is much larger than the dimensions of the mesh.

As we explained in the Sec. 2.1, the subgrating can be approximated by a
periodic and straight grating. The method from Ref. [10] is used to analyze
grating couplers for waves at oblique incidence (i.e. the propagation direction
of the incident guided wave and the grating vector are not parallel). In that
paper, the profile function of a periodically corrugated surface of the waveguide

could be expressed as a superposition of all possible harmonics such that the
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Figure 2.4: (a) Meshes composed of radial lines and circular arcs corresponding

to a diverging guided wave, (b) the configuration of the subgrating Gi.
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field in the grating could be expressed by Floquet waves [16]; the equivalent
boundary conditions were derived subsequently. In the case of oblique incidence,
the incident guided TE-wave can couple to Floquet waves of TE-polarization as
well as with Floquet TM-waves. However, the fields in each subgrating classified
into TE- and TM-polarizations with respect to the local grating vector, must
be transformed back to the global coordinates (z,y,z). After the equivalent
boundary conditions are applied at each interface of the waveguide, the complex
amplitude vectors of the Floquet waves and the quantity 3 can be obtained.
Therefore, the complex amplitude of the diverging guided wave along a radial

line can be calculated by the amplitude transport equation:

A(, k)= Re A, k—1)edlsamnsescmnin (519 | J: k=12,...,K),(2.22)

where A(j,%) is the amplitude at Qjz, Rr = 1/%, r being the radius of
k

the k-th circular arc. For a collimated guided wave, R, = 1. In Eq.(2.12),
the complex amplitude vector EQ at Qjk is equal to the sum of the complex
amplitude vectors of the corresponding Floquet TE- and TM-waves multiplied
by A(j,k). Furthermore, EQ is linearly proportional to the corrugation depth
[10). Let 68 = & +ia; & is related to the phase correction ®,, and « is the

attenuation coefficient. Eq.(2.22) can be split into two real equations

PU,E) = (R PG = 1)emeseeone, (2.23)
. " k=1
$.K) = { SOLRLULIS S n(j,m)} @ (224)

where P(j, k) =| A(j, k) |*, ¢ is the phase increment due to the contribution of
k. From Eq.(2.10) , the difference of the phase increment at @ ;; relative to that

at O is derived as

8, =4, - (3 +15+1). (229)
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2.5 The field distribution around the focus

Once the field at each node is known, the field distribution around the focus can
be obtained from a modified Huygens-Fresnel principle which operates with sec-
ondary plane waves, rather than with secondary spherical waves. A coordinate
system (¢, 7, () with its origin at the point of reference F is introduced as shown
in Fig. 2.3, the n-axis parallel to the y-axis and the positive {-direction parallel
to the z-axis pointing away from the exit plane. An observation plane is chosen
parallel to the exit plane, intersecting OF at a point T which not necessary
coincides with F, but lies nearby. The field E,, with components (E¢, E,, E;) at

a point P (ép,np,{p) in the observation plane follows from [17]
o .k, = oo in'k' in' k'35
Erltranri(r) = =iz [ [ ReeBla(@IS(Qem¥™ entkoran, (2.6
Q

where G denotes the unit vector with components o, o,, o, which are the
direction cosines of Q_F' g is the position vector of P, € is the solid angle

subtended by all o-vectors.
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Chapter 3

COMPUTATION RESULTS

3.1 Computational setup

Fig. 3.1 shows the flow chart of our computational setup based upon the model
given in the previous sections. In our program, the change 63 is calculated
node after node, then the field components and powers of the guided and the
diffracted waves can be calculated. The power conservation is checked at each
node by judging if the power decrement of the guided wave passing through
the subgrating is equal to the power carried away by the diffracted waves. The
former is calculated from «, the latter is calculated from the Poynting vectors
of the diffracted waves. After the field components at all nodes have been
calculated, the diffraction field in an observation plane around the point of
reference can be calculated. By shifting the observation plane and with the aid
of optimization, the diffraction focus F' (which is determined as the point where
the maximum intensity occurs) can be determined uniquely if the wavefront
aberration is small. In Sec. 3.4, it will be seen that the electric field E, in the
direction of the 7-axis carries more than 88% of the electric field energy of the
focused wave. Hence, for the determination of the diffraction focus only E, is

taken into consideration. Actually, E, shows a single main peak only; more
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Figure 3.1: Flow chart of our computational setup.
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(but much lower) peaks occur for the two other electric field components which
cause a slightly broadening of the focal spot. In the presence of aberrations,
the condition that the root-mean-square departure (RMSD) of the wavefront
[15, 7] may not exceed li:i can be used as a criterion for roughly judging the
quality of the focal spot. A more accurate criterion is based upon the Strehl
intensity i(F') [15] which is a ratio of intensity at the diffraction focus in the
presence of aberrations relative to that in the absence of aberrations. Following
the conventional criterion [15], an FGC-system is considered to be well corrected
if i(F’) > 0.8. In Sec. 3.7, these two criteria will be compared in the evaluation
of the tolerances of the FGC configuration. The coupling efficiency 7° is defined
as the power of the focused wave divided by the power of the incident guided
wave. We define the focal spot diameter as the average of the sizes in the 5- and
(-directions of the region where the intensity drops to 215 of the peak intensity.
The focal spot diameter and the coupling efficiency 7° are used to optimize the

corrugation depth of the grating.

3.2 Comparison with earlier theories

In Ref. [9], Seligson provides a method to evaluate the field distributions in the
exit plane and in an observation plane. His method is limited to the case that
the incident guided wave is collimated, and neglects the quantity §3. Setting
68 = 0in Eq.(2.22), no attenuation of the incident guided wave inside the grating
and no phase correction to the guided wave are taken into account. Besides,
inaccuracies occur in that paper due to an inappropriate choice of the position
of the exit plane and of the origin of the coordinate system. Here, we carry
out the necessary corrections and compare the results. These corrections can be
presented in two ways, as described below. Seligson’s exit plane is defined as the
film/substrate interface (see Fig. 2.1), located in the plane =0 of a Cartesian

coordinate system with its origin at the center of the FGC. The distance from
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the plane =0 to the plane at half-height of the corrugation (z=h} was defined
as the film thickness. Outside the grating area the film thickness equals h,
which is different from our thickness 5 + %‘q. Some notations used in that
paper are adopted here for convenient comparison. The entire grating pattern
(see Eq.(A2) in Ref. [9]), which was designed to occur around the plane x=0,
has been shifted in the positive z-direction to the plane z = h. In addition,
Eq.(A10) of Ref. [9] contains an inaccuracy. The diffracted field expressed in
terms of the vector potential f-f,(a:,y, z) in the cover is only valid in the region
x > h, such that the vector potential in the exit plane (z=0) cannot be written
as A,(O,y,z). If the grating pattern is shifted as mentioned above, the vector

potential of the focused wave in the plane z=%k can be obtained by using the

method of the stationary phase, yielding

A‘I(ha Y, 2) =

=g U (g, g:)e™09eh e HoRw2) (3.1)

i
where 7= -i’-, R, is the perpendicular distance from the focal point Fg in the
design to the plane 2 = 0. R(y,z) is the distance between Fg and a point
Q in the plane z =0. (g, ¢y,q.) specify the wave vector pointing from Q to

Fo, where g. is the transverse propagation constant in the cover. The factor
R"‘ eiko']ch
(Rz - h)

that the argument of the y-component of the function U exp(tkog.h) is almost

in Eq.(3.1) is our correction to Seligson’s result. We will show

constant across the FGC; then Eq.(3.1) entails that the focused wave will con-
verge to a point which is shifted in the positive z-direction by a distance h
relative to the point Fg. Furthermore, the amplitude of the wave is now multi-

plied by a factor —————. Seligson noticed such a defocusing effect caused by

R,
(R.— k)’
a nearly paraboloidal wavefront across the FGC but did not calculate the exact
defocusing.

Another way of correction is to redefine the exit plane and the origin of the
coordinate system just as we did in Section 2.2. The grating pattern is designed

at the exit plane and no shift occurs. By rewriting the field expressions in
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Ref. [9] corresponding to these changes, one can prove that the final result of

the vector potential in the exit plane is obtained as
A‘I(Oa Y,2) = ﬁl-j(qy, qz)eikoque—‘kOR(y’z)' (3.2)

This results corresponds to a diffracted field with a different amplitude and a

different focus than that described by (3.1). The electric field can be obtained

o LA i} R
from the vector potential with the relation E,=——1=iwA,, yielding

ot
Ei(0,y, 2) = iwijll(gy, g:)e™rehe R, (3.3)

Now, we compare the results concerning the field distribution of the diffracted
wave in the exit plane between our and Seligson’s calculations, as given in
Eqgs.(2.12) and (3.3), respectively. The comparison has to be achieved under the
condition §3=0 and in the absence of configuration deviations inside or outside
the FGC. In fact, the field of the focused wave obtained under these conditions
is exactly the resultant field of the corresponding Floquet TE- and TM-waves.
To compare Eqs.(2.12) and (3.3), we disregard the equal exponential factors
containing the distance from Q to Fy , as well as the pupil function. Then,
introducing &, with the components (€4, €5y, €s:) as the remaining parts of the

complex electric field strengths, we have

-

€ = Eq {from Eq.(2.12)}, (3.4)
= —iwl(qy, g:)e*o%h {from Fq.(3.3)}. (3.5)

The example given in Ref. [9] is chosen as the example (see Table 3.1) for

—
comparison of the numerical results. The direction cosines of OF are chosen as

(1,0,0).

Table 3.1: waveguide parameters for the example

f | N.A. | grating aperture A s ne | ng | n, Te
Ilmm | 0.6 1.5 x 1.5mm? | 632.8nm | 0.9um | 1.0 | 1.56 | 1.47 | 1.537
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The results of calculating €, are presented in Figs3.2-3.4, in which Seligson’s
and our results are shown by lines and symbols, respectively. These results ap-
pear to be identical. However, our method allows including a non-vanishing 63
such that the optimized corrugation depth of the grating can be determined.
Fig.3.2 shows the modulus and argument of e,, along the z-axis. Due to normal
incidence of the guided wave on the grating, the focused diffracted electric field
components in the z- and z-directions vanish at the z-axis. The modulus of
e,y decreases from the edges at the z-axis toward the center of the grating and
toward the edges at the y-axis as shown in Figs. 3.2 and 3.3. At the y-axis, no
electric field exists in the z-direction (because the guided wave couples to radi-
ated waves with a different (TM-) polarization with respect to the local grating
vector) [10, 18]. Away from the y- and z-axes, all electric field components in
the -, y- and z-directions have non-vanishing values. Fig.3.4 shows the moduli
and arguments of the components of €, at y = 750um. The modulus of e,,
increases toward the corners of the FGC and has maximum values at z+y = 0.
Since the grating pattern is symmetric with respect to the z-axis, all moduli of
the components of €; are symmetric with respect to that axis. The arguments of
the components of €; are almost constant across the FGC except for the jumps
of 7 in e, at the z-axis and in e,, at the y- and z-axes (only point symmetry
at the origin O). Those arguments (especially that of e,,) are quite important
for designing FGC’s, extra aberrations may occur if those arguments are not
constant. In Seligson’s method, the actual grating was treated as a single entity,
but in our model the grating is divided into subgratings. We have shown that in
this case our the numerical results are identical with Seligson’s, which indicates

that these approximations are acceptable.
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3.3 Field distribution in the exit plane

In our computation §3 will be obtained from the formulas in Ref. [10). It can
be proven that the formulas for calculating the amplitudes of the Floquet waves
and 68 in Ref. [18] are equivalent to those obtained in Ref. [10]. The quantity
8 is proportional to 2 [10, 18]. We define the normalized parameters o' and
k' from §B=x + ia as

a , K

!
= — fc:——-—~’
X3 X |2

o (3.6)
where o’ and &' are dimensionless and independent of the corrugation depth.
The values of o’ and &' along the y- and z-axes are shown in Fig. 3.5. If 63
is taken into account, the precision of the field calculations in the exit plane
and around the focus depends upon the numbers J and K. If they both exceed
40, the inaccuracy in the calculated field becomes insignificant (less than 0.5%).
From now on, J and K are chosen as 50. Taking the corrugation depth as 60nm
for the example given in Table 3.1, the statistical attenuation coefficient o, as
calculated from the values at the nodes equals 20.9+1.4(dB/cm). The coupling
efficiency is then 0.3. The moduli of the normalized complex amplitudes of the
focused wave are shown for each field component in Fig. 3.6 (a)-(c). Because
of the attenuation of the guided wave, the moduli have no symmetry around
the plane z=0 but are symmetrical with respect to the plane y=0. The last
two terms at the right-hand side of Eq.(2.10) contributes some aberration to
the wavefront, the wavefront deviation in the exit plane appears to describe tilt

only, as can be seen from the argument of E,, shown in Fig. 3.6 (d).

