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SUMMARY

ATHLETE MONITORING FOR INJURY PREVENTION
Continuous and prospective monitoring plays an essential role in man-
aging the effects of a prescribed training schedule on an athlete’s per-
formance and health. Individual athletes may respond differently to a
given training stimulus, and the training load required for adaptation
may significantly differ between athletes despite similar training back-
grounds. Athlete monitoring aims to maximize positive effects (fitness,
performance) and minimize negative effects (injury, illness) of athletic
training. The core of injury prevention consists of managing injury risk
and appropriate training modifications that can reduce the likelihood of
injury occurrence, ensuring consistent and safe sports participation. The
challenge lies in providing an adequate training stimulus to enhance per-
formance while keeping the injury risk low. Integrating the data with the
domain knowledge asks for the development of new methods and mod-
els to feed these ingredients into real–time personalised advice for the
athlete.

INJURIES IN BASEBALL
The injuries commonly seen in baseball pitchers have been attributed
to the effects of high levels of energy on the weakest links of the ki-
netic chain. Poor pitching mechanics and overuse of the pitching arm
can negatively affect pitching performance and at the same time put
the elbow joint at great risk of injuries. Monitoring pitching mechan-
ics and understanding its effect on elbow load is therefore an important
step towards the development of an “early warning system” for safe and
efficient pitching. However, monitoring pitching mechanics on the field
during practice and competitions is challenging due to the rapid full-body
nature of the pitching movement. The PitchPerfect is a multi–sensor sys-
tem suitable for on-field measurements of pitching mechanics. It cap-
tures the (inter)segmental rotation and timing within the kinetic chain
essential for performance enhancement and injury prevention.

xi



xii Summary

INTEGRATED PREDICTIVE MODELS
To establish the relevance of kinematic data for baseball pitchers, it is
necessary to develop the translation process between the collected data
and personalised information provided to the pitcher. Kinematic data
collected through repeated measurements have inherited hierarchical
structure where observations are nested within the individual athletes.
To account for the similarities within individuals and simultaneously allow
the gradation of differences between them, the thesis demonstrates the
application of multilevel modelling on data from repeated measurements
to a provide tailor-made prediction of performance and health outcomes
of interest. The thesis presents a novel approach to individualised per-
formance (chapter 2 and chapter 3) and injury risk prediction (chapter 4
and chapter 5). The methods proposed in each chapter offer solutions
for dealing with the data often collected in sports.

OUTCOMES OF THE THESIS
Chapter 2 presents a Bayesian multilevel model for individualised ball
velocity prediction based on pitching kinematics recorded with wearable
sensors. The chapter investigates the added value of individuality to the
predictive performance of the developed model. The aim of this study
was to predict a ball velocity in baseball pitching such that prediction
is tailored to the individual pitcher. The proposed method included the
pitcher’s body segment rotation, which determines his technique, and
the pitcher’s height which displays individuality in imparted velocity to a
ball. We used multilevel modelling to develop three models with different
predictors and examined their predictive performance. By comparing
developed models, we investigated the added value of individuality to
ball velocity prediction.

Chapter 3 demonstrates the novel application of machine learning for
binary and multiclass classification of pitch types based on wearable sen-
sor data input. The study aimed to establish a methodology for pitch
type classification based on biomechanical input from wearables. We
used pelvis and trunk peak angular velocity and separation time be-
tween them as input and evaluated the performance of five machine
learning classifiers in the binary and multiclass classification task. The
Naive Bayes algorithm showed the best performance in classifying Fast-
balls with an accuracy of 71%. Furthermore, in the classification of pitch
types as Fastball, Curveball or Change-up, the Random Forest algorithm
performed the best with an average accuracy of 61.3% over those three
pitch types.
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Chapter 4 presents a Bayesian multilevel model for the external val-
gus torque prediction, used as a proxy of elbow load, based on (in-
ter)segmental rotation in baseball pitching. The model provides an in-
dividualised estimation of the elbow loading based on the pitcher’s kine-
matics during every pitch. This study shows promising results of Bayesian
hierarchical models in predicting the external valgus torque based on (in-
ter)segmental rotation in fastball pitching. The results show that it is pos-
sible to predict the elbow external valgus torque based on the pelvis and
trunk kinematics and separation time. Such an approach allows individ-
ualised prediction of the external valgus torque for each pitcher, which
has a great practical advantage compared to group-based predictions
regarding injury assessment and injury prevention.

