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Abstract

Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid,
Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid,
Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Car-
bontetrachloride, Carbontetrabromide) by NF (Filmtec, Saehan) and RO (Filmtec, Sae-5

han, Toray, Koch) membranes were studied. Chloroform presented the lowest rejection
due to small molar volume, equivalent width and length. Diclofenac and Primidone
showed high rejections related to high molar volume and length. Dichloroacetic acid
and Trichloroacetic acid presented good rejections caused by charge exclusion instead
of steric hindrance mechanism influencing rejection. Bromoform and Trichloroethene10

showed low rejections due to small length and equivalent width. Carbontetrabro-
mide, Perchloroethene and Carbontetrachloride with higher equivalent width than BF
and TCE presented better rejections. A qualitative analysis of variables using Prin-
cipal Component Analysis was successfully implemented for reduction of physical-
chemical compound properties that influence membrane rejection of PhACs and or-15

ganic compounds. Properties such as dipole moment, molar volume, hydrophobic-
ity/hydrophilicity, molecular length and equivalent width were found to be important
descriptors for prediction of membrane rejection. Ionic and neutral compounds were
successfully separated before analysis. For membranes used in the experiments, we
may conclude that charge repulsion was an important mechanism of rejection for ionic20

compounds. Molecular weight was a poor variable for rejection prediction. Membrane
rejection of neutral compounds was well predicted by dipole moment, molar volume,
length, equivalent width and hydrophobicity/hydrophilicity of compounds after analysis
with Multiple Linear Regression.
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1 Introduction

The presence of pharmaceutically activated compounds (PhACs) and endocrine dis-
rupters compounds (EDCs) in surface waters has been reported, detailed and quan-
tified in many studies (Ternes, 1998; Hirsch et al., 1999; Heberer, 2002; Kolpin et al.,
2002). Although pharmaceuticals are generally taken up by the human organism, a5

significant amount of the original substance is often excreted with urine or faeces, thus
entering raw sewage and eventually ending up in the aquatic environment. The fate
of pharmaceuticals in the environment has raised the interest of scientists because
the accumulation of them may result in environmentally significant concentrations with
unknown effects. It has been studied that conventional water treatment presented lim-10

itations in removing PhACs and EDCs (Vieno et al., 2006; Adams et al., 2002). In
that sense, many studies have investigated the removal of micropollutants i.e. PhACs,
EDCs, by membrane treatment (NF, RO) and their separation mechanisms such as
size/steric exclusion, hydrophobic adsorption, partition and electrostatic repulsion (Kiso
et al., 2001a, b, 2002; Schäfer et al., 2003; Nghiem et al., 2004; Kimura et al., 2003;15

Kimura et al., 2004; Kim et al., 2005). Characteristics such as MWCO, porosity, mem-
brane morphology, charge, and hydrophobicity of the membrane influence rejection of
compounds (Schaep and Vandecasteele, 2001; Childress and Elimelech, 2000); com-
pound properties such as molecular weight, molecular size, charge, dipole moment
and hydrophobicity can be used as predictors of rejection in applications of membrane20

water treatment (Ozaki and Li, 2002; Van der Bruggen et al., 2000; Kiso et al. 2001a;
Van der Bruggen et al., 1999). However, there are disagreements defining the im-
portance of each descriptor, in that sense our objective is to investigate compound
properties and membrane characteristics with a statistical approach in order to predict
membrane rejection.25
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2 Background of statistics

2.1 Principal component analysis

A summary of principal component analysis is presented by Landau and Everitt (2004).
Principal Component Analysis (PCA) is essentially a method of data reduction that
aims to produce a small number of derived variables that can be used in place of the5

larger number of original variables to simplify subsequent analysis of the data. The
principal component variables y1, y2, . . ., yq are defined to be linear combinations of
the original variables x1, x2, . . ., xq that are uncorrelated and account for maximal pro-
portions of the variation in the original data, i.e., y1 accounts for the maximum amount
of the variance among all possible linear combinations of x1, . . ., xq, y2 accounts for10

the maximum variance subject to being uncorrelated with y1 and so on. Explicitly, the
principal component variables are obtained from x1, . . ., xq as follows:

y1 = a11x1 + a12x2 + . . . + a1qxq
y2 = a21x1 + a22x2 + . . . + a2qxq
...15

yq = aq1x1 + aq2x2 + . . . + aqqxq (1)

