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A B S T R A C T

Photovoltaic (PV) system performance is linked to climatic conditions in which the system operates. This leads to 
the Köppen-Geiger-Photovoltaic (KGPV) climate classification. KGPV is created by overlaying four irradiation 
levels with the commonly used Köppen-Geiger climate zones. Potential drawbacks of this approach are that the 
climate features are not considered in a combined manner in the sorting process and that the KGPV zones 
inherent a dependence on precipitation. We propose a machine-learning approach to address this deficiencies 
and improve PV climate classification. First, supervised learning is used to evaluate the correlation between 
climate features and a PV system’s specific energy yield. We find that the inclusion of the darkest and brightest 
irradiation months as well as UV irradiation improves accuracy, while wind speed, relative humidity, precipi-
tation and annual mean daily temperature difference have little impact on accuracy. Subsequently, k-means 
clustering combined with comprehensive qualitative analysis, identifies a PV classification based on seven 
climate features and 21 clusters. A mountainous climate characterized by moderate to low temperature and high 
irradiation is uncovered compared to KGPV. Moreover, this new PV climate classification reduces the sum of 
squared errors by 58 % compared to KGPV clearly signifying a more accurate PV climate classification approach.

1. Introduction

Global solar photovoltaic (PV) energy surpassed 1 TW cumulative 
capacity in 2022 [1]. While it took 68 years to install the first terawatt, 
the latest numbers of 0.346 TW added in 2023 [2] indicate that the 
second terawatt of PV capacity will be achieved in 2025 taking no more 
than three years. PV growth during the last decade has been impressive 
with current capacity being more than 21 times greater than in 2010. 
This has been accompanied by an 88 percent reduction in the global 
weighted average Levelized Cost of Energy (LCOE) of utility-scale pho-
tovoltaics [3,4]. Solar PV has shown the highest learning rates of all 
renewable energy technologies, becoming the lowest-cost option for 
new electricity generation in most of the world. Even though it already 
contributed to more than 5.5 percent of global electricity generation in 
2023 [5,6], worldwide deployment of PV is still low compared to future 
projections. Technological advances, cost reduction, depletion of fossil 
fuels, environmental concerns, and growing energy demand are 
expanding PV in all climate zones.

Machine Learning (ML) is a unique technique, which has been used 
increasingly in many fields in the past years [7]. A rising number of PV 
related studies also utilize machine learning [8,9]. These studies 

commonly aim to forecast PV power production [10,11], but other goals 
such as for example material discovery for PV [12,13] or PV reliability 
and fault detection [14,15] are also increasing. Clustering methods have 
been utilized in PV power forecast to group weather conditions [16,17] 
or to group China in terms of PV tilt angle [18] or reliability assessment 
[19,20].

The Köppen-Geiger (KG) climate classification is the most well- 
known way to sort the earth’s climates into different climate zones 
[21,22]. Consequently, the original KG classification has been modified 
differently by several authors, resulting in a variety of classifications 
without standardisation and difficulties to compare results [23]. In 
recent years machine learning techniques have also been used to create 
new climate classification [24,25], which in some cases had specific 
applications such as for example vegetation [26,27], streamflow [28] or 
buildings [29].

Climate classification has also been applied to the PV technology. 
However, machine learning has not yet been utilized to find a global PV 
climate classification. Among the classical approaches to PV climate 
classification Dash et al. [30] divided India into 6 climatic zones and 
studied their most efficient PV technologies. The International Energy 
Agency (IEA) PV Power Systems (PVPS) Programme Task 13 [31] 
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presented guidance for customized operations and maintenance (O&M) 
service in seven different climate zones. Micheli et al. [21] studied the 
impact of performance losses due to soiling in climate zones. The KG 
classification is solely based on temperature and precipitation [22], 
resulting in an unsatisfactory scheme for conducting a comprehensive 
analysis of PV performance as irradiation is not considered. Therefore, 
several authors aimed to supplement KG by including other relevant 
parameters. Skandalos et al. [32] analysed the effect of local climatic 
conditions on photovoltaic building integration for some global loca-
tions, concluding that the optimised design depends on the climate zone. 
Karin et al. [33] developed a climate classification to identify which 
types of degradation may be expected in different geographic areas in 
the USA.

In 2019, Ascencio-Vásquez et al. [23,34] went a step further, 
developing a new worldwide classification: the 
Köppen-Geiger-Photovoltaic (KGPV) climate classification. This new 
classification expands KG by considering solar irradiation. It follows two 
criteria. First, based on the KG scheme, zones are classified in terms of 
temperature and precipitation, differentiating among Tropical (A), 
Desert (B), Steppe (C), Temperate (D), Cold (E), and Polar (F). Secondly, 
solar irradiation is considered to distinguish among Very High irradia-
tion zones (K), High irradiation zones (H), Medium irradiation zones 
(M), and Low irradiation zones (L). By including the Global Horizontal 
Irradiation, KGPV is a significant improvement for PV applications. 
Among the 24 possible combinations, KGPV selected 12 to classify the 
world, neglecting the rest of them due to reasoning not based on climate 
parameters such as a poor land-surface ratio or population density. One 
aspect which needs further research is that the climate parameters are 
not considered in a combined manner in the sorting process as tem-
perature and precipitation are derived from KG and irradiation is 
layered over them later in an independent process. Moreover, Ascen-
cio-Vásquez et al. concluded, additional parameters such as wind speed, 
relative humidity or UV irradiation should be examined [23]. Like its PV 
climate classification predecessors, KGPV is also completely based on 
classical statistical analysis.

