<]
TUDelft

Delft University of Technology

Making the Switch

Towards Intelligent Integration of Gestures As an Input Modality for Microtask
Crowdsourcing

Allen, Garrett; Gadiraju, Ujwal

DOI
10.1145/3729176.3729184

Licence
cCcBY

Publication date
2025

Document Version
Final published version

Published in
CHIWORK 2025 - Proceedings of the 4th Annual Symposium on Human-Computer Interaction for Work

Citation (APA)

Allen, G., & Gadiraju, U. (2025). Making the Switch: Towards Intelligent Integration of Gestures As an Input
Modality for Microtask Crowdsourcing. In S. Sadeghian, A. El Ali, C. Lallemand, P. Wintersberger, & E.
Solovey (Eds.), CHIWORK 2025 - Proceedings of the 4th Annual Symposium on Human-Computer
Interaction for Work Article 14 ACM. https://doi.org/10.1145/3729176.3729184

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1145/3729176.3729184
https://doi.org/10.1145/3729176.3729184

N)
Py Making the Switch: Towards Intelligent Integration of Gestures

As an Input Modality for Microtask Crowdsourcing

Garrett Allen
Delft University of Technology
Delft, Netherlands
g.m.allen@tudelft.nl

Abstract

Human input is pivotal in building Al systems. Aiding the gathering
of high-quality and representative human input on demand, micro-
task crowdsourcing platforms have thrived. Despite the benefits
available, the lack of health provisions, safeguards, and existing
practices threaten the sustainability of crowd work. Prior work
investigated the usefulness of a dual-purpose input modality of
ergonomically-informed gestures across different microtasks, find-
ing that gestures as inputs offer a realistic trade-off between worker
accuracy and potential short to long-term health benefits. However,
little is understood about the effect of switching input modalities
from one task to another on worker experiences and task-related
outcomes. Addressing this research and empirical gap, we con-
ducted a between-subjects study (N = 717) with varying sequences
of input modalities across 16 experimental conditions to system-
atically understand the effect of switching input modalities. We
found that the order of the input modality can influence the time it
takes to complete tasks but does not affect accuracy. Further, the
cognitive load perceived by workers was not significantly different
between conditions. Our findings hint that ergonomically informed
gestures can be effectively intertwined with conventional input
modalities without a detrimental impact on worker experiences
and quality-related outcomes. Our work has important implications
for the design of human-centered crowdsourcing platforms that
cater to worker health and wellbeing.
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1 Introduction

Crowdsourcing marketplaces provide a centralized place for re-
questers to post microtasks to gather cost-effective, high-quality
data by harnessing human intelligence at scale [20, 24, 29]. This is
still a growing and evolving paradigm with a multitude of unsolved
challenges [4, 23, 55]. A vast majority of early research in this field
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Figure 1: An illustration of the task batches in our controlled
study. Workers completed a sequence of task batches, with
each batch containing 10 tasks.

has focused on understanding the use of crowdsourcing in realiz-
ing specific use cases [23] and tackling quality control challenges
[11, 26]. Recent efforts have turned their attention to topics such as
understanding and improving worker experiences and supporting
workers [12], worker engagement [34, 42], and ensuring fair com-
pensation of workers [6, 52], among others. Such worker-centric
explorations are valuable in a world where microtask crowdsourc-
ing centers around online marketplaces that are subject to evolving
interests, and where the abuse of data workers continues to be
prevalent [20, 32, 48].

Conventional crowd work in various microtask marketplaces
bears a resemblance to desk work in that the work is often con-
ducted using the familiar mouse and keyboard input devices. Other
input modalities that have been utilized for crowdsourcing stud-
ies include voice, eye tracking, and hand gestures [8, 30, 50, 54].
Recent work by Allen et al. [3] has proposed using ergonomically-
informed gestures to help improve health-related aspects in crowd
work. Workers on microtask platforms complete tasks in sequences
— either within or across different task batches. Newell and Ruths
[36] investigated intertask effects, and showed that earlier tasks in
batches can have a large effect on later tasks. Cai et al. [7] explored
the effects of task complexity on performance and worker experi-
ence. Within the frame of writing tasks, i.e., producing a written
passage of text, the authors explored three distinct perspectives:
continuity — task chains of the same complexity, transition — moving
between tasks of different complexity within a chain, and easing
in — moving from lower complexity to higher complexity tasks in
a chain. Taking inspiration from this, Aipe and Gadiraju [2] ex-
plored the effects of task similarity, i.e., the degree of resemblance
between a pair of tasks. These works found that task complexity
and similarity shape task-related outcomes. In this work, we aim to
extend the understanding of task effects on workers by delving into
the currently unexplored impact of varying input modality across
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a sequence of task batches. Figure 1 illustrates the differences be-
tween a task, a batch, and a sequence. A task is an atomic entity
consisting of a single prompt. A batch is a collection of ten tasks,
and a batch sequence is a series of three batches. We also aim to
further the understanding of gesture-based input for crowd work
by addressing the following research question:

RQ: How does integrating gesture-based input with conven-
tional input modalities influence task-related outcomes?