Where the coefficients ai j (i=1, . . ., q, j=1, . . ., q) are chosen so that the required
maximal variance and uncorrelated conditions hold. Since the variances of the prin-
cipal components variables could be increased without limit, simply by increasing the
coefficients that define them, a restriction must be placed on these coefficients. The20

constraint usually applied is that the sum of squares of the coefficients is one in that
way the total variance of all the components is equal to the total variance of all the
observed variables. It is often convenient to rescale the coefficients in order that their
sum of squares is equal to the variance of the component they define. In the case of
components derived from the correlation matrix of the data, these rescaled coefficients25

give the correlations between the components and the original variables. Those values
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are often presented as the result of a principal components analysis. The coefficients
defining the principal components are given by what are known as the eigenvectors
of the correlation matrix, R. PCA transforms the multivariate set into a set of artificial
components (principal components) based on the symmetric correlation matrix. The
procedure of PCA starts with assigning eigenvalues to each component for transform-5

ing a set of multi variables into a set of components.

2.2 Multiple linear regression

Multiple linear regression is a method of analysis for assessing the strength of the
relationship between a set of explanatory variables known as independent variables,
and a single response or dependent variable. Applying multiple regression analysis10

to a set of data results in what are known as regression coefficients, one for each
explanatory variable (Landau and Everitt, 2004). The multiple regression model for a
response variable, y , with observed values, y1, y2, . . ., yn (where n is the sample size)
and q explanatory variables, x1, x2, . . ., xq with observed values, x1i , x2i , . . ., xqi for
i=1, . . ., n, is:15

yi = β0 + β1x1i + β2x2i + . . . + βqxqi + εi (2)

The regression coefficients, β0, β1, . . ., βq, are generally estimated by least squares.
The term εi is the residual or error for individual i and represents the deviation of the
observed value of the response for this individual from that expected by the model.
These error terms are assumed to have a normal distribution with variance σ2. The fit20

of a multiple regression model can be judged with calculation of the multiple correlation
coefficient, R, defined as the correlation between the observed values of the response
variable and the values predicted by the model. The value of R2 gives the proportion
of the variability of the response variable accounted for by the explanatory variables.
Analysis of variance (ANOVA) will provide an F-test of the null hypothesis that each of25

β0, β1, . . ., βq, is equal to zero, or in other words that R2 is zero.
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3 Materials and methods

3.1 Compounds, membranes and properties

A list of selected compounds is presented in Table 1; it also shows physical-chemical
estimations of compound properties, such as: molecular weight (MW), dipole moment,
water-octanol partition coefficient (logKow ), acid dissociation constant (pKa), molar vol-5

ume (MV), length, width and depth. Compounds were classified in ionic and neutral
considering the acid dissociation constant, compounds with a pKa greater than 6 or not
available (N/A) pka were selected as neutral, otherwise were ionic, this classification
is related to acidity of normal waters. Compounds were classified as hydrophilic (HL)
when logKow was less than 2; and as hydrophobic (HP) when log Kow>2. Values of10

pKa were calculated with online software Sparc (Sparc, 2006). Octanol-water partition
coefficients expressed as logKow correspond to neutral molecule forms and were cal-
culated with software Kowwin (Kowwin, 2006). However some available experimental
database values of pKa and logKow were used. Calculation of dipole moments was
carried out with commercial software Chem3D Ultra 7 (Chemoffice, 2002). Molar Vol-15

ume (MV) of compounds was calculated as quotient of molecular weight (g/mol) and
liquid density of compound (g/cm3), unknown liquid density values were calculated by
Grain’s Method (Lyman et al., 1990). Molecular size represented by length, width,
depth (current, maximum and minimum calculated by geometry) was calculated with
software Molecular Modeling Pro (ChemSW, 2006). Afterwards, an equivalent width20

was defined as (width × depth)0.5 to represent the width of molecules.
Anhydrous sodium sulfate and sodium chloride were obtained from Fisher Scien-

tific. Potassium hydroxide, potassium chloride, and a buffer solution based on potas-
sium phosphate, used for water quality maintenance, were also purchased from Fisher
Scientific. Sulfuric acid was purchased from Mallinckrodt Chemicals (USA). Methyl25

tert-Butyl Ether (MtBE), used for GC-ECD analysis, and HPLC grade methanol were
obtained from Fisher Scientific. BF, PCE, CT, CTB, and DCAA were obtained from
Aldrich (USA). CF, TCE, and TCAA were purchased from Fisher Scientific (USA). IBP
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and PMD were purchased from Sigma, DCF from TCI America, PAC from Fluka. CFA,
CBM and NPX were ordered from Aldrich. A summary of membrane characteristics
used for PCA, is shown in Table 2.