3.4 Field distribution around the focus

Here, the field distribution in the observation plane, which contains the diffrac-

tion focus, will be calculated. By minimizing the wavefront aberration and
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maximizing the focused intensity, we have computed that the point of reference
and the diffraction focus occur at (1mm,0,0) and (1mm,0,—0.22um) in the
z,y,z-coordinate system, respectively. The wavefront aberration is a tilt (see
Fig. 3.6 (d)), which causes the diffraction focus to be displaced over the (ex-
perimentally seen insignificant) distance of 0.22um in the negative z-direction
with respect to the point of reference. Fig.3.7 shows the intensity distributions
(normalized to the peak intensity of the n-component I,v) for the three field

components in the plane £ =0. E, carries 88.4% of the electric field energy
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Figure 3.7: Intensity patterns for three electric field components (a) E, (b) E,
and (c) E¢.
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of the focused wave; E¢ transports 0.78% of the energy and shows four peaks,
while E¢ carries the remaining energy and shows two peaks. Those peaks can
also be found in the field behind a spherical aplanatic lens [19], but there is
some distinction between the FGC and such a lens. Behind the FGC, the in-
tensity for E, is a few per cent lower than that for the lens. In addition, the
maximum intensity of the first side lobe behind the FGC is about five times
as large as that behind the lens. This means that using the FGC more inten-
sity is diffracted away from the central peak, such that the field distribution
is broadened. These effects become more serious when the numerical aperture
increases. In the (-direction, the side lobe nearest to the peak at the side of
the light source is higher than the corresponding one at the other side. The
intensities of the {- and (-components vanish at the (-axis due to the fact that
the z- and z-components of the electric fields E!, and E., in the exit plane are
oddiny: E; (0, -y, 2)=—E!..(0,y, z) and E_(0, —y, 2)=—E. (0, y, 2). The focal
spot diameter has been calculated as 0.76um. In that spot, E, carries 19.4% of

the input electric field energy of the incident guided wave.

3.5 The influence of the corrugation depth

The field amplitudes of the focused wave is proportional to the corrugation
depth t,, and the attenuation coefficient of the guided wave is proportional to
t2. To obtain a high coupling efficiency, t, should be chosen as large as possible.
If the corrugation is chosen too large, however, the main peak of the diffraction
field is broadened in the (-direction because the effective aperture of the FGC
becomes smaller. Table 3.2 shows for the values t,=68nm, 80nm and 90nm,
the results for n° for the average remaining power in the guided wave after
passing through the FGC and for the ratio of the focal spot widths in the (-
and 5-directions at -61—2 of the maximum intensity. In order to prevent the focal

spot from broadening and to realize high coupling efficiency, we propose to
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Table 3.2: The broadening effect of the focal spot as {; increases

ty n°® | average remaining power | ratio of the spot widths
of the guided wave
68nm | 0.333 16.0% 1.045
80nm | 0.362 7.7% 1.10
90nm | 0.376 3.5% 1.21

optimize in future designs the corrugation depth until the average power of the

. 1 .. .
guided wave decays to — of input power after the wave passing the FGC.
e

3.6 The diffraction image in the presence of

aberrations

Supposing the collimated guided wave to be obliquely incident upon the FGC
under an angle of § = 0.058°, the wavefront contains a combination of various
aberrations among which coma is predominant. The point of reference and the
diffraction focus occur at (1mm, 1.6um,0) and (1mm, 0.22um, —0.21um) in the
z,y,z-coordinate system, respectively. The RMSD equals 0.22)'. The intensity
distribution of E,, in the plane of {=0 is shown in Fig.3.8. The Strehl intensity
at the diffraction focus equals 0.8, such that the system can still be regarded as
well-corrected.

In the following case, a diverging incident wave is incident upon a FGC which
has the same parameters as in the previous example, except that the FGC is de-
signed for this incident wave. A line source along the z-direction passing through
U is supposed to be locate at (0,0,15mm) in the z,y,z-coordinate system. This
FGC has almost the same focusing characteristics as the FGC for the collimated
incident wave, with practically the same °, focal spot diameter and field distri-

bution. In this example, the allowable limit for the light source shift along the
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Figure 3.8: Intensity pattern for E, if §=0.058°.

negative z-axis is calculated as 125um, while #(F')=0.8. Under this condition,
the point of reference and the diffraction focus occur at (999.6um,0,0) and
(999.6pm, 0, —0.2um), respectively. The RMSD is calculated as 0.08). The
intensity distribution for E, is shown in Fig.3.9. Astigmatism predominates in

this case.

These two examples indicate that the quality of FGC's imaging is very sen-
sitive to the incident wave configuration. For FGC’s, coma and astigmatism are

essential and considerable aberrations.
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Figure 3.9: Intensity pattern for E, if the diverging incident source is shifted

over 125um along the negative 2-axis.
3.7 Tolerances for the FGC structure

Calculating allowable limits for each kind of deviation as introduced in Sec. 2.3
by imposing i(F')=0.8, provides information concerning the tolerances of an
FGC related to these deviations. These tolerances are crucial and predict ac-
curacy requirements of equipment for production and measurement of FGC'’s.
The FGC’s tolerances for the example of the diverging incident wave discussed

in the previous subsection are given in Table 3.3.
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Table 3.3: The parameter values for the example of the diverging incident wave,

calculated for a Strehl intensity of 0.8

parameters | tolerances | RMSD (X’) | focal spot diameter (um) (ﬁen;ne
0 0.053° 0.20 0.78 0e

t,—t; | 38.6nm 0.20 0.77 9.2x10~*

A=A 5.54 0.19 0.80 —2.0x10"°
Ry — R, | 125um 0.08 0.86 0

!
The criterion RMSD < % =~ 0.07)\" would be less sever than the values in

Table 3.3; but that criterion is inappropriate because it was obtained under the

assumption that the field amplitudes are uniform across the exit plane {15].
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Chapter 4

HOLOGRAPHICAL SETUP
FOR RECORDING FGC’S

4.1 Basic setup

Electron beam techniques have been used to produce FGC’s with near diffraction-
limited performance [6]. However, it is difficult to make gratings larger than
a few millimeters with existing e-beam equipment, because of stability prob-
lems [20]. Besides, it takes about 30 minutes to write a single FGC-pattern of
2 x 2mm? while using e-beam writing [6]. Obviously, this throughput will be too
low for future mass production. To overcome this drawback of e-beam writing,
holographic techniques are chosen to produce FGC’s. In general, the photore-
sist used to produce gratings with a periodicity around 0.25pm by holographic
techniques is only sensitive for wavelengths ranging from blue to far ultraviolet,
whereas the applications for communication demand the use of red or infared
light. This makes it possible to use gratings in photoresist instead of gratings
etched in the waveguide material. Our light source for recording holograms is
an argon-ion laser (Spectra-Physics; model 2020-05) with the maximum out-

put power of 400mW. The laser oscillates at a line within a narrow range of
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wavelengths around 363.8nm, selected with the aid of a prism in the cavity.
From the frequency distribution (full width at half maximum) of 6GHz given
in the operation manual of the argon laser, the linewidth is calculated to be
0.00265nm. The optical cavity length of the laser is 1.1m. From the resonance
condition v,, = ;n_Lc for a standing wave within the optical cavity, where v, is
the frequency, ¢ the speed of the light, L the optical cavity length, and m the
(integer) mode number, the spacing of the longitudinal modes is 136.1MHz. The
FGC is recorded onto a chip which has been covered with photoresist, placed
vertically in the setup of Fig. 4.1. The laser light is linearly polarized with the
electric field in the vertical direction. The coherence length is about 50mm. The
beam diameter is 1.05mm at the exit pupil of the laser. The beam divergence is
0.53mrad (full angle). A He-Ne laser working at a wavelength of 632.8nm has
been chosen as the reconstruction light source for demonstrating the operation

of our FGC’s.

&&é \ beam splitter %

%

JoLIw

oS1

Jase] uol uodIy

k4

recordin_g plate

Figure 4.1: A schematic setup for making FGC’s by holography.
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4.2 The design method

Recording an FGC at one wavelength and reconstruction at another results in
aberrations in the reconstructed beam which must be compensated either in the
recording or in the reconstruction process. Similar aberration compensations,
for a wavelength shift at reconstruction, have been described for the production
of holographic optical elements (HOE’s); [21, 22] describe the correction in the
recording phase, [23] during reconstruction. In principle, the methods to design
an optical system for producing a HOE can be applied directly to design the
optics for making FGC’s. The optical systems for recording (OSI and OSII in
Fig. 4.1) may be composed of conventional objectives, HOE’s or combinations
of both. A method for designing an optical system consisting entirely of HOE’s
has been proposed [24]. Using HOE’s has the advantage of low material costs,
while their easy reproduction allows for a cheap duplication of the recording
system. To produce those HOE’s, however, other HOE’s are required such that
a sequence of subsequent recordings becomes needed; the intermediate steps are
likely to introduce new aberrations by misalignment, which cannot easily be
compensated for. That makes this design technique very difficult to use. For
this reason, we propose a system of conventional lenses for the optical recording
system. We restrict the discussion to an interference configuration in which one
branch contains a collimating optical system (OSI in Fig. 4.1), while the other
system (OSII) is designed such that the interference pattern at the recording
plate has exactly the shape of the the required FGC-lines. Actually, the period
and curvature of those lines now is determined by both the angle ¥ between the
branches and the divergence of the beam coming from OSII. In addition, this
system has to be designed such that aberrations from a wavelength shift during
reconstruction are compensated. From grating theory, the phase difference ®
(as seen in Eq.(2.8) ) between the guided wave and the required focused wave

diffraced by the FGC, determining the required grating pattern, equals the
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phase difference & in the interference pattern during recording. This latter
phase difference results from the plane wave from OST and the wave from OS II.
Then, the wavefront shape of the beam coming from OS II can be calculated; as
performed in detail later in this section. If the phase of the reconstructed wave
equals that of the collimated wave of Fig. 4.2, the wavefront aberration of the
beam coming from OSII turns out to be spherical aberration only such that a

rotationally symmetric system can be used to generate it. In the sequel, we’ll

X

aberrated spherical
wave

reconstructed focused collimated wave
beam

Photoresist \
Planar waveguide ¥y
Substrate

Figure 4.2: A schematic setup for making FGC’s by holography using a colli-

mated wave with an aberrated spherical wave.

often concentrate on the case that the guided wave is collimated. This means
no loss of generality, since a guided wave beam which is originally diverging or
converging can be collimated with the aid of an integrated waveguide grating
lens [25, 26, 27], waveguide Fresnel lenses [28] or waveguide refracting lenses
[29, 30].

Actually, a design method useful for OSIl-like systems, using ray optics,
was first published in Ref. [22] for the purpose of producing HOE’s. In another
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publication [20], an equivalent but somewhat different method, starting from
the phase matching between ® and ®, led to more complicated calculations
than Ref. [22] which, however, allows wider applications if at reconstruction the
diffracted wave has to be astigmatic. In this section, the method of Ref. [20]
will be extended for a diverging guided wave incident upon a FGC (without
introducing the collimating components mentioned before). To cope with this
divergence, the collimated wave from OSI in Fig. 4.1 has to be replaced by
another wave form. In fact, the FGC appears to be produced by recording the
interference pattern of a converging cylindrical wave (with a specific distance
between its focused line and the center of the FGC) and an aberrated spherical
wave, as described later in this section. The line source C of the cylindrical wave
is located in the plane y = 0. Similar to the FGC for the collimated guided
wave, the phase of the cylindrical wave can match the phase of the diverging
guided wave at reconstruction by adjusting the tilt angle 85 (= 90° —¥) that
the optical axis of the cylindrical wave makes with the recording plate, then the
system OSII can be kept the same. Two different combinations of the systems
OSI and OSII can, in principle, generate the same FGC pattern, but with
aberrations of opposite signs, as shown in Figs. 4.3(a) and (b). The difference
between these two system arrangements concerns the position of the paraxial
focus of the aberrated spherical wave. If this focus occurs above the planar
waveguide, the diverging wave shows a negative spherical aberration (as will
be seen from Eq.(4.16)), similar to that of a positive lens. To our knowledge,
no publication of experimental results has been reported about this kind of
system arrangement. For the paraxial focus below the interference pattern, a
near diffraction-limited performance of an off-axis HOE has been obtained at
reconstruction with a shifted wavelength [22]. Heitmann and Ortiz [8] used this
kind of system arrangement to produce FGC’s, but made no attempt to correct
aberrations.

The electric field in the recording plane (x=0) is the superposition of the
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Figure 4.3: Proposed holographic setups for making FGC’s (a) using a con-

verging cylindrical wave with an aberrated diverging spherical wave (b) using a

diverging cylindrical wave with an aberrated converging spherical wave.