To address this research and empirical gap, we carried out a
between-subjects study across 16 different experimental conditions
with varying sequences of input modalities across two types of tasks.
Drawing from prior work and accounting for popular microtask
crowdsourcing tasks [13, 19], we considered a sentiment analysis
(SA) task where workers are asked to assign star ratings to movie
reviews based on the content of the review, and a classification task
(CC) related to the shapes of bird beaks [3]. Our custom website
integrates, i.e., includes one or both, Standard and Gesture inputs
into the task workflow workers perform, per the experimental
condition. We further capture and report objective measures of
effectiveness (task accuracy) and efficiency (task completion time).

Main Contributions. Our contributions include novel insights
on the impact of integrating multiple input modalities within a
batch sequence on task-related outcomes. Findings from our rig-
orous between-subjects study (N=717) with varying sequences of
input modalities across 16 experimental conditions suggest that the
order of the input modality sequence can influence the task comple-
tion time but does not affect the average accuracy. We contribute
a clearer understanding of worker perceptions around gestures as
inputs for microtasks, such as a lack of significant difference in cog-
nitive load perceived by the workers between different conditions.
Our findings suggest that ergonomically informed gestures can be
effectively intertwined with conventional input modalities without
negatively impacting worker experiences. We found trends that
indicate potential trade-offs with quality-related outcomes despite
a lack of significant differences in worker performance across the
experimental conditions on average. These insights have important
implications for the future design of crowdsourcing marketplaces
and data acquisition.

2 Related Literature and Hypotheses

We position our findings and contributions in (a) intelligent task
chaining in microtask crowdsourcing, (b) input modalities, and (c)
worker experiences in crowdsourcing. We present our hypotheses
and the rationale behind each.

2.1 Intelligent Task Chaining in Crowdsourcing

In microtask crowdsourcing, workers do not typically complete
only a single task at a time. Instead, they gather tasks and perform
them in batches [53]. Similarly, multiple tasks can be completed
in parallel or sequence within workflows. Newell and Ruths [36]
investigated what the authors call intertask effects, i.e., the effect
that one task has on how workers perform subsequent tasks. Earlier
tasks within a chain were found to have a strong influence over the
following tasks. At the same time, Cai et al. [7] explored microtask
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chains from the perspective of order, i.e., the authors focused on
the effects of transitions, ease-in, and continuity. Transitions are the
process of moving between tasks of varying complexity within a
chain, and ease-in is the idea of moving from simpler microtasks to
more complex ones. Continuity refers to performing a chain of tasks
that are of similar complexity. By digging deeper into the facets of
task similarity, Aipe and Gadiraju [2] found that accuracy improves
if tasks in succession are similar. In this paper, we build on this
existing body of work by exploring the impact of modality-based
task chains on worker experiences and task outcomes.

2.2 Common Input Modalities in
Crowdsourcing

Input modalities of the mouse and keyboard are ubiquitous, while
others such as eye-tracking-based triggers are more niche in crowd-
sourcing. Gestures, defined by Carfi and Mastrogiovanni [8] as “body
actions that humans intentionally perform to affect the behavior
of an intelligent system" are an alternative input modality. Prior
work has separated gestures into “vision-based" methods that rely
on computer vision strategies to interpret gestures as input [28, 51]
and "sensor-based" methods that rely on tangible, often wearable
interfaces [1]. Quek [43] separates gestures into “communicative",
i.e., used to communicate, and “manipulative” or used to interact
with objects or systems for effect. In their seminal work, Pekin [40]
provided a library of gestures suitable for large screen-size touch in-
terfaces. There are many variations of gestures for human-machine
interaction, but none are explicitly defined for crowdsourcing mi-
crotasks. Allen et al. [3] investigated the viability of gestures as an
alternative input modality within crowdsourcing, finding a trade-off
between performance and perceived reward of the input modality.
In our study, we aim to extend the understanding of gestures for
microtask crowdsourcing by exploring the effect of gestures within
a batch of tasks, as opposed to considering them in isolation which
prior work has been limited to.

2.3 Worker Experiences in Crowdsourcing

The complex dynamics in crowdsourcing marketplaces between
platforms, task requesters, and workers represents an ecosystem
that is far from ideal [16, 17, 21, 31, 44, 48]. Over the years, several
researchers and practitioners have addressed this myriad of issues
with the aim to increase wages [52], improve practices [38, 47],
help workers’ growth [10], enhance worker experiences [42], en-
gagement [27], and retention [12, 21]. Our work contributes to
this wealth of literature by exploring the impact of integrating ges-
tures as an input modality on worker experiences and engagement.
Inspired by prior work, we explore the impact of varying input
modality on the cognitive load perceived by workers, their subjec-
tive engagement, and their objective retention in task batches.

2.4 Hypotheses

Prior exploration of gesture inputs within microtask crowdsourc-
ing found workers were more accurate in tasks completed with
the Standard input compared to those with the Gesture input
[3]. Workers have also been shown to perform more accurately in
task batches composed of similar tasks, despite perceived boredom
[2]. Thus, we extrapolate that workers may perform better in task
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batches with a single input modality compared to multiple input
modalities.

We also anticipate that switching modalities between batches of
tasks of the same purpose may offset the potential for boredom. As a
result, workers will perceive and demonstrate a higher engagement
with the tasks. This informs the following hypotheses (H1, H2):

H1: Workers will complete tasks more accurately when the
input modality remains constant within a task batch.