3.2 Apparatus, analysis, equipment setup and experimental conditions

A membrane filtration unit SEPA cell of flat-sheet type (Osmonics, USA) was used5

for cross-flow tests. The system was composed of a polymeric membrane, a mem-
brane holder, pumps with a gear type pump head, needle valves (for the feed, re-
tentate, and permeate streams), pressure sensors, flow meters and a reservoir of
120 L. Either varying the pump head speed or controlling the needle valve in the re-
tentate stream controlled the feed flow rate, the corresponding cross-flow velocity, and10

the trans-membrane pressure. The feed water temperature was maintained in the
range (20–25◦C). The total membrane surface area in the test cell was approximately
135.8 cm2 and the total cross flow area in the test cell was approximately 1.45 cm2. All
permeates and concentrates were not recirculated but wasted in these experiments.
Changes in pressures permitted variation of the J0/k ratio, a hydrodynamic condition15

embodying initial flux (J0) toward the membrane and back-diffusion (k, mass transfer
coefficient, a function of diffusion coefficient and cross-flow velocity) away from the
membrane (Cho et al., 2000). The system recovery ratio (Qp/Qf=10%) was controlled
through the use of needle valves. Feed concentrations of compounds were 0.1 mg/L.
Experiments were carried out at a pH of 8 and conductivity of 300µS/cm conditioned20

with KCl. The J0/k ratio was 1 for all experiments reported in this publication.
EPA sample vials (40 mL) with a screw cap lined with Teflon were used for sam-

ple collection and extraction. Autosampler vials used were 2.0 mL amber glass vials
with a crimp cap and a Teflon-faced seal. Disposable Pasteur pipettes (9 inch) were
used to transfer extracted samples. Micropipettes (10–100 mL, 100–1000 mL, and 1–25

5 mL) with disposable tips were purchased from Fisher Scientific (USA). A mini-vortexer
(VWR Scientific, USA) was used as an orbital mixer. A Brinkmann bottle top dispenser
was used for adding solvent. An analytical balance (Mettler Toledo AT201) was capa-
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ble of weighing to 0.01 mg. A diazomethane reaction chamber was used for a step of
HAAs analysis. The GC used was an HP 6890 series GC system with a micro electron
capture detector, an HP7683 autoinjector, an autosampler tray module, and an HP PC.
A DB-1 capillary column coated with dimethylpolysiloxane (30 m×0.25 mm×1 mm) was
employed.5

3.3 Statistical analysis

Statistical analysis was used to determine which physical-chemical properties of com-
pounds contributed most significantly to membrane rejection. The performed statistical
methods included principal component analysis (PCA) and multiple linear regression
(MLR). The first step for data analysis was carried out with PCA to reduce the number10

of variables (physical-chemical properties) that are representative for a group of com-
pounds. The following analysis of the reduced number of variables was performed with
MLR. The statistical software package SPSS 14 (SPSS, 2005) was used for analysis.
The selected method of linear regression was stepwise. Stepwise regression is the
most sophisticate of statistical methods for multiple linear regression. Each variable is15

entered in sequence and its value assessed. If adding the variable contributes to the
model then it is retained, but all other variables in the model are then re-tested to see
if they are still contributing to the success of the model. If they no longer contribute
significantly they are removed. Therefore, the method should ensure that we end up
with the smallest possible set of predictor variables included in the model.20

4 Results and discussion

4.1 Rejection of compounds by membranes

Table 3 presents results of rejection for compounds corresponding to the membrane
with which the test was carried out. All results are from samples taken after 48 h of
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experimental running. Two membrane types were selected for experiments with all
compounds: LE-440 (RO) and NF-90 (NF).