In this work, this research gap is closed by introducing a machine- 
learning-based (ML-based) approach to develop a worldwide climate 
classification directly applicable to PV. First, supervised learning serves 
to identify and assess the climate variables for correlation with a PV 
System’s specific energy yield to identify possible additional climate 
parameters. Subsequently, the selected variables are used to create the 
classification using the k-means clustering algorithm. In contrast to 
KGPV the climate variables are considered in a combined manner during 
the classification process. As secondary objective additional climate 
variables such as wind speed, relative humidity, UV irradiation and also 
the irradiation in the brightest and darkest months are also considered in 
the feature selection process to determine their relevance for PV climate 
classification.

The paper is structured as follows. First, data collection and pre- 
processing are illustrated in section 2. In section 3, the first step, the 
use of machine learning for selection and weighing of climate variables, 
is described. In section 4, the second step is presented. It comprises the 
methodology for creating the climate zones, and the analysis of the 
classification obtained. The results are discussed and compared to KGPV 
in section 5. Finally, the main conclusions are summarised in section 6.

2. PV performance and climate data collection methodology

For developing the classification, data on climate and specific energy 
yield is required. This is the key to relating climate to PV performance. 
Since the objective is to develop a worldwide classification, an extensive 
and accurate dataset is essential. In this project, a worldwide grid with 
resolution 0.5◦ latitude by 0.5◦ longitude is utilized. The climate data is 
extracted from renowned climate research centres and institutions for 
the period 1991 to 2021 [35–38]. Specific energy yield values are used 
as provided by Ascencio-Vásquez et al. in Ref. [23].

2.1. Specific energy yield

PV performance comprises several factors. In particular, the Inter-
national Electrotechnical Commission (IEC) 61724 standard defines the 
following principal PV system performance indices: energy generated by 
PV systems (Eac), reference yield (Yr), final or specific energy yield (Yf), 
performance ratio (PR), capacity utilization factor (CUF), and PV system 
efficiency (ηsys) [39]. Among these parameters, Yf is selected as the basis 
for the classification due to its relevance and comprehensibility. It en-
ables direct comparison between systems with different capacities, as 
opposed to the Eac. The final yield, or specific energy yield, is defined as 
the net daily, monthly, or annual electrical energy output of the PV plant 
divided by its rated power. It is given by the following expression [39]: 

Yf =
Energy generated (Eac)

Rated power of PV plant (PSTC)
(1) 

It is measured in hours or, equivalently, kWh/kWp. In this work, Yf 
always refers to an annual basis.

To enable direct comparison with KGPV without introducing a po-
tential bias of using different specific energy yield data the theoretical 
worldwide specific energy yield values calculated by Ascencio-Vásquez 
et al. to assess the KGPV climate classification [23] are also used in this 
study. It is based on crystalline silicon (c-Si) modules, which account for 
95 % of the market. They simulated a typical day for each month, 
multiplied by the number of days in each month, and summed up to the 
annual value. The impact of temperature, balance-of-system efficiency, 
and spectral and angular-reflection losses were considered. On the other 
hand, shading, soiling, and snow losses were neglected. No quantifica-
tion, of the energy yield uncertainty was given in Ref. [23].

2.2. Climate data collection and preprocessing

The climate dataset built here comprises all climate variables to be 
tested for their significance in developing a PV climate classification. 
This dataset serves as the baseline for the subsequent feature selection 
procedure. The final data set used for feature selection is available in the 
supplementary files.

It consists of a matrix whereby each row corresponds to a particular 
location (sample) and each column contains the value of a climate 
variable (feature) for that location, except for the first two columns 
which contain the latitude and longitude, respectively. The climate 
features are selected based on technical expertise. Moreover, KG and 
KGPV classifications are used as references. As indicated by Ascencio- 
Vasquez et al. in KGPV, the evolution of temperature has been 
remarkably different since 1990 [23]. To enhance comparability and 
reproducibility, for every climate feature, monthly average data is 
extracted from 1991 to 2021, and averaged, in turn for each month of 
the year, to obtain a typical average year.

Table 1 summarises the 12 final features included in the dataset. 
These are derived from the raw climate variables shown in Table 2. This 

Table 1 
Climate features conforming the climate dataset. The final data set used for 
feature selection is available in the supplementary files.