42




cylindrical and the aberrated spherical waves; we have
E, (Q)=Eé (Q)e—inakh (Rzq—Re) +Es (Q)e[inakh(RGQ—Ré)-Hnukhwél

(diverging wave), (4.1)

=Eo(Q)e"*rFeqaRe) 1. By (Q)el~mkn{Rog-RoMtinakn(~Wo)l

(converging wave). (4.2)

Here n, is the refractive index of air while &, = %\I, An being the recording
wavelength. Fs(Q) and Es(Q) are the amplitudes ’;f the cylindrical and the
aberrated spherical waves at an arbitrary point Q in the recording plane, re-
spectively. For our holographic setup, Ex(Q) and Es(Q) will be discussed in
more detail in Sec. 4.4. Rgg is the shortest distance between Q and the line
C. Rg is the shortest distance between the origin O and C. In Egs.(4.1) and
(4.2 ), a reference sphere with its center at the point of reference O has been
introduced to calculate the wavefront aberration W5 (—W5) due to the wave-
length shift. This wavefront aberration is calculated by comparing the actual
wavefront with the reference sphere. Rs(Q)) is the distance between 0 and Q.

Rs is the distance between the origin and O. The power transmission function

7(Q) of the recording after processing equals
7(Q) =E5(Q) Es Q) et mekrReqRetRogRo+Ws) L jis complex conjugate,  (4.3)

=2|E; (@) Es @)l cos{n.kn[Req—RetRoq—ReHWotarg(EZ Q) Es(@Q))}, (4.4)

the plus sign applying to diverging and the minus sign to converging aberrated
waves. The last term in the argument of the cos-function in Eq.(4.4) is the
argument of EX(@Q)Es(@). This argument is the difference of the phase deforma-
tions coming from the systems OSI and OSII. Each phase deformation is the
summation of all the phase changes occurring at the antirefraction coatings on
the refracting surfaces in the systems OSI and OSII. That argument describes
a wavefront aberration (which is a combination of defocusing, tilt and residual

aberration) to the reconstructed beam, and can be disregarded if the residual
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aberration is much smaller than the root-mean-square departure of ﬁ The

phase recorded in the interference pattern & then equals
& = nykn(Req — Re + Rog — Ro + Ws) £ arg( ELQ) Es(@Q)). (4.5)

Apart from the argument in Eq.(4.5), the patterns produced in the systems
shown in Figs. 4.3(a) and (b) are the same. From Eq.(2.9), the phase difference
&’ between the diverging guided wave and the reconstructed wave must be equal

to the phase difference ®; we have

nekO(RUQ - Ru) + nckO(RFQQ - fﬂ) + ®pp =
nakn(Req — Re + Roq — Rs + Ws) £ arg(EZ(Q) Es(Q)). (4.6)

®,,, describes the deviation from the phase in the designed interference pattern

due to fabrication errors and equals

b5 =nukh(R(}Q — Rz + Réq — Rs + Wé) - nekO(Ruq - RU)
—ncko(Rryo ~ fo) £ arg(EZ Q) Es(@))- (4.7)

As will be seen in Fig. 4.10, the last term in Eq.(4.7) is mainly related to a
defocusing combined with a negligible fourth-order spherical aberration while
producing FGC’s with a maximum numerical aperture of 0.5 in our system, no
further optimization to minimize the defocusing and the aberration has been
carried out. As an approximation, the last term in Eq.(4.7) is neglected and
vanishing of the phase deviation ®,, is assumed during the system design.

Then, from Eq.(4.7) we deduce

neko(Ruq - RU) - nakh(Rﬁ'Q - RC’)
=—ncko(Rryo — fo) + nakr(Roqg — Rs + Wa). (4.8)

For a spherical wave converging to a point Fy as shown in Fig. 2.2, the angle v,
equals zero if the point obtained by projecting F, onto the plane z =0 coincides

with the origin O (the center of the FGC); otherwise, 4o # 0. For the same
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focal length, the spherical wave is tilted with respect to that of 4o =0 such that
the FGC for vy <0 is decentered along the z-direction with respect to that for
7 =0. An FGC that focuses the beam onto a point in the plane y =0 outside
the z-axis (70#0) can be also constructed in the same optical system by using
a decentered aperture masking, but then the length of the FGC, L;, is reduced.

Assuming v = 0, Eq.(4.8) can be rewritten in a more explicit form as

neko{\/[R,,—i-1r'c,cos(l9q)]2+[7‘,2.92'11(0‘?)]2 — Ry}
—ngkn{v/[Re+rqcos(8g)cos(8:)]2+[resin(8g)cos(0s]2 — Re}
= —ncko[y/f3+7% — fo] +nakn[y/ RE+r2 — Ro+ W], (4.9)

where 8¢ is the tilt angle of the cylindrical wave with respect to the yz-plane.
If the left-hand side of Eq.(4.9) vanishes, the wavefront aberration of the
system OS Il is a spherical aberration only such that a rotationally symmetrical

system can be used to generate it. This left-hand side of Eq.(4.9) vanishes if:

e A
cos(8z) = Z_TZ (4.10)
and
Re = Rycos(0¢). (4.11)

These conditions express a phase-matching of the cylindrical and the diverging
guided waves. For a typical case of Ag=632.8nm, A;=363.8nm and n.=1.58, the
angle 8z is 24.722°. If R, tends to infinity (i.e. a collimated guided wave), the
cylindrical wave can be replaced by a collimated beam (Rs tending to infinity)

such that Eq.(4.9) is changed into

nekoz — naknz cos(6s)
= —ncko[\/ fE+7E — fo] +nakr[/RE 472 — R+ Ws). (4.12)

The system OS 1 can be orientated such that the angle with respect to the plane
e A . .

z = 0 equals 6z = cos'l(:—)‘—h) to match the phase of the collimated guided
a N0

wave,
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If Eqs.(4.10) and ( 4.11 ) are satisfied, Eq.(4.9) becomes

ncko(y/ fE+7% — fo) =nakn(y/ R +7% — Rs + Wo). (4.13)

Eq.(4.13) expresses a phase-matching of the focused wave in the reconstruction
process and the aberrated spherical wave during recording.
Using the binomial expansion, the wavefront aberration Wy can be written

as

1 ncko Ng k’h 2 1 nck() nakh

W6=2nakh fo  Rs )rq—g(-?— R}

) R (4.14)

Minimizing the wavefront aberration such that the second order term in rq

vanishes, the point of reference O is found from

/\0 Ng
Rs = SV (4.15)
Then, Eq.(4.14) becomes
_ 1 Tlck'o nakh 4
Wo__Snakh( 7B Jrg+ . (4.16)

The r§ and higher order terms represent spherical aberration and must be com-
pensated. This compensation will be discussed in more detail later in this
section. If the phase in the reconstruction process given at the left-hand side of

Eq.(4.13) is expressed in terms of the recording wavelength, we have

2 2
nq’g( A= fo) = np,\—:[na(\/fé +12 = fo)l, (4.17)

where n, = Z—E;\\_Z; n, < 1 in our previous example. The optical path in the
recording beam from system OSII is, as compared to that in the reconstructed
beam, exactly scaled down by a factor of the wavelength ratio -ﬁ%. As seen from
the right-hand side of Eq.(4.17) , that phase can be obtained by a spherical
wave with a wavelength of A, which diverges from a point at the back side
of a fictitious plane plate to its front side if the plate’s refractive index and

thickness are n, and n,fq, respectively. From Eqs.(4.17) and ( 4.13 ), the
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spherical aberration in Eq.(4.16) can be exactly compensated by introducing
such a fictitious plane plate, placed at the exit plane of the FGC (the plane £ =0)
during the optimization of an optical system design. As shown in Figs. 4.4(a)
and (b), this technique can be used to design a system for both cases: diverging
as well as converging spherical waves (see Fig.4.3). The rays which are refracted
at the exit plane propagate to the virtual focus which coincides with the required
focus Fo. However, the optical path length in the fictitious plate is negative for
the diverging spherical wave (opposite sign as the wavefront aberration of the
diverging wave as given in Eq.(4.1)), but positive for the converging one such
that, tracing a single ray from the point source through the OSII to the virtual
focus, the difference between the optical ray path and that for the ray along the
optical axis of the system is always kept zero.

As proven in Ref. [22], a relationship similar to Snell’s law can be derived:
sin(0s) = npsin(yr, ). (4.18)

where 8,5, is the angle that the ray Q_ﬁo makes with the normal to the yz-plane
at Q. 05 is the angle that the ray normal to the aberrated wavefront makes with
the normal to the yz-plane at Q, as shown in Fig. 4.4.

For producing an FGC with N.A. = 0.7, the recording optics must have
a numerical aperture of 0.4 at the image side (calculated from Eq.(4.18), if
n, = 0.57). Correction of the spherical aberration for such a high numerical
aperture system is difficult because a considerable spherical aberration of very
high order occurs. With a slight reduction in numerical aperture, the system
OS1I can be simplified. A way to reduce the numerical aperture of the system
OS II without losing the numerical aperture of FGC’s is to use a laser light with

a shorter wavelength in the recording process.
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Figure 4.4: Using a fictitious plate as a design technique to optimize an optical

system (a) for a diverging spherical wave (b) for a converging one.
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4.3 The design of the optical systems

As discussed in preceding section, two possibilities exist (see Fig. 4.3) for the
system arrangement to produce the same interference pattern for a good point-
shaped focus at the back side of the fictitious plane plate. Their difference can

be expressed as:

(a) a negative spherical aberration if the paraxial focus occurs in front of the

plate;
(b) a positive spherical aberration if the paraxial focus occurs behind the plate.

However, situation (b) cannot be generated by a simple positive lens. To create
situation (a), our holographic setup must have a similar arrangement as shown
in Fig. 4.3(a). In the ‘following account, the cylindrical wave is replaced by a
collimated one because of the use of a collimated guided wave in our experiments.
Using the design technique announced in the preceding section, the design of
system OS II was achieved with the aid of the optical design program OPTSYS
[31]. FGC’s are to be recorded holographically at the wavelength of 363.8nm,
and to be used at the wavelength of 632.8nm for coupling a focused wave out
of the waveguide from an incident collimated guided wave. The total system
was designed to produce FGC’s with the focal length of 2mm. During the
optimization of the system design, a fictitious plate (as mentioned in Sec. 4.2)
was thought in the exit plane of the FGC. Its refractive index and thickness of
the fictitious plane plate were taken as 0.574905 and 2mm, respectively. The
wavefront aberration caused by the wavelength shift between the recording and
reconstruction processes was calculated from Eqgs.(4.14) and (4.15) and is shown
in Fig. 4.5. The system OS II, which consists of five lenses as shown in Fig. 4.6,
has been designed to generate this required wavefront aberration as closely as
possible. The lens parameters of the eventual design are listed in Table4.1. The

system has been corrected up to N.A.=0.32 to allow recording of FGC’s with a
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Figure 4.5: The spherical aberration caused by the wavelength shift, and re-
quired to be generated by the system OSII.

maximum numerical aperture of 0.55. The residual wavefront error W,, (being
the deviation from the required wavefront at the front surface of the fictitious
plane plate) of this system as a function of sin(fgr,), calculated for 363.8nm

in air, is shown in Fig. 4.7. The residual wavefront error at the reconstruction
Ao
An

down by the same factor as stated in Ref. [20]). If this error is expressed in

wavelength is found by multiplication with the wavelength ratio -—— (not scaled
Zernike polynomials (see Eqs.(2.19)) by a least square fitting [14], it can be fed
back to our computational program to compute the related phase deviation ®,p,
(see Eqs.(2.9) and (4.7 )) for analyzing its influence on the field distribution
around the focus. Here, W,, is expressed as two polynomials:

N
W, = ZA"OR?'(”) (niseven,0 < p< 1),

n=0

N
=Y Cup", (4.19)

n=0
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shown.
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Table 4.1: The parameter values of the system OSII optimized for an axial

point object source at a distance 137.165mm in front of the system

Lens no. | Thickness(mm) Radius of Refractive index
curvature (mm)

L, 7.893 —33.333/—-23.44 | 1.53674(BK7)
Air gap 7.834 1.00000

L, 9.320 —10.72/-14.45 | 1.53674(BKT)
Air gap 5.998 1.00000

L 6.001 104.71/-87.1 1.53674(BK7)
Air gap 0.820 1.00000

Ly 5.955 32.25/186.2 1.53674(BKT)
Air gap 0.100 1.00000

Ls 5.200 15.85/29.51 1.53674(BK7)
Air gap 19.810 1.0000

where N is the degree of the Zernike polynomials. p = %—-, TQumaz = 2MM

is the maximum value of r,. For a rotationally symmetric wavefront, the su-
perscript [ in the radial components R! (p) of the Zernike polynomials equals
zero and n has even values only. Rj(p) is a constant term. RJ(p) describes the
defocusing. The terms of order R}(p) and higher describe third order and higher
order spherical aberrations, respectively. The coefficients of these polynomials
are given in Table4.2.