Chapter 5 proposes the multistate injury framework where a latent
Markov model is used to predict injury risk. The model is used to analyse
longitudinal panel data derived from repeated administration of the
OSTRC questionnaire and athletes’ time-varying weekly training expo-
sures. The application of latent Markov models allows us to estimate
the optimal number of injury states and the influence of included per-
sonal characteristics and performance measures on the transition be-
tween those states over time. Furthermore, we show that it is possible
to predict the injury risk in the form of a probability for occupying each
injury state based on different training scenarios.

GENERAL CONCLUSIONS AND RECOMMENDATIONS
Sport-related injuries occur due to a complex interaction of many internal
and external risk factors gathered in a pattern of either positive adap-
tation (increased fitness), or negative adaptation (injury). The repeti-
tive nature of the high-speed full-body pitching movement exposes the
pitcher’s elbow to high loads. This thesis illustrates a novel approach
to individualised injury risk prediction that accounts for the dynamics of
the injury development process. The integration of advanced monitor-
ing techniques plays an important role in the pursuit of high-level sports
performance. The utilization of wearable sensors serves that purpose.
It allows continuous athlete assessment and provides feedback on the
relevant health and performance metrics in real–time. The methods es-
tablished in the thesis offer solutions for dealing with different quality,
time scale and hierarchical data structures collected with high-end wear-
able sensors, self-reported questionnaires and motion capture systems.
Integration of the available data from different sources and implemen-
tation of the statistical models that can translate them to the relevant
outcome provides actionable insights for performance improvement and
injury prevention. Adding these statistical methods is a chance for train-
ing and injury-prevention programs to continue to improve.





SAMENVATTING

MONITORING VOOR BLESSUREPREVENTIE
Continue en prospectieve monitoring speelt een essentiële rol bij het ma-
nagen van de effecten van een voorgeschreven trainingsschema op de
prestaties en gezondheid van een sporter. Individuele sporters kunnen
verschillend reageren op een bepaalde trainingsprikkel. De trainingsbe-
lasting die nodig is voor vooruitgang kan aanzienlijk verschillen tussen
sporters, zelfs tussen sporters met vergelijkbare trainingsachtergronden.
Het doel van het monitoren van de training van sporters is om de po-
sitieve effecten (fitheid, prestaties) te maximaliseren en de negatieve
effecten (blessures, ziekten) te minimaliseren. De kern van blessure-
preventie bestaat uit het managen van blessurerisico en het aanbren-
gen van de juiste adaptaties in de training, die de kans op het ontstaan
van blessures kunnen verkleinen en een consistente en veilige sportdeel-
name waarborgen. De uitdaging is om met een adequate trainingsprikkel
de prestaties te verbeteren terwijl het blessurerisico laag blijft. Het in-
tegreren van gegevens met specifieke kennis uit het domein vraagt om
de ontwikkeling van nieuwe methoden en modellen die deze elementen
kunnen omzetten in real-time gepersonaliseerd advies voor de sporter.

BLESSURES IN HONKBAL
Blessures die vaak voorkomen bij honkbalpitchers worden toegeschre-
ven aan de effecten van een hoge belasting op de zwakste schakels in
de kinetische keten. Slechte techniek en een overmatig gebruik van
de werparm kunnen niet alleen de pitchprestaties negatief beïnvloeden,
maar heeft ookeen groot risico op blessures in het ellebooggewricht. Het
monitoren van de werptechniek en inzicht in het effect ervan op de be-
lasting van de elleboog is daarom een belangrijke stap in de ontwikke-
ling van een zogenaamd "waarschuwingssysteem"voor veilig en efficiënt
pitchen. Het monitoren van de werptechniek tijdens trainingen en wed-
strijden is echter een hele uitdaging vanwege de snelle bewegingen van
het lichaam die bij het pitchen komt kijken. PitchPerfect is een multi-
sensor systeem dat geschikt is voor metingen van de werptechniek op
het veld. Het systeem legt de (inter)segmentale rotatie en timing van de
kinetische keten vast, essentieel voor prestatieverbetering en blessure-
preventie.

