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Preface

The work presented in this thesis is a continuation of research and remarkable
incidents over the past centuries. Ome of the first incidents was in 900 BC,
where Magnus, a Greek shepherd, walked across a field of black stones which
pulled the iron nails out of his sandals and the iron tip from his shepherd’s
staff (authenticity not guaranteed). This region becomes known as Magnesia.
Many centuries later, serious research took place and it was Charles Francois du
Fay who discovered in 1733 that electricity comes in two kinds which he called
resinous (-) and vitreous (+). Almost a century later, in 1820, Hans Christian
Oersted discovered that electric current in a wire causes a compass needle to ori-
ent itself perpendicular to the wire. Faraday started to repeat these experiments
in 1821, and many new experiments followed. This resulted in the introduction
of field lines to describe the phenomena and in 1837 he discovered the idea of the
dielectric constant. James Clerk Maxwell wrote in 1855 a memoir in which he
combines Faraday’s ideas of field lines with Thomson’s mathematical analogies.
In addition, Maxwell showed that light was an electromagnetic phenomenon and
that the speed of light and the speed of electromagnetic waves electromagnetic
waves are equal. His most well known publication is his Treatise on Electricity
and Magnetism, published in 1873. This paper discusses everything which was
known at that moment about electromagnetism, from the viewpoint of Fara-
day. Hertz was the first who demonstrated wireless electromagnetic systems
in 1886. In addition, he showed that electromagnetic waves are reflected by
metallic and dielectric objects. In 1903 the first “radar” system was developed
by Hiillsmayer, who experimented with the detection of radiowaves reflected
on ships. His work resulted in 1904 in the patent “Hertzian-wave Projecting
and Receiving Apparatus Adapted to Indicate or Give Warning of the Presence
of a Metallic Body, Such as a Ship or a Train, in the Line of Projection of
Such Waves”. Hiilsenbeck started to determine the structure of buried objects
with pulsed electromagnetic signals for which he obtained a patent in 1926.
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Some people, like Olhoeft in 1996, mention Stern as the first person who used
radar to map the subsurface. In 1929, Stern performed surveys with ground
penetrating radar in Austria to probe the depth of a glacier. During the sec-
ond world war, radar techniques evolved rapidly, and in the eighties ground
penetrating radar was utilized increasingly for the detection of natural cavities,
road pavement analysis, forensic science, etc.. In this period the first radar
surveys out of a borehole were carried out for prospecting, as mentioned by
Dyck in 1975, and for testing the integrity of rocks at nuclear waste disposal
sites. Many borehole systems followed. However, none of these system made it
possible to obtain three-dimensional images of the subsurface out of a borehole.
The present thesis deals with the theoretical design of a borehole radar that
enables us three-dimensional imaging of the surrounding environment 1.

1Obviously, this is just a selection out of the remarkable highlights on electromagnetic
theory and ground penetrating radar in the past centuries. Many more are mentioned in
the books from Whittaker published in 1960, or in the overviews given in 1985 by Dyck and
Young, and in 2001 by Salazar-Palma et al. and Sarkar et al. .
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Chapter 1

Introduction and survey

This thesis concerns the development of a directional borehole radar system.
We first discuss a modeling method for the design of the antenna. Subsequently,
we develop algorithms to obtain three-dimensional images of the subsurface.

In the twenties Hiilsenbeck started to determine the structure of buried
objects with pulsed electromagnetic signals. Other people, like Stern in 1929,
started to use radar for mapping the subsurface, and performed surveys with
ground penetrating radar (GPR) in Austria to probe the depth of a glacier.
This was the beginning of a long trajectory where radar was used to probe
the subsurface from the surface. The technique is based on the reflection of
waves at the intersection between two media with different electromagnetic
properties, like an object in the subsurface or two layers. In the past decades,
other electromagnetic techniques have been developed as well. For instance
induction techniques, where electromagnetic waves in the low frequency range
are used to detect layers and objects which are highly conductive. However,
problems arise if the electromagnetic waves can not reach the domain of interest,
because it is either simply too deep (oil industry) or behind an electrically
impenetrable layer. This can be for instance a highly conductive claylayer, or
a concrete floor with metal objects. The solution to this problem is choosing a
location that is closer to the domain of interest. In practise it means that we
have to drill a borehole and perform the measurements out of it. This resulted
in the development of new methods in the seventies and eighties, of which an
overview is given, among others, by Dyck and Young in 1985. During the
last decades improvements have been made concerning penetration depth and
resolution, resulting in two classes of systems. One class has a large penetrating
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depth, but is not directional. Consequently, it is not known where the received
reflected signal comes from and therefore, it is not possible to obtain a three-
dimensional image of the subsurface. The other class of systems is directional,
but has hardly any penetrating power. These systems are mainly used for
measuring the orientation of layers in the subsurface. Note that an overview of
resistivity logging tools is recently given by B.I. Anderson (2001). It is obvious
that there is a great demand for a system which has both a directional radiation
pattern and a large penetration depth. In order to meet this demand we started
in 1998 with the development of a borehole radar system which has a directional
radiation pattern, a large penetration depth, and sensitive receiving properties.
With such a tool, a three-dimensional image of the subsurface can be obtained.

To discuss the design of the system, we start at the basis of electromag-
netic theory using Maxwell’s equations. In chapter 2 we express them in a
differential form in the time domain. Since the aim of this project is the design
of an antenna system which operates optimally for one specific frequency, we
introduce the Laplace transformation. With this transformation, we describe
phenomena in the frequency domain instead of the time domain. We apply
this transformation on Maxwell’s equations. The electromagnetic waves, we
are dealing with, are generated by an electric dipole antenna, i.e. an electric-
current-carrying wire. A directional radiation pattern is obtained through the
presence of a metallic reflector next to the dipole. Hence, we need additional
expressions to describe the influence of the reflector on the wavefield. Those
are given by the electromagnetic boundary conditions. Finally, we introduce a
theorem, the reciprocity theorem, to describe the complete system, containing
a dipole antenna, a perfectly conducting reflector for the focussing effect, and
a scattering object. The basis for this reciprocity theorem has been made by
Lord Rayleigh in 1894. The resulting equation serves as a starting point for the
design of the reflector and the development of a scheme to compute an image
of the subsurface. In this equation an integral over unknown quantities occur,
hence we refer to it as an integral equation.

In chapter 3 we discuss the design of the bistatic antenna system of the
directional borehole radar. We show that a directional radiation pattern is ob-
tained by positioning a perfectly conducting reflector next to an electric dipole.
Therefore, we start with the integral equation derived in chapter 2, but in
the absence of scattering objects. Since the reflector is curved in the direc-
tion perpendicular to the dipole, we formulate the problem in a curvilinear
coordinate system. We end up with an integral equation which combines the
known incident electric wavefield from the dipole antenna with the unknown
electric-surface-current density at the reflector. This integral equation is solved
with a conjugate gradient method. This method is independently developed
by Stiefel (1951) and Hestenes (1951,1973). In 1952 they published together
an article, which is generally acknowledged to be the first report of the mod-




ern conjugate gradient method. Many books and articles have been written
on this subject. The present implementation is based on the work done by
Kleinman and Van den Berg (1991), and Van den Berg (2002). To increase the
computational speed, we use a fast Fourier transform for the computation of
the convolution present in one direction. We show various numerical results for
several configurations, as obtained in our search for the optimal configuration.
Based on the design presented in this chapter, a prototype antenna system is
built. Measuring the radiation pattern of this prototype enables us to verify
our numerical results.

After the development of this new directional borehole antenna system,
we concentrate on the development of an imaging algorithm which uses the ra-
diation characteristics of the antenna in an optimal manner. This is discussed in
chapter 4. Again we start with reciprocity, where we formulate two distinctive
states in which the system can operate. Hence, we have in each state a domain
containing the same antenna configuration. Since this domain is inaccessible,
the antenna system is described by the state as observed at the end ports of the
system. To describe this state, we use an impedance formulation. The absence
or presence of scattering objects in the remaining spatial domain determines in
which state the complete system is. Differences in states are notified by changes
in impedance. We combine these formulations with the results from chapter 3.
Consequently, we end up with an integral equation. After “simplifying” (lin-
earizing) the integral equation, we obtain an equation which contains a known
sensitivity function representing the transmitting and receiving properties of
the antenna system, a known (measured) impedance function and an unknown
function describing the changes of the medium parameters. Since the sensitivity
function plays such an essential role, we explore this function. We show that
the function can be approximated by an effective one, resulting in a reduction
of computational time and the need of computer memory. Three imaging al-
gorithms are derived, enabling us to obtain a three-dimensional image of the
subsurface. Two are based on a one-step inversion scheme minimizing an er-
ror functional, and are called standard and minimized back-propagation. The
other one is a conjugate gradient method that attempts to improve the image
iteratively. The algorithms are tested on both synthetic and measured data.
The chapter ends with a short discussion on the maximum angular resolution
achievable.

In the concluding chapter (5) we briefly discuss the essential steps in the
development of the directional borehole system. We outline some aspects which
need more attention and further research, hopefully, resulting in an improve-
ment of the current system. In addition we make some remarks on possible
applications of the system. Some of them are easy to realize, others are chal-
lenging.
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Chapter 2

Basic electromagnetic equations

The directional borehole radar system we discuss throughout this thesis con-
tains an electric dipole and a perfectly conducting curved reflector. In figure 2.1
the antenna system is shown schematically. Here we consider the dipole as a
electric-current-carrying thin wire, creating an electric wavefield. This wave-
field reflects at the surface of the perfectly conducting reflector. The reflected
wavefield together with the “dipole” wavefield, forms the incident wavefield
from the antenna system into the subsurface. It is obvious that the curvature
and the position of the reflector have a great influence on the directionality of
the radiation pattern of the antenna system.

In this chapter we start with stating the Maxwell equations as a set of
differential equations and their constitutive relations, since they form the ba-
sis in describing the electromagnetic phenomena. However, at the surface of
our reflector the Maxwell equations are no longer continuously differentiable.
Therefore, additional conditions are required, valid at the surface of the re-
flector. These differential equations, constitutive relations, and boundary con-
ditions are used in the reciprocity theorem. This theorem interrelates in a
specific manner two admissible states that could occur in one and the same
time-invariant spatial domain. We use this reciprocity theorem to describe the
interaction between the dipole, the reflector, and a scattering object. One state
is taken as the probing state while the other one is taken as the physical or
actual state. This results in an integral equation, which is used as starting
point in the remaining chapters.
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antenna system

Figure 2.1: The antenna system, where a perfectly conducting curved reflector is
positioned next to an electric-current-carrying thin wire.

2.1 Electromagnetic wavefield

The Maxwell equations, based on the equations formulated by Maxwell in 1873,
form the basis for describing electromagnetic phenomena. Let the vector & = x;
for i = {1,2,3} denotes the spatial position in R® in the Cartesian coordinate
system and let ¢ denotes the temporal parameter, then Maxwell’s equations in
differential form in matter read

~€k,m,ﬁamHP(f) t) + Jk(ff t) + atDk(fE

(b)) = —JgNE, 1), (2.1)
€jnrOnEr(Z,t) + 0, B;(Z, 1)

-K$4(&,1) (2.2)

i

where €, , is the Levi-Civita tensor of rank three, d; the temporal deriva-
tive, and 8,, and 8, the spatial derivatives in the z,,- and z,-directions. The
meanings of the electromagnetic field quantities are given in table 2.1. We use
the Einstein convention such that summation takes place over quantities with
repeated lower-case subscripts. Since there are more unknowns than known
parameters, we have an incomplete set of equations, even if the right-hand
sides are known, which express the actions of external forces. Supplementing
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Table 2.1: The clectromagnetic field quantities

E(Z,t) | electric wavefield [V/rg]j
H;(&,t) | magnetic wavefield [A/m]
Dy(&,t) | electric displacement wavefield [C/m?]
B;(Z,t) | magnetic induction wavefield [T]
Ji(Z,t) | volume density of electric current [A/m?]
JEX*(Z,t) | volume density of electric-source (external) current [A/m?]
K$*(Z,t) | volume density of magnetic-source (external) current | [V/m?]

Table 2.2: The electromagnetic medium parameters

a(Z) | electric conductivity (S/m]
€0 (absolute) electric permittivity of vacuum [F/m]
e:(Z) | relative electric permittivity -]

po | (absolute) magnetic permeability of vacuum | [H/m)]

u(Z) | relative magnetic permeability [-]

equations are furnished by the constitutive relations, which read

Ji(E,t) = o(Z)Ex(Z, 1) , (2.3)
D(@,t) = coes () Ex (3, 1) , (2.4)
Bj(:a t) = ,U'OHJ'(:EJ) ’ (25)

where the meanings of the medium parameters are given in table 2.2. Through-
out this thesis we only work with nonmagnetic susceptible materials, conse-
quently, we take the relative permeability ur equal to one. In addition, we
assume the medium to be linear, time invariant, locally and instantaneously re-
acting and isotropic in its electromagnetic behavior. Combining equations (2.1)-
(2.5) results in a set of differential equations with two unknowns for known
medium parameters and external sources, viz.

_fk,m,pame(f» t) + U(f)Ek(fa t) + Eogr{f)atEk(fa t) = _'];cem('i t) ’ (26)
€jnrOnEr(Z,t) + po0 H;(Z,t) = —Kf’“(f, t). (2.7
This set of differential equations is transformed to the frequency domain, using

the temporal Fourier transform. Switching on the sources at instant ¢ = o, the
temporal domain 7 is defined as

T ={teR|t>t) . (2.8)
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The complement of the temporal domain {t; U7} is denoted as 7’ and hence
T ={teRt<ty}. (2.9)

The one-sided Laplace transform of a function f(Z,¢) in space-time, defined for
t € {to U T}, is defined as

f(&,s) = / exp(—st) f(Z,t)dt , (2.10)

t=tg

where s is the Laplace transform parameter. In physics all quantities have
bounded values, so s must satisfy

Re{s} > 0. (2.11)
Now the temporal Fourier transform with time factor exp(—iwt) is obtained by
taking the limit

s — —iw , (2.12)
where w is the real and positive temporal angular frequency, and where 52 = —1.
Note that we use the symbol ~ to indicate that a quantity or a parameter

is defined in the temporal Laplace domain. Applying the temporal Fourier
transformation on equations (2.6) and (2.7), we obtain

—€kmpOm Hp(Z, 5) + 86(, 5) Ex(F, 5) = —Jg(Z,5) | (2.13)
€inirOnEr(E, 8) + spoH;(T, 5) = —KP(, s) (2.14)

where £(Z, s) denotes the complex permittivity of the medium, viz.
E(Z, ) = eoer(T) + U—(:—) , (2.15)

which describes the electromagnetic properties of the medium.

2.2 Boundary Conditions

Let there be two adjacent volume domains M; and My with different electro-
magnetic media properties £1(Z, s) and é;3(Z, s), and separated by a source-free
surface S as shown in figure 2.2. Let v; denote the vector normal to the surface
S, pointing into the domain Ma. At this surface, the electromagnetic boundary
conditions require that the tangential components of the magnetic, I?[,,(:Z", ),
and the electric, E,(Z, s), wavefield are continuous across this surface, hence

ek,m,pumf{p(a':', s) is continuous across S , (2.16)

€jnrtnbn(Z, 8) is continuous across S . (2.17)
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Figure 2.2: Two spatial domains M; and M, with media properties &;(%,s) and
£9(Z, s), separated by the source-free surface S with normal 7.

Whereas the components of the magnetic induction wavefield, Bj(:?, s), and the
electric displacement wavefield, Dy (Z, s), normal to the surface are continuous
across S, thus

v;B;(Z,s) is continuous across S | (2.18)

D (Z, ) is continuous across S . (2.19)

However, in case the domain M is electrically impenetrable, the tangential
components of the electric wavefield must vanish at the surface S and satisfy
the relation

lim €imenEr(Z+h0) =0, VFES. (2.20)

This is in general true for the case where the relative permittivity .(#) or
the conductivity o goes to infinity. In the special case when an infinitely thin
reflector is present at S, the tangential components of the magnetic wavefield,
exhibit a discontinuity across the surface equal to an electric-surface-current
density present at the surface of the reflector, viz.