Feature Description

Tann Annual mean near-surface (2 m) temperature (◦C)
Tmax Monthly mean temperature of the warmest month (◦C)
Tmin Monthly mean temperature of the coldest month (◦C)
DTRann Annual mean daily temperature difference (◦C)
Pann Accumulated annual precipitation (mm)
Pmin Accumulated precipitation of the driest month (mm)
RHann Annual mean relative humidity (percent)
GHIann Accumulated annual Global Horizontal Irradiation (J/m2)
GHImax Maximum accumulated monthly Global Horizontal Irradiation (J/m2)
GHImin Minimum accumulated monthly Global Horizontal Irradiation (J/m2)
UVann Accumulated annual UV irradiation (J/m2)
WSann Annual mean near-surface (2 m) wind speed (m/s)

F.J.T. de las Heras et al.                                                                                                                                                                                                                      Renewable Energy 256 (2026) 123685 

2 



data is extracted from three different sources: the Climate Research Unit 
(CRU) of the University of East Anglia (CRU TS V. 4.06) [35]; the Global 
Precipitation Climatology Centre (GPCC), and, more specifically, the 
GPCC Full Data Reanalysis Version 5 [36]; and the Copernicus Climate 
Change Service Data Store (CDS), a service implemented by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF). From the 
latter, the datasets “Essential climate variables for assessment of climate 
variability from 1979 to present” [37] and “ERA5 monthly averaged 
data on single levels from 1940 to present” [38] were used. The climate 
data is quality controlled by checking for abnormalities such as missing 
values or outliers. The temperature and precipitation data used by 
Ascencio et al. [23] for the PV performance data is from the same 
sources as used in this work and in their follow-up [34] study, they also 
used the ERA5 data, which is used in this work.

UV irradiation and wind speed data are pre-processed as described in 
appendix A. Similarly, the resolution and range for the different data 
sources are harmonized during pre-processing as described in 
appendix B.

3. Use of machine learning for selection and weighing of climate 
variables

As a first step to generate an objective classification via ML, not only 
identifying the climate variables is essential, but also their levels of 
importance, or, mathematically speaking, their weights. These two is-
sues are solved with the help of supervised learning. A linear regression 
model is built to predict worldwide specific energy yields from the 
knowledge of several climate parameters. The predicted values can be 
compared with known data to obtain a measure of the error of the 
model. This provides a method to analyse the relevance of the climate 
variables on PV performance: the more relevant a parameter is, the 
lower the error of the prediction. Hence, the model can be optimised by 
selecting the most significant variables. However, feature selection 
proves to be a challenging issue. Pearson coefficients, automated feature 
selection, and technical expertise are combined to choose 79 possible 
sets of features. Then, these are evaluated individually, and the results 
are carefully analysed to decide the features to use in the second step.

In this project, Python 3.10 was used. One of the strengths of Python 
is its third-party packages. Among the numerous packages used in this 
work, the scikit-learn deserves to be highlighted [40]. Scikit-learn is the 
most prominent Python library for ML, containing several 
state-of-the-art ML algorithms, as well as a thorough documentation. It 
is an open-source project, which has been widely used in industry and 
academia [41]. A more detailed description of our procedure can be 
found in Ref. [42].

3.1. Methodology for climate variable selection and weighing

The approach consists in implementing linear regression to analyse 
the suitability of each feature for predicting accurately the specific en-
ergy yield. In short, linear models make a prediction using a linear 
function of the input features [41]. In mathematical notation: 

yp =w1⋅x1 + w2⋅x2 + w3⋅x3 + … + wn⋅xn + b, (2) 

where yp denotes the prediction, and xi denotes the feature i. The pa-
rameters learnt by the model are the weights associated with each 
feature, wi, and the interception, b.

A scheme of the methodology is illustrated in Fig. 1. Following the 
best practice in supervised learning, the dataset is partitioned into two 
subsets: the training data and the test data. Here, the training data 
corresponds to 75 percent of the original dataset, while the test data 
consists of the remaining 25 percent. This is just a general rule of thumb; 
similar partitions are also applicable [41]. After this step, it is necessary 
to rescale the data. Data scaling is a common preprocessing method 
applied before implementing the actual ML algorithm [41]. Data scaling 
consists in reconstructing the dataset to reduce the impact of different 
orders of magnitude [43]. This is typically caused by the different units 
employed among the features. For instance, irradiation has an order of 
magnitude of 108, clearly much higher than other variables like hu-
midity or temperature. These discrepancies in scale and range directly 
affect the weights’ calculation. Therefore, to obtain more reliable and 
comprehensive results, all data points must be transformed to the same 
scale [43].

In this work, StandardScaler, within the scikit-learn package, is 
applied. It transforms the data so that every feature has a mean equal to 
0 and a variance of 1 [41]. Besides being easy to understand, this 
technique has proved successful in the optimisation of machine learning 
algorithms [43]. Thus, StandardScaler is used to scale the data. It should 
be stressed that, to avoid introducing bias, the transformation used to 
standardize the test data must be the same as the one used for the 
training data. [41]. This is indicated in Fig. 1 by the dashed arrow.