H2: Worker engagement will increase when task batches in-
clude different input modalities.

Allen et al. [3] found that workers experience a higher cognitive
load while using gesture inputs. Thus, we expect that the con-
text of switching from a conventional mouse and keyboard input
(Standard) to that of gestures (Gesture) would increase the cogni-
tive effort of workers. In the same vein, switching from Gesture to
Standard would decrease their perceived cognitive effort. Finally,
drawing from prior work we expect that switching input modalities
within a task batch will lead to a longer task completion time. This
informs the following (H3, H4, H5):

H3: The perceived cognitive effort of workers will increase
when switching from tasks using a Standard input to tasks
using a Gesture input modality.

H4: The perceived cognitive effort of workers will decrease
when switching from tasks using a Gesture input to a
Standard input modality.

HS5: Workers will take longer to complete task batches with
varying input modalities than when using a single modality.

3 Method

To address our research question, test the aforementioned hypothe-
ses, and understand the effects of switching input modalities within
a batch of similar tasks, we designed and carried out a controlled
8%2 factorial between-subjects study. The independent variables
are (i) the sequence of transitions (or switches) across input modali-
ties and (ii) the task type. We consider two different input modalities
— a mouse and keyboard (Standard) and webcam-based gesture
capture (Gesture). We configure the order of these modalities into
eight variations to emulate all possible sequences in a batch of tasks:
SSG, SGS, GGS, GSS, SGG, GSG, GGG, and SSS where “S" represents
the Standard input and “G" represents Gesture input. To capture
whether the task type itself influences the effects of switching input
modality within a batch, we also utilize two task types from the
taxonomy in [19]: sentiment analysis (SA) and categorization and
classification (CC). We selected these task types based on similar
studies [3] and their prevalence in online crowdsourcing platforms.

Sentiment Analysis. The sentiment analysis task involves read-
ing a movie or television program review and assigning a star rating
on a scale from 1 to 5. We sampled sixty reviews from the Amazon
Review Dataset [37], with a balanced distribution of star ratings,
i.e., twelve of each possible rating. For consistency, we limited the
selection of reviews to ones with a total length of 150 words. De-
pending on the experimental condition, participants provide the
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rating in one of two ways, with a Standard or Gesture interface.
The Standard interface, as seen in Figure 2(a), presents the text of
a review in the center, with selectable star icons below the text. A
button for submitting an answer is initially greyed out (inactive)
until a star rating is selected. The Gesture interface (Figure 2(c))
is identical to that of the Standard, with the addition of a camera
view below the stars through which the gesture interaction takes
place. This camera view is the driver for the gesture capture, with
the vertical red bars dividing the view into sections that map to a
star rating; one star at the far left up to five stars at the far right.
Moving a closed fist between partitions allows workers to change
the rating without submitting it as an answer. By opening their
palm, the counter seen below the camera view activates. This timer
starts at two and counts down to zero. Once it reaches zero, a selec-
tion is made and submitted as the answer, and the next review to
rate in the task batch is displayed.

Categorization and Classification. In this task, workers are
asked to analyze the image of a bird and identify the shape of the
bird’s beak. For the images, we use the dataset introduced by Balayn
et al. [5], which includes images of eight different beak types. In
total, the dataset contains 79 images. As with the SA tasks, sixty
images were selected and workers performed the classification with
either the Standard or Gesture input. When using the Standard
input modality, the image being classified is displayed in the top
center of the page, as seen in Figure 2(b). A representative of each
beak shape is displayed below the main image, along with their
name, as selectable answers.

For the Gesture interface, the camera view has only a single,
horizontal red line (Figure 2(d)) instead of the five vertical lines in
the SA task. Workers are required to raise the number of fingers (i.e.,
digits) corresponding to the answer option they wish to select. To
optimally leverage the gesture capture model, thumbs are ignored
as a digit. While keeping their hands below the horizontal line,
workers can change their selection by varying the number of digits
at will. To submit, workers must raise their hands with presented
digits above this threshold, initializing the counter. Once the counter
reaches zero, the selected option is submitted as an answer, and the
next task is presented to the workers.

3.1 Procedure

We deployed our study on Prolific, where willing and eligible work-
ers were directed to the website containing the embedded Qualtrics
pre-task and post-task surveys! as well as the custom task interface.
Upon entering the external site, workers completed the following
five steps:

(1) Informed Consent: Before performing the task or interacting
with any surveys, workers are presented with an informed
consent form outlining the study’s purpose and what they could
expect in the study.

(2) Pre-task Questionnaire: A questionnaire focused on demo-
graphic questions such as age, experience on Prolific, mood,
and time spent on crowdsourcing work.

(3) Training Phase: Workers were required to complete a sample
of questions from each task type and input modality that would

! https://qualtrics.com


https://qualtrics.com

CHIWORK ’25, June 23-25, 2025, Amsterdam, Netherlands

Question number 1

The first half builds well and has the potential for going to unexpected places but the film completely
stalls in the second half. Dolan seems much more interested in long closeups of himself than in follow-
through. | could have written a better ending. A letdown.