TG, 8) = im e mp¥im [H,,(f + hi7,s) — Hy(Z ~ hi, s)] , VZeS, (221)

where j,gﬂ(:ic’, s) is the tangential electric-surface-current density in [%]

2.3 Reciprocity relations

Reciprocity is used to interrelate the electromagnetic wavefield quantities from
two different states A and B, that could occur in one and the same space-time
domain. Each of the two states is characterized by its own set of source distribu-
tions and medium parameters. State A represents the computational or prob-
ing state. In this state an electric-probing-source current jf:rb(s)é(a':' — 7P g
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Figure 2.3: The two states of the spatial domain I. State A describes the probing state
where an electric-point-source current .J,] jPr® is present. State B represents the actual
state containing a thin wire in the dommn L carrying an electric current, a metal
reflector in the inaccessible volume domain enclosed by the surfaces S*, S~ and §°,
and an accessible scattering object with complex permittivity &5 in the domain D#°t,
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Table 2.3: Description of the two states of the spatial domain D

state A state B ]
EA=EP™(Z,s) VEeD EB=EYz, s) vFeD
HA=H™(Z,s) VEeD | HP=H{(s) VieD
JEAZJP(5)§(7 — ) VZeD | JEP=jI®(z, ) VEel
KiA=0 VvieD | K79%=0 VieD
e4=¢b8(s) VZeD €5 VEeD
A =1 VieD £5(F, 8) Y & € D
S=0 iB=po VieD
Dset—{) D'=D\ {SD*t}

present in a homogeneous background medium with medium parameter £°8(s).
Therefore, the field quantities are denoted as {Egrb(a‘c', s),flfrb(i,s)}. State
B however, represents the actual or physical state. Here we position an an-
tenna system and an inhomogeneous scattering object with medium parameter
£5(F, s) in the same background medium as in state A. The antenna system
contains a thin electric-current-carrying wire as electric-current source and a
perfectly conducting metal reflector. In this state the field quantities are de-

noted as { E{°%(Z, s), H'* (%, 5)}.

A domain D with boundary D encloses a volume, which does not contain
external magnetic currents and where the medium has a permeability pg. For
such a domain, the frequency-domain reciprocity theorem of the convolution
type reads,

s [ vm (B (8,9) - BE (@ 9) A (7,9) A @

__ / s (£B(&,5) - e4(, 8)) BA(#, ) EP (&, 5)AV (@)
Feh
+ / (j,j’“**‘(f, s)EP (2, s) — JB(7,8) EA(Z, s>) dv(z) , (2.22)

zeh

see for instance De Hoop (1995). Using this reciprocity relation, in combination
with the two state descriptions from table 2.3 and as visualized in figure 2.3,
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we obtain

seiact
+ / JP(5)6(Z — FP) BN (F, 5)dV (E)

ZeD

- / Iz, 5) EP™ (2, 5)dL(%) , (2.23)
ZEL

where we have used the thin wire approximation such that JA,? (Z,5)dV(Z) =
f,‘ciip(a?, s)dL(Z), with fgip (Z, s) the electric current oriented along the tangent to
L. Note that the boundary integral consists of a contribution from SoUSTUS™,
with normal pointed into D, and a contribution from &6D°"* surrounding the
contrast and the antenna system, with normal pointed out of D.

The electric wavefield E,frb(f, s) is caused by the probing electric-source-
current density j,frb(s)é(i" ~ &™), Consequently, EF'(Z, s) satisfies

EP™(3,5) = Gy (F|7P™, 5)JP™(s) (2.24)

where gfﬂ(ﬂfp’b, s) is the electric-field/electric-current Green tensor, hence

AB T 1, . Al
G,fiJ(wlfprb,S) =7 (—42Iky + 0k01) G(F)7P™, 5) (2.25)
where G(Z|Z, s) is the scalar Green function, viz.
o exp (=9 |2 — &)
G fe)=—"—— 1 7 2.26
($|$ ,S) 47l‘|f“—f’| ’ ( )
in which 4 satisfies
4% = %8y, | (2.27)

and where the symmetric unit tensor Iy; =1 for k =1 and Ix; = 0 for k # [.
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Assuming that in both states the media at infinity are homogeneous and
source-free, the first term on the right-hand side of equation (2.23) vanishes
when one let OD°% tend to infinity.

The next three surface integrals are over the complete surface of the
inaccessible volume domain containing the reflector. We let St and S~ tend to
S, and in addition we let S° around the edge of the reflector tend to the edge.
Then in view of the edge conditions as formulated by Jones in 1964, the integral
contribution over S° vanishes, while we take the contribution from S* and S~
together as

€mk.j / Vi (EPrb( )Htot( ) tot(w S)Hprb(;p 8)) dA( )

Fest
) E'Prb tot tot Hprb A
+emkj [ Vm (@, 8)H(Z,5) — EY(E, s)HY " (Z, 5) ) dA(Z)
FeS—
_ / e V(3. 3) (BI(E 4+ 7, 5) — (& ~ 1o, 5) ) dAD)
Fes

- / emie jUm B (F, 5) (ﬁ;’“’(f + hit, s) — HP™ (& — h, s)) dA(F) .
resS
(2.28)

Applying the boundary conditions for the perfectly conducting reflector at the
right-hand side of equation (2.28), see equations (2.20) and (2.21), results in

lim [ emgvm R (@, 5) (IQT;“(:E + hw,s) — HN& - o, s)) dA(3)
Fes
- / EP(7, 5) SR (7, 5)dA(D) , (2.29)
zeS
where j,ﬁﬂ is the tangential electric-surface-current density from equation (2.21).

When we apply the results from above in equation (2.23), we obtain

0= / GE @\, 5)J™ (5) (@, 5)dA(#)

ZesS

- / s(ém(cc s) — &%(s )) Gy (Z)ZP™, )P (5) Bt (&, 5)dV ()
Fehsct

+jprb(s)Etot(—»prb s)
/ Giep! (F|F™, 9)JP™ () 1™ (7, $)AL() , (2:30)

zel
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and, in view of the arbitrariness of j,f rb(s), it reduces to

Bt @) = [ GF @\, 9", 9)4A@
zeS
+ / s (gsct(x s)— ‘bg(s)) g}cE,iJ(jprblfa S)Eltc’t(f, s)dV(Z)
5€]Dsct
/ GE ()7, 5) 1% (7, 5)dL(2) (2.31)
Zel
The three terms on the right-hand side are denoted as follows. The third term
describes the electric wavefield from the wire with electric current I7'P(&, ).
The first term describes the field due to the presence of the reflector at S, while

the second term describes the field due to the presence of the scatterer at Dsct.
Hence, we write the total field as a superposition of three contributions, viz.

EfY(3,5) = Egip(f, s) + ER(&,5) + EM(&,s) (2:32)

where the dipole and the reflected wavefields satisfy

EI®(z,5) = / Gri” (@7, )™ (&', 5)dL(F") | (2:33)
Z'el

B = [ O ait@ @), @
z'eS

and where the scattered electric wavefield reads

EfH(@,s) = / s (4@, 5) - £%%(s)) G (@12, ) B (@, 5)aVI(F")
I’ ehsct

(2.35)

Consequently, we can define an electric wavefield due to the antenna system
itself, viz.

Eire(7,5) = EXP(3,5) + Ef\(F, s) . (2.36)

Note that we have obtained a complete framework for both the antenna
system and the interpretation of data to be obtained with the system. This
framework serves as a basis for this thesis. Consequently, we discuss in the next
chapter the computation of the incident wavefield from the antenna system.




Chapter 3

Design of directional borehole radar

In this chapter we compute the directional radiation patterns of various borehole
antenna configurations, all based on the same principle. After the optimum
configuration is obtained, a prototype is built. The radiation pattern of this
prototype is measured and used for verification of the numerical model.

There are mainly two methods to emit a directional electromagnctic wave-
field out of a borehole into the subsurface. One is via a magnetic dipole, while
the other one uses an electric dipole where the omni-directional radiation pat-
tern is disturbed by positioning a reflector next to the dipole. We have chosen
the second option, see figure 3.1, since the radiation resistance of the electric
dipole is much larger than the one of the magnetic dipole, as shown by Bal-
anis in 1997. Therefore, more power is dissipated into the subsurface in the
form of electromagnetic waves. Our choice is supported by experiments with
magnetic loop antennas (Chignell et al., 1988), where explicitly preference is
given for electric dipoles in ground-probing methods. Parallel to the dipole we
positioned as reflector a “perfectly” conducting plate. For microwave antennas,
the parabolic reflector is one of the most widely used, see e.g. Skolnik (1981).
In optics, such a parabolic curvature results in a parallel beam if the source is
positioned in the focal point of the reflector. This would be the most prefer-
able radiation pattern. In the microwave region this “focussing” effect is not
feasible since the wavelength is of the same order of magnitude of the construc-
tion. However, we expect to arrive at some directional radiation pattern using
a parabolically curved cylindrical reflector. In this chapter we also investigate
the effect of a circularly curved cylindrical reflector. Therefore, we describe our
antenna configuration in a curvilinear coordinate system so that we can deal
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object

________ - = ___
AY Ay
™
transmitter receiver

Figure 3.1: The bistatic antenna configuration.

with the parabolic and the circular reflector simultaneously.

Before we start computing the various radiation patterns, we need to
discuss two aspects of the system. First of all, there is mainly one interest-
ing frequency range, which is around 100 MHz. This is a compromise between
spatial resolution and penetration. A higher frequency will result in more res-
olution but in less penetration and vice versa.

The second point considers the limitations on the spatial dimensions of the
borehole radar system. Since the antenna system must fit in a single borehole,
we have chosen for a bistatic setup where the diameter of the antenna system
does not exceed 0.09 m. This is much smaller than the wavelength of a 100 MHz
wave in free space. Consequently, the influence of the reflector on the radiation
pattern will be very small. To increase this influence, the effective wavelength
is shortened by embedding the system in water.

3.1 Antenna configuration

An electric dipole in a curvilinear coordinate system with position vector ¥ = v;,
see figure 3.2, is defined in the one-dimensional domain L, having a length of
21 in the &, -direction and located at v3”® in the &,,-direction and v5® in the
€ys-direction, hence

L={7eR—1<uv <l,vg=03P v3=03"}. (3.1)

In the dipole domain, a sinusoidal external electric current is present, which
vanishes at the end points and has a maximum in the center (see e.g. Bal-
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reflector

Figure 3.2: The antenna configuration in the curvilinear coordinate system. A reflec-
tor of length 2a in the €,,-direction is positioned at a distance d in the &,,-direction
from the dipole and curved over 2b in the €,,-direction. The dipole has a length of 2[
in the €,,-direction.

anis, 1997). Parallel to this dipole, a perfectly conducting reflector having a
length of 2a in the &, -direction, is positioned at vgﬁ with a fixed distance d
in the €,,-direction from the dipole and is curved over 2b in the &,,-direction.
Consequently, the surface S of this reflector is defined as

S={TeR}-a<v <avy=0v, ~b < w3 <b}. (3.2)

The antenna configuration is positioned in a homogeneous background medium
with constant complex permittivity &, where £ reads

€ = goer + g , (3.3)
s

with e, the relative permittivity and o the conductivity of the medium. Besides,
the medium is assumed to be nonmagnetically susceptible, i.e. the relative
permeability u, is equal to one. Furthermore, the symbol " on top of a given
quantity or parameter denotes that it is defined in the temporal Laplace domain
with Laplace parameter s. Frequency domain results are obtained by taking
the limit

s — —iw, (3.4)

where w = 27 f, in which f is the temporal frequency.
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3.2 Formulation of integral equation

In chapter 2 it is derived that the wavefield from the antenna system into the
surrounding medium may be decomposed as

Eire(7) = ESP(@) + EX(7), VieR®, (3.5)

where EAffl‘C(z')') is the incident electric wavefield defined in the orthogonal curvi-

linear coordinate system with unit vector &, at the position 7, where ESP(7)
is the dipole wavefield, and where E;? (V) is the reflected wavefield, see equa-
tion (2.36). In appendix A, more information on the orthogonal curvilinear
coordinate system is given. In view of the electromagnetic boundary condi-
tion, the tangential components of the incident electric wavefield vanishes at
the surface of the reflector, see equation (2.20), therefore

—Bdr(p) = M (%), VoeS, Vac{l,3}. (3.6)

To emphasize the tangential character of the above quantities, we introduced
Greek subscripts, like @ or 8. These can only be one or three from here on.
For repeated Greek subscripts the Einstein summation convention is used as
well. Consequently, it is obtained, in combination with equation (2.34), that
the reflected wavefield satisfies

~ 1 N R
B0 = 2 [has + Vo 90]T3 [ G@FT00) A . (3.7)

v'es

where j;g(ﬁ’ "} is the jump in electric-surface-current density over the plate do-
main § of the reflector, V,,;V,, is the gradient divergence operator in the curvi-
linear orthogonal coordinate system, I;; is the symmetric unit tensor, Tl_J1 and
T;; are the coordinate transformation matrices as defined in appendix A. Fi-
nally, the Green scalar function G(7]7’) reads

G’ = %@ , (3.8)

in which the distance p is defined in the Cartesian coordinate, hence

Nl=

p={[31(®) — &1 (@] + [(@2®) — 22@)]* + [23(®) — wa(@)]*}* , (39)
and where 4 satisfies
42 = s%pug | (3.10)

see equations (2.24)-(2.27). The tangential components the gradient-divergence
operator V, V,, can be factorized into two terms, one containing only spatial
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derivatives in the direction tangential to the reflector while the other one con-
tains the remaining normal derivatives, viz.

1 1 1
0 hh 3 Ooh — 01 ——zh
h1 o 2,3 1h1 2h1s o 1}11,23 3h12
VeVe =l 1, 1 4, 1 1
= ; = h h
™ 3h127‘ 1ha3 83}11 Oahy3 h 2353 1,2
\ = D’UT »I‘DlIJ\{r ] (311)
| @, 2,1
; where
?
I DZ;] Dg;z Dg—;%
Dr = : 3.12
wo =\ DL, DL, DI, (312
1 1 1
—3 h — 3 h
hl th Orha3 hlalh1,2,3 h 1h12333 1,2
g R SR PR S P B R
hs 3h123 RN 3h1,2,3 h3 3h123 372
and
1 0 0
DY, = |0 %M Of (314)

0 0 1

with Lamé coefficients h1 93 = hy, hyyhugs hij = hyhy,, hi = hy, and spatial
derivatives J; = 0,,.

Combining equations (3.6)-(3.14) results in an integral equation in a
curvilinear coordinate system. We write this integral equation as

1 .
~BP (@) = —[-4L @) + DI BL®)|, vies,  (315)

where
Bifi(9) = DY, A, (3.16)

and where

@) =170 | [ F (6w Tar (] aaw| L Gan
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where we use the spatial Fourier transform F[-] to carry out the spatial con-
volution in the €, -direction. In order to obtain the incident electric wavefield,
the integral equation has to be solved for the unknown electric-surface-current
density j;g(ﬁ "), while we know the electric dipole wavefield ESP(7) from the
external electric current in the dipole domain.

If the reflector was defined as a surface in the (z1, z3)-plane in a Carte-
sian reference frame, the complete problem could have been solved in the
Cartesian coordinate system. In this case the transformation matrices in equa-
tion (3.17) become the identity matrices and both the electric-surface-current
density and vector potential have only values unequal to zero for their z;- and
x3-components. Therefore, the partial derivative in the €,-direction, d,,, in
the operator DZ . looses its significance and becomes zero. What remains is a
simpler problem, where the integral equation from equations (3.6)-(3.14) would
read

~ 1 1 n
_pdipry . S [_R21 . T N fl (=
EZP(Z) = sé[ ¥ 1o + D Dw ,B]Azﬁ(x) , (3.18)
where
A (7 / #)JM(F)AE), YFes, (3.19)
F'eS

and where the operators DT

a,i’

and Dy, = simplify to

Dg‘ll Diq;m Dgls 831 0 8‘”165'?3
Dt = = , 3.20
Font DZ;I Dzji;z D'Z;S 030z, 0 82273 ( )
and
100
Dy, =|0 0 0]. (3.21)
0 0 1

This plate problem is solved by Zwamborn and Van den Berg (1991).