Finally, the linear regression model is built using the training data. 
Following the nomenclature introduced above, here the features, xi, are 
the climate variables, while the target, y, is the specific energy yield. 
After fitting the weights, the model can be evaluated using the test data. 
In other words, the specific energy yield for each sample of the test data 
is predicted using the corresponding climate features, and the prediction 
is compared to the known value. Thus, the performance of the model can 
be measured. The lower the error, the higher the correlation between the 
climate features and the specific energy yield.

In principle, all features could be fed into the model and the algo-
rithm would calculate their optimum weights. Then, these weights could 
be used for developing the classification. However, this would result in a 
complex classification, difficult to analyse and understand. Moreover, 
many climate variables are related to each other or have minor impor-
tance, so these can be discarded for the classification criteria. On the 
other hand, an insufficient number of features would result in poor ac-
curacy. Therefore, it is essential to make a wise selection.

3.2. Climate variable correlation results

The climate features are not independent from each other, and there 
exist particular combinations which remarkably improve the perfor-
mance of the model. For that reason, the importance of an individual 
feature depends on the other features with which it is combined. 
Consequently, the optimum combination can vary significantly when 
changing the number of features selected. Therefore, it is necessary to 
try several combinations to find the optimum set. The high number of 
possible combinations forces to simplify the procedure.

Certain statistical parameters and tools can facilitate the analysis. A 
first insight into the relevance of a feature is provided by the Pearson 
correlation coefficient or Pearson’s r. It evaluates the linear correlation 
between the feature and the target [44]. Pearson’s r measures the 
dependence of the individual variable, so no information is gained 
regarding the interactions between the climate features. Hence, feature 
selection cannot be based solely on these numbers. Nevertheless, it 
provides a sense of the importance of each feature and can be utilized to 
make some decisions. For instance, Ahmed et al. [43] considered sig-
nificant only those variables with a Pearson coefficient higher than 0.4. 
Table 3 illustrates the calculated Pearson coefficients.

Table 2 
Raw climate variables used to determine the features.

Raw variable Description Source

TMP Mean near-surface (2 m) temperature (◦C) CRU [35]
DTR Mean daily temperature difference (◦C) CRU [35]
P Accumulated precipitation (mm) GPCC [36]
RH Mean relative humidity (percent) CDS [37]
GHI Accumulated Global Horizontal Irradiation (J/m2) CDS [38]
UV Accumulated UV irradiation (J/m2) CDS [38]
WS Mean near-surface (10 m) wind speed (m/s) CDS [38]
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It is clear from Table 3 that GHIann and UVann have a strong linear 
correlation with the specific energy yield. Therefore, these variables are 
expected to play a fundamental role in the classification. On the other 
hand, the low Pearson coefficients for precipitation and wind speed, 
suggest that these variables will not be so relevant, reinforcing the need 
to go beyond the original KG classification method. Particularly, WSann 

has a coefficient of almost zero, so it will be disregarded for the rest of 
the analysis.

3.3. Climate variables scaling and weighing results

Overall, for every possible number of features (ranging from 1 to 11), 
the model has been evaluated using different combinations. The possible 
combinations have been chosen based on the Pearson coefficients, and 
technical expertise. Furthermore, Recursive Feature Elimination (RFE) 
was implemented to guide the procedure. In total, 79 options have been 
evaluated.

Table 4 summarises the optimum combination found for each 
number of features, with their associated errors. Error measures include 
the coefficient of determination (R2), the root mean square error 
(RMSE), the mean absolute error (MAE), and the mean absolute per-
centage error (MAPE). Furthermore, a case consisting of a random 
variable is included to show the validity of the model and establish a 
reference. The errors shown in Table 4 are calculated using the test data. 
Furthermore, since the data is randomly divided into training and test 
data, running the algorithm again results in slightly different values. To 
reduce this effect, the algorithm was executed three times, and the error 
and weights were averaged.

Table 4 provides, for a fixed number of features, the optimum set, the 

Fig. 1. Scheme of the methodology applied to select and weight the most relevant climate variables to the specific energy yield. Solid lines represent the flow of data. 
The dashed arrow indicates that the transformation used to standardize the test data is the same as the one used for the training data to avoid introducing bias.

Table 3 
Pearson correlation coefficient for every climate feature. Values 
close to +1 or − 1 indicate a high linear dependence between the 
feature and the specific energy yield.

Feature Pearson correlation coefficient

Tann +0.66
Tmax +0.63
Tmin +0.60
DTRann +0.76
Pann − 0.13
Pmin − 0.27
RHann − 0.72
GHIann +0.92
GHImax +0.78
GHImin +0.77
UVann +0.91
WSann +0.01
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weights, and the error associated with that linear regression model. 
Based on these results, the criteria for developing the classification in the 
next section can be defined. The first observation is the importance of 
the irradiation features, when fixing the number of features to three, the 
optimum combination consists of the three measures of GHI. Only using 
these variables, an R2 of 0.923 and a MAPE of 6.8 percent are achieved. 
For more than three climate variables, the temperature starts to play a 
fundamental role too, appearing Tann when adding the fourth feature. It 
is interesting to note that Tann and Tmin provide more information than 
Tmax or DTRann. From the five features, UVann becomes the variable with 
the highest weight, a sign of its importance to the model. The next 
variable to appear is Pmin, which, after showing for the first time with six 
features and being disregarded with seven, is always selected. Finally, 
with very low weights, RHann, Pann, and DTRann are added, in that order.