(a)

Question number 1

Elizabeth Moss is excellent! I've never seen her before (no cable), and she is *perfect* in this. Some
pretty creepy trashy characters. Holly Hunter's character is too over-the-top, bordering on corny. Nope,
it passes corny and | blame the writers. That character could have worked if they'd been a little more
subtle about it, but they tried too hard and it just makes me roll my eyes whenever she spoke. The
scenery is spectacular, and yet | wouldn't want to live there. Overall, it's depressing people-wise and in
atmosphere. My guess is that this series is trying to imitate the dark wonderful quirkiness of Twin
Peaks. *braaaaap!* fail.

Allen and Gadiraju
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Figure 2: Example screenshots of task interfaces: (a) Sentiment Analysis with Standard input. (b) Classification with Standard
input. Second row, left to right: (c) Sentiment with Gesture input. (d) Classification with Gesture input.

be utilized in their respective experimental conditions. This
training phase aims to allow workers to familiarize themselves
with the task and the corresponding input modality before com-
pleting the actual tasks; and also minimizes potential familiarity
bias [14].

Batch Sequence: Each sequence contains a batch of sentiment
analysis or content classification tasks depending on the ex-
perimental conditions. Each batch is ten tasks with either a
Standard or Gesture input. The order of inputs in the batch
sequence is defined by the experimental conditions. After com-
pleting the batch sequence, workers can choose to continue and
complete up to three more optional task batches.

Post-task Questionnaire: A follow-up questionnaire presented
after the main batch sequence to capture measures necessary
to test our hypotheses.

—
N
=

—
(&3)
=

When workers complete the post-task questionnaire, they are pro-
vided a completion code and redirected back to Prolific.

3.2 Technical Implementation

Inspired by prior work by Allen et al. [3], all experimental con-
ditions were hosted on a custom-developed website built using
the React]JS library. This website has three major components: a

back-end server and API, a front-end web application, and a Mon-
goDB NoSQL database. The back-end server manages each worker’s
progress by processing requests sent by the front end via an HTTP
REST APL This server also handles communication with the data-
base, where all worker data is stored. The front-end client renders
the pages and handles gesture, mouse, and keyboard inputs. Two
consecutive client-side stages enable the input of gestures via the
webcam of a participant: pose detection and pose classification.
Gesture Capture with Pose Detection and Classification. Con-
sidering participant privacy as a priority, we approached the design
and development of the gesture capture to be a client-side sys-
tem, i.e., powered by the device of the crowd worker. We used the
same libraries as were included in the work by Allen et al. [3]. The
MediaPipe holistic? and Kalidokit? libraries handle processing the
webcam video feed via pre-trained models. The models perform
landmark estimation for the body, face, and hands visible in the
webcam feed, which is then used to classify the poses.

3.3 Participants and Measures

We computed the required sample size in a power analysis for a
Between-Subjects ANOVA using the G*Power software. Assuming

2 https://google.github.io/mediapipe/solutions/holistic.html
3 https://github.com/yeemachine/kalidokit
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f =0.25, a significance threshold of a = % = 0.01 (due to testing
five hypotheses), a power of (1- ) = 0.95 and given that we will be
testing 16 groups (i.e., eight batch sequences with different input
modality conditions, two task types), we determined via a power
analysis for one-way ANOVA (see Section 4) that the required
sample size for our study is 735 participants.

Participants were recruited from the online crowdsourcing plat-
form Prolific and were required to be fluent English speakers above
18 years of age. To ensure quality responses, we limited participa-
tion to those with a minimum 90% approval rate. As our study re-
quired the capturing of webcam-based gestures, participants needed
a webcam. Each participant was allowed to enter our study only
once by leveraging in-built functions on the platform.

User Engagement. To understand the impact of switching input
modalities on workers’ engagement, we used the User Engagement
Scale-Short Form (UES-SF). This validated questionnaire includes
four sub-scales to capture engagement — focused attention, per-
ceived usability, aesthetic appeal, and reward [39]. Each sub-scale
contains three questions that workers respond to using a 5-point
Likert scale. An engagement score is determined as an average score
across all sub-scales. To capture an objective notion of engagement,
we used worker retention as a measure of user engagement [12, 45].
Workers can continue with optional task batches within each ex-
perimental condition, completing a similar batch sequence as in the
mandatory segment. For example, a participant in the condition
SSG + SA could complete an optional segment that followed the
same sequence of input modality and task type.

Cognitive Load. To gain insight into whether switching modali-
ties during a batch sequence impacts the perceived cognitive load of
workers, we use the NASA-TLX [22]. An overall cognitive load score
is determined as an average of the worker’s responses across the
six questions captured on a 10-point scale (we used an unweighted
score).

Completion Time. We record timestamps (captured in millisec-
onds) when workers begin and end each task.

Accuracy. The accuracy of a worker (i.e., their task performance)
is determined by the fraction of tasks for which they provided an
answer matching a known ground truth.