xv



xvi Samenvatting

GEÏNTEGREERDE VOORSPELLENDE MODELLEN
Om de verzamelde data relevant te maken moet deze vertaald worden
naar gepersonaliseerde informatie die aan een sporter verstrekt kan wor-
den. Kinematische data die door middel van herhaalde metingen worden
verzameld, hebben een hiërarchische structuur waarin observaties zijn
genest binnen de individuele sporters. Om rekening te houden met de
overeenkomsten binnen individuen en tegelijkertijd de gradaties van ver-
schillen tussen hen mogelijk te maken, laat dit proefschrift de toepassing
zien van multilevel modellering op data van herhaalde metingen, om
op maat gemaakte voorspellingen te bieden voor prestaties en gezond-
heidsuitkomsten. Het proefschrift presenteert een nieuwe aanpak voor
geïndividualiseerde prestatievoorspelling (hoofdstuk 2 en hoofdstuk 3)
en blessurerisico voorspelling (hoofdstuk 4 en hoofdstuk 5). De in elk
hoofdstuk voorgestelde methoden bieden oplossingen voor het omgaan
met data die vaak in de sport worden verzameld.

RESULTATEN VAN HET PROEFSCHRIFT
Hoofdstuk 2 presenteert een Bayesiaans multilevel model voor het indi-
vidueel voorspellen van balsnelheid op basis van de werpbeweging die is
geregistreerd met draagbare sensoren. In dit hoofdstuk wordt de toege-
voegde waarde van het personificeren voor de voorspellende prestaties
van het ontwikkelde model onderzocht. Het doel van deze studie was
om de balsnelheid bij honkbal pitchen te voorspellen op een manier die
is afgestemd op de individuele pitcher. De voorgestelde methode om-
vat de rotatie van lichaamssegmenten van de pitcher, die zijn techniek
bepaalt, en de lengte van de pitcher, die de individuele bijdrage aan de
snelheid van de bal weergeeft. We gebruikten multilevel modellering om
drie modellen met verschillende voorspellers te ontwikkelen en onder-
zochten de voorspellende prestaties. Door de ontwikkelde modellen te
vergelijken onderzochten we de toegevoegde waarde van personificatie
voor de voorspelling van de balsnelheid.

Hoofdstuk 3 toont de nieuwe toepassing van machine learning voor bi-
naire en multinomiale classificatie van verschillende worpen op basis van
gegevens van draagbare sensoren. Het doel van de studie was het ont-
wikkelen van een methodologie voor de classificatie van verschillende
worpen op basis van biomechanische input. We gebruikten de maximale
hoeksnelheid van bekken en romp en de tijdsduur tussen deze twee als
invoer en evalueerden de prestaties van vijf machine-learning classifica-
tiemodellen voor de binaire en multinomiale classificatietaak. Het Naive
Bayes-algoritme leverde de beste prestaties in het classificeren van Fast-
balls, met een nauwkeurigheid van 71%. Voor het classificeren van de
worpen Fastball, Curveball of Change-up, presteerde het Random Forest-
algoritme het best, met een gemiddelde nauwkeurigheid van 61,3%.
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Hoofdstuk 4 presenteert een Bayesiaans multilevel model voor de voor-
spelling van het externe valgus moment op basis van (inter)segmentale
rotatie bij pitchen. Het model biedt een geïndividualiseerde schatting
van de elleboogbelasting op basis van de kinematica van de pitcher tij-
dens elke pitch. Deze studie toont veelbelovende resultaten van Bayesi-
aanse hiërarchische modellen bij het voorspellen van het externe valgus
moment op basis van (inter)segmentale rotatie. De resultaten laten zien
dat het mogelijk is om het externe valgus moment in de elleboog te voor-
spellen op basis van de maximale rotatiesnelheid van de bekken en de
romp en de intersegementale timing. Deze aanpak maakt een geïndivi-
dualiseerde voorspelling voor elke pitcher individueel mogelijk, wat een
groot praktisch voordeel biedt ten opzichte voorspellingen gebaseerd op
een groepsgemiddelde.