The optical system turned out very difficult to produce because of critical
tolerances concerning decentering and tilt (see Table 4.3), and difficulties to
make the required wide-band antireflection coating. To overcome the problem
of decentering, the second lens L, is chosen to be slightly adjustable in the
directions perpendicular to the axis such that additional aberrations resulting

from assembly inaccuracies could be compensated. Since the system has a
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Figure 4.7: The residual wavefront error of the system OSII calculated at the

wavelength of 363.8nm in air.

considerable spherical aberration, it is impossible to adjust the lens directly

because the focal spots is always large. A correcting lens is placed in front of the

system to obtain a well-corrected image for adjusting the lens (see Fig.4.8). The

system working with the correcting lens has been corrected up to N.A.=0.29 for

a light source with a wavelength ranging from 363.8nm to 632.8nm by changing

the distance between the lens and the system. Fig. 4.8 shows the marginal rays

Table 4.2: The coefficients of the polynomials for the best fit of the residual

wavefront error W, (units: meter).

Ao Azo Aso Ago Aso Ao A0 Ao
1.674x10~7 | 4.413x10~7 |6.188x10~7 [4.357x10~7 | 2.109x10~8 [ —4.732x10~% | 1.796x10~8 | —4.454x10~*?
Co C> Cy Ce Cs Cio Ci2 Cua

0 —4.474x10~7 {1.339x107% [6.962x10—% [ 1.393x10~* | -1.358x10™* | 7.01x10~5 |—1.528x10~5
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Table 4.3: The fabrication tolerances calculated for the system OSII with
N.A. = 0.32, in which maxima of 25um have been set for the uncritical tol-

erances that are indicated by a dot «

Lens no. | Thickness | Error in radius | Decentering | Tilt | Axial element
error of curvature error displacement
() | (vowowsrig) | (um) |(mrad)|  (um)
L, 25, 3 8 2.0 25,
L, 9 2 8 0.2 25,
L3 254 3 15 2.0 254
L, 25, 3 25. 2.0 254
Lg 25. 3 4 0.2 25,

T
AN v

correcting system OSII
lens

Figure 4.8: A lens used to correct the aberration of the system OS II during the

alignment at the wavelength of 632.8nm.

from an axial point source with a wavelength of 632.8nm. The parameters and

fabrication tolerances of the correcting lens are given in Table. 4.4.

Although the correcting lens has been optimized for use at a wavelength
of 363.8nm, normal microscopes cannot be used to observe the image point
directly because of the excitation of fluorescent light. The light of the He-
Ne laser is aligned to the light path of the UV beam as closely as possible
such that the correcting lens can be used for the adjustment with microscopic
observation. The correcting lens and the most critical lens (L) in system OSII

must have very low reflectances under an angle of incidence up to 45° at the
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Table 4.4: Parameter values and fabrication tolerances of the correcting lens
optimized for an axial point source at a distance of 138.241mm in front of the
lens and an image formed at a distance of 18.988mm behind the last surface of

the system OSII.

Parameters
Thickness(mm) | Radius of curvature(mm) | Refractive index
Correcting lens 4.092 9.33/7.41 1.45707(5i02)
Air gap 12.146(to OSII) 1.00000
Tolerances
Thickness Radius Decentering Tilt
(pm) (Newton's rings) (um) (m rad)
10 3 6 0.5

refracting surfaces for the wavelength 363.8nm and up to 35° for 632.8nm. A
360-700nm wide-band antireflection coating with an average reflectance lower
than 1% could satisfy these requirements. Two kinds of antireflection coatings
have been used in our lens system. The two-layer coatings as characterized in
Fig. 4.9(a) are applied to the correcting lens and at one side of L; in system
OSIL Three-layer coatings as shown in Fig. 4.9(b) are applied to the rest
of the lens surfaces including the lenses of system OSI. For FGC’s with a
numerical aperture smaller than 0.48, the phase change introduced by these
coatings approximately raises to the second power of the distance to the system
axis and causes a deformation (being the deviation from the paraboloid) less
than 0.125 radian (corresponding to %) The phase contribution, whose profile
is indicated by the dotted parabolic curve in Fig. 4.10, describes defocusing
and is removable by refocusing the reconstructed beam. The phase deformation

contributes spherical aberrations to the reconstructed wave. For making an

FGC with a numerical aperture smaller than 0.45 (corresponding to a grating
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Figure 4.9: Characteristics for the antireflection coatings used in our lens sys-
tem, reflectance curves as a function of the wavelength, as well as the reflectance
curve of a wedged BK7 glass plate (to avoid the reflection from the back side
of glass plate), measured at the angle of incidence 6° at the front surface of the

plate, (a) two-layer coating (b) three-layer coating.
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diameter of 2mm), the phase deformation is insignificant such that the phase

change can be disregarded.

(x2m)
- )
3] o

Phase change
=}

0.0% =1 ) i
Displacement from the origin O (mm)

Figure 4.10: The phase change introduced by the coatings ( solid line) and the
best fit of the parabolic curve (dotted line).

The system OS1 consists of an eyepiece and a telephoto-objective with a
telephoto ratio [32] of 0.78, which are designed separately and checked by cal-
culating the Gaussian beam propagation with the ABCD law, to confirm the
parallelism of the outcoming beam (0.1mrad). The eyepiece and objective have
focal lengths of 50.9mm and 222.2mm, respectively. The lateral magnification
of system OS1 is 4.5x and can be increased to 12x by replacing the eyepiece.
The parameters of the system OSI are given in Table 4.5. Fabrication toler-
ances for the system OSI are not so critical as those of the system OSII, usual
fabrication tolerances for an optical system have been assumed [33].

The layout of our holographical setup is shown in Fig. 4.11. The UV-light
is split by a 70/30 beam splitter (30% reflection) into two beams. The beam
propagating through system OSII is spatially filtered by a 2um pinhole behind
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Figure 4.11: The layout of our holographic setup.
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Table 4.5: The parameter values of the system OSI optimized for the Ar-ion

laser.
Eyepiece
Lens no. | Thickness(mm) | Radius(mm) of | Refractive index
curvature
L, 5.00 61.66/00 1.53674(BKT)
Air gap 11.67 1.00000
L» 7.00 42.66/00 1.53674(BKT)
Air gap 120.90 1.00000
Objectives
Ls 4.00 —151.36/134.90 | 1.53674(BK7)
Air gap 76.00 1.00000
Ls 7.00 —134.90/—79.43 | 1.53674(BKT)
Air gap 1.00 1.00000
Ls 5.00 00/~123.03 1.53674(BKT)
Air gap — 1.0000

a 60x microscope objective. Fig. 4.12 shows a cross-section of the diffraction
patterns (along the horizontal axis passing through the center of the beam) at
a distance of 137.0mm behind the 2um pinhole, measured by a UV-detector
with a 0.5mm pinhole in front if 60x and 40x microscopes are used. The 40x
microscope has a much stronger absorption (90% power absorption) than the
60x microscope (15% power absorption) such that the 60x microscope with
the 2um pinhole is still the better combination. Roughly, 15% of the incident
light power can pass through the 2um pinhole. 53.5% of the power behind the
pinhole can enter the system OSII.

If OS1 is shifted its pinhole, necessary to filter out the undesired light con-

tributions, must be realigned. This is awkward for a pinhole inside the system
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Figure 4.12: Cross-section of the diffraction patterns of a 2um pinhole illu-
minated by a converging wave from a 60x microscope (solid line) and a 40x
microscope (dotted line). The range between two vertical dashed lines shows

the clear aperture of the entrance pupil.

OS1. Therefore, a symmetrical sub-system is used to filter the incident light. To
minimize any possible aberration introduced by this sub-system, two identical
lenses with a focal length of 50mm are placed symmetrically around the central
axis, while a 30um pinhole is inserted. Since the working distance of the system
OS 1l is short (= 19mm), the maximum tilt angle 65 (see Fig. 4.2) of the system
OS1is limited to 30° such that the effective refractive index of the guided wave
was limited to the range 1.506 <n. < 1.739, as calculated from Eq.(4.10).
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4.4 Calculation of the intensity distribution in

the recording plane

To form a high quality grating by two-beam holographic interference, the beams
should have equal and uniform intensities. A method which is capable of calcu-
lating the intensity distribution in the recording plane for light passing through
a system would be useful to evaluate the performance of a holographic setup.
This evaluation is achieved by using a method of calculating the flux density
(energy per unit area per unit time) [34], as developed by D.G. Burkhard and
D.L. Shealy. The entrance pupil of an optical system is divided into small rect-
angles by covering it with a network of fictitious lines. The part of the field
entering through each mesh is now approximated by a constant field, having
the value of the actual field in the mesh center. Then, each mesh is illuminated
by a known amount of energy, such that the initial value of the flux density over
that mesh is known. Tracing the path of a single ray that passes through the
center of each mesh through an optical system, the flux density at the inter-
section point of that ray with the image plane or with any other surface in the
system can be calculated. From flux conservation, each element of a wavefront
is related to an specific element on a refracting surface. From the value of the
flux density over the element on the refracting surface, the flux density over the
element of the wavefront is calculated by projection. Fig.4.13 shows an example
comprising three refracting surfaces S;, S; and S3. The area elements of the
wavefronts dW,(S;), dW,(S:) and dW;(Ss), respectively, are mapped onto the
elements dS; dS, and dS3 of the surfaces by projection, yielding

AW (S1)=dS1cos(01,), dWi(S2)=dSacos(8;2), dW;(Ss)=dSscos(Bys), (4.20)

where 8;,, 0;, and 0,, are the angles of incidence that the rays make with

the normals to the refracting surfaces S, S and Ss, respectively. When the
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Figure 4.13: Wavefront elements at refracting surfaces Sy, S2 and S; when a

wave originates from dS, is refracted by dS; and dS; and imaged onto dSs.

wavefront leaves dS; or dS; after refraction, we have
dWhp(51)=dS1c05(0r,), dWr(S2)=dS2c0s(0r,), (4.21)

where 05, and 05, are the angles of refraction.

If the light emanates from a source along the ray path from dS, to dS; as
shown in Fig. 4.13, the flux density over dS; is, from Eqs.(4.20) and ( 4.21 ),
written as [34]

dS, dS,

5, dSs

cos(0;,,)cos(0;,)cos(0;5) AWr(S1)dWr(Ss)
c03(0gr1)cos(0r,) AW, (S2)dW,(S5)’

where p; and p; are the transmission coeflicients at the surfaces S; and S,

T asy—ass = Top1p2c0s(0;,)

=0oMmp2 (422)

. . I . .
respectively. For a point source, g¢ = —:— where Iy is called the photometric
To1
intensity and ro; is the distance along the ray path between the source and

the surface S;. For an extended source with an area element dS, radiating

Bycos(8:,)
7'31

brightness and 8,4 is the angle between the ray and the normal to dSs.

in accordance with Lambert’s law, o9 = where B, is the surface

The area element of each wavefront can be expressed in terms of the principal

radii of curvature of the wavefront. The principal curvatures in a point of a

surface are determined by the two curvatures through that point, lying in that
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surface, which have the maximum and minimum curvature, respectively. The
reciprocals of these curvatures are called the radii of curvatures. The normals
to the curves coincide with the normal to the surface. The loci of the principal
radii of curvature of the wavefront after refraction define convergence points, in
general there are two focal points for each wavefront element. Fig. 4.14 shows
the principal radii of the curvature g, and rj, of the wavefront as it leaves dSs;
r2p and 14, are the corresponding principal radii of curvature when it reaches
dS3 where ryp =1y, —133 and ro, =13, —r23. T23is the distance along the ray path
between the surfaces S; and S3. Similarly, if ry, and ), are principal curvatures
after the wavefront is refracted by dS;, the corresponding principal curvatures

when it reaches dS; are ry,=r1. — r1z and ri, =1}, — 2. The area element on

Lo e T2

dwi(Sy

de;
dWR(S7) dﬂz

r2,c "€ rz,ll —*

A

Figure 4.14: The two principal radii of curvature ry. and rg, of the wavefront
dWx(S;) after refraction by the surface element dS; (not shown), the two prin-
cipal radii of curvature r;, and ry, of the wavefront dW,(S;) diverging from the

focuses, reaching the surface element dS3 (not shown).

each wavefront can be expressed as

dWR(SZ) = rzcr;chQdG;’ sz(Sa) = rgpr;pd%d%,
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and likewise,

dWg(S1) =iy dohddy, dW(S2) = T1p7,d01d0], (4.23)

where df, is the angle subtended at one of the focal points of the wavefront by
the corresponding curve which determines one of the principal curvatures, as
shown in Fig. 4.14. df} is the angle subtended at the other focal point of the
wavefront by the corresponding curve. Similar definitions are applied to d, and
do;.