4.2 PCA for compounds and membranes

Our hypothesis is that a reduced number of variables will appropriately explain rejec-
tion qualitatively based on physical-chemical properties of compounds and membrane5

characteristics. In order to validate it, we formulated the following questions: i) which
physical-chemical properties significantly represent a compound in a smaller set of
variables? ii) which compounds depending on their properties were better rejected? iii)
which membrane characteristics can describe rejection much better? Variables consid-
ered for PCA were molecular weight (MW), dipole moment (dipole), molar volume (MV),10

water-octanol partition coefficient expressed as logKow , hydrophobicity/hydrophilicity
(HP) a dummy variable that takes the value of 0 when the compound is hydrophilic (HL)
and 1 when the compound is hydrophobic (HP), molecular length (length), molecular
width (width), molecular depth (depth) and equivalent width (eqwidth). After the first
analysis considering all mentioned variables, three principal components accounted15

for 82.7% of the total variance. A graph (Fig. 1a) of the first and second rotated and
unrotated components shows that MW and depth presented small and variable com-
ponent loadings; therefore we can neglect MW and depth.

The second test of PCA considered dipole, MV, logKow , HP, length, width and
eqwidth. Figure 1b shows final component loadings of variables for this PCA. Ac-20

cording to Table 4, the first and second principal components (scaled eigenvectors),
explained the largest part of the total variance, they have eigenvalues of 3.2 and 2.2,
respectively; this accounts to 45.6% and 31.8% of the total variance. The third princi-
pal component has a variance of 0.7 and accounts for a further 9.9% of the variance.
The cumulative % column shows how much of the total variance was accounted for by25

the components with eigenvalues greater than 1. The first two principal components
accounted for 77.4% of the total variance. Thus, we can answer question i), we can
reduce our first nine variables to seven variables that can be explained by the first two
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components of Table 4. Subsequently we answer question ii) which compounds de-
pending on their properties were better rejected? We present Fig. 2, a graph of the first
and second components scores for each compound. That plot helps to visualize the
rejection patterns of the fifteen compounds. Scores on the x-axis (component 1) may
indicate the overall level of rejection, while scores on the y-axis indicate possibly differ-5

ences between compound properties. Clustering of compounds classified according to
groups is a first notice from the graph. CF (chloroform) clearly appeared outside from
the other compounds, presenting the lowest rejection (see Table 3) due to small molar
volume, equivalent width and length. DCF (diclofenac) and PMD (primidone) showed
high rejections related to high molar volume. CBM (carbamazepine) appears outside10

of the clustered group of hydrophobic-neutral compounds due to his high molar volume
and dipole moment when compared to the rest of the compounds in his group. Dipole
moment also influenced that CFA (clofibric acid) appeared outside of its group. Also no-
table was the clustering of DCAA (dichloroacetic acid) and TCAA (trichloroacetic acid),
both compounds presented good rejections (Table 3); however their charge prevailed15

the mechanism of electrostatic instead of size exclusion mechanism influencing rejec-
tion. BF (bromoform) and TCE (trichloroethene) had low rejections due to small length
and equivalent width. By contrast, CTB (carbontetrabromide), PCE (perchloroethene)
and CT (carbontetrachloride) with higher equivalent width and lower values of dipole
moment than BF and TCE presented better rejections.20

Results of PCA for membrane characteristics presented in Figure 3a suggest that
no further reduction of variables is suitable. Therefore, the answer of question iii) is
not possible considering only the set of variables we have. In general nanofiltration
membranes (NF-90 and NE90) presented low membrane rejection when compared
to reverse osmosis membranes, excluding CTA. Figure 3b present scores for each25

membrane. According to this, LE-440 performed better than XLE-440; NE 90 better
than NF-90, and BW-400 performed better than UTC-70 and RE BLR, in this order BW-
400>UTC-70>RE BLR. Although Figure 3b describes well the rejection performances
of membranes, the information provided must be analyzed and disregard misleading
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results, it was the case for CTA (compare rejections Table 3).

4.3 Multiple linear regression

MLR analysis of rejections was separated for ionic and neutral compounds, and for two
membranes (LE-440 and NF-90). Thus, MLR was performed for these cases: 1) ionic
LE440 48h; 2) ionic NF90 48h; 3) neutral LE440 48h; 4) neutral NF90 48h. Rejection5

can be defined as a linear function with compound properties as variables. In general,
we may assume that rejection can be described by the following linear equation.

rej=B0 + B1MV + B2HP + B3Kow + B4Dipole + B5length + B6eqwidth (3)