3.3 Discretization of integral equation

To solve the integral equation of (3.15)-(3.17) numerically, we develop a dis-
cretized version. This version is analogous to the discretization procedure in
the Cartesian coordinates system suggested by Zwamborn and Van den Berg
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7ril Arfl Arfl F>rfl fyrfl 7-dip
J3 A&Um'n, A% R ngmyn, BE £
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-N
«—
-M Av, M

Figure 3.3: The discretization of the plate domain S into 20 x 2N cells in the v;-
and vs-direction, respectively. Each cell represents a subdomain S

Vm,n*

(1991). Consequently, the domain S is discretized in 2M x 2N subdomains
S ny With

Svm,n = {776 RSI Um—1 < U1 € Uym, U2 = Uéﬂyv?x;n—l <wg < U3;n} , (3-22)
where

’Ul;mZmA’lh s ‘v’m=~M,...,M, (323)

U3 = nAuvs Vn=-N,...,N, (3.24)

b

are the grid points positions of the subdomains, see figure 3.3. We furthermore
need the normal derivative of the vector potential. We therefore introduce three
discrete coordinate points in the normal direction, viz.

vap = o3 + plvr Vp=-10,1. (3.25)

This enables us to replace the normal derivative by a central finite-difference
rule. We define the quantities of the continuous integral equation on a staggered
grid as follows

Fdip

3iUm,n

. Eie EIP (mAv, v, (n — 1) Av:
EgY.. :( Mm’") :< n” (maon i (1= )Avs) , (3.26)

Ediv ((m = 3)Av, vi, nAwvs)
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Bt By (mAvy, o, (n - 3)Avy)
B:L’,,,,,f(iif’"’"): B ((m - HAvy,vif,navg) | (3.27)
B ((

3iVm,n

m — 1)Avy, v, nAvs)

A{f;’vm’m fl'ﬂ (mAvy, v + pAvy, (n - —%)Avg)
A;‘gm;p,n = Ag?vm,p,n = Arﬂ ((m - )A'Ul, vl‘ﬁ + psz’ nAU3) ? (328)
Agﬁvm,p,n A'Il‘g ((m - —)A'U]_, + pszy nA'U(;)
jf (Jlﬂ})mn> _ (ij (mavy, vg, (n ~ %)AW)) (3.29)
Bivmn §g,m,n j;? ((m— %)Avl, vE, nAvs) ’

where each component is defined for a range of indices values m, p and n, viz.

B m=-M+l,.,M-1, n=-N+1,...,N,

EgP  ,m=-M+1,...,M, n=-N+l,...,N-1,

B . m=-M-1,...,M+1, n=-N,...,N+1,

Bl gyom, » m=—M,...,M+1, n=-N-1,...,N+1,

A . m=-M-1,... ,M+1, n=-N,...,N+1, p=-10,1,
Agﬁ}ww, m=—-M,...,M+1, =-N-1,...,N+1, p=—-1,0,1,
S sm=-M+1,...,M-1,n=-N+1,...,N,

e am=-M+1,...,M, n=-N+1,... N-1.

Note the differences in subscript notation for a vector defined in the plate
domain S versus the domain R3, i.e.

{Um,n = (Ul;mavgﬂy 'US;n)} €S, (3.30)

{vmpn = Wim, Vo, v3n) } € R . (3.31)

The discretized form of the integral equation in (3.15)-(3.17) results in a set of
equations which reads

1 ~ r
Eglgm m = -S_E [ 2I Alf'lUm ,p=0,n + DTa i B:’ffvm n] ! (332)
Bl' Pmon D/l])\f/‘i;vm,p,nA;g)m,p’n > (3.33)
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N
Aiﬂ’Um o DFT';ll Z DFT,, [(Gx@n,p,n’ﬁm,n’)}
n'=—N+1
DFTy, [Ji8, | husiu, 03] (3.34)

Azr'gzm,p,n = Ti};};m,p,nDFT;ll [ Z DFT,, [(éxﬁm,p,nlﬁm,n’)] T350m,m
n'=-N+1

DFT,, |/, ] hmwm,n,Avg} , Yi={2,3}, (335)

and where we have replaced the continuous spatial Fourier transform F[| by
its discrete counterpart DFT[-]. Note that by omitting the coordinate transfor-
mation matrices in equation (3.34) and the Lamé coefficient hy,. Uy 1 €QUA-
tions (3.34) and (3.35), we explicitly use the fact that we choose the ¢ evl-dlrectlon
of the orthogonal curvilinear coordinate system similar to the &,,-direction of
the Cartesian coordinate system. Therefore, we obtain that v; = 1, that the
Lamé coefficient of the €, -direction is equal to one, h,, = 1, while the other
Lamé coefficients become independent of the parameter v; and that the trans-
formation matrices are independent of the parameter v;. Finally, we use the
knowledge that the components of the electric-surface-current density perpen-
dicular to the edges vanishes at the edges, viz.

J“,mn—[), m=-MM, n=-N,...,N, (3.36)
g5, =0, m=-M,...,M, n=-—N,N. (3.37)
The spatial derivatives appearing in equations (3.32) and (3.33) are approxi-

mated via the finite difference rules as given by Abramowitz and Stegun (1970),
hence

fprfl _ Ny Arfl
B'L yWUm,n D i i Um,p, nAin,p,n

Al sWm,0,n

= 6’02 hUSAZ;vm,pm
Arfl
A 3iUm,0,n
Arfl
1§’Um,0,n
1 o ~
= rfl rfl
2A,02 (hv3;u+1y"A2 Wm,l,n - }LU3;U'1v"A2;vm,—l,n) ’ (338)

A3 Um,0,n
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DZ;,,/ Um,n {ﬂvm‘n
=0 B By By hoy B
l'Umn + hv hvaavl 2;Um,n + hm UBaUI v3" v P3ium n
1
N (A'Ul) (Bl Wm+1,n 2Bl“ m,n +Bl Vm— 1n)
1 1
+ h 1h L 2An0 (B2Um+1" Bzvmn+32vm+1n 1 Bvan 1)
vgin—35 ' ‘v3in—
1 1 -
* h"u lh'v | AviAvg (hvz’ B3 Um+1,n hvz;"_lB3Wm+1,n—1
233 VN3
ugin B, g1 B ), (339)
and
D‘Z;@’ v'" n ;"‘?Um n
1 1 A
h avs 61)1 Bl Wm,n + E}’ava FTBZW’" " v3 81)3 hvz hv3 ava hvz 3 Um,n
1 1 -l a
- hygin AviAvs (Biv’"‘"‘*‘l Bl iWm—1,n+1 B{ Vm,n Bl Um—1 n)

1 1 ( 1 A 1 At )
2; - 2; -
Pogin 2803 \ Pogint1hognt1 2™ Ry 1hugin—1 U, n—1

1 1 1 . .
+ ( (hvz;n+1B§f;ivm,n+1 - hvg;ntf;lvm’n)

hogin (Avs)? v2 n+ti hv3,n+2
1 .
- (thy B3 VUm,n hvz;n—lBg?vm n—l) ) (340)
hUZyn_' 037"‘_5 ’
with Lamé coefficients
hvim = h"Uz ('U2 - v;ﬂ, v3 = nAU3) ) (3-41)
hu;;x1,n = o, (vg = ’02 + Avq,v3 = nAus) . (3.42)

Finally, the Green function G(#|7’) is approximated by its weak form
(GY(Umpn|Ums 7). Therefore, we integrate the Green function over a sphere
in the Cartesian coordinate system with radius %Ad, after which the result is
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divided by the volume of the sphere, as done by Zwamborn (1991), viz.

( sinh(34Ad
cosh(}d) - T2 exp(-4)
— Vp>1Ad,
3mp(YAd)
YOI _ 1z 12 A Sinh(5p)
(G)OmpnlUmr ) = 1~ (1 + 14Ad) exp(—$5Ad) —FL
Vp<iAd
Ir(vAd)?Ad p=ase
3~ (3+ 39Ad) exp(—37Ad) Vo0
| Ir(3Ad)2Ad =0
(3.43)
where Ad satisfies
Ad = min (A’Ul, h’UQ;’Um‘pvnA1027 hmwm’p’nA’l}g) . (344)

Hence, we arrive at a linear system of equations replacing our integral equation
(3.15)-(3.17). We opt for an iterative conjugate gradient solution method, sim-
ilar to what Zwamborn and Van den Berg (1991) did with their plate problems.

3.4 Conjugate gradient solution scheme

To underline the conjugate gradient method we introduce an operator notation.
Therefore, the discretized integral equation in equations (3.32)-(3.35) is written
in operator notation as

f=Lu, (3.45)
with f the known electric dipole wavefield, E&igmm, and u the unknown electric-
surface-current density, j;‘?vmn. Needed in the scheme is the adjoint operator
of L, L¥ which is defined through the inner product, viz.

<Lu’ r>§ = <U, LHr>S 3 (346)
and obtained via the Ly norm of a vector v, viz.
VI = (v, v)s

M-1 N
= Y > Ul Vi husivn AV AVS
m=—M+1n=-N+1

M N-1
+ 3N Um0 Vo P,y A1 D03 (3.47)
m=-M+1n=—N+1
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where the “*” denotes that the complex conjugate is taken. Replacing Lu in
the left-hand side of equation (3.46) by its discretized counterpart as stated in
equations (3.32)-(3.33), and using equation (3.47) to rewrite it such that the
right-hand side of equation (3.46) is obtained, results in an expression for the
adjoint operator L applied on r, which reads

M N
(LHr)l;vm/,n/ = Z Z (GY(vm,p,n"Um’,n’)Rl;m,nA'UlA'US s (3~48)
m=-M n=~N

husipti,n e A
(LHr)swm'yn’ Z E T2 3;v ’le__n'Tz21’Up+1,n<G>*(vmrp"‘l»nIvml,'n/)
m=—M n=-N
husip—1m 1 A
—T273;vn’ vz:zz,vzn 2,2;,”?_1,”(6!)*('Umﬂp—]_,n]vm’,n/)

Pvsipt1n 1 A
+T3’3w"'—v23_Ap72_n 2,3;vp+1,n<G>*(”m,p+1,n"Um',n’)

Rygip—1.m e N
_T3’3;Un/ ?Ap,v2 . T2,31;vp_1,n(G>*(vm,p—l,nlvm’,n’) R2;m,nAU1 A’U3
M N
+ Z Z T2r35vn/T3:21;vn(G>*(vm,P,n|vm',n’)R3;m,nA'UlA'U3
=—Mn=—N
M N
+ Y D T3 T3, (G) (Wmpinlvm w) Ramn Avi Avs
=—Mn=-N
(3.49)
where Rim n reads
1
Rl;’ms" =- ( )2 ( )* u3,n_£rlmn
1 Pyt
" (s€)* (Asvl); (rim-tn = 2rimn + Ttimiin)
1 1

+ (Sﬁ)* m (r3;m,n—1 — T3;m+1,n—-1 — T3mn + T3;m+1,n) y (3-50)

1 1 1 1
R2;m,n = A Tim—1n — h T1m,n

(s€)* 28v3 \ hypip 1 vain—1
1 1
+ h Tlym—-1,n+1 — T1;mmn+1
vz'n—i—l h‘vz'n+l
) 2 1 2
1 1 1
+ (TB;m,n—l - 7'3;m,n+1) , (3-51)

(38)* 2803 huyimhoym
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Table 3.1: Conjugate gradient iteration scheme

u=0, rg=r~,

2
Up = Up—1 + QpWy , Wn = LH"n—l + @;}H—? n—1
fn = Ihoy — oplwy, HL rn_ZHS
el
T lbwafy

1

(Sé) * ('?*)2 hvg nT3mn

RS;m,n =

1 /- 1 1
+ = Tim~1n — Tim—1,n+1
(sé€)* AviAvg \ h,___, T melnt

. . 1
v2n— 5 v2;nt g

1
Tim,n + h —T1;m,n+1
i U2;ﬂ+%

v2in~—5
+ 1 hv2m 1 3. - ____1___7_3.
(s€)* (Av3)2 hvz;"‘%hvs;"—% e hvz;n+%h’v3;n+% -
1
- h_ug;—n—%hv——g;r o T3mn + _-—‘_}Lyz et h1,3;n—+% "3mmn+l | »

(3.52)

and where rq.m n satisfies

, m=2M, n<-N, n>N+1, (353

r"l;m,nzov v
v , m>M+1, n<-N, n>N. (3.54)

T3:mn = 0,

The scheme minimizes a normalized error ERR, defined as

_ lirlls
ERR = e (3.55)

where the residual ||rllg is obtained from

lIrlls = IIf — Lills - (3.56)

Once the normalized error ERR is small enough the iterative procedure is ter-
minated. The applied conjugate gradient scheme is shown in table 3.1.
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3.5 Numerical results for parabolically curved cylin-
drical reflector

In the previous sections, a method is presented to compute the radiation pattern
for a dipole and a curved reflector. In this section this method is applied to a
parabolically curved cylindrical reflector.

The reflector is described in a parabolical cylindrical coordinate system
with parameters v; = {11, v2,v3}, see appendix A. The Cartesian coordinate
parameters z; = {xy,xq,z3} are a function of these parameters v;, viz.

1
{o.a2,20) = {0, 08 ~28) o | (3.57)

resulting in the following Lamé’s coefficients

hyy =1, (3.58)
and
1
h = h,,2 = hvg = ('Ug + ’l)%) 2 (359)
In the numerical scheme the position vector v pn satisfies
Um,pn = (MAvL, V5! + pAvg, nAvs) (3.60)
and the coordinate transformation matrices read
10 0
—nAvg
00
Tkyl':’up,n = hp,n L} (3-61)
00 vgﬂ + pAuv,
hpn
1 0 0
9 0 vgﬁ + pAvg v
kg hpn hpn (3.62)
—nlvg v + pAvy
0
hp»n hp,n

We take as central frequency component 100 MHz, since this is in the
center of the most interesting frequency range. As background medium we
use a non-conducting medium with a relative permittivity similar to water,




3.5. Numerical results for parabolically curved cylindrical reflector 29

Figure 3.4: A parabolically curved reflector in the Cartesian coordinate system, for
the domain § = {7 € R}~ 0.16 m < v; < 0.16 m,v; = 0.14 m?, -0.32 m? < v3 <
0.32 m2}. Note that the axis units are cm.

&r = 80. The complete antenna system must fit in a tool, that has a maximum
inner diameter of 0.09 m. Positioning a half wavelength dipole as transmitter at
maximum distance from the reflector, the domain L of the dipole is represented

L = {7 € R* ~0.08 < v < 0.08,v2 = 0,v3 = 0.4} , (3.63)

see figure 3.4. Since maximum shading and focusing effect is desirable, the
reflector is taken as large as possible. Therefore, the length of the reflector is
twice the length of the dipole, while v2 and v3 are chosen such that the area of
the reflector becomes maximum. Consequently, the reflector domain becomes

S={TeR}-0.16 < v <0.16,vp =0.14,-0.32 < v3 < 0.32} .  (3.64)

The domain L is divided in 20 cells in the €, -direction, while for the domain S
26 cells in the €,,-direction and 16 cells in the €,,-direction are used. Decreasing
the cell size, does not influence on the results significantly, since we now have
approximately 18 elements per wavelength.