Substituting Eq.(4.23) into Eq.(4.22) , we have
cos(0;,,)cos(8,;)cos(6, ) (Tlcf"lc)(rch"gc)

c08(0g, )cos(0r;) 1T

Y 4so—as,=00p1P2 (4.24)

T'pr"zp
This equation will be referred to as the flux density equation.
To use this flux density equation, the principal radii of the curvature for the
incident and refracted wavefronts at each surface must be determined. Principal
radii of curvature of the wavefront are, however, related to the normal curva-
tures which are the curvatures of the intersection curves of the wavefront with
the plane of incidence, and with the plane containing the ray, perpendicular to
the plane of incidence, respectively. 7 is the radius of the normal curvature of
the curve formed by the intersection of the plane of incidence with the consid-
ered surface. r, is the radius of the normal curvature of the curve formed by
the intersection of the considered surface with the plane containing the ray, per-
pendicular to the plane of incidence. After some calculations using differential
geometry, the radii of the normal curvatures for a wavefront after refraction by

a refracting surface can be obtained from [34]

1 Tn Qs
= + , 4.25
(B (D) T i(S) (4.25)
1 I cos®(8;) Qs

ri(R) - (1) cos?(8r) + r1(S)cos?(8x)’ (4.26)

Yncos(0;)7; Qs7s
= . 4.
® cos(0r) + cos(85) (4.27)
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Eqgs.(4.25) and (4.26) are known as the Coddington equations. For refraction, the
n(I)
n(S)

For reflection, 4, =1 and Q5= —2cos(8,). 7;, 7s and 75 are the torsions of the

ratio of the refractive indexes equals v, = and )= —4,c05(0;) + cos(0r).
incident wavefront, the refracting surface and the wavefront after refraction,
respectively. r.(S), ry(S) and 75 are the parameters related to the refracting
surface and the plane of incidence of the incoming wave. ry(I), () and 7,
are the same parameters related to the incoming wave. Ref. [34] provides the
formulas for calculating those parameters and the formulas linking the princi-
pal curvatures and the normal curvatures as well. v, (R), ry(R) and 7 for the
refracted wave are then calculated from Eqs.(4.25), (4.26) and (4.27). For merid-
ional rays in a rotationally symmetrical system, all terms in Eq.(4.27) can be
proven to be zero. Then, the normal curvatures are identical with the principal
curvatures (see [34]). In Ref. [34], for several structures the flux density has
been calculated using (4.25)-(4.27). The way to eliminate the singularity that
may occur in Eq.(4.24) can be also found in that reference.

Now, the flux density equation is used to calculate the intensity distribution
in the recording plane for the beam passing through OSII. The loss due to re-
flection, absorption or scattering in the system are neglected which is acceptable
for a structure consisting of materials with a good homogeneity, well-polished
surfaces and high-quality antireflection coatings. The position of the recording
plane is located in the front surface of the fictitious plate in the system design.
Knowing that the intensity of a spherical wave originating from an axial point
source is uniform, the normalized flux density of the beam in the recording plane
has been calculated and is shown in Fig. 4.15 by the solid line. In Ref. [20],
a system was proposed by G.N. Lawrence et al. for making FGC’s with a fo-
cal length of 1.5mm by holographical recording at a wavelength of 480nm for
use at a wavelength of 790nm. For comparison, this system is modified for
making FGC’s with a focal length of 2.0mm assuming the same wavelengths,

as shown in Fig.4.16. The parameters of this system are given in Table 4.6
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Figure 4.15: Flux density as a function of r4 in the recording plane for our
system (indicated by a solid line), the modified Lawrence system (dotted line)
and for back-propagation from a focal point at the back of the fictitious plate
{dashed line).
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Figure 4.16: The modified Lawrence system, for recording and use at wave-
lengths of 480nm and 790nm, respectively, for making FGC’s with a focal length

of 2.0mm.
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and its residual wavefront error is shown in Fig. 4.17. From that picture,

Table 4.6: The parameter values of OSII, for recording at a wavelength of
480nm, optimized for an axial point object source at a distance 24.953mm in

front of the system. Fabrication tolerances for this system are more critical than

urs.
0Lens no. | Thickness(mm) | Radius of curvature(mm) | Refractive index
Ly 1.330 00/ —3.834 1.52283(BK7)
Air gap 1.522 1.00000
L, 1.330 2.704/00 1.52283(BK7)
Air gap 9.330 1.00000
Ls 0.300 00/—5.951 1.52283(BK7)
Air gap 2.600 1.00000
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Figure 4.17: The residual wavefront error of the modified Lawrence system,

calculated for recording at the wavelength of 480nm and used at 790nm.
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the region —0.51 < sin(fyr,) <0.51 shows an error is acceptable for practical
use. In Fig. 4.15, the normalized flux density is also calculated for the modi-
fied Lawrence system, shown by a dotted line. During our system design, the
system is optimized when the beam is converging onto a point at the back side
of the fictitious plate. Considering the case that a spherical wave with uniform
amplitude, originating from that focal point propagates back to the system, the
normalized flux density at the front of the fictitious plate for this case is shown
by the dashed line in Fig. 4.15. In fact, the flux density for this case is pro-
portional to cos®*(845,). For our system, the flux density can be approximated
to be proportional to cos*(fgr,). Obviously, the spherical wave propagating to
the focal point for our and the modified Lawrence systems is not uniform. The
deviation of the dotted line from the dashed line indicates the influence of the
actual inhomogeneous amplitude distribution. To obtain a uniform amplitude
distribution in the recording plane (i.e. the front plane of the plate), neither
the cos*(84r,) nor the cos*(8gr,) suffice. No further optimization of the optical
system towards this uniformity has been carried out. An absorption filter with
a stronger absorption at the center but less at the edge might be introduced
into the system to attain intensity uniformity. However, the distribution of the
phase distortion introduced by such a filter must be determined exactly and has
to be compensated for. Another disadvantage for the use of the filter is that
a portion of the available power is absorbed by the filter itself. Recently, an
investigation concerning conversion from a Gaussian to a uniform beam (from
a collimated laser source) [35, 36, 37] has been published and might be used
to solve the problem. Another solution is the use of a system in front of OSII
that converts a collimated Gaussian beam into a prescribed intensity profile,
such that a homogeneous amplitude is obtained at the recording plane without
a spurious phase distortion. As mentioned in Ref. [35], a system with more than
95% conversion efficiency which is free from phase distortion may be achieved

using two aspheric surfaces. The input aspheric surface attenuates the intense
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central region of the Gaussian beam, while, at the same time, it redistributes
the excess energy to the less intense peripheral region. The output aspheric
surface reshapes the beam such that it becomes parallel to the input.

From calculation of the flux density behind our system OSII and referring
to Eq.(4.1), the intensity distribution (proportional to the flux density) of the

diverging spherical wave in the recording plane can be approximated by

4
nakn(Reo—RastWa)|— 42 f
|EgemaknRoqRotWs)| = Aé—_—(r% o (4.28)

where A% is the peak amplitude. Since the phase of the beam is already included
in the exponential, we assume that Ej is purely real. Then, the electric field

distribution is obtained as

2
Eé einakh(Réq—Ré+Wé) — A(’) -~ {l- f2 einakh(Réq—Ré“'Wé). (429)
Q

Using the flux density equation, the beam collimated by OS I shows a Gaus-
sian profile if a laser source with a Gaussian profile is used. For the collimated
beam, the electric field distribution in the recording plane, which makes an angle
0z with the beam, is approximated by

— {5} +zqein(02)1%)
Ege=tmaknzcos(0c) = A.e Z einaknz cos(0g) (4.30)
where A¢ is the peak amplitude. 7 is the radius of the circle where the field
amplitude is decreased by a factor of é as compared to its value on the collimator

axis. The total intensity distribution in the recording plane is written as

—{v%+zgein(65)1} f2
BuBi=lse B eriln or00) 4 fg g e Mo AN (4.31)
Q

Separately integrating the intensity over r, for each recording beam, using
Eqs.(4.29) and (4.30), allows us to estimate the intensity ratio between these
two beams such that their peak intensities are equal and a good fringe visibility
around the center of the grating can be obtained. Assuming that a UV-detector

with an illuminated circular detection area (4mm in diameter) is placed at the
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position of the recording plane, the intensity ratio between the beams of OSI
and OSII is calculated as 1.9 while taking Ae =1 As =1, ro = 5.0mm and
0s = 25°. In practice, this intensity ratio approximates 1.4. The reason for
such a deviation is that 30% of the power is blocked by the metal casing of
the detector when the beam is incident upon the detector at a angle 6 = 25°
(i.e. the actual illuminated-area for the beam of OSI is smaller). Using a pho-
todiode without a metal casing to measure the intensities, the intensity ratio

approximates 1.8.
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Chapter 5

EXPERIMENTAL RESULTS

5.1 The fabrication process

Waveguides with a structure shown in Fig.5.1 can be produced on glass plates.
For integrated optics, glass plates are, however, seldom used because of insuf-
ficient hardness when the thickness is thin (< 400pum). Si wafers are chosen
to serve as substrates in our experiments. Because of a high refractive index
of Si, the waveguide structure cannot be used for visible light. In our experi-
ments, multilayer waveguides produced on two-inch silicon substrates are used
to make FGC’s on the waveguides, as shown in Fig. 5.1. To form the waveguide,
a thermally oxidized SiO; layer is first formed. The thickness of this layer is
required to satisfy the condition that the field of the guided wave decays to a
negligible level at the boundary between the substrate and the oxidized layer.
In our experiments, the thickness of the oxidized layer is chosen as 1.7um. Due
to interference between the wave diffracted by the grating into the cover and the
wave reflected into the cover from the SiOy/Si-interface, both the film thickness
and the corrugation depth of the FGC have a large influence on the coupling ef-
ficiency and the attenuation coefficient. At the beginning, the film thickness was

optimized for maximizing the coupling efficiency. Then, the coupling efficiency
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Figure 5.1: Geometry of the planar waveguide used in our experiments for

making FGC’s

can be optimized further by choosing the corrugation depth, until the average
power of the guided wave decays to % of input power after the wave has passed
the FGC. The optimization is not effective when an FGC has a large numerical
aperture, because then constructive interference may occur at the center of the
FGC while destructive interference takes place at the edge, or the other way
around. Thus, a small numerical aperture during optimization is recommended.
If the corrugation depth t, is equal to 40nm and #;=20nm for a rectangular FGC
with N.A.=0.35, the calculated dependencies of the effective refractive index,
statistic attenuation coefficient (see page 28) and coupling efficiency upon the
film thickness are shown in Fig. 5.2. There is a tendency of gradual decrease for
the average of the statistic attenuation coefficient if the film thickness increases,
apart from that the average is affected by the interference. The decrease in
the peak values is due to the increase of mode confinement such that the field
penetration into the media n. and n, decreases. Supposing that the waveguide
of interest can support only the lowest TE; (TM,) guided mode, a thickness
above 350nm is excluded such that its optimized thickness is around 325nm
where the coupling efficiency could be as high as 0.6, as seen from Fig. 5.2.

The Al;Ogs-layer is deposited on the oxidized Si wafer by sputtering. Due to
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Figure 5.2: Effective refractive index (solid line), statistic attenuation coefficient
(dotted line with error bars) and coupling efficiency (dashed line) for an FGC
as a function of the film thickness. Refractive indexes n., n;, ny, ns, n, are
equal to 1.0, 1.46, 1.7, 1.46, 3.83, at the wavelength of 632.8nm, respectively;
ty=1.Tum, t;=20nm, t,=40nm.

fabrication errors and a few per cent of thickness variation over the two-inch
wafer, the thickness is determined as 287nm by measurement of the effective
refractive index, as will be explained in this section. Since Al;Os is resistant to
most chemical solutions except special treatments, 40nm SiO; is then produced
on the top of the Al,O; layer by e-beam evaporation for acting as a mask in
the process of wet etching to form gratings. To measure the effective refractive
index precisely by the method of prism coupling, a 510nm SiO; layer for con-
trolling the incoupling efficiency is evaporated through a mask onto the top of

40nm SiO, layer. The parts of the two-inch wafer where gratings are produced
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are protected by the mask to avoid evaportion. The wafer is then subjected to
high temperature annealing at 800° for 55 minutes in a nitrogen atmosphere, to
reduce the loss of the waveguide to below 1dB/cm [38]. Then, the wafer is ready
for measurement. From the measurement of the effective refractive index [38],
the thickness and refractive index of the film can be calculated approximately
from the coupling angles of TE, and TM, modes through a prism with known
apex and corner angles. The effective refractive index measured in this way is
the value for the waveguide with a thickness of 550nm of the cover beneath the
prism. The effective refractive index for the waveguide in which gratings are
produced is evaluated from the calculated refractive index and thickness of the
film. The error of this evaluation is £2%. The effective refractive index is cal-
culated as 1.5778 corresponding to the tilt angle of the system OS1 24°53'43".
The system OS1 is orientated to this tilt angle with a maximum error of +0.1°.