Hoofdstuk 5 beschrijft een kader waarin een latent Markovmodel wordt
gebruikt om blessurerisico te voorspellen aan de hand van een meer-
voudige status. Dit model wordt toegepast voor de analyse van longitu-
dinale data verkregen uit OSTRC-vragenlijsten. Door gebruik te maken
van latente Markovmodellen kunnen we het optimale aantal blessures-
tatus schatten en de invloed van persoonlijke kenmerken en prestatie-
maatstaven op de overgang tussen deze status over de tijd, in kaart
brengen. Bovendien tonen we aan dat het mogelijk is om het blessure-
risico te voorspellen afhankelijk van verschillende trainingsscenario’s in
de vorm van een kans op het bereiken of behouden van een bepaalde
status.

ALGEMENE CONCLUSIES EN AANBEVELINGEN
Sportblessures ontstaan door een complexe interactie van vele interne
en externe risicofactoren. De herhalende, snelle beweging van een vol-
ledige worp stelt het ellebooggewricht van de pitcher bloot aan hoge
belastingen. Dit proefschrift illustreert een nieuwe aanpak voor de indivi-
duele voorspelling van blessurerisico’s waarin rekening wordt gehouden
met de dynamiek van het blessureontwikkelingsproces. Het gebruik van
draagbare sensoren ondersteunt dit doel door continu atleten te monito-
ren en real-time feedback te geven op relevante gezondheids- en pres-
tatiefactoren. De methoden ontwikkeld in dit proefschrift bieden oplos-
singen voor het omgaan met data van verschillende kwaliteit, tijdsscha-
len en hiërarchische structuren, verzameld met hoogwaardige draagbare
sensoren, zelfrapportagevragenlijsten en motion-capture-systemen. In-
tegratie van beschikbare data uit diverse bronnen, en de implementatie
van statistische modellen die deze data omzetten naar relevante uitkom-
sten biedt bruikbare inzichten voor prestatie verbetering en blessurepre-
ventie. Het toepassen van deze statische methodes is een kans om de
trainings- en preventieprogramma’s verder te verbeteren.





SAŽETAK

PRAĆENJE SPORTAŠA U SVRHU PREVENCIJE OZLJEDA
Kontinuirano i prospektivno praćenje sportaša ima važnu ulogu u kontroli
posljedica propisanog programa treninga na izvedbu i zdravlje sportaša.
Svaki sportaš reagira na jedinstven način na propisani trening, a optere-
ćenje koje je potrebno za njegovu adaptaciju može se značajno razliko-
vati od sportaša do sportaša bez obzira na sličnu fizičku pripremljenost.
Praćenje sportaša nastoji povećati pozitivne utjecaje treninga (fizička pri-
prema, izvedba) te smanjiti njegove negativne posljedice (ozljeda, bo-
lest). Srž prevencije ozljeda u sportu sastoji se od upravljanja rizicima
od ozljeda te prilagodbe treninga pojedincu što omogućava smanjenje
vjerojatnosti od zadobivanja ozljeda i osigurava kontinuirano i sigurno
bavljenje sportom. Najveći izazov u cijelom procesu leži u pronalasku od-
govarajućeg opterećenja koje će potaknuti poboljšanje sportske izvedbe
uz smanjen rizik od ozljeda. Integracija podataka o sportskoj izvedbi i
zdravlju i znanja iz područja sportske medicine i treninga zahtijeva upo-
rabu novih metoda i matematičkih modela koji će nam omogućiti da na
temelju prikupljenih podataka pružimo sportašima personalizirani savjet
u stvarnom vremenu.