For this configuration, the iterative procedure to solve our integral equa-~
tion terminates, once the converging normalized error satisfies the error criteria,
ERR < 0.01, see figure 3.5. The computed electric-surface-current density is
shown in figure 3.6. From this figure it is observed that the component of the
electric-surface-current density normal to an edge vanishes at this edge. The
tangential components however tend to large values, in fact theoretically they
should grow to infinity, when we decrease the mesh size of the discretization.
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0 100 200
iteration number

Figure 3.5: The convergent normalized error ERR as a function of the iteration number
for the parabolically curved cylindrical reflector.
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Figure 3.6: The two components of the computed electric-surface-current densities at
the parabolically curved cylindrical reflector, a) J;, and b) Jy, where 1y = v1, { =2
and n = vs.

The incident electric wavefield in presence of the reflector is computed via
the integral representation over the dipole and reflector domain. Their results
are shown in the figures 3.7 (a) and (b) for the planes 1 = 0 and z3 = 0,
respectively. Clearly visible is the disturbed omni-directional radiation pattern
of the electric dipole due to the presence of the reflector. However, the aim is
not only to obtain a directional radiation pattern but also to gain penetration
in the subsurface by focusing the emitted energy. Therefore, we define a gain




3.5. Numerical results for parabolically curved cylindrical reflector 31

| E%x,=0x,x) | | E%x X, x =0 |

(a) (b)
E®x =0X,X,) E®x pXpX;=0)

x, [m]

() (d)

Figure 3.7: The absolute values of the incident electric wavefield for the parabolic
reflector, ‘E’inc(f)l, in the planes (a) z; =0 and (b) z3 =0, and their normalized

values, EreY(z) = ?EA;“C(E)I / ’Efip(f)i, in the planes (¢) x; = 0 and (d) z3 = 0.

factor £ () which reads

E‘“C(r)‘

Er(F) = (3.65)

ESP(@)|

In figures 3.7 (c¢)-(d) these factors for are shown the planes z; = 0 and x3 = 0.
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0.1

Figure 3.8: ’I_‘he gain factor E’e'(xl = 0,z9 = 5,z3 = 0) as a function of the dipole
position (0, a:g’p,O) near a parabolic reflector.

It is interesting to investigate the effect of moving the dipole towards
the focal point. If ray theory could be applied to our electromagnetic case, an

increase of ‘Em“(:i:‘)l is expected in front of the opening. Therefore, the gain

factor £™l(xy = 0,3, 23 = 0) is computed for various positions of the dipole,
starting in the focal point and moving 0.08 m to the position used previously.
The results of these computations are shown in figure 3.8. It is seen that moving
the dipole towards the focal point results in a strong decrease of focusing effect.

The results presented here, show that it is indeed possible to “focus” the
radiation pattern of an electric dipole with a cylindrical parabolically curved
reflector. On the contrary to ray theory, an improvement in focusing effect in
the plane z; = 0 is obtained by moving the dipole out of the focal point and
away from the reflector. Therefore, it is interesting to compute the radiation
pattern in case a circular curvature is chosen, since this a limiting case for the
largest distance between reflector and dipole.

3.6 Numerical results for circularly curved cylindri-
cal reflector

In the previous section we showed how a directional radiation pattern is ob-
tained with an electric dipole and a parabolically curved cylindrical reflector.
Furthermore we showed that the best focusing is obtained by positioning the
dipole at maximum distance from the reflector. The distance to each point
on the reflector is maximum, in case the reflector is curved circularly. Conse-
quently, we compute the radiation pattern for a circularly curved cylindrical
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reflector

Figure 3.9: Circularly curved reflector in the Cartesian coordinate system with domain
S={7 R} -0.16m < v; <0.16 m,v; = 0.045 m, ~1.27 < v3 < 1.27}. Note that
the axis units are cm.

reflector.

In a circularly curved coordinate system a point in space is denoted by the
parameters v;, for ¢ = {1,2,3} and the Cartesian coordinates x; are a function
of these parameters v;, viz.

{x1, 22,23} = {v1, v cos(vs),vasin(vs)} , (3.66)
see figure 3.9. Therefore, the Lamé coefficients are given by
hy, =hy, =1, hy, = v2 . (3.67)
In the numerical scheme a position in space is written as vy, » » which satisfies
VUmpn = (MAv], 'u§ﬂ + pAvg, nAvs) (3.68)
and the coordinate transformation matrices become
10 0

Tijw, =0 0 —sin(nAvs) | | (3.69)
0 0 cos(nAuvs)

1 0 0
T =0 cos(nAvs) sin(nAuvs) | . (3.70)

Jskivn

0 —sin(nAvz) cos(nluvs)
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Figure 3.10: The convergent normalized error ERR as a function of the iteration
number for the circularly curved cylindrical reflector.

The factorized gradient-divergence operator as stated in equations (3.38)-(3.40)
simplifies for the circularly curved reflector into

Rl — DN Arfl
BJ Um,n va’j;"m,p,n Aj;vm,p,n
Al 3Um,0,n
1 2 ~
= -— il _ Peil
2A’U2 (1)2;+1A2 Um,1,n v2;_1A2§Um,,1,n) s (371)
A3 Um,0,n
D B

'Uljl Um,n " 7 Um,n

1 Arf
= (A'U1)2 (B{Wm-fl,n 2B1 Wm,n + Bl yUm— ln)

1 1 ~ofl
?Q_AE (B§§’l)m+1.n Bvan +Bva+1n 1 BQ“'"" 1)

1 1 ~
-@ A’Ul A’Ug <B§3U7W+1 n B3 Wm+l,n—1 B3 Wm,n + B3 Umn— 1) ; (372)

and
DT Brﬂ 1 1 Brﬂ Brﬂ B B
'U3Jl Um,n J Um,n Urﬂ A’U]A'U3 l?vm,n+1 Livm—1 n41 Livm, n Liom— 1,n

1 1 1 ~rfl
+ (v51)2 2Avg (Bg;vm,n-i—l - BE;“m,u—l)

1 1 /.q
+ (,Ul‘ﬂ) (AU3) (Bg;vm,n+1 283 Umn+B3U m,n— 1) N (3'73)

As stated before, computations are carried out for the 100 MHz frequency com-
ponent while the system is positioned in a non-conducting medium with relative
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Figure 3.11: The computed electric-surface-current densities at the circularly curved
cylindrical reflector, a) J,, and b) Jy, where 21 = vy, r = v and ¢ = vs.

permittivity e, = 80. Positioning a half wavelength electric dipole opposite to
the reflector, the dipole domain L is represented by

1
L= {7 €R3 —0.08 < v <0.08 vy = 0.045,v3 = 57} (3.74)

see figure 3.9. The reflector is taken twice as long in the €, -direction, to improve
its shading effect. The reflector domain § is given by

S={v7eR3~0.16 < v <0.16,v2 = 0.045, —1.27 < v3 < 1.27} . (3.75)

The domain L is divided in 20 cells in the &, -direction, while for the do-
main S 26 cells in the €,,-direction and 16 cells in the €,-direction are used.
For this configuration, the iterative procedure to solve our integral equation
is terminated once the converging normalized error satisfies the error criteria,
ERR < 0.01, see figure 3.10. The obtained electric-surface-current density is
shown in figure 3.11. From this figure it is observed that the components of
the electric-surface-current density normal to an edge vanish at this edge. The
tangential component however tend to large values, in fact theoretically they
should grow to infinity when refining the mesh size. From these electric-surface-
current densities the incident electric wavefield is obtained via an integral rep-
resentation over the dipole and reflector domain. These results are shown in
figures 3.12 (a) and (b), for the planes z; = 0 and z3 = 0, respectively. The ef-
fect of the reflector in the disturbance of the omni-directional radiation pattern
is clearly visible. Another important effect is the increase in penetration by




36 Chapter 3. Design of directional borehole radar

| E‘°'(x1=0,x2x3) | | E%%x XyX;=0) |

3

(a) {b)
E®x =0x,x) E®(x XpX=0)

() (d)

Figure 3.12: The absolute values of the incident electric wavefield for the circular
cylindrical reflector, EA'Zi-"C(:T:')’, in the planes (a) z; =0 and (b) z3 = 0 and their nor-

malized values, Er*\(z) = 'Ei““(i‘)! / ‘E?ip(a"c’)l, in the planes (¢) zy = 0 and (d) z3 = 0.

focusing the energy. Hence, it is interesting to compute the gain factor E’el(;i'),

Efre(3)

Erel ( i:) _

- ——‘IES‘P@) ' , (3.76)

as shown in figures 3.12 (c) and (d) for the two planes 1 = 0 and z3 = 0.




3.7. Experimental verification 37

Figure 3.13: The gain factor £7!(z; = 0,2, = 5,23 = 0) as a function of the reflector
angle, where ¢ = v3.

The effect of the size of the reflector in the angular direction is shown in
figure 3.13. For various angular sizes, the gain factor is computed at the position
Z = (0,5,0). It is clearly visible that the gain factor reaches its maximum once
the reflector is curved over 2.5 rad (143°).

3.7 Experimental verification

Based on the design of the 143° circularly curved cylindrical reflector, a proto-
type was built'. The complete tool is shown in figure 3.15. The tool has a
length of 4.42 m and a diameter of 0.16 m. At the top and the bottom, wheel-
blocks are constructed to centralize the system in a borehole. Below the upper
wheel-block, the electronics for measuring the orientation and the depth of the
tool are positioned. In addition, this part contains the mechanics to rotate the
antenna system inside the tool. In between this part and the top of the lower
wheel-block, the rotating antenna system is positioned, including the electronics
for creating an electric-current pulse for the transmitter and an A/D-converter
for digitizing the signal measured by the receiver. The tool is connected with a
pc at the surface, to control the system and to store the data measured.

The radiation pattern of the antenna system was measured under water.
An (unknown) electric-voltage pulse was put across the port of the dipole. At a
radial distance of 0.3 m in the plane x; = 0 a receiver was positioned parallel to
the rotating transmitting system. As receiving system, the PULSE EKKO 100
system of SENSORS & SOFTWARE with the 200 MHz dipole antenna was

'The prototype was built in cooperation with the National Aerospace Laboratory (NLR)
and TNO Physics and Electronics Laboratory (TNO-FEL), under the supervision of R. van
Waard from T&A Survey.
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90 15

270
Figure 3.14: The measured (crosses) and the computed (solid line) 100 MHz compo-

nents of the incident electric wavefield, ‘E‘;"C(f) , at a radial distance of 0.3 m in the
plane z; = 0.

used. In figure 3.14 the results are shown. Both 100 MHz components of the
received signal and the computed radiation pattern are given. The curves are
normalized by putting their maximum values to unity. From this figure it can
be concluded that both results are in excellent agreement with each other.

3.8 Conclusion

The results obtained in this chapter show that it is possible to build a direc-
tional borehole radar system. However, given the spatial limitations such as
the maximum diameter of 0.09 m and desired central frequency component of
100 MHz, it is not obvious that a directional radiation pattern with an electric
wavefield can be obtained. Especially, when one realizes that the wavelength in
air, corresponding to the central frequency, is approximately thirty times larger
than the diameter of the borehole (or the antenna system). Nevertheless, we
succeeded in designing such a system, by positioning an electric dipole next to
a metal reflector. In order to shorten the wavelength, a medium with a high
relative permittivity is used (water). In the optimum configuration the reflector
is circularly curved over approximately 143°. Parabolically curved reflectors,
unlike in optics, give poorer focussing.

Now we have shown it is possible to “focus” the radiation pattern, we need
to develop an imaging algorithm which enables us to obtain a three-dimensional
image of the surrounding. This is done in the next chapter. As shown in chap-
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Figure 3.15: The prototype antenna system, on the left the design and on the right
in action to detect unexploded ordnance in the subsurface.

ter 2, it is important to have a good knowledge of the properties of the system
in order to understand the wavefield scattered at the objects and observed by
the antenna system. Especially, since the scattered wavefield depends on the
total wavefield which includes the incident wavefield from the antenna system.
Hence, we will use the results obtained in this chapter in the next chapter.
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Chapter 4

Imaging

In the previous chapter we show the design of the antennas for a borehole
radar system which has directional sensitivity properties. The starting point
for this design is made in chapter 2. In this chapter, we consider the antenna
system as a black box. We show that changes in the subsurface are observed by
changes in the measured voltage at the receiver. Next, we develop an inversion
algorithm to compute a three-dimensional image of the subsurface using the
measured voltage. In this inversion scheme we use the results obtained in the
previous chapter. Note that we start with the results obtained in chapter 2.
Further note that the formulation of the problem is carried out in a Cartesian
reference frame. Once the algorithm is utilized, a change to a circular cylindrical
coordinate system is made.

4.1 Change in impedance due to scattering objects

In figure 4.1 the directional borehole radar system is shown. The system is
positioned in the Cartesian coordinate system, in which a spatial position is
denoted by the vector £ = z; for ¢ = {1,2,3}. The tool is embedded in a
homogeneous background medium with complex permittivity &8, hence

€% — gpe, + % , (4.1)

where eg¢; is the permittivity of the medium and o the conductivity. Further-
more, the medium is nonmagnetic susceptible. The symbol  on top of a given
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object

antenna system

Figure 4.1: The borehole radar system radiates a wavefield EA,"C““(f), which scatters at
the object, E5(Z).

quantity or parameter denotes that it is defined in the temporal Laplace domain
with Laplace parameter s. Frequency domain results are obtained by taking
the limit

s — —iw , (4.2)

where w = 27 f, in which f is the temporal frequency.

Since the system is oriented in the & -direction, a directional radiation
pattern is obtained in the (z2,z3)-plane. From chapter 2 we know that the
total electric wavefield due to the presence of an object at D*** reads

BN @) = BPS(@) + BEH (@) , (43)

where Ei"°(F) is the incident wavefield from the antenna system into the subsur-
face, and where E5°*(Z) denotes the scattered wavefield. The scattered wavefield
satisfies, see equation (2.35),

~

B4 (F) = / s (84@) - %) G5 @B @)av (@), (49)

i

e Dsct

where Q,fﬂ(ic’lf’ ) is the electric-field/electric-current Green’s tensor, which
reads

~ ~ 1 R AL
Go(#1a") = = (=32Ixy + O0x0;) G(FT) | (4.5)
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(a) (b)

Figure 4.2: Two states of the same spatial domain D, with an inaccessible volume
action antenna source domain D°° ¢ I containing two ports. The surface of the source
domain encloses a receiving and transmitting antenna. In state A (a) the electromag-
netic properties are £4(Z) = £, y4 = 11y and state B (b) has the same background
medium and a scattering domain D" C D, with £8(Z) = £%4(2), uB = po.

where ¥ satisfies

’3/2 = SQ‘C:MO ’ (4'6)

while I, x is the symmetric unit tensor and G (#Z) the scalar form of the Green
function, viz.

o exp(=[E = 7))

GElF) = ——L— 1 4.7

(#12) An |z — 7| @

see equations (2.24)-(2.27) and (2.35). By neglecting internal scattering within

the scatterer, the Born approximation is applied and we approximate equa-
tion (4.4) by

B (@) = / 5 06(Z') Gy (T B (F)aV (F) (4.8)
i‘/eDsCt
where
55(5’) _ ésct(f') _ gbg (4.9)

However, with our system we do not measure the scattered fields themselves,
but we measure changes in impedance caused by changes in the medium. By
using reciprocity, see section 2.3, an expression is obtained which interrelates
the measured impedance with the changes in medium parameters.
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Table 4.1: Description of the two states of the spatial domain D

state A state B
o EB=Ftot(z VvieD
EA=Eire(2) VZeD N t( 4) B
A frincy . Hf=H;°"(Z) VZeD
HA=H™(z) VZeD 2 ~
FA_g VEeD JE=0 VFel
k= ve KB=0 v &
N 5 — zeD
KA=0 VZeD I
T e YEeD £be Viel
sA__ z 2B__ ) A — =
) _{ésw(f) ¥ 7 € D =@ vaedb®
. VEeD £57¢(F) V T € oD
B =po TE . -
Dset—g .U‘BZ#O VieD
- D'=D \ Dsct

The reciprocity theorem interrelates two separable states A and B, which
can occur in the same spatial domain. In both states we have a spatial domain
D, with background medium parameters P8 and pg, enclosing an inaccessible
volume domain ID¥¢ in which the antenna system is positioned, see figure 4.2.