Inclusion of all variables will give a R2 value approaching 1. However the optimum
output implies having the less number of variables in the equation that may explain10

or predict rejection with appropriate fit and significance. Thus, stepwise regression
will achieve this by adding and removing variables until an acceptable statistical signifi-
cance would possibly be reached. The summary of results is shown in Table 5. We can
notice that our R2 values varied between 0.435 and 0.952. Ionic compounds were less
favoured in prediction and significance. The rejection prediction of ionic compounds15

by membrane NF-90 presented the lowest confidence (85%) and R2 value (0.435).
However, R2 value (0.628) and significance (96%) improved for ionic compounds and
LE-440 membrane. Thus, we may use the models and predictors under certain restric-
tions when referring to ionic compounds. The effect of charge repulsion between the
membrane and those charged compounds was evident. On the other hand, neutral20

compounds showed acceptable R2 values and good levels of confidence (>95%). An
important observation was that MW was disregarded as predictor. According to Ta-
ble 5, it seems that dipole moment may predict differences in rejection prediction for
ionic compounds. The influence of molar volume (MV) was more notable for neutral
compounds. A combination of MV, dipole moment and length was able to predict re-25

jection of neutral compounds by LE-440 membrane (Fig. 4). The rejection prediction of
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neutral compounds for NF-90 membrane involved variables of equivalent width and hy-
drophobicity/hydrophilicity (Fig. 5). It seems that equivalent width replaced predictors
MV and length as we compare NF and RO membranes.

5 Conclusions

A qualitative analysis of variables using principal component analysis was success-5

fully implemented for reduction of physical-chemical compound properties that influ-
ence membrane rejection of PhACs and organic compounds. Properties of dipole
moment, molar volume, hydrophobicity/hydrophilicity, molecular length and equivalent
width were found to be important descriptors for prediction of membrane rejection. Ionic
and neutral compounds were successfully separated before analysis. For membranes10

used in the experiments we may conclude that charge repulsion was an important
mechanism of rejection for ionic compounds. Molecular weight was a poor property for
rejection prediction. We could model membrane rejection of neutral compounds with
multiple linear regression; real results were well represented by dipole moment, molar
volume, length, equivalent width and hydrophobicity/hydrophilicity of compounds.15
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Table 1. Physical-chemical properties of compounds.

Compound Abbr. MW Dipole Molar Log pKa Mole. Mole. Mole. eqwidth Class.*
(g/mol) (Debye) Vol. Kow length width depth (nm)

(cm3/mol) (nm) (nm) (nm)

Dichloro-acetic acid DCAA 129 2.40 82 0.92 1.48 0.7 0.69 0.52 0.60 HL-ion
Trichloro-acetic acid TCAA 163 1.50 100 1.33 0.70 0.89 0.67 0.41 0.52 HL-ion
Ibuprofen IBP 206 1.29 130 3.97 4.91 1.31 0.77 0.64 0.70 HP-ion
Diclofenac DCF 296 1.48 182 4.51 4.15 1.13 0.91 0.45 0.64 HP-ion
Clofibric acid CFA 214 0.79 155 2.57 3.64 0.95 0.66 0.41 0.52 HP-ion
Naproxen NPX 230 2.74 167 3.18 4.15 1.26 0.69 0.54 0.61 HP-ion
Chloroform CF 119 1.12 80 1.97 N/A 0.53 0.5 0.35 0.42 HL-neu
Primidone PMD 218 4.31 164 0.91 N/A 0.97 0.88 0.48 0.65 HL-neu
Phenacetin PAC 179 2.40 146 1.58 N/A 1.39 0.68 0.42 0.53 HL-neu
Bromoform BF 253 1.00 87 2.40 N/A 0.69 0.65 0.48 0.56 HP-neu
Trichloro-ethene TCE 131 0.95 90 2.29 N/A 0.78 0.66 0.36 0.49 HP-neu
Perchloro-ethene PCE 165 0.11 102 3.40 N/A 0.78 0.77 0.45 0.59 HP-neu
Carbontetra-chloride CT 154 0.30 96 2.83 N/A 0.64 0.64 0.57 0.60 HP-neu
Carbontetra-bromide CTB 332 0.01 112 3.42 N/A 0.69 0.63 0.65 0.64 HP-neu

* HL, hydrophilic; HP, hydrophobic; ion, ionic; neu, neutral.
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Table 2. Characteristics of membranes.