3.4 Data Privacy

To protect the workers’ privacy, we did not collect any person-
ally identifiable information. All data is only linked to the Prolific
IDs of workers during data collection, including survey responses,
question answers, and pose data. Upon completion of data collec-
tion, all data is assigned a unique identifier, and the Prolific IDs are
discarded to prevent back identification. Webcam images used for
gesture recognition are shown and processed on the participants’
devices and never sent to the back end or stored anywhere. Instead,
we collect pose landmarks on some actions, e.g., whether a pose was
started or ended, but these do not constitute personally identifiable
information. Workers can revoke their consent at any time during
data collection and any data generated from such workers is per-
manently removed. The research and informed consent materials
received approval from an institutional Human Research Ethics
Committee.
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4 Results

All statistical analyses were performed using JASP.* Data and
results are available in an OSF repository.’> Results presented in
this section emerge from corresponding ANOVA tests. Hypothe-
sis testing is conducted with an adjusted significance threshold of
a= % = 0.01. The Bonferroni correction was applied with an
original target of Type I error probability being a = 0.05. Type II
errors are accounted for using the Bonferroni-Holm correction after
p-values are attained from the initial ANOVA tests. We conducted
post hoc analysis via Tukey’s HSD test for significant results after
corrections. Workers were excluded from the study and our anal-
ysis if they failed two or more attention checks, revoked consent,
provided the same answer across all Likert scale questions, and/or
spent less than a minimum of fifteen minutes to complete the study.
In sum, there were 84 exclusions.

4.1 Worker Demographics

After exclusions, we recruited 717 workers from Prolific. Work-
ers recruited per experimental condition can be seen in Table 1.
Complete details of worker demographics are illustrated in the OSF
repository. The majority of workers were female (n = 375), followed
by male (n = 330), with nine reporting as non-binary, one as other,
and two preferring not to say. Most of the workers had 1-3 years
of crowd work experience while performing tasks <10 hours per
week. Workers ranged in age from 18 to 75 years and worked at a
variety of times during the day.

4.2 Task Performance

We measure worker performance via accuracy, separating the re-
quired and optional tasks. Using an ANOVA, we found evidence
indicating differences between the batch sequences of task types,
during both the required and optional portions of the study (see
Table 2), but no impact of the input modality on accuracy. A post
hoc Tukey’s HSD test indicated that workers on average were sig-
nificantly more accurate at performing the CC task than the SA task
(p < 0.001). Therefore, we reject H1.

While our initial analysis indicated significant differences be-
tween batch sequences, the analysis was performed on the av-
erage accuracy across the batch sequences. To get a more com-
plete indication of the worker performance, we further investigated
performance by plotting the accuracy trend of the different task
types after each task batch. When looking at these trends, an in-
teresting pattern becomes apparent: within a batch sequence, the
accuracy decreases whenever the input modality changes from
Standard to Gesture, with some decreases being larger than oth-
ers. This pattern is visible for both task types and is most apparent
for the SGS input sequence (see Figures 3(b) & 3(a)). The opposite
is also true, worker accuracy increases when the input modality
switches from Gesture to Standard. Both trends indicate a clear
impact on performance when modalities change within a batch
sequence.

As part of the post-task questionnaire, we asked workers to
report the percentage of tasks they believed to have completed
correctly. Workers reported a significantly higher accuracy for the

4 https:/jasp-stats.org/
5 https://osf.io/8rkeh/?view_only=eabf58aa53974195adaa84c5834f454d
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Task Type InputSequence # Workers Accuracy Completion Time +SD Retention Rate Avg. Depth

SA SSG 53 0.43 164.1 + 65.2 0.58 11.26
SGS 51 0.43 192.4 + 65.5 0.61 12.96
GSS 44 0.41 1929 + 74.4 0.66 14.23
GGS 46 0.42 210.6 = 99.9 0.63 12.15
GSG 43 0.44 200.5 £ 72.9 0.51 12
SGG 42 0.45 193.3 £79.1 0.57 11.57
SSS 42 0.49 190.9 + 78.4 0.62 12.21
GGG 44 0.43 189.3 + 74.6 0.66 15.39

CC SSG 41 0.55 181.7 + 82.6 0.73 18.44
SGS 46 0.58 201.6 £ 89.2 0.63 13.48
GSS 44 0.55 204.7 £+ 68.2 0.70 15.25
GGS 49 0.55 205.4 + 118.6 0.80 19.8
GSG 43 0.53 191.7 £ 83.8 0.70 15.63
SGG 39 0.55 204.5 £ 103.8 0.67 17.69
SSS 47 0.60 188.6 £ 117.8 0.72 15.74
GGG 44 0.50 190.5 + 77.2 0.60 14.63

Table 1: Number of workers, retention rate, average depth (i.e., number of extra questions answered), and the mean completion
time per experimental condition. We use bold font to indicate the highest value per task type and italics to indicate the control
conditions that correspond to a single input modality — either Standard (i.e., SSS) or Gesture (i.e., GGG).

0.65 0.65
0.60 0.60
-
0.55 0.55
g oy
g 0-50 . ¢ 0.50
1 -
3 2
o 0.45 o 0.45
< <
0.40 0.40
0.35 0.35
0303 Vv < 0303 v >
x x x x x x
<& <& <3’ <3 <3’ <3’
(a) Sentiment Analysis (b) Categorization and Classification
—e— SSS -eo— SGG o GSG --e-- GGS —e— GSS SGS SSG GGG

Figure 3: Plot (a) shows the accuracy trend across the three tasks in the Sentiment Analysis batch. Plot (b) shows the same for
the Categorization and Classification batch. The legend is shared across plots. SSS and GGG input sequences are controls.