Besides the features, the errors must be carefully analysed. In 
particular, the regression score function, R2. From eight features, the R2 

takes a virtually constant value of 0.943. This suggests that selecting 
more than eight features is unnecessary, since the model’s complexity 
would increase without tangible improvement. Even for less than eight 
features there is a clear trade-off between reducing complexity of data 
collection and accuracy. In a longer format, classification based on four, 
five, seven, and eight features were considered [42]. From Tables 4 and 
it is known that best model with seven features has a MAE of 67.6, while 
the MAPE is 6.2 percent. Based on this, it was found that seven features 
(Tann, Tmax, Tmin, GHIann, GHImax GHImin, UVann) provide the best 
compromise between accuracy and unnecessary complexity. Thus, we 
will use this combination of seven features for the rest of this work.

For this combination of climate variables, Fig. 2 shows a visual 
assessment of the predictions. In this figure, the specific energy yield 
predictions (y-axis) are directly compared to the known values or targets 
(x-axis). Ideally, a straight line (red line in the figure) should be ob-
tained. In general, the predictions follow a similar behaviour to the 
actual values, except for regions characterised by a very low specific 
energy yield, where the discrepancy is higher. Therefore, for these re-
gions, the classification could be less accurate.
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Fig. 2. Comparison between the test data specific energy yield targets and the 
predictions made by the linear regression model using seven features (Tann, 
Tmax, Tmin, GHIann, GHImax GHImin, UVann).
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4. Use of machine learning to classify PV climate zones

In step 1, as described in the previous section, the most relevant 
features were identified and the optimum combination for seven fea-
tures was proposed. In this section, step 2, a method to develop the final 
classification is illustrated. It consists in creating several classifications 
using the concept of k-means, followed by a careful qualitative analysis 
based on various parameters and tools. In this way, an optimum clas-
sification comprising 21 climate groups is achieved. A more detailed 
description of our procedure can be found in Ref. [42].

4.1. Classification methodology

The procedure consists of the following steps, shown in Fig. 3. First, 
the features selected in section 3 are standardised (using Stand-
ardScaler) and multiplied by their corresponding weights. Then, k- 
means is applied to create the clusters from these features. In principle, 
the desired number of clusters can be fixed beforehand, and a classifi-
cation is obtained via the k-means algorithm. However, how many 
clusters should be formed?

The first step to building an optimum classification is to define an 
evaluation method. This essential requirement is usually the most 
challenging part of clustering studies [41]. In unsupervised learning, in 
contrast to supervised, there are no known values to compare and assess 
the results of the algorithm with. To guide this decision, several math-
ematical strategies, such as the elbow method, have been proposed. 
However, unfortunately, these pure quantitative analyses rarely work 
for the datasets found in practice [41]. Indeed, these methods were 
applied in this work with poor performance. The reality is that there is 
not a clear and unique solution to this challenge. Instead, a careful and 
tedious qualitative exploration procedure is required. This is a common 
approach in clustering algorithms [41]. Fortunately, numerous tools can 
facilitate the study and help to make objective decisions. Data visuali-
zation is especially relevant for this project. Other insightful parameters 
are the clusters’ centres and sizes. In the following, the procedure will be 
demonstrated using 19, 20, 21, and 22 clusters.

4.2. Analysing clustering results

The exploration method is illustrated hereafter. For making an 
objective decision, it is essential to know how the clusters are formed 
and what characterize them. There exists a visual tool that proves very 
insightful: the pair plot. A pair plot consists of a matrix of scatter plots, 
each representing the points for every possible pair of features. The di-
agonal of this matrix is filled with a histogram of each feature [41]. The 
data points are coloured according to the clusters they belong to. This 
figure enables an understanding of how the clusters are formed, and 
their main properties. Furthermore, it can be used to predict the 

formation of new groups. The pair plot associated with seven features 
and 19 clusters is illustrated in Fig. 4.

The pair GHIann – Tann is very informative. Fig. 5A illustrates this for 
19 clusters. This figure enables understanding the main properties of the 
clusters. First, the high weight given to the GHIann is here evident. 
Initially for lower feature or cluster counts, the clusters are mainly 
formed based on this criterion. However, there is a point at which 
temperature starts playing a role too and, consequently, horizontal di-
visions appear. In particular, the reddish clusters are characterized by a 
high Tann. Their cluster centres indicate an average Tann of 24 ◦C. It is 
seen that these reddish clusters have a similar level of irradiation to the 
greenish ones but a higher temperature, suggesting a tropical climate. 
On the other hand, the purple clusters are characterized by a very low 
Tann (polar), while the orange regions present a high GHIann but mod-
erate to low Tann, presumably being mountain regions. This reasoning 
can be expanded, with the help of other pair of features, to obtain a 
description of every cluster.