OZLJEDE U BEJZBOLU
Najčešće ozljede kod bejzbol bacača nastaju uslijed utjecaja visoke ra-
zine energije na najslabije karike u kinetičkom lancu. Nepravilna bacačka
tehnika i preopterećenje ruke bacača može imati negativan utjecaj na iz-
vedbu bejzbol igrača te istovremeno dovesti zglob lakta u rizik od ozljede.
Praćenje i mjerenje mehanike bacača i razumijevanje njenog efekta na
opterećenje lakta je važan korak ka razvoju sustava za ranu detekciju
rizika koji bi osigurao igračima sigurnu i efikasnu sportsku izvedbu. Me-
d̄utim, bejzbol bacanje karakteriziraju pokreti cijelog tijela koji dostižu
iznimne brzine, što čini mjerenje mehanike bacanja na samom bejzbol
terenu tijekom treninga i mečeva velikim izazovom. Jedno od rješenja je
PitchPerfect višesenzorski sustav prilagod̄en mjerenju mehanike bejzbol
bacanja na samom terenu. Sustav omogućava mjerenje rotacije izmed̄u
segmenata kinetičkog lanca te njenog trajanja, što je od velike važnosti
za poboljšanje izvedbe bacanja i prevenciju ozljeda.

xix



xx Sažetak

MATEMATIČKI MODELI
Kako bi se utvrdila relevantnost mjerenja kinematike bejzbol bacača, po-
trebno je razviti proces prevod̄enja izmed̄u prikupljenih podataka i perso-
naliziranih savjeta koji se daju bacaču. Kao posljedica ponovljenih mje-
renja kinematičkih veličina tijekom sportske izvedbe, prikupljeni podaci
imaju hijerarhijsku strukturu u kojoj su pojedinačna mjerenja ugniježd̄ena
unutar individualnih sportaša. Kako bi se uzele u obzir sličnosti unu-
tar pojedinaca i istovremeno omogućilo gradiranje razlika med̄u njima, u
ovoj doktorskoj dizertaciji se demonstrira primjena višerazinskog mode-
liranja na podacima iz ponovljenih mjerenja kako bi se pružilo individu-
alizirano predvid̄anje mjera koje opisuju sportsku izvedbu i zdravstvene
ishode od interesa. Doktorska dizertacija predstavlja novi pristup indi-
vidualiziranoj sportskoj izvedbi (poglavlje 2 i poglavlje 3) i predvid̄anju
rizika od ozljeda (poglavlje 4 i poglavlje 5). Metode predložene u svakom
poglavlju nude rješenja za postupanje s podacima koji se često prikup-
ljaju u sportu.

ISHODI DOKTORSKE DIZERTACIJE
Drugo poglavlje predstavlja Bayesov višerazinski model za individuali-
zirano predvid̄anje brzine lopte na temelju kinematike bacanja mjerene
nosivim senzorima. Ovo poglavlje istražuje koja je dodana vrijednost in-
dividualnog pristupa u prediktivnoj izvedbi primijenjenog matematičkog
modela. Cilj ovog rada bio je predvidjeti brzinu lopte u bejzbol bacanju
tako da je ishod prilagod̄en pojedinačnom bacaču. Predložena metoda
uključivala je rotaciju segmenata tijela bacača, koja odred̄uje njegovu
tehniku, i visinu bacača koja predstavlja individualnu karakteristiku ba-
cača u brzini koja se daje lopti. Koristili smo višerazinsko modeliranje za
razvoj tri modela s različitim prediktorima i ispitali njihovu prediktivnu
izvedbu. Uspored̄ujući razvijene modele, istražili smo dodanu vrijednost
individualnog pristupa u predvid̄anju brzine lopte.