SA (M=0.82, SD=0.18) compared to the CC (M=0.73, SD=0.16); see can be the Dunning-Kruger Effect, a meta-cognitive bias shown to
Table 3. This is counter to workers’ actual performance — they be present and prominent in crowdsourcing marketplaces due to
performed more accurately in the CC tasks than the SA tasks. This which workers exhibit an inflated self-assessment [14, 18]. We also
can be attributed to the general familiarity that workers may have asked workers about the task interface and whether it could result
with reviews in contrast to identifying the shapes of bird beaks, in errors. We found neither significant main effects for the batch or
potentially leading to crowd workers having less confidence in input sequences nor any significant interaction effect.

their assessments of the latter. An alternative explanation for this
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Variables ‘ Required ‘ Optional

| F_» | F p
Input Sequence | 1.91 0.07 0.40 0.9
Batch Sequence | 842 <0.0017 | 191.79 <0.0017
Interaction 0.63 0.73 1.15 0.33

Table 2: ANOVA test results for hypothesis H1 on worker
accuracy. “Required” refers to the batch sequence workers
must perform. “Optional” refers to the extra sequence work-
ers can opt to complete. “Interaction” refers to the interaction
effect between batch and input sequence. 1 indicates signifi-
cance with a threshold of p < 0.01.

Variables ‘ F P
Input Sequence | 2.844 0.006"
Batch Sequence | 57.651 <0.0017
Interaction 2978 0.004"

Table 3: ANOVA test results for worker perception of their
performance. “Interaction” refers to the interaction effect
between task and input sequence. 1 indicates significance
with a threshold of p < 0.01.

Variables Perceived Reward

Usability
F p | F P
Input Sequence | 0.12  0.73 | 0.87 0.35

Batch Sequence | 1.98  0.056 | 1.95 0.059
0.005" | 0.22 0.98

Interaction 2.93

Table 4: ANOVA test results for H2 on worker engagement.
“Interaction" refers to the interaction effect between task and
input sequence. T indicates significance with a threshold of
p <0.01.

4.3 Worker Engagement

Analysis of worker responses to the UES-SF indicates there is no
significant main effect for perceived usability for the input or batch
sequences (see Table 4). However, there is a significant interaction
effect between the batch and input sequences. A post hoc Tukey’s
HSD test uncovered that workers within the SSS+SA task perceived
the interface as significantly more usable than those in the GGS+SA
conditions. This difference may be related to the SSS+SA condition
containing homogeneous inputs across all task batches, whereas
GGS+SA contains an input modality transition.

Upon concluding the required batch sequence, workers were
presented with the option to continue if they desired. Across all
conditions, an average of 64.8% of workers opted to complete addi-
tional task batches. From Table 1, we can see that the CC task type
resulted in higher retention rates across the conditions along with
further retention depth. We measure the retention depth by the
number of tasks beyond the required 30 that workers completed.
The GGS+CC condition experienced the highest retention rate, with
four out of five workers opting to continue. Those who continued
completed an average of 19.8 additional tasks out of 30 (see the Avg.
Depth column in Table 1).
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Summary. Based on our results, we do not find evidence to sup-
port hypothesis H2 that worker engagement increases when batch
sequences include different input modalities (from the standpoint
of both subjective and objective measures of worker engagement).

4.4 Cognitive Load and Task Completion Time

We hypothesized that the cognitive effort perceived by workers
would increase when switching from tasks using a Standard in-
put to tasks using Gesture input (H3) and would decrease when
switching from Gesture to Standard (H4). Due to the directional
nature of each hypothesis, we use ANOVA on the experimental
conditions that contain only the transitions in the appropriate direc-
tion, i.e., we drop the SGS and GSG sequences. We explored the six
NASA-TLX factors of mental demands, physical demands, temporal
demands, own performance, effort, and frustration perceived by
workers. We found no main effects for batch or input sequence, nor
interaction effects, for the temporal demand, effort, and frustration
factors of cognitive load. However, workers reported significantly
better performance for the SA task. Further, we found a main effect
concerning the input sequence for the physical demand factor; F(7,
701)=6.98, p <0.001. A post hoc Tukey’s HSD test indicated that
all input sequences corresponded to significantly higher physical
demand in comparison to the SSS sequence (with p < .001 for all).
This can be intuitively explained by the presence of gestures in
every other input sequence, which requires relatively more physical
effort than using mouse clicks and key presses.

Workers also reported the CC task type as significantly more
mentally demanding than the SA task; F(1, 701)=7.51, p=0.006. We at-
tribute this to the individual characteristics of the tasks. Reviews are
common across the online landscape, connecting to things beyond
movies, e.g., restaurants and shopping sites. The near-ubiquitous
presence of reviews means that, intentionally or not, workers have
passively garnered skills for their assessment. In contrast, such a
passive development of skill is not as common for assessing the
beak shape of birds. As a result, workers put forth more mental
effort when analyzing the images of birds to determine beak shapes.
The difference could also be due to the larger decision space for
the CC task where workers must choose between eight different
options.

When all of the factors are taken in conjunction as a single
score representing aggregate cognitive load, we found that workers
experienced no significant difference in cognitive load in the batch
sequence or the input modality sequence.

With respect to task completion time, we found no main effects
for batch or input sequence nor interaction effects in our analysis
(see Table 1), and therefore reject H5. Interestingly, we found that
the input sequence GGS took the most time for workers to complete,
while the SSG sequence took the least time for both the SA and CC
tasks.