Now, it is interesting to analyse what happens when the number of 
clusters is increased. Fig. 5 shows the pair GHIann – Tann for 19 (A), 20 
(B), 21 (C), and 22 (D) clusters. When increasing the number of clusters 
to 20, the bluish clusters are split, and a new blue group appear. Simi-
larly, a new green group is formed when the number of clusters increases 
to 21. Both clusters constitute independent clouds of points and have 
clearly defined properties. These two new clusters identify relevant 
climate regions, significantly improving the classification’s accuracy. 
However, when going from 21 to 22 clusters, a grey cluster is formed 
whose significance in terms of the meaningful features, GHIann and Tann, 
is very unclear. It overlaps other clusters and does not show clearly 
defined properties. This suggests that forming 22 clusters or more is not 
appropriate and that 21 clusters is the ceiling for seven features.

4.3. PV climate classification results

The final classification is illustrated in Fig. 6. Overall, it comprises 21 
climate regions based on seven features: Tann, Tmax, Tmin, GHIann, GHI-
max, GHImin, and UVann.

Names and colours associated with the clusters have been proposed. 
These are indicated by the bar at the right of the figure. They are inspired 
by the approach followed in KGPV. First, clusters are divided into six 
climate types: Tropical (Tro), Desert (Des), Mountainous (Mou), 
Temperate (Tem), Cold (Col), and Polar (Pol). Then, the clusters inside 
each of these climate types are ordered from minor to greater irradia-
tion. Therefore, both Tro1 and Tro4 are tropical climates, but Tro4 has a 
higher level of irradiation than Tro1. It is important to note that these 
numbers only apply inside the same climate type. Hence, even though 
Pol1 and Tro1 have the same number, they do not have the same level of 
irradiation. Table 5 summarises the cluster’s names, centres, and sizes.

Even though the names are inspired by the KGPV scheme, they are 
ultimately justified by the properties of the clusters. These are under-
stood with the help of the cluster’s centres and pair plot (Fig. 4.). 
Overall, Tropical clusters are characterised by a high Tmin and a low 
seasonal dependence. Desert shows a high Tmax, GHIann, and UVann. On 
the other hand, Mountainous regions, despite presenting a high GHIann 
and UVann, have moderate to low temperatures. The most relevant fea-
tures of the Temperate clusters are moderate temperatures and high 
seasonal dependence. Lastly, Cold is characterized by a low Tmin and 
high seasonal dependence, while Polar shows a low Tann and extreme 
seasonal dependence. An extensive description of the clusters can be 
found in Ref. [42].

5. Discussion and comparison to KGPV

The main objective is to create a ML driven PV climate classification 
based on the most relevant climate variables to the specific energy yield. 
Has this objective been achieved? For this purpose, Fig. 7 illustrates the 
scatter plot for the pair GHIann – Yf. One can see a clear relationship 

Fig. 3. Procedure to create the classification from the features and weights 
determined in section 3. The desired number of clusters is given as an input to 
the algorithm.
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between the created clusters and the specific energy highlighting the 
positive result of the found classification. The impact of temperature is 
here evident. Of course, considering regions with an equivalent range of 
temperatures, the higher the irradiation, the higher the specific energy 
yield. One point for improvement in future works is that the relationship 
between the clusters and the specific energy yield is less clear for regions 
with specific energy yield low values. This is in accordance with the 

conclusions drawn in section 3, where it was seen that the predictions 
for these regions are less accurate.

The secondary objective is to evaluate additional climate variables 
namely wind speed, relative humidity, UV irradiation and also the 
irradiation in the brightest and darkest months. According to the feature 
selection results listed in Table 4, GHImin is the second most impactful 
climate variable, when it comes to predicting the energy yield. This is 

Fig. 4. Pair plot associated with the classification based on seven features and 19 clusters. The units of temperature and irradiation, not shown in the figure for the 
sake of clarity, are ◦C and J/m2, respectively. The principal diagonal of this matrix represents a histogram of each feature, while the scatter plots show how the points 
are distributed and classified from the point of view of a pair of features.

Fig. 5. Scatter plot GHIann – Tann for 19 (A), 20 (B), 21 (C), and 22 (D) clusters.
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Fig. 6. ML driven PV climate classification. First index: Tro-Tropical, Des-Desert, Mou-Mountainous, Tem-Temperate, Col-Cold, Pol-Polar. The second index orders 
from minor to greater irradiation the clusters inside a particular climate type. The data to build this figure can be found in the supplementary file.

Table 5 
Cluster’s names, centres, and sizes. Temperatures are given in ◦C and irradiations in J/m2. The size is the number of data points in 0.5◦ by 0.5◦ resolution constituting 
the cluster.

