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Abstract We investigate the effect of temperature dependent thermalconductivityλ and isobaric specific heatcP on the transient
amplification of perturbations in a thermally stratified laminar plane Poiseuille flow. It is shown that for decreasing thermal conductivity
the maximum transient energy growth is amplified with respect to theλ = 1 case, while the opposite occurs for increasingλ. A
reversed mechanism is induced by a variablecp. Substantial maximum growth enhancement/suppression is found in the range of
Prandtl numbersPr which encompasses most fluids of practical interest. The relative growth modulation shows an optimumPr under
spanwise perturbations. For energy amplifying property distributions a speed-up of the transient to reach the maximumenergy growth
is observed at lowPr, while a slow-down is found at largePr. The opposite is true when the property variations suppressthe growth
of perturbations.

INTRODUCTION

The study of non-modal stability is of paramount importanceto understand the path that leads a laminar flow to a turbu-
lent state. The transient amplification of flow perturbations can be large enough to by-pass the natural mode of transition
(Tollmien–Schlichting wave), such that a turbulent state can occur at lower Reynolds numbers than predicted by the eigen-
value analysis [1, 2]. This mechanism is often dominant in flows described by non-normal operators, such as Poiseuille
and Couette flows. The effect of a temperature dependent viscosityµ(T ) on the modal and non-modal stability of a heated
plane Poiseuille flow was studied by several authors, e.g., [3, 4, 5]. Viscosity stratification can either stabilize or destabilize
the flow, and it affects the perturbations transient energy growth. This work aims at the study of more realistic fluid flows
considering the effect of variable thermal conductivityλ(T ) and isobaric specific heatcP (T ). A plane Poiseuille flow
subject to a cross-stream linear temperature profile is considered. Results are shown for a fixed temperature dependent
viscosity profile and for streamwise and spanwise perturbations at several Prandtl numbersPr.

EQUATIONS AND NUMERICAL MODEL

The non-dimensional form of the linearized Navier–Stokes equations is written in thev-η formulation. For a fluid with
temperature dependentµ, λ andcP the system reads

iα[(v′′ − k2v)(U − c)− U ′′v] =
1
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−Ri k2θ, (1)

iα(U − c)η + iβU ′v =
1

Re

{

µ[η′′ − k2η] +
dµ

dT
T ′η′ + iβ

dµ

dT
(U ′′θ + U ′θ′) + iβ

d2µ

dT 2
T ′U ′θ

}

, (2)

iα(U − c)θ + T ′v =
1

RePr

λ

cp
[θ′′ − k2θ] +

1

RePr

2

cp

dλ

dT
T ′θ′. (3)

Here,v, η andθ are the perturbations of wall-normal velocity, wall-normal vorticity and temperature, respectively, which
are functions of the wall-normal coordinate only,y = [−1, 1]. The prime symbol denotes the derivative with respect toy.
The system was transformed to the Fourier space as(ṽ, η̃, θ̃) =

∑

(v, η, θ) exp(−icαt+iαx+iβz). T (y) = 1+y andU(y)
are the reference temperature and velocity profiles.Re indicates the Reynolds number,Pr the Prandtl number andRi the
Richardson number. Thermophysical properties are modeledusing an exponential law, i.e.,µ = e−KµT , λ = e−KλT and
cP = e−KcP

T . The reference velocity profile is calculated numerically solving the streamwise momentum equation with
a fixed non-dimensional pressure gradient chosen such thatU = 1− y2 for µ = 1. Equations (1)-(3) are discretized using
collocated Chebyshev polynomials [1]. The software MATLAB is used to solve the linear system. The code was validated
for constant and variable properties flow using as a reference [1, 3, 4, 6], however results are not included here for brevity.



RESULTS AND DISCUSSION

Re = 1000,Ri = 0, andKµ = 0.2 are considered hereafter. The effect of variableλ andcP are assessed separately on a
spanwise perturbation (SPW),α = 0, β = 0.5, and on a streamwise perturbation (STW),α = 0.5, β = 0.
The ratio between the maximum energy growth under properties variation,Gmax, and the one obtained for the constant
λ andcP case,Gmax,0, is shown in figure 1 for several values ofKλ andKcP , as a function ofPr. A relative amplifi-
cation/suppression of the maximum perturbation energy is observed in both the SPW and STW case. However, the SPW
perturbation shows a larger effect over a wider range of Prandtl numbers, which encompasses typical values for most
fluids of practical interest. For any fixed coefficientKλ,cP there is an optimal Prandtl number for the SPW perturbation,
while in the STW case the relative effect decreases asPr increases. Figure 2 depicts the extent of the transient needed to
reach the maximum growth in the SPW perturbation case. For energy amplifyingλ distributions, the maximum growth
is reached in a shorter time at low Prandtl numbers, if compared to theλ = 1 case. For higherPr the process is slowed
down. The opposite happens for aλ distribution which suppresses the maximum perturbations growth. The same behavior
is observed for variablecP . Further investigations will consider different viscosity profiles (stabilizing and destabilizing),
the coupled effect of variable thermal conductivity and specific heat, and a different temperature profile (symmetric).
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(a) STW,α = 0.5, β = 0
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(b) SPW,α = 0, β = 0.5

Figure 1. Re = 1000 andKµ = 0.2. Numbers denote values ofKλ (dashed lines) and−Kcp (solid lines).
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Figure 2. Same as in figure 1.

References

[1] Peter J Schmid and Dan S Henningson.Stability and Transition Shear Flows. Springer, 2001.
[2] P J Schmid. Nonmodal stability theory.Annu. Rev. Fluid Mech., 39:129–162, 2007.
[3] D P Wall and S K Wilson. The linear stability of channel flowof fluid with temperature-dependent viscosity.J. Fluid Mech., 323:107–132, 1996.
[4] A Sameen and Rama Govindarajan. The effect of wall heating on instability of channel flow.J. Fluid Mech., 577:417–442, 2007.
[5] R Govindarajan and K C Sahu. Instabilities in viscosity-stratified flow.Annu. Rev. Fluid Mech., 46:331–353, 2014.
[6] Damien Biau and Alessandro Bottaro. The effect of stablethermal stratification on shear flow stability.Phys. Fluids, 16(12):4742–4745, 2004.