Treće poglavlje demonstrira novu primjenu strojnog učenja za binarnu
i višeklasnu klasifikaciju tipova bejzbol bacanja na temelju podataka pri-
kupljenih nosivim senzorima. Cilj rada bio je uspostaviti metodologiju
za klasifikaciju vrste bejzbol bacanja na temelju biomehaničkih mjerenja
nosivih senzora. Koristili smo vrijednost kutne brzine zdjelice i trupa i
vrijeme razdvajanja izmed̄u njih kao ulazne podatke i procijenili izvedbu
pet klasifikatora strojnog učenja u zadatku binarne i višeklasne klasifika-
cije. Naivni Bayesov algoritam pokazao je najbolju izvedbu u klasifikaciji
"Fastball" bacanja s točnošću od 71%. Nadalje, u klasifikaciji vrsta ba-
canja "Fastball", "Curveball" ili "Change-up", algoritam Random Forest
pokazao se najboljim s prosječnom točnošću od 61,3% u odnosu na ta tri
tipa bacanja.
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Četvrto poglavlje predstavlja Bayesov višerazinski model za predvid̄a-
nje vanjskog valgus momenta, koji se koristi kao zamjena za opterećenje
lakta, na temelju (inter)segmentalne rotacije u bejzbol bacanju. Model
pruža individualiziranu procjenu opterećenja lakta na temelju kinema-
tike bacača tijekom svakog bacanja. Ovaj rad pokazuje obećavajuće re-
zultate Bayesovih višerazinskih modela u predvid̄anju vanjskog valgus
momenta na temelju (inter)segmentalne rotacije u "Fastball" tipu bejz-
bol bacanja. Rezultati pokazuju da je moguće predvidjeti vanjski valgus
moment lakta na temelju kinematike zdjelice i trupa te njihova vremena
odvajanja. Takav pristup omogućuje individualizirano predvid̄anje vanj-
skog valgus momenta za svakog bacača, što ima veliku prednost u prak-
tičnom djelovanju u usporedbi s predvid̄anjima na temelju podataka o
populaciji.

Peto poglavlje predlaže novu metodologiju za predvid̄anje rizika od
sportskih ozljeda za svakog pojedinačnog sportaša koja se temelji na pri-
mjeni latentnih Markovljevih modela. Model se koristi za analizu longi-
tudinalnih podataka prikupljenih "Oslo Sports Trauma Research Center"
(OSTRC) upitnikom i tjednog izlaganja različitim tipovima treninga. Pri-
mjena latentnih Markovljevih modela omogućuje nam procjenu optimal-
nog broja različitih stanja ozljede te utjecaj osobnih karakteristika spor-
taša i mjera izvedbe na prijelaze izmed̄u tih stanja tijekom vremena. Na-
dalje, pokazujemo da je moguće predvidjeti rizik od ozljede u obliku vje-
rojatnosti svakog pojedinog stanja ozljede na temelju različitih programa
treninga.

OPĆI ZAKLJUČCI I PREPORUKE
Sportske ozljede nastaju zbog složene interakcije mnogih unutarnjih i
vanjskih čimbenika rizika okupljenih u obrazac pozitivne prilagodbe (po-
većana kondicija) ili negativne prilagodbe (ozljeda). Repetitivna priroda
brzih pokreta bacanja koje uključuju aktivaciju cijelog tijela izlaže lakat
bejzbol bacača velikim opterećenjima. Ova doktorska dizertacija ilustrira
novi pristup individualiziranom predvid̄anju rizika od ozljeda koji uzima
u obzir dinamiku procesa razvoja ozljede. Integracija naprednih tehnika
praćenja sportaša igra važnu ulogu u postizanju visokih sportskih rezul-
tata. Nosivi senzori omogućavaju kontinuirano praćenje sportaša i daju
povratnu informaciju o relevantnim pokazateljima zdravlja i sportske iz-
vedbe u stvarnom vremenu. Metode utvrd̄ene u doktorskoj dizertaciji
nude rješenja za analizu podataka prikupljenih korištenjem nosivih sen-
zora, upitnika za samoprocjenu i sustava za snimanje pokreta. Integra-
cija dostupnih podataka iz različitih izvora i implementacija statističkih
modela pruža uvid u moguće načine poboljšanja sportske izvedbe i pre-
vencije ozljeda u raznim sportskim disciplinama te doprinijeti unaprije-
d̄enju treninga i programa prevencije ozljeda.
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1.1. BACKGROUND
Knowledge about personal performance is a stimulating factor that
contributes to long-term sports engagement and reaching higher
performance levels. The integration of advanced monitoring techniques
in an athlete’s routine hereby plays an essential role.