In state A the electromagnetic wavefields are denoted by {E}C“C(f),ﬁ J‘nc(i‘)}
Those are the wavefields in absence of scattering objects. In state B we have
{E%“(i:’),ﬂ}“(i)}, where the changes in the wavefields in comparison with

state A, are caused by the presence of a scatterer in D°¢ with complex per-
mittivity £5t(Z), see table 4.1. Consequently, the frequency domain reciprocity
theorem satisfies

e / v (B @H2) — BRY@) B (@)) dA@)
ZedD
temup [ vm (BP@H@) - B @B dA@)
Teobsre
- / 5 08(F) BN () ELNF)dV(F) . (4.10)

fEDECt

The first term on the left-hand side of equation (4.10) vanishes when one lets
a point on the boundary surface D tend to infinity, since in both states the
media at infinity are homogeneous and source-free. The second surface integral,
over the boundary of the inaccessible source domain D®*, is discussed below.
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Ry

7‘.’

Figure 4.3: The bounded surface § with boundary 8§ and unit vectors 7 and 7.

The Maxwell equation,
1.3k Ein(Z) + spo Hi(T) = ~KP(%) (4.11)

on a magnetic-source-current-free boundary is in the low-frequency range ap-
proximated by

ei,jykajEAk(f) =0. (4.12)
Consequently, the electric wavefield satisfies
Ey(@) = -0, () (4.13)

with \i/(a':‘) the electric potential. Applying this result in the second term in the
left-hand side of equation (4.10) we obtain for this term

mis [ v (BEE@BL@) - BR@I@) dA@
:EGB]D)S“;
= emis [ [0 (U@ ED) + U@ 91 @)
i‘ea]])src
+0% (\i/t°t(:z)1fz;HC(f)) — @tz akﬁl}nc(:z)] dA(Z) . (4.14)

The first and the fourth term in the right-hand side of equation (4.14) are
rewritten using Stokes integral theorem. This theorem states that a continuous
differentiable tensor Fiy; m,.....mx (Z), defined on a bounded surface S, see figure
4.3, satisfies

f Tmel,mz,...,mK (f)dL(f) = /fp,q,rl/qarle,mz,...,mK (f)dA(f) ) (4'15)
oS .
TES
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where 7 is the unit vector normal to the surface §. The orientation of 7 is in
the direction of the displacement of a screw being turned in the direction of
7 along 8S. Therefore, the contribution from the first and the fourth term in
equation (4.14) equals zero, viz.

ey / VO (U (@) B (7)) dA(#) =0, (4.16)
Zeobsre

where we assume WnStot(#) Hi°%"(F) to be continuous differentiable on S.
Therefore, equation (4.14) is written as

min [ v (BE@EE) - B @ @) dA@

Feghsre
= [ vn[F@sem@) £ @ - P @se @B @aAE) , (417)
FeoDsre

where we used Maxwell equations. Next, we combine the electromagnetic
boundary conditions with the constitutive relations in the right-hand side of
equation (4.17). By applying the low-frequency approximation, we assume the
Maxwell current density Jm(&) + sDm(E) to be concentrated in the electric-
current density Jp, (%) at the conductors that form the ports of the antenna
system. Assuming there are a number of ports, N’ = 1,2,..., we obtain

/ m | §7(2)s8°7(2) B () — U104 (2)567°(2) Bl (7) | AA(@)

re gipsre

- / i [ B (@)1 (&) — § (@) J2e (@) dA@) , (418)
N TEAN

where Ay is the surface of the A/-th termination port. Note that it is assumed
that terminals themselves are perfectly conducting, and so the electric potential
on them will be constant.

In the interior of the source domain we choose a reference point Z*°f
where we assign the electric potential W(7f) to be zero. In reference with this
point, terminal A has a voltage VN and consequently the right-hand side of
equation (4.18) satisfies

T / v [B7(@) T334 (@) — 9 (@)J52°(@)] 4A(@)

N TeAN

- [V;;wf;?t - V;;’tfkf] . (4.19)
N
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where Iy is the electric-line-current density at the surface of the port of the con-
ductor with constant voltage Viy. Combining equation (4.10) with the results
of equation (4.19), we obtain

S [t - i) = - / s 6(R) ER (D B @)AV(E) . (4.20)
N

EEDsct

For a system containing several antennas, transmitters and receivers, the
voltages at the ports, V), can be written as a function of the impedance matrix
Zy nv and the electric-line-current densities Iay, viz.

Vv = Zn e (4.21)

Inserting this in equation (4.20) we obtain

8Zp ar TS TEOE = — / 5 88(Z) EiP°(Z) BN (£)dV (F) | (4.22)
zeD
where
SZn Nt = 20 — 25w - (4.23)

Next, we can use the property that the electric wavefield is linearly dependent
on the electric-line-current density Ixs, hence

B (@) = st @ et (4249
~inc,tot

where ;" (Z) is the electric wavefield caused by an electric-unit-current den-
sity at the port with label A/. Consequently, we obtain for equation (4.22),

—
bl

after applying the Born approximation in é}c"}v(a:)
8Zp Nt = — / 5 06 (Z) RS (Z)ems (£)dV(F) . (4.25)
zeh

Note that an expression for the incident field é}g‘c(f) is obtained in the previous
chapter.

4.2 Measuring in bistatic mode

One of the applications of the borehole antenna system is probing the trajec-
tory of a tunnel. Before the complete tunnel is drilled, a small borehole is made
to explore the subsurface. Therefore, the system is positioned in the borehole,
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Figure 4.4: The antenna system positioned at 3*). The transmitter at #*¥)t® =
k) — ld (N = 1) and the receiver at §¢)irc = §*) 4 1d (N = 2) are separated by the

vector d

pointed and moved in the é€;-direction while it rotates around the z;-axis. Con-
sequently, it is convenient to use the circular cylindrical coordinate system with
unit vectors {€1,€r,€s}, and where a vector ¥ is denoted by the parameters
v; = {1, 7, ¢}, see appendix A.

The borehole system operates in a bistatic setup, containing one trans-
mitting and one receiving antenna, see figure 4.4. After grounding one port of
each antenna, we obtain a system which acts as a two port system (N = 1,2).
Applying equation (4.21) to this setup, we obtain

Vz = 22,1f1 + 22,2IA2 , (4.26)

where Vs represent the measured voltage at the receiver, I 1 and fg the electric-
source currents at the transmitter and the receiver, ZAlyz the mutual self-
impedance of the transmitter and the receiver, and 22,2 the self-impedance
of the receiver. Note that we assume the medium to be reciprocal and conse-
quently Z1 2= Z21 Since the receiver voltage is measured over an open port,
the current through the receiver equals zero, Iy = 0. Therefore, the measured
voltage at receiver in equation (4.26) reads

Ve = Zjtm™ | (4.27)

since 172 = V’C, I = Itm and 21,2 =2Z. Consequently, the expression for the
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change in impedance, equation (4.23), will read

sV

67 = —
Itm

: (4.28)

where we assume that the source current in the transmitter, /'™, remains con-
stant, despite changes in medium parameters, while these changes will influence
the measured voltage at the receiver, hence

5V = e _ proser (429)

All measurements take place at positions 7% = (xgk),O,qb(k)) in the circular
cylindrical domain D). The superscript (k) corresponds to an integer value
specifying the measurement. The argk) -component of the position vector points
to the center of the system, while the ¢*)-component specifies the spatial ori-
entation. The transmitter is positioned at o*™ and separated from an identical
antenna as receiver at U by the vectorial quantity d. Therefore, equation (4.25)

reads for ' =1 and N’ = 2 in the circular cylindrical coordinate system as

sVTe(#k) = ftm / 8¢(9)8(T|7R)aV () | (4.30)

vER3

where §(7]7) reads

S(@50) = —s e @) & (alp®)) | (4.31)

where
glRytm — glk) _ % (4.32)
gk — k) 4 laf (4.33)

and where & (9]5(K)*™) is the electric wavefield at ¥ caused by the transmitter
at 7)™ and where ey (7 |5(k)xe) is the electric wavefield caused by the receiver
if it was a transmitter. The sensitivity function S(#]#%)) can be understood
as the response of the antenna system to a unit point scatterer at ¥ while the
system is located at o%).

In view of the angular convolution and periodicity of the sensitivity func-
tion S(#]#*)) we use the advantages of the discrete Fourier series. The discrete
Fourier series of a scalar function f(¢) is introduced. The series is defined as

>

@)= > f™exp(ing), (4.34)

n=-oo0
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where
1 2
109 = - [ 1@ exp-ing)ds (4.35)
¢=0

Applying equations (4.34) and (4.35) to equation (4.30) leads to the decoupled
integral equations in the discrete spatial Fourier domain

5V(n)($§k)) = [t / / 5é(")(w1,T)S(n)(ml,ﬂwgk)) dryrdr,
21=—00r=0

Vn=-00,...,00, (4.36)

for known
2w
§<n>(x1,r|x§k))=51— / exp(—ing) S(77*) do (4.37)
W¢:0
27
sV (2{F)) = -21? / exp(—ing) SV™(7) d¢ , (4.38)
$=0

and I*™, and unknown medium parameters 6¢(® (z1,7). Once we have a solution
for 660 (21, 1), we retrieve 661 (%) via

o0

8™ () = Z exp(ing) 66" (x1,7) . (4.39)

n=—00

4.3 Discretization of the spatial domain

To be able to model the change in antenna-system impedance caused by a point
scatter positioned at #°°%, equation (4.36) needs to be discretized. Therefore,
we define the various quantities on a grid in the circular cylindrical domain D,
with (2 x L4+ 1) x M x N subdomains Dy, », viz.

Dy = {7 € R¥|z131 < 21 < 21305 Tme1 <7 < TmiPnot < & < Bn}, (4.40)

see figure 4.5, and where the parameters of a vector vy, are defined on this
grid as

z1y = Az, Vi=-L,...,L, (4.41)

Tm = MAT | vyvm=1,...,.M, (4.42)
N N

bn = nlAd , Va=-——41,...,—, (4.43)

2 2
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Figure 4.5: Discretization of the spatial domain D into subdomains D , », with step
sizes Ar and A¢ for the €, and €4-direction , and for fixed value z1,,. The unit vector
€1 is pointing perpendicular to the plane of the paper.

note that N is even and satisfies NA¢ = 27. In this discretized spatial domain,

the discrete positions of the antenna system are denoted by the vector 1)1(127
hence

.ﬂgl)*lAJ:, VZ:I,,le (444)
A0 — g, (4.45)
N N

%) = nAg vn=_5+1,,,.,?, (4.46)

and where the positions of the transmitter and the receiver are denoted by the
vectors vl(k) ™ and vl(k) ™, which depend on the position of the antenna system

lf}, hence

zglcl)tmrc_‘,L,gcl)_i_%dtm,rc , Vi=1,..., I ’ (4.47)
plkytmre _ (k) (4.48)
¢k)tmr(‘ ¢(k vn:_ﬁ+1,___,N (449)

E s
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where d'™ = —d, while d"° = d. Note that measurements only take place in the
positive €;-direction, and that the number of angular steps remains constant.
Measurements take place for discrete temporal angular frequencies w;. We take
an equidistant temporal discretization, so that each element of the temporal
angular frequency domain {2 becomes

wy = tAw vt=1,...,T, (4.50)
hence,
It = P (wy) . (4.51)

After discretization of the spatial domain, the following quantities are defined
on the grid as follows,

5él,m,n;t = af(vl,m,n;wt) y (4'52)
(rre Srrey, (k) .
6‘/l,n;t =40V (vl,n y wt) ’ (453)
G & (k).
Sl’,m’,n’;l,n;t = S(’Ull,’m’,n'lvl’n ,Wt) ] (454)
~ k);t
etlm (’Uu,m,’nllvl(,n) . wt)
atm _ | stm (k);tm 455
Fillom! it — ) Ul’,m',n'lvl,n s Wt 3 ( . )
~ k);t:
e (o5

~ (k);rc,

elic (vl’ m ' lvzmY s

ATC — | pre (k);re,

€t it = | €2 \ Vv m/ .n/ |’Ui Wt . (4.56)
.7) b ? Wy tby 3y

o (k);re,
€§C (vl,,ml,nll/vl’nv 7wt

In the spatial angular Fourier domain, 551(,7:1)1;t7 Vg ™) and § (,7,)71,.1;t are defined
as

86", = be(1Az, mAT; B wy) (4.57)
V™ = sV (1Az; mw) (4.58)
gl(’T,z'r)n’;l;t = S(ZIA;L‘, 'm'Ar|lA3:, n; wt) ) (459)
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Using these definitions for the quantities, the decoupled integral equa-
tion (4.36) in the discretized spatial angular Fourier domain reads

SV = Z Z B8y Sy ! ATATAT | (4.60)
l'=—Lm'=1
for n = —% +1,..., %, where the quantities 6‘7;:;(71), 5é§ffzn,;t, and Sl(, ,)n, 1 Bre
obtained via
_12\1
~ro A N
5Vl;rf’(") = —;5 Z exp(—inn'A¢) 6V, (4.61)
n’z—%—f-l
%
. A¢ , .
56l(,7:2n,;t =5 Z exp(—inn' A@) 0y ms s (4.62)
n’—‘%’—Jrl
N
N A¢ 2 ] N
S(Ir’lr)nl;l;t - % Z exp(—znn’A¢) Sl’,m’,n’;l,n;t ) (4-63)
n'=—" 41
in which
Sl’,m il = it Aw e] U,m/ n;ln;t e;’?l’,m’,n’;l,n;t ) (4~64)
for primed parameters ! = —L,...,L,m' =1,... M, and n' = ——+1 . 2 ,
while the unprimed parameters run for [ = 1,..., L ,n = —7 + 1 . % and
t=1,... T

After obtaining an estimate for the contrast in the subsurface in the
angular Fourier domain, 55§, n)

ms¢» the contrast in the spatial domain, 8¢y oy,
is arrived at as

m';t

N
2

Sevmag= . explinn/Ag) 6e5) ., A . (4.65)
N

4.4 The effective sensitivity function

The synthetic radiation characteristics of the antenna system present in the
sensitivity function Sl’,m’,n’;l,n;t are obtained from the modeling done in chap-
ter 3. During imaging, the characteristics are needed at several frequencies over
the complete spatial domain. In order to reduce the computational time we ap-
proximate the sensitivity function by an effective one. Therefore, we compute
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only one radiation pattern I' of the electric wavefield from the antenna system,
which is at the central frequency of the emitted signal, and at fixed distance
and depth, hence

I(¢) = €x, ((x1=0,r=rq, #) Iﬁ: O;w=2mfp) . (4'66)

Note that this pattern is obtained using the model obtained in chapter 3. This

angular dependent function is multiplied with the omni-directional radiation

pattern én (75 ) of an electric dipole, in order to obtain an approximation

for the directional radiation pattern of the antenna system, hence the sensitivity
function from equation (4.31) is approximated as

A

S@T0) = —s (D6 - 6®)) P (ar, ™) (@, ™) . (467)

In order to apply the above in a discretized sensitivity function, the ra-
diation pattern I'(¢ — ¢(*¥)) and the electric dipole wavefields are discretized.
Therefore, we define these quantities on the same grid as used in the previous
section, viz.