Summary. We did not find support for our hypotheses H3 and
H4 that worker cognitive load changes when switching between
task batches with different input modalities. We also did not find
support for hypothesis H5 that workers take longer to complete
batch sequences with varying modalities than using a single modal-

ity.
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5 Discussion, Conclusions, and Future Work

Through the lens of sustainable crowd work and to foster inclusive
crowdsourcing marketplaces, it is valuable to explore how barriers
to participation can be lowered and how novel input modalities
can be supported and adopted. In this spirit, Singh et al. [46] built a
system called ‘SignUpCrowd’ to support sign language as an input
modality for crowdsourcing. Others explored how gestures as an
input modality compare to conventional alternatives [3]. However,
it is important to understand how alternative input modalities such
as gestures can be integrated into existing marketplaces where
tasks are not completed in isolation but in myriad sequences. This
contextual detail has not been considered by prior work, limiting
the ecologically valid understanding of the suitability of gestures
as an input modality for crowdsourcing. What are the potential
costs and trade-offs to consider if crowdsourcing platforms or task
requesters are to integrate such alternatives into the general fabric
of existing work?

In our study consisting of two different types of tasks, we found
that workers completing the sentiment analysis task reported the
homogeneous input sequence with the Standard input modality
as significantly more usable than the GSG input sequence. Across
all input sequences, this pair is the only case of a significant dif-
ference. Yet this finding provides evidence for potential effects on
user engagement when using gestures as inputs. Future investiga-
tion of whether our finding is an outlier or an indicator of larger
effects is required. We also found that the average task accuracy
of workers, their perceived cognitive load, and task completion
time remained unaffected when different input modalities were
used within a batch sequence compared to those with a homoge-
neous input modality (H1,H3—HS5). These novel insights suggest
the potential for gestures to be successfully integrated as an input
modality for microtask crowdsourcing alongside the conventional
mouse and keyboard input modality without negatively affecting
outcomes in batch sequences.

We found that the accuracy of workers in the sentiment analysis
task (SA) was lower than in the categorization task (CC). In the SA
task, we found a notable increase in accuracy corresponding to the
GGS input sequence, which is not observed in the CC task type. The
accuracy of workers in the GGS input sequence increased across
the batches while decreasing in the SSG input sequence across the
batches, suggesting potential changes in accuracy in favor of the
Standard input modality. These changes may adversely affect data
quality in scenarios where workers perform tasks of the same type
with different inputs. Microtask crowd workers select and complete
tasks from many requesters, often one after the other. From one
requester to another, our findings reveal worker performance may
fluctuate if the input modalities vary. Over time these effects may
flatten as skills and familiarity with such novel input modalities
increase among workers. Further work is needed to explore this.

Based on the observations from our investigation, it appears that
Standard inputs outperform Gesture. However, given the equally
positive worker experiences with the gestures in our study, we
highlight the potential in integrating Gesture as an input modality
in microtask marketplaces — particularly from the standpoint of
exploring how Gesture can expand the scope of participation in
crowd work and how ergonomically informed Gesture can have a
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positive impact on worker health and wellbeing. Note that in this
work we are not advocating for gesture inputs to replace current
standard inputs. Instead, we sought to understand how the two
input modalities can co-exist within crowdsourcing marketplaces
and how these input modalities would shape task outcomes.

Collectively, our insights provide evidence supporting the cre-
ation and integration of gestures as an alternative input modality
in crowdsourcing tasks, while suggesting potential for trade-offs
in performance in specific sequences of transitions across input
modalities. These findings have broad implications for crowdsourc-
ing platform design and practices for task requesters and crowd
workers. Crowdsourcing platforms can build scaffolds, tools, plug-
ins, or fundamental infrastructure, and create meaningful pricing
models to support the adoption and inclusion of gestures as an al-
ternative input modality. Task requesters can change existing prac-
tices to systematically enhance the range of modalities via which
input can be gathered from crowd workers. The intelligent inte-
gration of different input modalities in task batches (e.g., Standard
alongside Gesture) can serve as a valuable canvas towards ad-
dressing complex challenges surrounding worker engagement to
worker long-term health and wellbeing (for instance, by designing
ergonomically-informed gestures).

5.1 Caveats, Limitations, and Other
Considerations.

In this study, we did not consider changing task types alongside
changing input modalities within task batches (i.e., all task batches
comprised homogeneous task types). Future work can explore the
impact of varying both input modality and task types within task
batches. Although the pose detection and classification modules
we used were highly accurate, potential improvements in such
models can further enhance worker experiences. Gestures as an
input modality can potentially pave ways to safeguard worker
health and wellbeing, but they also bear implications on who can
participate — due to the need for a webcam (although most devices
used for microtask crowdsourcing these days are equipped with
webcams). It is important to consider the benefits of integrating
gestures as an input modality for crowd work but also the potential
harm in fragmenting access.