Name Tann Tmax Tmin GHIann (⋅108) GHImax (⋅107) GHImin (⋅107) UVann (⋅106) Size

Tro4 24.54 27.12 21.58 2.49 2.43 1.75 14.83 4098
Tro3 25.64 28.08 22.88 2.23 2.23 1.51 13.59 4788
Tro2 25.05 26.69 22.83 2.00 2.00 1.33 12.46 3618
Tro1 17.52 26.26 7.51 1.61 1.84 0.87 10.26 997
Des3 27.96 33.87 20.30 2.81 2.73 1.86 16.11 3202
Des2 23.56 31.51 14.03 2.67 2.84 1.46 15.3 3613
Des1 19.01 27.9 9.66 2.47 2.83 1.17 14.29 2929
Mou3 9.43 12.15 5.84 2.86 2.98 1.76 16.40 384
Mou2 − 1.48 9.64 − 13.62 2.48 2.81 1.28 14.26 1108
Mou1 8.89 21.88 − 4.94 2.22 2.72 0.88 12.89 2004
Tem5 17.46 25.77 8.88 2.11 2.58 0.89 12.60 2951
Tem4 11.08 23.33 − 1.68 1.88 2.44 0.65 11.32 2726
Tem3 8.53 20.71 − 3.90 1.60 2.25 0.39 9.83 2284
Tem2 7.14 18.00 − 3.44 1.26 1.99 0.17 7.91 2031
Tem1 0.69 15.33 − 13.33 1.05 1.90 0.04 6.59 2847
Col4 2.52 19.68 − 17.20 1.82 2.35 0.57 10.85 2086
Col3 0.94 17.52 − 17.45 1.46 2.15 0.28 8.92 3493
Col2 − 4.84 14.82 − 25.67 1.31 2.12 0.15 8.02 3295
Col1 − 6.84 12.60 − 24.79 1.07 2.01 0.02 6.64 3146
Pol2 − 16.20 − 3.75 − 26.27 1.47 3.00 0.01 8.39 450
Pol1 − 12.19 12.03 − 35.49 1.10 2.09 0.01 6.75 3368

Fig. 7. Scatter plot for the pair GHIann – Yf.
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followed by GHImax in third and UVann in fifth position. In contrast, wind 
speed has low Pearson correlation coefficient, while relative humidity 
had nearly no measurable impact on the accuracy of the linear regres-
sion. Similarly, it is found that the original KG parameters based on 
precipitation and annual mean daily temperature difference do little to 
improve the accuracy of the linear regression and are thus also not 
selected for the ML driven PV climate classification.

To compare the ML driven climate classification obtained in this 
work and KGPV [23] the scatter plot GHIann – Tann is shown for both 
classifications in Fig. 8. Similar types of climates are present in both 
classifications: Tropical (red), Desert (yellow), Temperate (green), Cold 
(blue), and Polar (purple). However, one climate zone is very different, 
defined in KGPV as Steppe (C), which is not clearly identified in this 
work. Instead, a Mountainous climate type has been proposed. KGPV 
classifies these regions as Polar, because of the low temperatures. 
However, their high irradiation strongly suggests considering an inde-
pendent group. These Mountainous regions are characterised by a high 
GHIann and moderate to low temperatures, which make them the regions 
with the highest PV performance and should not be mixed with the Polar 
regions of the northern hemisphere.

Regarding the number of PV climate zones, KGPV initially considers 
24, but half of them is neglected based on a land-surface ratio and 
population density criterion, so in practice a total of 12 KGPV climate 
zones remains. By contrast, in this work 21 PV climate zones have been 
identified, which is lower than the initial KGPV model, but non-climate 
variables, such as population or land area, were not used to reduce their 
number. Consequently, more subdivisions are considered inside each 
climate type, and a higher level of detail is achieved. For instance, KGPV 
distinguishes solely between two Tropical climates (AH and AK), in 

contrast to the four regions found in this work. Furthermore, since the 
methodologies are different, even equivalently named zones present 
different climates.

In general, KGPV’s climate zones tend to overlap more with each 
other such as desert high (BH) and temperate high (DH). The clusters 
found by this work show a much clearer classification regarding the 
meaningful features GHIann and Tann.

To quantitively measure for the effectiveness of the two PV climate 
classifications, in addition to the visual comparison from above, the sum 
of squared errors is calculated for both [45]. When considering the seven 
climate variables used to obtain the climate classification the sum of 
squared errors is 58 % reduced for the machine learning based PV 
climate classification compared to KGPV. Moreover, calculating the sum 
of squared errors of the specific energy yield alone for both classifica-
tions it is reduced by 63 % for the machine learning based PV climate 
classification. This showcases that the machine learning approach to 
PV-climate classification can provide increase accuracy compared to 
classical approaches such as KGPV.