The aim of athlete monitoring is to maximize positive effects (fitness,
performance) and minimize negative effects (injury, illness) of athletic
training [1]. Individual athletes may respond differently to a given
training stimulus, and the training load required for adaptation may
significantly differ between athletes despite similar training backgrounds
[2]. Therefore, continuous and prospective monitoring is crucial for
managing the effects of a prescribed training schedule on an athlete’s
performance and health. This includes longitudinal monitoring of
physiological and biomechanical load, athlete performance, and well-
being [3].

Advancements in sensor technology have increased the list of wearable
devices available on the market for athlete monitoring. These devices
enable athletes of all performance levels to access their positional,
biometric, and biomechanical data and share them with their peers and
teams. Sensor technology integrated into watches, sleeves, straps, and
fabrics allows data collection on and off the pitch. This creates a data
stream fed into built-in algorithms increasingly providing health and
performance metrics to athletes in real–time. Such data are often used
subjectively to modify training schedules resulting in athletes training
“too much too soon”. If training loads greatly exceed an athlete’s
load capacity or progress too rapidly, the risk of injury and illness will
increase and directly affect performance through a reduced ability to
perform [4–6].

The occurrence of sport-related injuries is a result of a complex
interaction between multiple factors (Figure 1.1) gathered in a pattern
of either positive (i.e. increased fitness) or negative adaptation (i.e.
injury) [7, 8]. Each athlete has its own set of internal risk factors (e.g.
age, gender, fitness, and history of injury) that may be minimized if an
athlete adapts when exposed to an external risk factor (e.g. training
load, contact with another player, training intensity) or a potentially
injury-prone situation without sustaining an injury [8]. The core of injury
prevention consists of managing injury risk and appropriate training
modifications that can reduce the likelihood of injury occurrence,
ensuring consistent and safe sports participation. The challenge lies in
providing an adequate training stimulus to enhance performance while
keeping the injury risk low [9].

The combination of health and performance data leads to a better
understanding of that complex interaction but can be hindered due to
the different data types. In a time of rapid data production, it is essential
to create a link from data collection to direct action on the field. There is
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Figure 1.1.: Dynamical model adopted from Meeuwisse (2007).

a need for more objective use of the available health and performance
data to support decision-making in training modifications and injury risk
management. Integrating the data with domain knowledge asks for the
development of new methods and models to feed these ingredients into
real–time personalised advice for the athlete.

1.2. PROJECT
This thesis has been written within the NWO Perspectief program Citius,
Altius, Sanius. The program aimed to strengthen the information
chain from sensor technology via data science to informative feedback
applications that will allow athletes of all levels of participation to
improve their sports performance without sustaining injuries. The
focus of the thesis is on data science, linking the data collected with
wearable sensors with tailored feedback on the health and performance
of an individual athlete. The thesis investigates wearable data-driven
solutions for performance assessment and injury risk identification in
overhead sports, namely baseball pitching.

Baseball has a long history of game data utilization focusing on
predicting outcomes and developing winning teams. The expanse of
sabermetrics in the early 2000s resulted in baseball being nowadays one
of the biggest data-driven sports worldwide. The performance–driven
mindset creates a fertile ground for the implementation of novel
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technologies for direct feedback on player performances. However,
the demands of high performance are making baseball pitchers highly
susceptible to pitching injuries. The repetitive and dynamic nature of
baseball pitching exposes pitchers to a high load. Most of the injuries
arise from the repetitive application of high forces and/or torques to
vulnerable tissue [10]. Therefore, there is a need for the development
of an early warning system that can provide feedback on injury risk
and allow pitchers to modify their training schedule before overloading
occurs.

1.3. BASEBALL PITCHING
1.3.1. PITCHING PERFORMANCE

Baseball pitching is the act of throwing a baseball toward home plate to
start the game. The overhead pitching motion is a sequence of body
movements starting with the legs, continuing through the pelvis and
trunk, and culminating with a whip-like action of the arm to propel the
ball toward home plate [11]. The sequential activation of body segments
to efficiently impart velocity to the ball follows the summation of speed
principle, also known as the kinetic chain. Each segment starts as the
adjacent proximal segment reaches top speed, culminating with the top
speed of the most distal segment [12].