The positive photoresist (3.5% solids) obtained by diluting Microposit $1400-
17 photoresist with Microposit thinner is dripped onto the wafer on a spin head
through an injector with a 0.2um filter inside. A thin and uniform photoresist
layer is formed by spinning the wafer at 2500rpm for 10s and 5000rpm for 403,
without interruption. To minimize the standing wave effect in the photoresist,
the wafer is prebaked at 60° for 10 minutes before recording. After recording, a
softbaking at 90° for 25 minutes is used to remove the majority of the solvent
from the photoresist. The photoresist is developed by dipping the wafer verti-
cally into a Microposit developer 351, mixed with water at a ratio of 1 : 5 during
60 seconds. During this process, the wafer is gently shaken horizontally at a
frequency of 1Hz. After that, the wafer is immediately rinsed in water for 45
seconds with the same way of movement as at development. A postbake of 120°
for 30 minutes is used to increase adhesion for a subsequent etching process.
FGC’s are formed by corrugating the top layer of the waveguide (SiO,) using
a chemical etchant whose recipe is HF : NH4F : H,O = 1 : 5 : 80, and which

results in an approximate etching rate of 25nm /minute [39). The photoresist
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is removed with acetone after UV flood exposure. For an etching time of 45
seconds, a corrugation depth of about 19nm is reached. For a longer etching
time, the we found that gratings were gradually destroyed because a serious
undercut occurred.

To obtain high-quality gratings, several conditions must be met. The optical
path from the light source to the recording plane for the beam through OSI
differs from that for OSII no more than the coherence length of the Ar* laser
(5¢m). This optical path difference in our setup has been adjusted to be smaller
than lem. The laser source must be stabilized, otherwise the fringe visibilities
of gratings would be poor. Probably, gratings with weak fringe visibilities at
the center and stronger ones at the periphery could be obtained. We found that
it takes at least two hours to stabilize the laser at its operation power. The
longer the laser operates, the better the quality of the laser light will be. In
addition, the laser tube must have the correct pressure to obtain reliable results.
Fringe shifts may occur due to air turbulence that makes the recording beams
to vibrate, this is reduced by isolating the system with plates. Also, a short
exposure time is recommended. The peak intensity ratio between two recording
beams should be close to unity, is adjustable by tilting the 2um pinhole forward
or backward along the axis of OSII. The output power of the laser is set to
150mW. To make the peak intensities about equal, the irradiances (total power
arriving at unit area) of the beams of OSI and OSII in the recording plane,
measured by an UV detector of the power meter (a product of OAI optical
associates Inc., type 206), are adjusted to 5.0 and 3.6mW/cm?, respectively
(corresponding to an intensity ration of 1.39, more explanations at page 70).
Different exposure times have been tried out, grating sizes in the diameters of
1.0mm(0.42s), 1.3mm(0.44s), 1.5mm(0.46s), 1.7mm(0.48s), 1.8mm(0.5s) and
2.0mm(0.52s) have been obtained. As will be seen in Sec. 5.3, the optimized
exposure time, determined from the quality of image is about 0.44 second. If

those conditions are met, we found that the gratings are reproducible.
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5.2 The measurement setup

Measuring the intensity distribution is the main objective to judge the perfor-
mance of our FGC’s and to compare the theoretical and experimental results. In
our measurement setup, prism coupling is used to direct collimated light into a
waveguide by adjusting the angle between the light and the prism. Besides, the
holder in which the wafer is placed must be rotatable such that an optimized
condition for the guided wave incident upon an FGC can be obtained. This
can be determined by checking the image of the focal spot with a microscope.
Therefore, the setup for measuring the intensity distribution must have at least

two freedoms of rotation. Fig. 5.3 shows the measurement setup. The beam

g ;
40um pinhole prism

é . rotation table
g8 B :

g

microscope
objective

Figure 5.3: The setup for measuring the intensity distribution of an FGC.

size of a He-Ne laser has been enlarged to 6mm by a beam expander consisting
of two lenses with focal lengths of 50mm and 150mm. The parallelism mea-
sured from the interference of the reflected beams from both sides of a parallel

plate is 0.1mrad. The wafer is placed vertically. The apparatus comprising
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and a wafer holder for incoupling and outcoupling are mounted to a rotation ta-
ble (horizontal rotation). The prism for outcoupling is removable to give enough
space for microscopic inspection. The wafer holder is rotated vertically to ob-
tain a good image of the focal spot by microscope observation. The eyepiece
of the microscope is removed. A CCD image sensor (Philips NXA1011/01) is
placed behind the microscope objective at a distance of 17¢m, the focal spot is
projected onto the CCD image sensor and observed through a computer mon-
itor with an image capture board. The microscope objective is re-adjusted to

obtain a good image displayed on the monitor.

5.3 Focusing characteristics

Some investigations on FGC characteristics concerning its grating pattern and
field distribution around the focus have been carried out and their experimental
results are included in this section. In our theoretical calculation, an FGC
is divided into subgratings. Locally, each of them is replaced by a periodic
and straight grating. Jo (being a parameter used in the analysis of the grating
coupler, see Appendix A) is defined as the angle between the axis of the incident
guided wave and the normal of the grating lines. Assuming that the incident
wave propagates along the positive z-axis, ¥ is exactly the angle between the
normal of the grating lines and the z-axis. The periodicity and the angle Jq as
a function of position across the FGC with a theoretical grating pattern whose
parameters (n,=1.5778, fo=2mm) are chosen the same as the produced FGC’s
described in Sec.5.1, are calculated from the calculated grating pattern equation
(see page 10) and shown in Fig. 5.4. For a better visual effect, the z-axis has
been reversed. At the z-axis, the periodicity varies from 0.6um to 0.3um along
the propagation direction of the guided wave for a FGC with N.A.=0.53. The
coupling between TE- and TM-waves becomes more and more significant when

the angle ¥Jg increases.
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Figure 5.4: (a) The periodicity and (b) the angle ¥y as a function of position

across an FGC, calculated from the parameters n,=1.5778, fo=2mm.
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Our gratings in photoresist have been examined by a scanning electron mi-
croscope (SEM). Fig. 5.5 shows SEM photographs of the grating lines with a
periodicity of 0.50um and 0.31um at two different regions near the z-axis. As
can be seen from the pictures, the chirp rate and the curvature of the grating
lines within a region of 8 x 10um? are negligible such that locally replacing such
a grating by a periodic and straight grating is an acceptable approximation.

Using the measurement setup as described in the previous section, the wafer
was rotated to minimize the focal spot of the diffracted wave when a collimated
guided TE-mode was incident upon an FGC. The focal spot was projected
through a 70x microscope objective (corrected without a 0.17mm thick cover
glass) onto a CCD image sensor and was observed through a computer mon-
itor with an image capture board. The microscope objective was adjusted to
minimize the spot size. The two-dimensional and three-dimensional diffraction
intensity patterns captured by the CCD image sensor for all FGC’s mentioned
in Sec. 5.1 are shown in Fig. 5.6 and Fig. 5.7, respectively. For an exposure
time shorter than 0.44s, the diffracted wave shows a main peak with significant
side lobes in the y-direction but negligible ones in the z-direction. The main
peak shows a little astigmatism. The theory given in this dissertation, however,
cannot explain why those side lobes with strong power occur. Probably, this
results from misalignment of the recording setup such that some aberrations are
recorded in the interference patterns. The image quality becomes worse if the
exposure time increases longer than 0.44s. We observed that only a part of the
diffracted wave can be focused into a spot, with considerably strong peaks be-
side. In addition, we also found that a few light rings diverge from the periphery
of the FGC. This can be seen from the back side of a white paper placed above
the FGC. In fact, these rings originate from recordings of the the light from
system OSII that is reflected at the interfaces of the waveguide back into the
photoresist. The reflected light of OST back into the photoresist also destroys

the interference pattern, because a very strong reflection occurs at each inter-
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Figure 5.5: (a) FGC’s with a periodicity of 0.50pm, (b) a periodicity of 0.31pm.

80



(d) (e) (f)

Figure 5.6: (a) Two-dimensional intensity patterns of focal spots for FGC’s
recorded during (a) 0.42s, (b) 0.44s, (c) 0.46s, (d) 0.48s, (e) 0.50s, (f) 0.52s.
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Figure 5.7: (a) Three-dimensional intensity patterns of focal spots for FGC’s
recorded during (a) 0.42s, (b) 0.44s, (c) 0.46s, (d) 0.48s, (e) 0.50s, (f) 0.52s.
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face when light from OSI is incident upon the wafer at an angle of incidence
~ 65°. For a long exposure time, multiple reflections between the photoresist
occur such that the recording process is no longer a two-beam interfere. Such a
recording process results in concentric ghost images between the closely spaced
grating lines as described in Ref. [40]. In that paper, a trilayer resist system
was used to obtain precise pattern dimension control by adjusting the refractive
indices and attenuation coefficients of the resist layers. The linewidth variation
caused by the interference effect was reduced to 0.04um [40].

As seen from in Figs. 5.6 and 5.7, the optimized exposure time is about 0.44s,
The intensity profiles, containing the peak intensity, in the y- and z-directions
with an exposure time of 0.44s is shown in Fig. 5.8. The spot widths in the y-
and z-directions, being the region in which the intensity drops to ;13 of the peak
intensity, are measured as 2.3um and 3.5um, respectively. The average focal
spot diameter is 2.9um (see page 21). 55.4% and 17.4% of the power carried
by the diffracted wave, distributed over that spot and its side lobes. During
the measurement of spot size, the eyepiece of the microscope has been replaced
by one with a micrometer and a reticle inside. The magnification power of the
microscope objective and the scale of the micrometer have been calibrated by a
standard micrometer ruler. A measurement accuracy down to 0.1um could be
achieved.

The coupling efficiency (for its definition see page 21) for each FGC has been
measured. However, due to instability of the out-coupling prism, the attenuation
of the guided wave outside the grating and the loss occurring at the surface of
prism where the outgoing light was measured by a photodetector, a +20% error
of this evaluation must be assumed. A slit placed in front of the measurement
setup was adjusted such that the width of the collimated guided wave equaled
that of the measured FGC. The powers of the diffracted wave and of the light
coupled out by a prism were measured by a photodetector. Assuming that the

sum of the measured powers equals the incident power, the coupling efficiency
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can be evaluated. The coupling efficiencies for the FGC’s have been calculated

as 0.13(0.42s), 0.15(0.44s), 0.32(0.465), 0.35(0.48s), 0.40(0.5s) and 0.45(0.52s).
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Chapter 6

DISCUSSION AND
CONCLUSIONS

The field distributions of a focusing grating coupler in the exit plane and around
the diffraction focus can be calculated for a diverging incident wave. The ac-
tual complex propagation constant of the incident guided wave is taken into
consideration, leading to the optimization of the corrugation depth. In order to
achieve a high coupling efficiency, at the same time preventing the focal spot
from broadening, we suggest that the corrugation depth is determined such that
the average power of the guided wave decays to % of input power after the wave

passing the FGC.

For FGC’s, coma and astigmatism are essential and considerable. Using
the criterion RMSD < li; to estimate the FGC’s tolerances is inappropriate,
because the criterion was obtained under the assumption that the field ampli-
tudes are uniform across the exit plane. The Strehl intensity is chosen to judge
the focal spot quality. An FGC system is considered to be well-corrected if
W(F"y > 0.8.

The coupling efficiencies for the FGC’s discussed in Chapters 2 and 3 are

low (about 0.35), and the energy reaching the focal spot is even lower (see
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Sec. 3.4). For an FGC produced on a multilayer waveguide, the coupling effi-
ciency can be increased by reflecting part of the light radiated into the substrate
back toward the cover like Ura et al.[6] did in their demonstration device for an
integrated-optical pickup head. We found, however, that the wavefront distri-
bution becomes complicated due to reflections at interfaces between the various
layers. This causes the focal spot to broaden. For an FGC produced on a multi-
layer waveguide, formulas for calculating the complex amplitude vectors of the
Floquet waves and the change 643 in the propagation constant can be derived
by applying at each interface the equivalent boundary conditions discussed in
Ref. [10].

A method [34] which is capable of calculating the intensity distribution in
the recording plane is used to evaluate the performance of our holographic setup.
Because of the inhomogeneous intensity distribution in the recording plate and
the residual wavefront error of the holographic setup, a diameter of 2mm is
about the maximum grating size that can be produced in this recording setup.

In our experiments, multilayer waveguides produced on two-inch silicon sub-
strates are used to make FGC’s. For such a waveguide, the coupling efficiency
can be increased by reflecting part of the light radiated into substrate back to
cover in which the focus is formed. Theoretically, the coupling efficiency could
be as high as 0.6 by optimizing the waveguide parameters and the corrugation
depth. However, the required corrugation depth of 40nm for gratings with a pe-
riodicity around 0.3um is too deep for wet chemical etching because of a serious
undercut occurred. Dry etching techniques may be used to solve this problem.