Overall, the methodology developed in this work proves to be a 
promising alternative to the previous classifications proposed. The re-
sults of the model may be further improved by means of the following 
recommendations. The feature selection procedure discussed in section 
3. Here, the analysis was simplified by selecting 79 combinations. Even 
though this approach produced a satisfactory result, not all combina-
tions have been checked. Implementing an optimisation algorithm such 
as Particle Swarm Optimisation (PSO) or the Genetic Algorithm (GA) is 
recommended to consider more possibilities. Secondly, the accuracy can 
be improved by considering non-linear dependencies. Multivariate 
Adaptive Regression Spline (MARS) is a promising approach to integrate 

Fig. 8. Scatter plots for the pair GHIann – Tann for ML driven PV climate classification (top, this work) and KGPV (bottom, [23]).
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non-linear dependencies and, at the same time, keep the logical meaning 
of the weights. Finally, as more high-quality PV performance data from 
comparable PV systems becomes available from around the globe efforts 
should be made to validate the PV performance data used in this study.

6. Conclusions

A machine learning-approach is proposed to develop a PV-climate 
classification. Supervised learning is used to identify and weigh the 
climate variables more correlated to the specific energy yield, while 
unsupervised learning is used to create the classification.

Overall, the combination corresponding to the optimum for seven 
climate features (Tann, Tmax, Tmin, GHIann, GHImax GHImin, UVann) is 
selected. This model performs predictions of the specific energy yield 
with a MAPE of 6.2 percent. Accuracy appears to be higher for medium 
and high specific energy yields than for low ones.

The inclusion of irradiation in the darkest and brightest months as 
well as UV irradiation improves accuracy, while wind speed, relative 
humidity, precipitation and annual mean daily temperature difference 
has little to no impact on accuracy.

Pair plots are used to determine that 21 clusters is the correct number 
for seven features. The clusters found by this work show a much clearer 
classification than KGPV. This is quantified by 58 % reduced sum of 
squared errors for the machine learning based PV climate classification 
compared to KGPV. A mountainous climate characterized by moderate 
to low temperature and high irradiation is uncovered compared to 
KGPV. This showcases that the machine learning approach to PV-climate 
classification can provide increase accuracy compared to classical ap-
proaches such as KGPV.

As more machine learning based PV climate classifications follow 
this initial work, the model may be further improved by implementing 
an optimisation algorithm such as PSO or GA to select the features, and 

by integrating non-linear dependencies via MARS.
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Appendix A. UV and wind speed pre-processing

The ERA5 dataset contains a variable called “Downward UV radiation at the surface” which is used to calculate UVann. However, as discussed in 
[34], UV is typically referred to for wavelengths below 400 nm, while the variable given in ERA5 covers the range from 200 to 440 nm. As a 
consequence, the latter significantly overestimates the UV irradiation. Following the alternative proposed in the same paper, UV is calculated using the 
approach given in [46]: 

UVA =
(
7.210 − 2.365 ⋅ k*

t
)

⋅ 10− 2⋅GHI (A1.1) 

UVB =
(
1.897 − 0.860 ⋅ k*

t
)

⋅ 10− 3⋅GHI (A1.2) 

UV =UVA + UVB (A1.3) 

k*
t =max(0.1,min(0.7, kt)) (A1.4) 

With kt representing the clearness index, i.e., the GHI divided by the solar radiation at the top of the atmosphere, both variables available in the ERA5 
dataset.

On the other hand, WS is available as the horizontal speed of the wind at a height of 10 m above the surface of the Earth (10 m wind speed). 
However, temperature data is known at a height of 2 m, so the following correction is applied to obtain the wind speed at the same height [34]: 

WS2m =

(
2
10

)0.2

⋅WS10m (A1.5) 

Appendix B. – Pre-processing of data resolution and range

When building the dataset, as a final step, the specific energy yield (Yf) is added as another column to the climate dataset. The result is a worldwide 
grid with resolution 0.5◦ latitude by 0.5◦ longitude. Thus, for every location (rows), the dataset contains its climate features and specific energy yield 
(columns). This enables finding a relation between climate and Yf.

Nevertheless, some data processing is required to match all climate variables and the specific energy yield, since the raw data present different 
resolutions. For climate, the resolution of the data given by the CRU TS V. 4.06 and GPCC is 0.5◦ × 0.5◦, while the data from the CDS has a resolution of 
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0.25◦ × 0.25◦. Moreover, the range of latitude and longitude values is different for each source. Therefore, the data must be pre-processed, and in some 
cases, interpolated to obtain a final grid of 0.5◦ × 0.5◦ with every variable having the same range.

Regarding the specific energy yield, this data is already available with a 0.5◦ × 0.5◦ resolution. However, the actual range of values is different. For 
instance, latitude in the climate dataset starts counting at − 55.25◦, while in the Yf, it starts at − 55◦. Therefore, it is necessary to interpolate to have 
both datasets referred to exactly the same locations. The same issue is found regarding longitude. As a final remark, latitude values range from − 55◦ to 
70◦, so Antarctica and most of Greenland are excluded.

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.renene.2025.123685.
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