Membrane BW-400 LE-440 XLE-440 NF-90 RE-BLR NE-90 UTC-70 CTA

Company FilmTec FilmTec FilmTec FilmTec Saehan Saehan Toray Koch
Group (Type) PA (RO) PA (RO) PA (LPRO) PA (NF) PA (RO) PA (NF) PA (LPRO) CTA (RO)
MWCO n/a n/a n/a 200 n/a 200 n/a n/a
NaCl Rej. (%) 98 98 98 90 99.5 90 99.6 98
Contact Angle ( ˚ ) 57 42 40 60 47 52 54 47
Zeta Potential (mV), pH8, 10mM KCl −4.5 −23 −19 −31 −21 −24 −15 −19
J0 (L/m2 hr) 18 18 16 26 15 22 14 18
Oper. Pressure (kPa) 620 550 410 280 480 240 340 550
PWP (L/m2 day kPa) 0.68 0.77 0.92 2.23 0.77 2.17 0.99 0.79
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Table 3. Membrane rejection results after 48 hours.

Membrane Compounds & rejections (%)

CF TCE BF CT PCE CTB

LE-440 3 2 7 69 76 89
NF-90 0 3 0 35 39 70
BW-400 4 0 16 78 71 96
XLE-440 10 3 16 69 71 83
RE BLR 34 33 50 90 87 99
NE90 1 0 17 52 57 70
UTC-70 9 6 34 84 57 79
CTA 27 6 2 13 2 N/A

Membrane Compounds & rejections (%)

DCAA TCAA IBP DCF CFA NPX PMD PAC

LE-440 77 95 91 91 87 75 83 56
NF-90 89 87 86 90 86 89 82 45
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Table 4. Principal components and total variance.

Comp. Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.192 45.607 45.607 3.192 45.607 45.607 3.115 44.500 44.500
2 2.228 31.827 77.434 2.228 31.827 77.434 2.305 32.934 77.434
3 0.697 9.959 87.393
4 0.417 5.950 93.343
5 0.215 3.075 96.417
6 0.160 2.292 98.710
7 0.090 1.290 100.000
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Table 5. Results of multiple linear regressions.

Case R2 Std. Error of Estimate F Sig. Equation for rejection

Ionic LE440 48h 0.628 5.58 6.75 0.060 101.104–8.885Dipole
Ionic NF90 48h 0.435 1.45 3.08 0.154 85.184+1.559Dipole
Neutr LE440 48h 0.952 10.14 33.07 0.001 −118.889+2.503MV−29.830Dipole−86.339length
Neutr NF90 48h 0.868 12.56 19.74 0.002 −163.619−30.423HP+386.160eqwidth
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Table 3. Membrane rejection results after 48 hours. 
 

Membran (%)      e Compounds & rejections 
 CF  CT PCE CTB  

LE-440 3 2   
TCE BF  

7 69 76 89 
NF-90 0 3   

BW-400 4  7 71 96   

E-440 10  6 71 83   

_BLR 34  9 87 99   

90 1 0 17 52 57 70   

C-70 9 6 34 84 57 79   

CTA 27 13 2 N/A   

Membrane mpounds & r ctions (%      

0 35 39 70 
0 16 8 

XL 3 16 9 
RE 33 50 0 
NE
UT

6 2 

Co eje ) 
 CAA TCAA IB DCF CFA NPX D 

-440 56 

D P  PM PAC 

LE 77 95 91 91 87 75 83 
NF-90 45 89 87 86 90 86 89 82 

 

4.2 P ompounds nes 
 

ur hypothesis is that a reduced number of variables will appropriately explain rejection qualitatively 
mpounds and membrane characteristics. In order to validate 
 which physical-chemical properties significantly represent a 

 
The sec re 1b 
show ond 

CA for c and membra

O
based on physical-chemical properties of co
it, we formulated the following questions: i)
compound in a smaller set of variables? ii) which compounds depending on their properties were better 
rejected? iii) which membrane characteristics can describe rejection much better? Variables considered 
for PCA were molecular weight (MW), dipole moment (dipole), molar volume (MV), water-octanol 
partition coefficient expressed as Log Kow, hydrophobicity/hydrophilicity (HP) a dummy variable that 
takes the value of 0 when the compound is hydrophilic (HL) and 1 when the compound is hydrophobic 
(HP), molecular length (length), molecular width (width), molecular depth (depth) and equivalent width 
(eqwidth). After the first analysis considering all mentioned variables, three principal components 
accounted for 82.7% of the total variance. A graph (Figure 1a) of the first and second rotated and 
unrotated components shows that MW and depth presented small and variable component loadings; 
therefore we can neglect MW and depth. 
 