The Mapping Problem. Understanding gestures as inputs holistically
is a challenging prospect. We need to explore how users perceive
an input modality and understand what tasks are well-suited to
be completed with gesture input. Each side of this exploration—(a)
understanding user experiences with different gestures, and (b) fea-
sibility of using gestures for specific tasks—benefits from knowledge
of the other. We refer to this challenge as ‘the Mapping Problem.
Future work should explore the creation of an inventory of ges-
tures that can be mapped onto different tasks either atomically or
through composite combinations of gestures. The performance vari-
ance we observed among workers when switching from standard
to gesture input, hint at adaptation costs that could potentially be
mitigated through intelligent onboarding, dynamic task guidance,
or predictive interface adjustments. These are promising research
directions for future work.
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Further, various human factors can affect a person’s ability to
perform a gesture, e.g., range of motion. Understanding how inclu-
sive and accessible gestures are is an important question for future
research. In our study, we did not gather explicit data pertaining to
the accuracy of the gesture recognition or worker perceptions of
the same. Future work should explicitly account for this to isolate
potential confounds by evaluating the precision of the gesture cap-
ture system under varying environments (e.g., lighting conditions
or hardware setups) and potential error-handling mechanisms. We
can also consider whether other tasks are more suitable for gesture-
based input. For instance, gestures as an input modality may be
relatively more effective in spatial or exploratory tasks, where nat-
ural movement reduces friction or enhances expressiveness. In the
same vein, gesture inputs may perform differently in tasks requiring
fine motor control versus coarse selections. Future work can aim
to develop a theoretical framework mapping task types to suitable
modalities to enhance generalizability of these findings.

Mitigating Cognitive Biases. Crowdsourced experiments come with
the natural risk of cognitive biases that can negatively affect re-
search outcomes if not considered carefully. Therefore, when de-
signing our experiments we utilized the Cognitive Biases Checklist
[14] to assess the presence of any biases in our experimental design.
With our focus on comparing input modalities, we acknowledge
the potential for an affect heuristic like the familiarity bias. The
ubiquitous presence of Standard inputs in today’s world means
that workers will naturally be more familiar with this input modal-
ity. We attempt to control this by providing a tutorial stage at the
beginning of the task workflow, exposing workers to the new input
modality and allowing them to practice its use. The potential for
disaster neglect is reduced through an explicit informed consent
form that workers read and agree to before performing the task.
To avoid the sunk cost fallacy, we conducted a pilot study to esti-
mate an appropriate amount of time required to complete the task.
The optimism bias is mitigated via detailed, clear task descriptions
and instructions. Finally, self-interest bias exists due to the mone-
tary compensation component of the microtask platform used. To
mitigate this bias, we excluded participant submissions from our
analysis if they failed two or more attention checks, provided the
same answer for all Likert-scale questions, and spent less than a
minimum of fifteen minutes to complete the study.

5.2 Reflection on the Practical Utility of Our
Work and the Broad Societal Impact

Crowd work is pivotal in advancing artificial intelligence (AI) tech-
nology, providing large-scale data annotation, validation, and dis-
covery for maintaining data and model quality. Recently, these
advancements have taken the form of generative language or diffu-
sion models such as Mistral [25], ChatGPT [33], or MidJourney.®
Many of these models are pre-trained on content from the internet.
As more generated content becomes available online, this training
cycle is at risk of degrading. Model performance likely will not im-
prove if future models are trained on generated output. Moreover,
not all information on the internet is acceptable for training AI
models. Efforts are therefore made to annotate, filter, and moderate

6 https://www.midjourney.com/home
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such content before training a model [49]. Typically, this annota-
tion is performed through large-scale crowd work and often using
microtask crowdsourcing marketplaces. As argued by Gray and
Suri [20], there is human labor behind nearly all the advances in Al
these days, particularly in data annotation or curation pipelines. It
is therefore important to explore new ways in which crowd worker
experiences can be improved, how their health and wellbeing can
be supported and safeguarded through shaping better work prac-
tices, and how barriers to participation in this paradigm can be
lowered. Our work in this paper takes an important stride in this
spirit by exploring gestures as an alternative input modality for
workers to complete their work and advancing the understanding
of how integrating gestures alongside conventional input methods
will shape task outcomes and workers’ experiences.

Our findings suggest that while there is potential for gestures
to serve as an effective input modality, there may be task-specific
trade-offs to contend with. Crowd work displays similarities to
desk work, which comes with associated risks, commonly related
to ergonomics and musculoskeletal disorders [9, 35, 41]. Crowd
workers operate in multitasking contexts, taking on tasks in groups,
and performing repetitive tasks, which creates an environment that
poses risks of stress-related injuries like carpal tunnel syndrome.
Dubey et al. [15] suggests that stretching exercises can reduce
musculoskeletal pain for workers. Proper investigation and design
(i.e., addressing the mapping problem) of gestures as effective inputs
can bring physical and mental benefits. Experiments to identify and
validate benefits related to gesture inputs for crowd work is a future
line of research that the crowd computing and human-computer
interaction communities would benefit from pursuing.

In summary, through a between-subjects controlled study, we
found that integrating gestures as an input modality with the con-
ventional mouse and keyboard modality in batch sequences did
not significantly affect all task outcomes or worker experiences in
two distinct types of tasks. Our work presents important insights
highlighting the potential of considering gestures as an alternative
input modality for crowd work. Our future work will explore how
scheduling algorithms can be developed to create intelligent and
effective means of allocating input modalities based on worker
preferences and task fit. We will develop a gestures-catalog that is
mapped to typical crowdsourcing task types and a browser plugin
to support broader adoption.
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