Tpn=T(Ad—nA¢), V{n ,n}= —g +1,... % , (4.68)

e8P (U A, m! Ar| 1AT); wr)
edp el (1 Az, m/ Ar| 1Az w1) | (4.69)

J Um’il; =
5P (I Az, m/ Ar| 1AT; wy)
and where the omni-directional wavefields from the antennas, é?,lﬁ -1 Satisfies

~dip E.J (k)
€10 m it g'Ul 1 (Ul' m/;n’ !Ul n)

= — 1 ot ! (k)
- —ztAw5£< )(Ul m’n |vl,n)
1 A k
(&) w41 m o)

2
T3
<c‘:><vu,m/,n/|v§,’:3> + (O 1o (470)

~dip EB,J (k)
62 l' m'ilit g’UZ,l (vl’,m’,n’ Ivl,n)
. -1 1
T i tAw 8¢ AAT1Ave

(@1 msrmlofs) = (G vt msr ()

_<é>(vl’+1,m'—1,n’Ivl(,l:3)+<é>(vl’ 1,m/— ln’lv( ))] s (471)
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) )
transmitter receiver .

Figure 4.6: The direction of & and € in reference with the tool.

Adi k
eB:?,m’;l;t = glJE;;:f(Ul',m’,n’lv{(,,B) =0 ; (472)

for m =1 and n = n' = 0, and where (G) (Vi |1 p,) is the Green function
from chapter 3. Finally, the discretized sensitivity satisfies

A . 2 ~dip
Sl’,m’,n’;l,n;t =—itAw I_‘n’,n ej;l’,m';l;t

edip (4.73)

il miilnt -

In order to validate the approximation, we need to explore the sensitivity func-
tion at several frequencies and radial distances.

4.5 Exploring the effective sensitivity function
In section 4.4 we made two assumptions:

e the radiation pattern I'(¢) in the effective sensitivity function of the an-
tenna system can be taken independent of the frequency,

e I'(¢) is the same over all radial distances.

In this section we compare the effective sensitivity function with the “real”
sensitivity function computed at several radial distances and for several fre-
quencies. The latter sensitivity functions are computed along the dotted lines
shown in figure 4.6, where g is the radial distance, and where ¥ and ¢ denote
the spatial direction. Note that {,8} = 0 and {#,8} = %n corresponds to the
same point. Further note that o is defined in the same direction as €.
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Figure 4.7: The sensitivity function, computed for the fo = 100 MHz compo—
nent, at radial distances ro = {0.3 m,0.6 m,6.0 m} (ro ~ {0.9A,1.8,17. 8A}). In (a)
5((0,19,9)|(0,0,0)) is shown as function of the angle ¥, and in (b) S(")((O ro)l(O 0))
as a function of n = —& +1,..., %, (N =64).
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Figure 4.8: The sensitivity function, computed at a constant radial distance
7o = 0.3 m, for the frequency components fo = {40, 60,100,140,160} MHz. In (a),
5((0,m0 = 0.3,9)[(0,0,0),w) is shown as function of the angle ¥, and in (b), the “rel-
evant” values of S ((0,ro = 0.3)|(0,0),w) are shown in the spatial angular Fourier
domain, (N = 64).
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Figure 4.9: The sensitivity function, computed for the fo = 100 MHz compo-
nent, at radial distances ro = {0.3 m,0.6 m,6.0 m} (ro = {0.9A,1.8X,17.8}), in the
6-direction. In (a), S((ro,? = 0,8)|(0,0,0)) is shown as function of the angle ¥, and in
(b), 3™ ((0,70)|(0,0)) is shown as a function of n=—§ +1,..., X, (N =64).
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Figure 4.10: The sensitivity function, computed at a constant radial distance
ro =0.3 m, for the frequency components fy = {40,60, 100,140,160} MHz, in the §-
direction. In (a), S((ro = 0.30,% = 0,6)|(0,0,0),w) is shown as function of the angle
9, and in (b), the “relevant” values of S ((0,r = 0.30)](0,0),w) are shown in the
spatial angular Fourier domain (N = 64).
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We start with comparing the absolute value of the normalized sensitiv-
ity function $(7]#*)) from equation (4.31) for several radial distances. Us-
ing the same configuration as in section 3.7, we embed the system in a non-
conducting medium with relative permittivity e, = 80, and set the central
frequency at 100 MHz. We compute the function for three radial distances
7o = {0.3 m,0.6 m,6.0 m} (ro ~ {0.9X, 1.8, 17.8A}).

In figure 4.7(a) the sensitivity functions are shown as a function of the
angle ¥ in the spatial domain, and in 4.7(b) in the spatial angular Fourier
domain as a function of n = ~—12! + 1,...,1—;{, for N = 64. Note the great
similarities between the three radiation patterns, despite the great differences
in radial distances. These vary from the near- to the far-field region of the
antenna system.

In addition, we verify that I'(¢) indeed can be taken frequency indepen-
dent. Using the same configuration, we compute the absolute value of the
sensitivity function at a constant radial distance, rg = 0.30 m, while we vary
the frequency from fy = 40 MHz up to fo = 160 MHz. The computed functions
(normalized to unity) are shown in figure 4.8(a) as a function of 4, and in 4.8(b)
in the angular Fourier domain.

Next, we study the patterns in the €p-direction. In figure 4.9, the 100 MHz
component of the sensitivity function at several radial distances are shown
for this plane. As a reference, we show the pattern of an effective sensitivity
function obtained by multiplying the radiation pattern from an electric dipole
with the radiation pattern I'(¢) obtained from the 100MHz component of the
real sensitivity function at a radial distance of 0.30 m in the plane z = 0,
the dotted line. Note the similarity with the dashed line around § = 0. In
figure 4.10, we show several sensitivity functions at fixed radial distance (rg =
0.3 m) for various frequencies.

From the figures 4.7 and 4.9 it is observed that the radial distance has
not a great influence on the radiation pattern. The frequency dependency
however, is much larger. Especially in figures 4.8(a) and 4.10(a) it is observed
that large variation in the radiation pattern takes place for frequencies below
fo = 60 MHz. However, above this frequency, the radiation pattern remains
similar. In addition, it is observed from the figures 4.7(b) and 4.8(b) that
approximately 9 out the 64 components in the spatial angular Fourier domain
have a significant value. In the f-direction the spectrum is slightly wider (13
out the 64).

Consequently, we can take as effective sensitivity function the radiation
pattern belonging to the 100 MHz component of the sensitivity function at a
radial distance of 0.3 m in the plane z; = 0.
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4.6 A single step inversion via back-propagation

In order to get an image of the subsurface, we need a solution for the decoupled
integral equation (4.36). After we have an estimate for §2(") (xy,r), the image
is obtained using equation (4.39). The estimate is retrieved from a minimum
norm solution of the error functionals ERR(™). These functionals read

ERR™ = 3 N~ | syt

oM epweER
o oo 2
} — tm / /55(")(351,r)S'(")(ml,ﬂxgk))dxlrdr ArAw, (4.74)
| z3=—00 =0
where £ (z1,7) satisfies
5e™ (x1,7) = a™ A (z1,7), Vw e, (4.75)
| and where D) denotes the spatial circular cylindrical domain and € the temporal

angular frequency domain. Note that we assume d&(™(z1,7) to be frequency
independent. The functional tends towards a minimum when o™ reads

o™ —

X0
R Y Yo <"><w““>>(f“”/
0=

/As<") (z1,7) S(")(ml,rlwgk))dxlrda

(k)E]DthQ re =
o o 2
Z Z m / /Ae(")(zl,r)ﬁ(")(zl,rlxgk))dxl rdr
zgk’)ED“"EQ z1=~00 =0

(4.76)

We observe that, apart from a constant, the numerator is maximized by taking
as update direction

D™ (zy,7) Z Z (Ith(")(xl rlz ))*5Vfc%<“)(z§’°)). (4.77)

(k) &) Wi e

Substituting this direction in equation (4.76) we obtain

oo} o0
/ / ]AE(")(ml,r)r dxirdr

Ot(n) - €1 =-~00 r=0

(4.78)

o0 o0 2

Z Z ftm/ /As(")(xl,T)S’(")(xl,ﬂxgk))dwlrdr

nc(lk)EID we €

xr1=—00 r=0
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Finally, an image of 6¢(7) is obtained using equation (4.39). Note that o™ is
real and only contains angular information.

If we take o™ = 1, for all n, we observe that the measured voltage
svre(n) (xgk)) is projected from the data domain into the domain of observation,
using the kernel function (f tm &) (g, r]acgk))) . Consequently, we refer to this

method using the term standard back-propagation. In case we use a™ in our
computations, we use the term minimized back-propagation.

We will apply this algorithm on both synthetic and measured data.
Therefore, we discretize equations (4.75), (4.77) and (4.78), using the results of
the sections 4.3 and 4.4, hence

5e™) = oM Aelm) (4.79)

Iom

A = Z}:( 5 0)) SV (4.80)

U'=11t=1

L M
5 (As§ )| m Az (Ar)?

(n) _ I=—Lm=1
o o Y 5 (4.81)
S S N A m3n m Az (Ar)?
U'=1t=1| l=—Lm=1
Finalely, dep ' v satisfies
3
8€lmmn = Z exp(inn' Ag) Js(n ) Ag (4.82)

where we use the spatial Fourier transform from equation (4.34).

4.7 Synthetic and experimental results back-
propagation method

We test the algorithm on both synthetic and measured data, corresponding to
the same configuration. Before we show the results, we first discuss the data.

For every antenna, position, a single trace is obtained containing 512 mea-
surements, with a time step equal to 1.66 ns. During the imaging, we only use
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(a) (b)

Figure 4.11: The antenna system and the object positioned (a) above the water basin,
and (b} under the water table.

the positive frequency components from the range 60 — 280 MHz. The complete
set of discrete antenna positions forms the domain D*, which satisfics

D¥ = {7 € D*|1.57 < x; < 3.55,7r = 0,0 < ¢ < 27} , (4.83)

containing of L’ x N = 15 x 64 subdomains in the z; and in the ¢-direction.
While, the volume of interest, D, reads

D= {7 eD*0.55 <z <3.69,0<r<4,0<¢<2rn}, (4.84)

containing (2L + 1) x M x N = 33 x 100 x 64 subdomains in the x;,r and
¢-direction, respectively. Although in practice, the system describes a “spiral”,
we treat the data as if each 64 measurements in a row are taken at one depth,
just like with the synthetic data.

Measurements take place in a deep fresh water basin', see figure 4.11,
enabling us to control the position of scattering objects and to ensure a homo-
geneous background medium. The synthetic data and the imaging are based
on a background medium, which is non-conductive and has a relative permit-
tivity similar to water (80). We position two objects at »; = (2,1,7) and
v = (3,2, %7\') The first object is a metallic sphere with a diameter of 0.3 m,

'The water basin is owned by TNO Physics and Electronics Laboratory (TNO-FEL), and
designed to test acoustic equipment.
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VoM v)

(b)

Figure 4.12: The (a) synthetic and (b) measured data. The normalized voltage
5V(m(lk),d>(’°);t) is shown as a function of z;(k) and the radial distance, where time
is transformed to radial distance. Clearly visible are the reflections caused by the two
objects.
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the second a gastank, having a length of 0.7 m in the axial direction of the
antenna system and a diameter of 0.15 m. For the synthetic data we use two
point-scatterers, with medium parameters ¢ = 1 S/m and ¢, = 160.

Note that we haven’t discuss the electric-source current /'™ yet. For the
measured data, it is observed that the maximum amplitude in the power spec-
trum is in the region near the 100 MHz maximum, however the exact frequency
content of the current is unknown. We therefore take the electric current I*™
equal to one in a finite bandwidth. In practise, the “best” results are obtained
when we take [ = 1 for 60 MHz < fo < 280 MHz and zero elsewhere.

Synthetic data are generated using equation (4.30). After applying the
temporal Fourier transform on the data we obtain the results shown in fig-
ure 4.12(a). We clearly observe a change in voltage due to the presence of two
objects. The measured data are shown in figure 4.12(b), after correcting for the
direct wave by subtracting from each sample in every trace the corresponding
sample from the first trace. Further, we tapered the first 30 samples of each
trace to avoid high frequency components caused by the correction. Note that
we have transformed time to a radial distance, and that we normalize to unity.

The imaging procedure is carried out in the frequency domain, using pos-
itive frequencies only. Both back-propagation and minimized back-propagation
are applied to the synthetic and the measured data, see figures 4.13-4.16. In
these figures the absolute value of the computed contrast are shown in the plane
at several z;-positions. Exploring the results, we observe great similarities be-
tween the results from measured and synthetic data. In both cases we see
an increase in angular resolution when we apply minimized back-propagation.
However, in addition it results in extra maxima in the angular direction.

Further, we observe a blurring effect in the radial direction in images
based on measured data, see figures 4.15 and 4.16. This is caused by the
antenna ringing, or the improper choice of the electric-source-current frequency
spectrum. Hence, this effect is not present in images from synthetic data where
we use the same current density in the forward and inverse problems, see figures
4.13 and 4.14. Furthermore we see that the images of the objects are not
positioned at a proper depth in case of the measured data. This is caused
by the measuring method: the antenna system follows the path of a “spiral”,
hence each complete rotation takes place over the complete range of equidistant
z1-positions, between two gridpoints. The second object is visible over a long
range in the zi-direction, 2.70 < z; < 3.12, since this object corresponds to the
gastank of length 0.3 m. In addition we observe that the computed contrast
of the object at the largest radial distance, has a lower amplitude than the
nearby object. Note that this is the case for images from both synthetic and
the measured data. Hence, it is interesting to search for an other imaging
algorithm where we correct for the radial decay.
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Figure 4.13: The results obtained by applying standard back-propagation on synthetic
data. Shown is the normalized absolute value of the computed contrast, |6e(Z), in the
planes at various z;-positions. The crosses indicate the positions of the objects.
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Figure 4.14: The results obtained by applying minimized back-propagation on syn-

thetic data. Shown is the normalized absolute value of the computed contrast, |0e(z)|,
in the planes at various z;-positions. The crosses indicate the positions of the objects.
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Figure 4.15: The results obtained by applying standard back-propagation on measured
data. Shown is the normalized absolute value of the computed contrast, |de(Z)|, in the
planes at various z;-positions. The crosses indicate the positions of the objects.
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Figure 4.16: The results obtained by applying minimized back-propagation on mea-
sured data. Shown is the normalized absolute value of the computed contrast, |Je(&)],
in the planes at various x;-positions. The crosses indicate the positions of the objects.
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4.8 Conjugate gradient inversion method

The back-propagation from the previous paragraph is a single step inversion
algorithm. Since it is the first step of a conjugate gradient (CG) iteration
scheme, it is interesting to investigate the effect of applying several iteration
steps. Although we know that we deal with an ill-posed problem and that
a CG method tends to be sensitive for noise in the data. This sensitivity to
noise occurs when we carry many iterations. We expect to gain resolution by
applying only a few iteration of CG scheme. Next we develop a CG scheme
where we approximate equation (4.60) by

o0 (o9}
sV (1)) = fom / / 8¢ (21, 1) 8 (21, r|z)) dz rar

r1=—00r=0

Vn=-c0,...,00, (4.85)

where we assume the contrast 6e(™(zy,r) to be frequency independent.

To discuss our CG scheme in more detail we introduce an operator, a norm
and an adjoint operator. We therefore write equation (4.85) as an operator
equation, viz.

£ = (Lu)™ | (4.86)
where f is the known (measured) electric potential given by
1 =svi™ (4.87)

and where the known operator L is applied on the unknown complex permit-
tivity u, hence

L M
=3 Y fmg ™ m' AciArar (4.88)
U/=—Lm'=1
in which
upd, = 8elly, (4.89)

The norm on D€, () is defined as

lFlBare @ = (¥, pere 0

T

n N
=2 i Yoy (Tz(;'f))* AziAw (4.90)
=1

n=—%+l t=1
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Table 4.2: Conjugate gradient iteration scheme

Ug=0, WOIO, rozf

b

LHr,_ 4|2
Un = Un—1+ QW , Wp = LHrn—-l H—]:{rn——1l§ n—~1
fn = 1 — aplwy, , 2”L rnv2”§
_ vl
[Lwnll3

where r is defined in the space D and will be specified later, and where
denotes the temporal Fourier domain. The norm of a vector u, defined in the
space D, reads

2
lullp = (u, u)n

| L M
| = Z Z z ul(,n) , (ul(,n) ,) m Az ArAr . (4.91)

U=-— n~—-—+1

vz

(Lu, Fypsre o = (u, LH0)p (4.92)

where the symbol “#” is used to denote that the adjoint is taken. Note that

|

|

The adjoint of the operator L is defined through the inner product, hence
| the inner product depends on the space in which the operator is defined.