The spot widths in the y- and z-directions for an FGC, at % of the peak
intensity, have been measured as 2.3um and 3.5um, respectively. The average
focal spot diameter is 2.9um. The FGC shows a little astigmatism causing such
a difference in the spot widths. The coupling efficiency of this FGC is about
0.15. 55.4% and 17.4% of the power carried by the diffracted wave into that

spot and its side lobes. For an FGC with a larger coupling efficiency, the image
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quality is worse due to multiple reflections inside the photoresist. To reduce
interference effects, a trilayer resist system [40] can be used for future work to
obtain precise pattern dimension control by adjusting the refractive indices and

attenuation coefficients of the resist layers.
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Appendix A

FORMULAS FOR CALCULATING THE AMPLITUDE FACTORS
OF THE FLOQUET WAVES AND THE QUANTITY 43

Consider an incident parallel beam propagating through a grating coupler (pro-
duced on a waveguide with the structure shown in Fig. 5.1) in the direction
(dsin(do) + Fcos(Yg)), which is inclined over an angle ¥ to the grating vector
G= 215, Here, A is the periodicity of the grating, @ and ¥ are the unit vectors
in the coordinate system (x,u,v) parallel to and perpendicular to the grating
lines, positioned in the exit plane. The incident guided wave having its field
characterized by the dependence of eli#(¥sin(%o)+vcos(%))] can couple to Floquet
waves characterized by the dependence el#f(#sin(¥0)+v cos(9))+mGei] (where m =
0,%1,42,...). The electric and magnetic fields vectors E and H are expressed
in the coordinates (z,u,v) by

-

E‘(.’I), U, 'l)) = Eun(mv u, ’U) + E-:m(z’ u, ’l)) + E-“o(.’l:,u, v),
H(z,u,v)= Hp(z,u,0) + Hu(z,u,v) + Ho(z,u,v), (A.1)

where Eun and ﬁun are the fields in the unperturbed planar waveguide with its
cover/cladding boundary at the plane z = 0. E,, and H, are the sum fields
for all m # 0 Floquet waves. E, and Hy are the field for the m =0 Floquet
wave. Em and ]:im are proportional to the corrugation depth ¢, Eo and ﬁo
are proportional to ¢ [10]. The perturbation fields (the sums of E,, H, and

Eo, ﬁo) are assumed to be small as compared to the unperturbed fields Eun
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and H,,. From Maxwell’s equations, the field components E_‘W and I_i,m (where

p=un,m,0) satisfy independently the wave equation

»® 9 P E,.
(5? + 52 + 302 + n(m)zk("){ a } =0 (p=un,m,0). (A.2)

»z
The refractive index profile can be written as an equation similar to Eq.(2.1) for
the unperturbed planar guide shown in Fig.5.1. Eq.(A.2) indicates that there are
two independent groups of modes, viz., TE-modes (for which E,;=0) and TM-
modes (for which H,, =0). The two other field components can be calculated
by substituting the z-components into the formulas given in Ref. [10]. Let us
assume that a guided TE-wave is obliquely incident upon the grating coupler.
The incident guided wave can couple to Floquet waves of the TE-polarization
as well as with Floquet TM-waves. Since Floquet waves are characterized by

the dependence eliP¥sintfo)+v cos(90))+mGed] Eq.(A.2) becomes

(o + ntohd - }{ E‘”(ﬂ"‘)}=o @ =il (ag)
B H,o(Bo) (m=0,+1,%2,...),

in which

B = \/ [Bosin(o)]? + [Bocos(do) + mG.i ]2, (A.4)

is the propagation constant of the m-th Floquet wave. The direction of ,Bjn is

given by its angle ¥,, with respect to the local grating vector G , satisfying
Bmsin(Vy,) = Posin(idy),
Brncos(9m) = Pocos(9o) + mGeii  (m=0,%1,£2,...). (A.5)

Eq.(A.3) has the solutions F,,(B.) and H,.(Bx) of the character of plane

waves:

Epw(ﬂm) X eiki’mzeiﬁm[u sin(9m)+v cos(dm)],

pr(ﬂm) o eik;ma:eiﬁm[u sin(9m)+v cos(i’m)], (A.G)
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where

by = [k — % (F=c,1,f,b,s), (m=0,£1,%2,..)), (A.T)

where the subscript j = ¢,l, f,b,s denotes the field in the regions of cover,
cladding, film, buffer layer, substrate (see Fig. 5.1). To satisfy the boundary
conditions for the unperturbed guide, the field component H,. of the incident

guided TE-wave can be written in the form

H,. z(x’ u, ,v) — Ago-feikcozeiﬁo[u sin(¥9)+v cos(do)) (:Z,'>0),
= [A:zo—e—ikm (z+t,)+A$;0+eikm(x+t()] eiﬂo[u sin(do)+v cos(¥o)] (_tl<$<0)v

_ [A?E e ksolErttt) L A% eikrolttitt ,)] ol sin@o)+v costiall (g ¢ <p<—t)),

[AI’:O_ e—ikm(z+tl+t/+tb)+A::g- eikbo(r+t‘+t!+tb)]eiﬁo[u sin(9p)+v cos(do)}

(—tl—tf—tb<:t<—t1—t_f),

— Aho—e—ik_,o(:c+t,+tf+tq,)eiﬁo[u sin(9o)+v cos(do)] (:C<—t1—tf~—tb). (A8)

Here, waves with a phase factor e'*¥30% or e~*57 travel in the positive (also indi-
cated by ‘4’ in the superscript of the field amplitudes) or negative z-direction
(‘=’), respectively. AM is the magnetic field amplitude of the incident TE wave
at a point Q in the plane z =0. The superscript % in AM indicates that the
incident wave is a TE-mode.
The dispersion equation is obtained by imposing the boundary conditions
at each interface to the field H,,. We obtain [10]
L= Rl Rt
Rlpe¥s — Ry,

— lc:he2c'kmt1, (Ag)

where

ko — k ko —k ki — k,
o _ko—ko pn_ ko—ko i ko= ko A10
P kot ko’ % kot kol h T ko + ko ( )

In the derivation of Eq.(A.10), satisfying the requirement | kyo | ¢4 3> 1 (kso is
purely imaginary) has been assumed, such that the factor ekwts is approximated

by zero. This requirement implies that the field of the guided wave must decay
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to a negligible level at the boundary between the substrate and the buffer layer.
In Ref. [10], two groups of equivalent boundary conditions are provided. One of
them is used to calculate the field amplitudes of the m # 0 Floquet waves E,,
and H,,. The other is used to calculate field amplitudes of the m =0 Floquet
waves Eo and Hy as well as the the quantity 63 (its definition see page 11). After
using the equivalent boundary conditions, the field amplitudes of the diffracted
Floquet waves (m # 0) can be written in terms of A*'. For diffracted waves
with a TE-polarization, the field amplitudes of Floquet waves (m #0) equal, at

the cover/cladding interface:

L= RL, pu— (R~ pr)e¥himt

Zo B
APt =g O ko) c08(@o — U, m Al (A1l
cm n n. ,30 it ) ( 0 )I—R{,:hph‘f'R;Clh(R',fr{h—ph)ezik'"‘t‘ c0 ( )
at the interface between the buffer layer and the substrate:
S 1 i m m m
e (14 Rb (1 + anbh)(l — anh)e (komtotkymes+himts) h+ (A.12)

(14 RE, RS e¥ikmte)(1 — R} o — (R, — pa)etibimtt) ™
where Z; is the wave impedance of vacuum. Waves with a TE-polarization are
indicated by A in the superscript of the amplitude coefficients, and e for waves
with a TM polarization. p, appearing in Eqgs.(A.11) and ( A.12 ) equals
_ RIL + Rlgetibomts
14 R{:h Rbs, e2ikomts

eXkimts, (A.13)

_ kfm_kbm bs - kbm'_ksm $1] — kfm_kl'm. lc — klm_kcm
mh kbm+kam ’ mh kfm+klm ’ mh klm‘l'kcm

(A.14)

In Eq.(A.11), #},, is the m-th Fourier coeflicient of the groove profile multiplied
by the half-depth of the corrugation (%"’), and is calculated from the groove
profile described by
t
e=2xw)  Ix(z) <1,

o

-3 (ﬁme-i’w" + ﬁ:nef%) : (A.15)

m=1
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where x(v) gives the dependence of the surface corrugation as a function of the
v-coordinate.
Similarly, the field amplitudes of Floquet waves (m # 0) with a TM-polar-

ization equal, at the cover/cladding interface:

A = —iff,. /Hm kim (p—1) sin@o—1 ) I—RﬁePeHRﬂe—Pe)ezik'mt' h+. (A.16)
o ™ Bo kimtpckem 1Rl p ARl (RI—pe)etibimti
at the interface between the buffer layer and the substrate:
e __Nikem (1 ol R”’ (L + RR)(1— RE Jeitbombstbmirthmt) (A7)
7 nlkim (1+ BRI Rt e2ikimto)(1— Rblepe+(RE— pe)etibmt) ™" 2
Here,
Rﬁe + Rs:ceﬁkbm“ 2kt
Pe= 1+ RﬁeRffzeeZikbmtbe ! f, (A.IS)
. m i sfvem m km m cfvem
be kfm Pbkb s kb —P k Rﬂ kf —Pix; le _k' —P. k (A.19)

me kfm‘*‘Pbkbm me= kbm'*’Ps sm me kfm'*'pikfm me m+pc cm’

ny 2 ny 2 ny 2 n; ?
== ,p=(—=) =) ,pe=|—]) - (A.20)
ny Ng ny e

The electromagnetic field of each Floquet wave as a function of z is either
oscillatory or it decays exponentially in the various media, depending whether
k;, is real or imaginary. If the condition 0 <|Bm|< ncko is satisfied, the wave
is radiated into cover and substrate. If n.ky <|fBm |< nsko, the wave radi-
ates into the substrate, but decays exponentially in the cover (we suppose
ne > ne). If nko <|Pm|< nsko, the waves are guided. If | B |> ngko, it
can be proven that 63 is purely real such that those waves do not influence
the damping of the guided wave [10, 18]. By choosing proper periodicities,
B-1= \/[ﬂosin(ﬂo)]2+[ﬂocos(ﬂo)—21\—”]2 can be smaller than n.ky such that the

wave is radiated into the cover.
After the equivalent boundary conditions [10] are applied to the perturbed

fields Eg and Hp at each interface, We obtain an equation which is different from
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the dispersion equation of the unperturbed guide (see Eq.(A.9) ) by a modified
term
L= Rl Ryt
Rébezik,t, _ Rﬂ
Bo " Akt
xzflm{2kc0+"ﬂ [k ATt sin(9o—d ,,,)]} (A.21)

Iml=1

— Rl eteti= (k)1 + RSt

We assume that the actual propagation constant for calculating the right-hand
side of Eq.(A.21) is approximated to fBy. At the left-hand side, the actual
propagation constant fy+ 68 is substituted. Using the first two terms of a
Taylor expansion of the left-hand side, and putting the first term equal to zero
on account of Eq.(A.21), an expression for §3 can be obtained.

From now on, the formulas become different for the cases n; < n. and n; >n,.
If n;<n,, 68 equals
[1 = (RE)(1 + R ekt

Rljtesme X

XZ {cho-H Bo [k At sin(9o—0

[ml=1

68= 3k,o(km ~ kwo)

bt

o). h2

in which the effective waveguide thickness ¢.;; is

; 1— (Roc 2:kmt1)
s =t + o iy

G{Rgil;}Rlc 2ikiot; (kjo kfo )

= WELTHEP

A.23
Fio 't ook (A.23)

where & is an operator performing on a complex value to obtain its imaginary
part. In fact, each term at the right-hand side of Eq.(A.23) is purely real. T,
appearing in Eqs.(A.22) and ( A.23) equals

T =1+ 2R UR{RE} + (Rl e¥ho)2, (A.24)

R is an operator performing on a complex value to obtain its real part. The

amplitude A% and the power P, of the guided wave are related by

P, = M, |AL, (A.25)
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and

2 2
Iy —nico Tless ik

My == 2 e
"7 4n2 —nZn. (1+ RS)?

k]

where ¢, is the light speed in vacuum.

Ifni>n., 68 is

— (R + R§)

i
P =3 k -
B=5ksolkn k°°) REtormeT

Imi=1

where

7
teft = —
1=t kso +2 Tkio T

kio

and
T =| Ry, + Rgpe™™" I,

PQ =M, IA5:10+|2’

Mo = In} —n2cy Yteyy
H=dwi—w2n, (1 + R

At the right-hand side of Eq.(A.28), each term is purely real.