Figure 1. a) Component loadings for all compound variables; b) Component loadings for reduced variables 

ond test of PCA considered dipole, MV, Log Kow, HP, length, width and eqwidth. Figu
s final component loadings of variables for this PCA. According to Table 4, the first and sec
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Fig. 1. (a) Component loadings for all compound variables; (b) Component loadings for re-
duced variables.
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prin ave 
igenvalues of 3.2 and 2.2, respectively; this accounts to 45.6% and 31.8% of the total variance. The third 

 
Results of PC her reduction of 
variables is suitab  only the set of 
variables we have. In general n E90) presented low membrane 

jection when compared to reverse osmosis membranes, excluding CTA. Figure 3b present scores for 

cipal components (scaled eigenvectors), explained the largest part of the total variance, they h
e
principal component has a variance of 0.7 and accounts for a further 9.9% of the variance. The 
cumulative % column shows how much of the total variance was accounted for by the components with 
eigenvalues greater than 1. The first two principal components accounted for 77.4% of the total variance. 
Thus, we can answer question i), we can reduce our first nine variables to seven variables that can be 
explained by the first two components of Table 4. Subsequently we answer question ii) which compounds 
depending on their properties were better rejected? We present Figure 2, a graph of the first and second 
components scores for each compound. That plot helps to visualize the rejection patterns of the fifteen 
compounds. Scores on the x-axis (component 1) may indicate the overall level of rejection, while scores 
on the y-axis indicate possibly differences between compound properties. Clustering of compounds 
classified according to groups is a first notice from the graph. CF (chloroform) clearly appeared outside 
from the other compounds, presenting the lowest rejection (see Table 3) due to small molar volume, 
equivalent width and length. DCF (diclofenac) and PMD (primidone) showed high rejections related to 
high molar volume. CBM (carbamazepine) appears outside of the clustered group of hydrophobic-neutral  
compounds due to his high molar volume and dipole moment when compared to the rest of the 
compounds in his group. Dipole moment also influenced that CFA (clofibric acid) appeared outside of its 
group. Also notable was the clustering of DCAA (dichloroacetic acid) and TCAA (trichloroacetic acid), 
both compounds presented good rejections (Table 3); however their charge prevailed the mechanism of 
electrostatic instead of size exclusion mechanism influencing rejection. BF (bromoform) and TCE 
(trichloroethene) had low rejections due to small length and equivalent width. By contrast, CTB 
(carbontetrabromide), PCE (perchloroethene) and CT (carbontetrachloride) with higher equivalent width 
and lower values of dipole moment than BF and TCE presented better rejections. 
 

Figure 2. Component scores for compounds 

A for membrane characteristics presented in Figure 3a suggest that no furt
le. Therefore, the answer of question iii) is not possible considering

anofiltration membranes (NF-90 and N
re
each membrane. According to this, LE-440 performed better than XLE-440; NE 90 better than NF-90, 
and BW-400 preformed better than UTC-70 and RE BLR, in this order BW-400>UTC-70>RE BLR. 
Although Figure 3b describes well the rejection performances of membranes, the information provided 
must be analyzed and disregard misleading results, it was the case for CTA (compare rejections Table 3). 
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Fig. 2. Component scores for compounds.
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Figure 3. a) Component loadings scores for 

Figure 4. LE-440 membrane rejection prediction of neutral compounds. 
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Fig. 3. (a) Component loadings for membrane variables; (b) Component scores for mem-
branes.
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Figure 4. LE-440 membrane rejection prediction of neutral compounds. 
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Fig. 4. LE-440 membrane rejection prediction of neutral compounds.
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Figure 5. NF-90 membrane rejection prediction of neutral compounds. 
 

5. Conclusions 
A qualitative analysis of variables using principal component analysis was successfully implemented for 
reduction of physical-chemical compound properties that influence membrane rejection of PhACs and 
organic compounds. Properties of dipole moment, molar volume, hydrophobicity/hydrophilicity, 
molecular length and equivalent width were found to be important descriptors for prediction of membrane 
rejection. Ionic and neutral compounds were successfully separated before analysis. For membranes used 
in the experiments we may conclude that charge repulsion was an important mechanism of rejection for 
ionic compounds. Molecular weight was a poor property for rejection prediction. We could model 
membrane rejection of neutral compounds with multiple linear regression; real results were well 
represented by dipole moment, molar volume, length, equivalent width and hydrophobicity/hydrophilicity 
of compounds. 
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