Using the definition of the inner product from equation (4.92) and of the
norm from equation (4.90), we obtain the adjoint operator L via

7 S

(Lu, r)psre g = Z i Z Lu 1(7: (rf?) Az Aw
I=1 p= N g t=1
% :

V=~Lm/=1

2 T L M . «
S 5[50 5 (i) wanar)

u§,") , (r[(': ) Az Aw

L M
Z Z Z ul(nzn ((LHr)l(ffzn,)*m'AxlArAr
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where

LH (n) ZZ (Itms( ot t) Tz(t)AxlAw ) (4'93)

=1 t=1

Finally, we define a normalized error ERR which will be minimized, viz.

2
r SIC
ERR = "”i’;ﬂ , (4.94)
[[fllpsre
where r satisfies
IrlBore @ = I — LullBre g - (4.95)

We apply the above results in a standard CG scheme as shown in the diagram
in table 4.2, and discussed by Kleinman and Van den Berg (1991). Note that
we have to terminate the iterative process after a fixed number of iterations,
before it starts blowing up the noise.

4.9 Synthetic and experimental results conjugate
gradient method

In this section we will show the results obtained with the conjugate gradient
method. The same synthetic and measured data sets are used as discussed
previously in section 4.7.

In figure 4.17, we show the normalized error functional for both mea-
sured and synthetic data. During the first five iteration steps, both functionals
decrease similar. After that, the convergence rate of the conjugate gradient
method using measured data diminishes significantly. It is observed that in
the first five iterations the two curves coincide and start to deviate after ten
iterations. The convergence of error using the measured data decreases dramat-
ically after twenty iterations. Then, the ill-posed nature of the problem starts
to manifest. Therefore it is wise to limit the number of iterations to at most
ten iterations.

In figures 4.18 and 4.19, the computed contrast after ten iterations is
shown in the same planes as used in section 4.7. Exploring the results from
the synthetic data set, we observe that the computed contrast of both objects
are identical. Note that this was not the case with results obtained from back-
propagation! Unfortunately, this is not the case with the measured data. In
addition, it shows that the first object at 1 = 2 m is positioned in two planes,
at 1 = 1.99 m and at z; = 2.13 m. This is caused by the measuring method:
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0 20 40 60 80 100
number of iterations

Figure 4.17: The normalized error ERR as a function of the number of iterations.
The dashed line are the results using measured data, while the solid line denotes the
results using synthetic data.

the antenna system follows the path of a “spiral”, hence each complete rotation
takes place over a full range of equidistant z;-positions, between two gridpoiuts.
The second object however, is visible over a much longer range in the z;-
direction, three to five grid points. This is explained by the fact that this
object corresponds to the gastank of length 0.3 m.

Finally, we observe in figure 4.19 a blurring effect in the radial direction
in the images from the measured data. Firstly, this is caused by the antenna
ringing. A second explanation of this blurring effect is the fact that the source
current in the inversion is not properly taken. For the measurements, this
current is unknown, and consequently we have simply approximated it by a
unit current within the actual bandwidth of the frequency domain.

In figure 4.20, we show the results for the plane x; = 1.99 m after 2, 5, 10,
50 and 100 iterations, respectively. On the left-hand side, results obtained from
synthetic data, on the right-hand side from measured data. The results from
synthetic data do not show any major changes, such as an increase in resolution.
However, for measured data, we observe an increase in the number of maxima
visible in the radial direction without gaining any angular resolution. Hence, it
is interesting to investigate the maximum resolution, achievable in the angular
direction.
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Figure 4.18: The results obtained by applying a conjugate gradient method on syn-
thetic data. Shown is the normalized absolute value of the computed contrast, [5¢(Z)|,
in the planes at various z1-positions.
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Figure 4.19: The results obtained by applying the conjugate gradient method on
measured data. Shown is the normalized absolute value of the computed contrast,
|0£(&)], in the planes at various x;-positions.
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Figure 4.20: The results obtained by applying the conjugate gradient method on both
synthetic (left) and measured (right) data, from top to bottom: number of iterations
equals 2, 5, 10, 50 and 100.
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Figure 4.21: A triangular and a box shaped spectrum with its corresponding spatial
function.

4.10 Maximum angular resolution

The maximum angular resolution achievable, depends on the number of an-
gular frequency components used in the inversion algorithm. We have shown
that the number of significant spatial angular frequency components present
in our sensitivity function is nine. To reduce computational time, we only use
these nine in our computations. Hence, it is interesting to investigate the con-
sequences of using a limited number of components. Therefore, we compare the
results with two angular functions, each defined through nine angular frequency
components.

The two angular spatial frequency spectrums are given in figure 4.21(a),
where 9 out of 64 angular components are non-zero. One spectrum is triangular
shaped, the other one is a rectangular function. Applying a DFT on these
spectrums, taking their absolute values, and normalizing them to unity results
in the functions shown in figure 4.21(b). The function has either a small main-
lobe and large side-lobes, or vice versa.

Next, we compare the obtained angular distributions from the various
methods with the above results. In figure 4.22 we show the computed contrast
after normalization, obtained with back-propagation, at 1 = 1.99 m, and at
the radial distance 7y where the maximum amplitude of the contrast is po-
sitioned. With synthetic data, figure 4.22(a), we clearly observe an increase
in angular resolution obtained with minimized back-propagation. The method
even approaches the resolution obtained with the triangular shaped frequency
distribution. With measured data however, the resolution obtained is not as
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Figure 4.22: The normalization computed contrast based on standard (solid line)
and minimized back-propagation (dashed line). The dotted line denotes the maximal
achievable resolution obtained from the triangular shaped frequency spectrum.
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Figure 4.23: The normalization computed contrast based on conjugate gradient for
two (solid line), ten (dashed line) and fifty (dashed-dotted line) iterations, compared
with a triangular shaped distribution (dotted line).




2]

80 Chapter 4. Imaging

good as with the synthetic data and the increase in resolution obtained with
minimized back-propagation is only minimal.

Finally, we show the results for the CG method in figure 4.23. With
synthetic data, we see that increasing the number of iterations results in a
smaller main-lobe. With the measured data however, this process terminates
after 10 iterations, and its maximum starts to shift from the center.

4.11 Conclusion

In this chapter we have derived two types of imaging algorithms in order to
obtain a three-dimensional image of the subsurface. One type is based on back-
propagation, the other one on a conjugate gradient (CG) method. Both types
apply a linear inversion on the data using a sensitivity function. The algorithms
have been tested on synthetic and measured data.

Exploration of the sensitivity function shows that it can be approximated
by an effective one, which combines an angular dependent function with the
omni-directional radiation pattern of an electric dipole. Another important
property of the (effective) sensitivity function is that it only contains nine sig-
nificant angular frequency components. Hence, we reduce the computational
effort with 85%, by neglecting the remaining components. However, a disad-
vantage is that the maximum achievable resolution in the angular direction is
limited, and that it might result in several side-lobes next to the main-lobe.

Three imaging algorithms are tested, namely standard back-propagation,
minimized back-propagation, and a CG inversion method. Both synthetic and
measured data have been used. The measured data are obtained in a deep
water basin to ensure a homogeneous back-ground medium.

The imaging takes place in the spatial angular and temporal frequency
domain, using temporal frequencies in the range 60 — 280 MHz. The back-
propagation methods minimizes nine error functionals, one for each angular
frequency component, while the CG method minimizes one error functional
containing all nine components. It is observed that in case of the CG method,
there is hardly any increase in resolution after ten iterations. Good results
are obtained, although the quality of the image from the measured data was
not as good as from the synthetic data. In the radial direction, this is mainly
caused by the improper choice of the electric-source current spectrum in the
transmitting dipole antenna. In the angular direction it is explained by the fact
that the angular Fourier spectrum is very limited, and thus only 14% of the
data are used. Besides, there is a great difference in weighting factors for each
component, making it very sensitive for small errors in each weighting factor.
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It is expected that the angular resolution can be increased by using an
other set of a basis functions, resulting in a wider flat spectrum. Finally, the
radiation pattern starts to diverge from the radiation pattern used for the ef-
fective one, for temporal frequencies above 160 MHz. Hence, an increase in
resolution is expected if for the higher temporal frequencies a different effective
sensitivity function is used.

The main advantage of the CG method over (minimized) back-
propagation is that the computed contrast is not (less) dependent on the radial
distance. Similar results are expected if we combine back-propagation with pre-
conditioning. Although using a preconditioner in an (iterative) solution method
incurs some extra cost during the setup (and per iteration), it might improve
the convergence speed. A simple, but effective one is the Jacobi or diagonal pre-
conditioner, see e.g. Barrett et. al. (1994), where the diagonal of the matrix is

used. Hence, we suggest to use S (7]7) (S'(")(xl,ﬂx’l)) as preconditioner.
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Chapter 5

Conclusions

In this thesis we have shown the successful design of a borehole radar system,
which has a directional radiation pattern, sensitive receiving properties, and
fits in a single borehole. To ensure enough resolution and penetrating power,
the transient generated wavefield has a center frequency of 100 MHz. The
maximum diameter of the system does not exceed the 0.09 m. In addition, we
have developed various inversion schemes to image the subsurface. Good results
are obtained with these schemes, when tested on both synthetic and measured
data.

The basis for the design of the system and the imaging algorithms is
formed in chapter 2. Here we derived an integral equation using Maxwell equa-
tions, the electromagnetic boundary conditions, and the frequency-domain reci-
procity theorem. The integral equation describes the interaction between an

electric current carrying thin wire as dipole antenna, a perfectly conducting

reflector, a scattering object, and the total electric wavefield. The reflector ap-
pears in the integral equation as a jump in electric-surface-current density at
the reflector domain, where the scattering object is considered as a change in
electromagnetic medium parameters. We have assumed that the reflector and
the scatterer are decoupled from the dipole, which is equivalent with the Born
approximation.

To design the antenna system, in particular the reflector, we simplified the
integral equation by omitting the influence of scattering objects on the total
electric wavefield. In addition, we formulate the problem in a linear curved
coordinate system, since we expected that the reflector should be curved in
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the optimum configuration. The integral equation has been solved using a
conjugate gradient FFT solution method and the total electric wavefield in
space is computed.

The low-frequency content of the wavefield has to be combined with the
spatial limitations of the system. We therefore positioned the system in a
medium with high permittivity to shorten the wavelength. Based on optical
ray theory, we expected that in the ideal configuration the dipole is located in
the focal point of a parabolically curved reflector. To validate these expectations
we have computed the total electric wavefield for several parabolically curved
reflectors, and have shown that the radiation pattern is indeed directional.
However, it is observed that the directionality is improved by positioning the
dipole to the far opposite of the reflector. Next we have chosen a circularly
curved reflector while keeping the position of the dipole at the far opposite of
the reflector. This resulted in an increase of directionality. Hence, we conclude
that this configuration represented the optimal one.

Based on the optimal configuration, a prototype antenna system has been
built. The radiation pattern of this prototype has been measured below the
water table. The measured pattern is in excellent agreement with the computed
one. In most cases only the borehole is filled with water while the surrounding
medium has different electromagnetic properties. This influences the radiation
pattern, and might result in a decrease of directionality. This is an interesting
subject for future research.

In chapter 3, we have described the antenna configuration as a two port
system. We have combined the reciprocity theorem with the integral equa-
tion obtained in chapter 2, and have shown that the changes in impedance
as observed by the antenna system are the result of a convolution of changes
in medium parameters with a sensitivity function. This sensitivity function
contains a vectorial description of the radiation characteristics of the antenna
system. In addition, it formulates the change in impedance caused by the pres-
ence of a unit point-scatterer. This change is observed as a change in voltage
at the port of the receiver. The data are measured while the rotating system
is pulled through a borehole. To image the subsurface, we need to deconvolve
the data for the sensitivity function. '

Exploring the sensitivity function revealed us important information. We
showed that the radiation pattern is approximately constant over a range of
temporal frequencies, 60 < fo < 160 MHz, and radial distances, from the near-
field region up to the far-field region. This enabled us to reduce the computation
time and memory by approximating the sensitivity function by an effective
one. The effective one is obtained by convolving the omni-directional radiation
pattern of an electric dipole, with the pattern of the system at a radial distance
of about a wavelength at a temporal frequency of 100 MHz.
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Since the system rotates around its axis, we have a convolution in the an-
gular direction. This convolution is computed effectively in the angular Fourier
domain. Since only 9 of the 64 angular Fourier components of the sensitivity
in the angular Fourier domain have a significant value, a further reduction of
computational time is obtained by restricting the computations to these nine
Fourier components.

We have developed two types of inversion schemes in the temporal fre-
quency domain. After linearizing the data equation, we either applied a single
step back-propagation method or an iterative conjugate gradient (CG) inver-
sion method. The back-propagation method is based on the minimization of
a number of error functionals, one for each significant angular Fourier compo-
nent. If only the update direction is used in the inversion process, we use the
term standard back-propagation. If we use in addition the update parameter as
well, we refer to it as minimized back-propagation. With the latter method we
increased the angular resolution. This minimized back-propagation is similar
to the first step in the CG scheme.

All algorithms are tested on synthetic and measured data, and resulted
in good three-dimensional characterizations of the subsurface. As expected,
the angular resolution obtained with standard back-propagation is increased
if the minimized back-propagation method or the CG method is used. With
synthetic data, we then achieved the maximum angular resolution possible.
This is limited, since the number of significant angular components is limited.
We expect to improve the resolution, if we use an other vector space than the
angular Laplace domain. In this domain, the spectrum of the sensitivity has to
contain more significant components and is preferably flatter.

In the axial and radial directions, all methods give approximately the
same resolution. With the CG method, we observed an improvement of the
computed amplitudes of the contrasts at larger radial distances.

Based on our results, we propose to combine the minimized back-
propagation method with a preconditioner. We expect to improve the ampli-
tude of the computed contrast at larger radial distances. We suggest a simple,
but effective preconditioner like the Jacobi or diagonal preconditioner, where
the diagonal of the matrix is used.

We conclude that the result of the present rescarch is a new tool which
enables us to obtain unique information from out of a borehole. With this
information a three-dimensional characterization of the subsurface can be made.
This is a completion to current available techniques. The current technique is
ideal for the detection of unexploded ordnance, UXQ’s, and can be applied
immediately. Another application is the tunnel industry. There, we can probe
the trajectory of a tunnel to be drilled. Finally, the oil- and gas-industry is
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worth noting. In order to explore an oil or gas reservoir in an optimal way, it
is desirable to have a three-dimensional characterization of the reservoir, or to
know its position in reference with a salt dome. It is expected that this tool is
capable to detect the bottom and the top of a reservoir.




Appendix A

Orthogonal curvilinear coordinate system

Let us consider the vector 7 = v; for i = {1,2,3}, containing the set of vari-
ables or coordinates of an orthogonal curvilinear coordinate system with unit
basis vectors €,,. Examples of orthogonal curvilinear coordinate systems are
the circular cylindrical and the parabolical cylindrical coordinate system. Con-
sequently, the vector @ = u,,(7) is defined in the curvilinear coordinate system
as a function of the parameters v;. A vector in the Cartesian coordinate sys-
tem denoted as U@ = ug, (&) is expressed with the parameters x;, the variables
of the Cartesian coordinate system. Therefore, the vector u,,(7) is defined in
the Cartesian coordinate system where the coordinates z; are a function fi of
the parameters v;, viz.