S{Rge e} RY, 1 (Fgy)? (Ef_

. kgo
i+

kokeo

(A.26)

h+
XZ‘I]m{QkCQ-l-Z— [kcmAc+3zn(190 9 )—échmCOS(‘l’o—l,m)]}, (A27)

) (A.28)

(A.29)
(A.30)

(A.31)

The formulas

given in this appendix can be applied for several other waveguide structures by

putting some parameters to be equal. For example, let n;=ny, ny=n,, t;,=0

and t,=0, then the formulas appearing in the case n;>n. become the same as

those derived in Ref. [10] (see Fig.2.1).
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Summary

Focusing grating couplers (FGC’s) are designed to outcouple a guided wave
from an integrated optical circuit and to focus it onto a point above the waveg-
uide. A model including the vectorial treatment of the electromagnetic field is
introduced to calculate the field distributions at an FGC and around the focal
point for estimating of the image quality. An FGC which covers a rectangu-
lar area on the waveguide is formed by corrugating part of the top surface of
the waveguide. The corrugation depth is assumed to be small as compared to
the wavelength of the incident wave and to the film thickness. We aim at a
design that generates a spherical wave converging to a given point above the
waveguide, the required grating pattern is determined from the phase difference
between the incident guided wave and the required spherical wave. In reality,
an FGC always causes some aberration in the spherical wave due to fabrica-
tion errors and deviations in the configuration outside the grating. Aberrations
in the spherical wave are described by the deviation of the actual wavefront
from a reference sphere with its center at the point of reference [13] (which is
determined by minimizing the wavefront aberration). To investigate the field
distributions at the FGC and around the focus, the FGC is divided into sub-
gratings, each of which is approximated by a periodic and straight grating, such
that the grating is regarded as an array of subgratings with different periods and
orientations. A previously published method of calculating the field distribution
of a grating coupler [10] is used to design the subgratings. Once the field at the
center of each subgrating is known, the field distribution around the focus is
calculated utilizing the modified Huygens-Fresnel principle [17], which operates

with secondary plane waves rather than with secondary spherical waves.

For the analysis of grating couplers for waves at oblique incidence (see Ap-
pendix A of this dissertation), the coupling between an incident TE- (or TM-

polarized) guided wave and diffracted waves with TE- as well as those with
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TM-polarization with respect to the local grating vector is taken into account.
In addition, the complex propagation constant of the incident guided wave is
considered, leading to the optimization of the corrugation depth.

A comparison between our model and the more restricted earlier theories
has been carried out, their agreement is shown. For an FGC produced on a
waveguide consisting of a guiding film sandwiched between two semi-infinite
other media, three components of the field distribution at the FGC have been
calculated. For this FGC, the wavefront aberration of the focused wave resulting
after phase correction in the presence of the grating describes a uniform tilt
only, which causes the diffraction focus to be displaced over a small distance
(in the order of 0.1um) in the direction opposite to the propagation direction
of the guided wave. Theoretically, a coupling efficiency of 0.3 and a focal spot
diameter of 0.76um (at % of the peak intensity) can be achieved for such an
FGC with N.A.=0.6.

The field amplitudes of the diffracted focused wave is proportional to the
corrugation depth and the attenuation coefficient of the guided wave is pro-
portional to the square of that corrugation depth. To obtain a high coupling
efficiency, the corrugation depth should be chosen as large as possible. If the
corrugation is chosen too large, however, the main peak of the diffraction field
is broadened in the propagation direction of the guided wave. In order to pre-
vent the focal spot from broadening and to realize a high coupling efficiency,
we determine the corrugation depth such that the average power of the guided
wave decays to 61—2 of the input power after the wave has passed the FGC.

Our model has the advantage that it can include field deviation calculations
caused by fabrication errors, by a light source displacement and by a wavelength
shift. The quality of FGC’s image is very sensitive to a light source displacement.
For FGC’s, coma and astigmatism are essential and considerable aberrations.
A tolerance analysis using the Strehl intensity at the diffraction focus is used to

calculate the tolerances for the grating alignment and for its shape parameters.
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Because of stability problems and the low throughput of e-beam writing,
holographic techniques are chosen to produce FGC’s. Recording an FGC at
one wavelength and reconstruction at another results in aberrations in the re-
constructed beam. A holographic setup has to be designed to compensate for
the aberration caused by this wavelength shift. Two different combinations of
a holographic setup can, in principle, generate the same FGC pattern, but with
aberrations of opposite signs, as discussed in Sec.4.2. The method of Ref. [20], to
design a holographic recording setup for a collimated guided wave, is extended
here for a diverging one. The related fabrication process is described. One
branch of the holographic setup contains a collimating optical system, while the
other system is designed to compensate the aberration caused by the wavelength
shift such that the interference pattern at the recording plate has exactly the
shape of the required FGC-lines. The period and curvature of those lines can
be adjusted by the angle between these two branches. This holographic setup
allows recording of FGC’s with a maximum numerical aperture of 0.55 and a
focal length of 2mm. In our experiments, the FGC’s are recorded holographi-
cally at the wavelength of 363.8nm, and used at the wavelength of 632.8nm for
coupling a focused wave out of the waveguide from an incident collimated wave.

A method [34] which is capable of calculating the intensity distribution in
the recording plane is used to evaluate the performance of our holographic setup.
This evaluation shows an inhomogeneous intensity distribution in the recording
plane which can be approximated mathematically, allowing us to estimate the
intensity ratio between two recording beams by integration of the intensity of
each beam over the grating.

In our experiments, multilayer planar waveguides produced on two-inch sil-
icon substrates are used to accommodate the FGC’s. For such a multilayer
waveguide, the coupling efficiency can be increased by reflecting part of the
light radiated into substrate back to the cover where the beam is focused. The-

oretically, the coupling efficiency could be as high as 0.6 by optimizing the
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waveguide parameters and the corrugation depth. We found, however, that the
wavefront distribution becomes very complicated due to reflections at the inter-
faces between the layers. This causes the focal spot to broaden slightly. In our
experiments, a focal spot size of 2.9um for an FGC with a focal length of 2.0mm
and a grating diameter of 1.3mm have been obtained. The coupling efficiency

of this FGC is about 0.15.
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SAMENVATTING

Het doel van focusserende traliekoppelaars (FGC) is, om licht vanuit een
golfgeleider in een geintegreerd-optisch circuit om te zetten in een convergerende
golf in het medium daarboven, of omgekeerd. Een dergelijke FGC wordt gevormd
door een (doorgaans rechthoekig) deel het bovenoppervlak van de golfgeleider
van een reliéf te voorzien. De diepte van dat reliéf wordt verondersteld klein te
zijn ten opzichte van de golflengte van het invallende licht en van de dikte van de
filmlaag. Gestreefd wordt naar een ontwerp waarin een bolvormige golf ontstaat
rond een punt boven de golfgeleider, het daartoe benodigde traliepatroon wordt
bepaald uit het faseverschil tussen de invallende geleide golf en de genoemde
bolvormige golf. In de praktijk veroorzaakt een FGC altijd enige aberratie in
de bolvormige golf, ten gevolge van fabricagefouten en afwijkingen in de struc-
turen buiten het tralie. Zulke aberraties worden beschreven met behulp van de
afwijking tussen het echte golffront en een bol rond het referentiepunt [13] (dat
bepaald wordt door de aberraties te minimaliseren). In dit proefschrift worden
de veldverdelingen op de FGC, zowel als rond het brandpunt van de uittredende
golf, bestudeerd. Hiertoe wordt de FGC onderverdeeld in subtralies, die elk als
benadering geacht worden periodiek en van rechte tralielijnen voorzien te zijn.
Een eerder gepubliceerde methode voor veldberekening [10] kan hierop direct
worden toegepast. Indien het veld in het midden van elk subtralie bekend is,
kan het veld rond het brandpunt berekend worden met behulp van het Huygens-
Fresnel principe [17], dat op vlakke, in plaats van bolvormige, secundaire golven

gebaseerd is.

De analyse van traliekoppelaars voor scheef invallende geleide golven gaat
uit van een invallende TE- (of TM-) modus die energie uitwisselt met zowel TE-
als TM-golven ten opzichte van de tralievector. Voorts wordt daarbij de werke-
lijk optredende complexe voortplantingsconstante in rekening gebracht, waaruit

een optimalisatievoorwaarde voor de traliediepte naar voren komt. Vergelijken
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van onze methode met eerdere theorieén leidt tot een hoge mate van overeen-
stemming. Voor een FGC die gevormd is op een goligeleidende filmlaag tussen
twee halfoneindige media zijn de drie componenten van het veld in het tralie
berekend. In dat geval bestaat de aberratie in de gefocusseerde golf ten gevolge
van de fasecorrectie door de aanwezigheid van het tralie slechts uit een vaste
scheefstelling van het golffront, waardoor het brandpunt verplaatst wordt over
een kleine afstand (in de orde van 0.1pm) tegen de voortplantingsrichting van de
geleide golf in. Theoretisch kan een koppelrendement van 0.3 en een brandpunts-
diameter van 0.76um (tussen de punten met % van de piekintensiteit) bereikt
worden voor zo’n FGC, bij een numerieke apertuur van 0.6.

De amplitude van de afgebogen gefocusseerde golf is recht evenredig met
de traliediepte en de dempingscoéfficiént voor de geleide golf is evenredig met
het kwadraat ervan. Voor een groot koppelrendement moet deze diepte zo
groot mogelijk gekozen worden. Als deze echter té groot gekozen wordt, zal
het centrale maximum van het afgebogen veld rond het brandpunt verbreed
worden in de voortplantingsrichting van de geleide golf. Om zowel een smal
brandpunt als een hoog koppelrendement te bereiken, wordt hier voorgesteld om
de traliediepte zodanig te bepalen dat het gemiddelde vermogen in de geleide golf
na het doorlopen van het tralie tot % van de invallende waarde is afgenomen.

Ons model heeft het voordeel dat ook de veldafwijkingen ten gevolge van fa-
bricagefouten, van verplaatsingen van de lichtbron van golflengte-verschuivingen
bepaald kunnen worden. De beeldkwaliteit in het brandpunt blijkt zeer gevoelig
te zijn voor de vorm van de invallende golf (verplaatsingen van de bron). Be-
langrijke aberraties voor FGC’s zijn coma en astigmatisme. Een analyse, ge-
bruik makend van de Strehl-verhouding in het brandpunt, is uitgevoerd voor
het berekenen van de toleranties voor de tralie-positionering en voor zijn vorm-
parameters.

In verband met stabiliteitsproblemen en met de lage opbrengst van het schri-

jven met elektronenstralen, is er gekozen voor een holografische productietech-
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niek. Opname van een FGC met een andere golflengte dan bij weergave leidt tot
aberraties in de gefocusseerde bundel. De holografische opstelling moet zodanig
opgezet worden dat deze aberraties gecompenseerd worden. In principe kunnen
twee verschillende holografische configuraties hetzelfde FGC-patroon vastleggen
doch, zie Sec. 4.2, met tegengestelde tekens voor de aberraties. De methode
van Ref. [20] om een holografische opstelling te ontwerpen voor opname van een
FGC met een gecollimeerde invallende geleide golf is uitgebreid naar de moge-
lijkheid van divergerende invallende golven. Op basis hiervan is een opstelling,
bestaande uit conventionele lenzenstelsel, ontworpen en vervaardigd. Een tak
van de interferentie-opstelling bevat een collimerend stelsel, de andere is ontwor-
pen om de aberraties ten gevolge van de golflengte-verschuiving te compenseren.
De periode en kromming van de aldus geproduceerde interferentielijnen kunnen
geregeld worden door de hoek tussen de beide takken te veranderen. De op-
stelling is geschikt voor het vastleggen van FGC’s met een maximale numerieke
apertuur van 0.55 en een brandpuntsafstand van 2mm. De holografische op-
name geschiedt bij een golflengte van 363.8nm, de koppelaar wordt gebruikt bij
632.8nm voor koppeling uit een gecollimeerde geleide golf.

Een methode voor het berekenen van het intensiteitsverloop in het holo-
gramvlak [34] is gebruikt om de opstelling te evalueren. Dit bracht een inho-
mogene verdeling aan het licht die, wiskundig benaderd, tot een schatting heeft
geleid voor de intensiteitsverhouding tussen de beide opnamebundels.

In de experimenten zijn meerlaags golfgeleiders, gedeponeerd op silicium-
substraten met een diameter van 2 inch, gebruikt als ondergrond voor de FGC’s.
Voor zulke meerlaags geleiders kan het koppelrendement verbeterd worden door
een deel van het licht dat het substraat wordt ingestraald, terug te kaatsen naar
de deklaag waarin het brandpunt wordt gevormd. Door optimaliseren van de
golfgeleider parameters en de traliediepte kan aldus een theoretisch rendement
van 0.6 bereikt worden. Er is echter gevonden dat de veldverdeling door re-

flecties aan de grensvlakken tussen de lagen zeer ingewikkeld wordt, waardoor
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het brandpunt enigszins verbreed wordt. Experimenteel is een brandpunt met
een diameter van 2.9um voor een FGC met een brandpuntsafstand van 2.0mm
en een traliediameter van 1.3mm bereikt. Het koppelrendement daarvoor is

ongeveer 0.15.
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