X; = fi(’Uj) . (Al)

Given these functions f;(v;), the distance dL between two points 7 and 7 + d#
satisfy the relation

(dL)? = h2.dv? = (hy,dv1)? + (hy,duvs)? + (hygdus)? | (A.2)

where h,, are the Lamé’s coefficients. These Lamé coefficients can be under-
stood as scale factors and are defined as

1
hus = Gy i)t = ((G20)? + O 22)? + (00,29)%) 7 |

[V

by, = (81,2.’177;(91,2%) = ((8U2:E1)2 + (61121?)2 + (81)2‘773)2) ’ s

N

hv3 = (avg-riavs iL’i)

= (Gum) + B + Bur?)t . (A)
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where we use Einstein’s summation convention for repeated indices. Using these
scale factors, we can we write the vector displacement dv' as

47 = hy,dviy, = hoydv1Ey; + huydva@u, + huydvséu, - (A4)

For an oriented surface d.A in the orthogonal curvilinear coordinate system this
results in
AA = Ry Py Ay AVyg €y + By Py 0y A3 €y A Frayy Frayy vy, dVvs €5 (A.5)
and for a volume element dV in
dV = hy, by, hyydvrdugdus . (A.6)

The following vector operators can be expressed in terms of the general or-
thogonal coordinates: the gradient (Vf), the divergence (V - B), the rotation
(V x B) and the gradient-divergence (VV - B), viz.

Vf= e”t “0uf = e’“ hlonf+ g b Fr0n] + ;’Za of (A.T)
V-B=— 8, (huhusBay)
Fros Py g
+ h»%—,;a (s s Bus)
+ mava(hvl s Bu) (A8)
Ry €o;  Pusluy  huy€ug
UxB=—2—| 8,  6n 8 | (A.9)

hvl hvg hvg,
hvl B’Ul hv2 Bv2 hvs Bvs

1

ﬁaz(hx,stz) 33(h1 2Bus)

1
Eal (h2,3Bu,)

63 51(h233m) 705 32(h1,3Bv2) 35733(1%1,23«;3)

1, 1, 1,
h h h1
. 1,1 1,1 1
vVv.-B= |4 -751(h2,33v1) - ﬁaz(hl,stz) h25’z 63(h1 2By;)
1 1 1
hs h3 h
(A.10)

where b’ = hy, hy,hy,, Where hij = hy,hy, and where h; = hy,;.

A vector defined in the curvilinear coordinate system and expressed as a
function of the curvilinear coordinates, (), can be transformed to a vector
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in the Cartesian coordinate system, @,,(#). The correspondence between both
vectors is given through the relation

g, (V) = T, juy,; (¥) , (A.11)

where T is the coordinate transformation matrix and satisfies

1 1 1
}—1;-3«)1561 h_wavg$l ?l;auawl
T=| Lones “oue o,z A2
= hul 1 L2 h’l}z Vo L2 hv3 vz L2 . ( . )
1 1 1
E;l"alefi h—mavg-z:a Ea‘augiv:s

For the transformation backwards the inverse of the operator T', T7!, is used,
viz.

uvj (ﬁ) = T"]Tiluvi (ﬁ) ’ (A13)

In those cases where the matrices T and 7! define an orthonormal transfor-
mation, the inverse of T is obtained by taking its transpose, hence

T = (T, » (A.14)

Jst

where the superscript ¢ denotes the transpose of the matrix is taken.

A.1 Cylindrical coordinate system

In a cylindrical coordinate system the relationship between the parameters x;
and v; is given by the function f;(v;), which reads

{21, 22,23} = {v1,v2 cos v3, vy sin w3} . (A.15)

Taking the coordinate vo constant, a circular cylindrically curved plane in a
Cartesian coordinate system is obtained, see figure A.1.

From equations (A.2)-(A.8), (A.12) and (A.14) the following set of equa-
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Figure A.1: Cylindrical curved plane for v; = 2 and v3 = [0 im) in the Cartesian
coordinate system with unit basis vectors €;,. The unit vectors &y, form a basis for the
cylindrical coordinate system.

tions can be obtained:

{hU17hv27 h’l)s} = {1)1,'”2} y (AIG)
(dL)2 = (dv1)2 + (dvg)2 + r2(dv3)? , (A.17)

dv = dvy €, + dveéy, + rduzéy, , (A.18)

dA = voduaduséy,, + vodviduzéy, + dvidvq€y, (A.19)

dV = vadviduedus , (A.20)

Vf =0y féy + auzfevz t 6v3fev3 , (A.21)

V. 8'UlBU1 + 6’02(1)2BU2) —'a’uan;; ’ (A22)

VV.-B= [Bngvl +— 61,181,2 (v2By,) + — 61,131,an3] €n

1 o
[8112 Oy Buy + O, ( va Oy, (v2Bu, )) + Oy, (v_zavstaﬂ €v,

1 =
+ [_67_)3 61)1 B'Ul + _2'61)3 6'02 (szU2) + _2633 Bv3] eUs y (A.23)
v U2 7.)2

1 0 0
T;j = To;me; = [0 cosvs —sinvs| , (A.24)
0 sinvg cosvs
1 0 0
T]fil =Tpw; = |0 cosvz sinvs | . (A.25)
0 -—sinvz cosvs
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In order to increase the readability, we sometimes replace the circular
cylindrical coordinate parameters {vy, v, v3} with {z1,r, ¢}.

A.2 Parabolical coordinate system

In a parabolic coordinate system the relationship between the parameters x;
and v; is given by the function f;(v;), which reads

1

{z1, 20,23} = {'Ul» 3 (vo? —v3?) ,U2v3} . (A.26)

Parabolic curved planes are obtained by taking vy or v3 constant, see figure A.2.

From equations (A.2)-(A.8), (A.12) and (A.14) the following set of equa-
tions can be obtained:

(hvys hogs hug) = (L, ) (A.27)
(dL)? = (dv1)? + (hdva)? + (hdvs)? | (A.28)

A7 = dv1 €y, + hdvagy, + hdusé,, , (A.29)

dA = h2dvydusé,, + hdvidusé,, + hdvidvad,, |, (A.30)

dV = h%dvidvydus , (A.31)

" 1 o 1 o
Vf= avlfevl + Eavzfevz + Eavafevs » (A.32)
- 1 1
VB =,By + 3500, (hBuy) + 2500, (hBug) (A.33)

. 1 1, . .
VV.B= [éﬁBvl + ﬁa,,la,,z (hBy,) + }—ﬁamdvs (th)] €y

1 1 1 1 1 o
+ I:Eavg 61)1 Bvl + an <";§ avz(th)> + Havz (Eg 61;3(}131)3 ))} Evg

1 1 1 1 1 .
+ [Eavsavl Bv] + Eavs(ﬁaw(th)) + Eavs (ﬁaw(tha )>} €us »

(A.34)
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Figure A.2: Parabolic curved planes for v; = {1,2} in a Cartesian coordinate system.

The unit vectors &,, form a basis for the parabolical system.

Ti,j = T-u]-—n:,- = 5 (A35)
T = Toimn; = : (A.36)
1
where B = (ve® +v3?)2). In order to increase the readability, we some-

times replace the parabolic cylindrical coordinate parameters {vy,v2,v3} with

{CL‘], Cv 77}
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Samenvatting

Een boorgatradarsysteem met een
richtingsafhankelijke gevoeligheid

voor visualisatie van de bodem
door Koen Willem Anton van Dongen

Gedurende een periode van vier jaar is een nieuw radarsysteem ontwor-
pen. Vernieuwend aan het systeem is de combinatie van richtingsafhankelijke
gevoeligheid met een groot doordringend vermogen. Dit systeem is hierdoor
in staat de ondergrond vanuit het boorgat drie-dimensionaal te karakteriseren.
Mogelijke toepassingen zijn het opsporen van blindgangers, het meten van de
diameter van betonnen kolommen, of de verkenning van het traject van een te
boren tunnel. Zowel berekeningen als metingen laten zien dat het systeem in
één richting zeer gevoelig is. De algoritmes voor het karakteriseren van de on-
dergrond zijn getest op synthetische en gemeten data. De resultaten laten zien
dat het systeem goed in staat is om objecten in de ondergrond op te sporen.

Elektromagnetische golven weerkaatsen op overgangen tussen materialen
met verschillende elektromagnetische eigenschappen. Hierbij geldt dat de mate
van verschil bepalend is voor de mate van reflectie. Een systeem dat in staat is
elektromagnetische golven uit te zenden, gereflecteerde golven waar te nemen,
en de tijdsverschillen tussen zenden en ontvangen te bepalen wordt een radar
(radio detection and ranging) genoemd. Omdat het doordringend vermogen van
de golven in de ondergrond beperkt is, ontstaan er problemen bij het toepassen
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van deze techniek voor het lokaliseren van diep in de aardkorst gelegen scheuren
en lagen. Dit wordt opgelost door een gat te boren naar dit gebied en van
daaruit metingen te verrichten. Om een drie-dimensionaal beeld van de onder-
grond te krijgen moet het radarsysteem een richtingsafhankelijke gevoeligheid
hebben. Dit kan worden verkregen door in één richting uit te zenden, door
te meten waar een reflectie vandaan komt of door een combinatie van beide.
Gedurende de afgelopen decennia zijn verscheidene boorgat-systemen gemaakt
waarbij de gevoeligheid richtingsafhankelijk is. Helaas gaat dit vaak ten koste
van het doordringend vermogen. Om dit verlies te voorkomen maken wij ge-
bruik van een elektrische dipoolantenne die in één richting is afgeschermd met
een cilindrisch gebogen metalen reflector.

Om voldoende doordringend vermogen en resolutie te hebben moeten
de frequentie-componenten van het golfveld rondom de centrale frequentie van
100 MHz liggen. De maximale diameter van het antennesysteem mag echter
niet groter zijn dan 0.10 m. Hierdoor is de diameter van de beschikbare ruimte
voor een met water gevuld boorgat slechts 1/3 golfiengte.

Om de optimale antenneconfiguratie te vinden en om in een later sta-
dium de gemeten data te kunnen interpreteren wordt in dit proefschrift eerst
een complete formulering van het probleem gemaakt. Hierbij wordt het totale
elektrische veld beschreven dat veroorzaakt wordt door een dipoolantenne, in
aanwezigheid van een perfect geleidende metalen reflector en een object. Daar-
bij wordt gebruik gemaakt van het reciprociteitstheorema. Dit theorema stelt
ons in staat om twee verschillende toestanden, waarin een gegeven ruimtelijk
domein zich in een gegeven tijdspanne zou kunnen bevinden, met elkaar in
relatie te brengen.

Om de vorm van de metalen reflector te bepalen wordt het reflectie-
probleem opgelost, waarbij de invioed van het object wordt verwaarloosd. Het
resultaat is een integraalvergelijking, die het elektrisch veld beschrijft zoals dat
door een elektrische dipoolantenne wordt gevormd in aanwezigheid van een
perfect geleidende plaat. De dipoolantenne wordt beschreven door een bekende
elektrische lijnstroom. Het veld dat reflecteert op de reflector wordt beschreven
door een onbekende stroomverdeling op de plaats van de plaat. Doordat de
cilindrische plaat zowel cirkelvormig als parabolisch gebogen kan zijn, wordt
de vergelijking uitgedrukt in een coordinatensysteem dat in twee dimensies
is gekromd. Met behulp van een geconjugeerde gradiéntenmethode wordt de
vergelijking opgelost voor verschillende configuraties. Uit de berekeningen blijkt
dat in de optimale configuratie de plaat cirkelvormig is gebogen over 143°.
Tevens laten de berekeningen zien dat door de reflector de veldsterkte ruim 1.6
keer zo groot wordt in het punt op vijf meter afstand van de dipool, in het
vlak door het midden van, en opgespannen door de dipcol. Gebaseerd op dit
ontwerp is een prototype gemaakt, waarvan het stralingspatroon is gemeten.
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Dit patroon komt goed overeen met de berekeningen.

Om de ondergrond te karakteriseren wordt ditmaal de invloed van het ob-
ject meegenomen. Opnieuw hebben wij met een integraalvergelijking te maken,
waarbij het totale veld wordt bepaald door de aanwezigheid van een object en
dus een elektromagnetisch contrast in de ondergrond. Buiten het object is het
totale veld gelijk aan de som van het invallend veld van het antennesysteem en
het verstrooide veld als gevolg van het contrast. Door de Bornbenadering toe
te passen, verwaarlozen wij verstrooiing van het veld binnen het object. Hier-
na gebruiken wij opnieuw reciprociteit om het antennesysteem als een twee-
poort systeem te beschrijven, één voor de zender en één voor de ontvanger.
Vervolgens nemen wij aan dat het elektrisch veld lineair afhankelijk is van de
stroomdichtheid in een antenne. Dit resulteert in een integraalvergelijking,
waarbij een bekende elektrische stroom en een sensitiviteitsfunctie convolueren
met het onbekende contrast van een object met de ondergrond, en waarbij het
contrast wordt waargenomen door een verandering van de potentiaal gemeten
door de ontvanger. We laten zien dat de sensitiviteitsfunctie gelijk is aan het
product van het elektrisch veld veroorzaakt door de zender en het veld indien
de ontvanger aan het zenden is. De convolutie in de angulaire richting rondom
de as van de antenne wordt berekend met behulp van de transformaties van
Fourier.

Omdat de sensitiviteitsfunctie een belangrijke rol speelt, is het van belang
om het gedrag van deze functie te onderzoeken. Daarvoor worden meerdere
stralingspatronen berekend met variérende frequenties en radiale afstanden, in
het vlak door het midden van, en opgespannen door de dipool. Door de stra-
lingskarakteristieken te vergelijken, blijkt dat de complexe sensitiviteitsfunctie
benaderd kan worden door een effectieve functionaal, waardoor geheugenruimte
en rekentijd wordt bespaard. Tevens blijkt dat in het angulaire Fourier-domein
slechts 9 van de 64 componenten een significante waarde hebben. Door de
berekeningen alleen voor de 9 significante componenten uit te voeren wordt een
verdere reductie van rekentijd en geheugenruimte verkregen.

Om van de gemeten data tot een drie-dimensionaal beeld te komen, moet
een operator worden gevonden die werkt op de gemeten data. Om deze ope-
rator te verkrijgen wordt de norm van een functie gedefinieerd. Deze functie
wordt verkregen door het verschil te nemen tussen het waargenomen veld en het
berekende veld voor een gegeven contrast. Minimalisatie van deze norm leidt
tot een expressie voor de gewenste operator. In de meest eenvoudige situatie
bestaat deze operator uit twee delen. Het eerste deel geeft alleen een benade-
ring van het contrast in de ondergrond. Het tweede deel schaalt dit resultaat,
waarbij gebruik wordt gemaakt van het antwoord van het eerste deel. Doordat
deze minimalisatie plaats vindt voor iedere component in het angulaire Fourier-
domein, resulteert het tweede deel ook in cen verbetering van de resolutie in de
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angulaire richting. Beide algoritmes zijn getest op synthetische en gemeten data
en leveren goede resultaten op. Daarnaast is ook een geconjugeerde gradiénten
methode toegepast. Een iteratieve methode, waarbij het resultaat na iedere
berekening wordt gebruikt om het contrast te verbeteren. Deze methode levert
met name in de radiale en in de axiale richting een hogere resolutie op. Verder
onderzoek naar de resolutie in de angulaire richting laat zien dat deze maxi-
maal is. Het aantal significante componenten van de sensitiviteitsfunctie in het
angulaire Fourier-domein, en daarmee het aantal componenten waarvoor het
contrast wordt berekend, is hierbij de beperkende factor.

Geconcludeerd kan worden dat het is gelukt om een nieuw type radarsys-
teem te ontwikkelen dat een richtingsafhankelijke gevoeligheid bezit. Door de
centrale frequentie rond de 100 MHz te kiezen heeft het systeem het juiste
evenwicht gevonden tussen doordringend vermogen en resolutie. Het systeem
is hierdoor in staat om objecten vanuit een boorgat goed, eenvoudig en snel op
te sporen. Dit kan leiden tot een aanzienlijke kostenbesparing bij bijvoorbeeld
de opsporing van blindgangers of de bouw van tunnels.
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