Optimization of the kinetic chain can result in an improvement of the
ball velocity [11] which increases the pitcher’s chances of success. By
throwing fast pitchers reduce the decision time of the batter whether
to strike the ball or not [13] and restricts the ability of the runners
to advance bases and score runs [14]. A successful pitcher alters
the velocity and trajectory of the ball to keep batters off balance and
discourage their anticipation of a particular pitch type. Commonly
used pitch types are the fastball, changeup, curveball, and slider. To
obtain variation, the pitcher manipulates the grip on the ball at the
release point. This causes the seam to catch the air differently and
changes the ball’s trajectory. Such kinematic, kinetic, and temporal
variations in the throwing motion are related to improved velocity and
force generation. Optimization of these parameters allows for efficient
and consistent transfer of energy from proximal to distal components.
Pelvis and trunk kinematics [11, 15, 16] hereby play an essential role.
Optimal proximal-to-distal timing between the pelvis and trunk results
in maximal ball velocity at release [11, 12, 17]. If this kinematic
sequencing is not optimal, energy is dissipated into the upper extremity
which results not only in a lower ball velocity [11, 18] but also in a
potentially increased risk of injuries.
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1.3.2. INJURIES
The injuries commonly seen in baseball pitchers have been attributed
to the effects of high levels of energy on the weakest links of the
kinetic chain, usually more distally at the level of the pitching arm or
elbow [19]. Repetitive high–speed movement and excessive ranges of
motion expose the elbow joint to intrinsic and extrinsic loads [11, 20,
21] related to the occurrence of overuse injuries [22].

Poor pitching mechanics [23] and overuse of the pitching arm can
negatively influence pitching performance and at the same time put
the elbow joint at great risk of injuries [10, 24]. Knowledge of the
kinetic chain and key kinematic parameters underlying the throwing
motion can improve pitching technique that can assist in performance
enhancement, return to sport, and injury prevention [11]. Monitoring
pitching mechanics and understanding its effect on elbow load is
therefore the essential step towards the development of an “early
warning system” for safe and efficient pitching.

Despite the knowledge about throwing biomechanics and injury-prone
structures, the useful guidelines for the prevention of overload injuries
or the optimal throwing technique are still lacking. One of the reasons is
absence of a measurement system suitable for capturing fast–pitching
movement and intersegmental timing without obstructing the pitcher’s
performance.

1.3.3. WEARABLE TECHNOLOGY
Monitoring pitching mechanics on the field during practice and
competitions is challenging. The extremely rapid pitching motion is
not easy to capture without high–speed cameras. Furthermore, the
requirement for out–of–lab motion capture is an easy-to-use device that
does not obstruct the pitcher’s movement, but at the same time can
record the high velocities of (inter)segmental rotations.

PitchPerfect (PitchPerfect, The Netherlands) is a multi-sensor system
consisting of two synchronized 3-DOF inertial measurement units (IMU).
Each IMU includes a gyroscope that can measure angular velocities up
to 2000 deg/s. With optimal pelvis and trunk peak angular velocities
recorded in previous studies ranging 600 – 900 deg/s and 900 –
1300 deg/s [25, 26] respectively, the PitchPerfect sensor system is
suitable for on-field measurements of pitching mechanics. The outcome
of the PitchPerfect system consists of pelvis and trunk peak angular
velocities and separation time (i.e. the time interval between the peak
angular velocities of pelvis and trunk), capturing the (inter)segmental
rotation and timing within the kinetic chain essential for performance
enhancement [18, 20, 27] and injury prevention [28].
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1.4. DATASETS AND METHODOLOGY
The project aimed to use an integrated approach in which longitudinal
data collection – algorithm development – practical application would
form the central line. To do so, a cohort study was set up at the start
of the project in 2019 to facilitate the daily data collection at the KNBSB
(The Royal Dutch Baseball and Softball Federation) using wearable
sensors to measure baseball players from youth selections (60 players)
on every training. Additionally, “traditional” in-lab biomechanical studies
using the Vicon motion capture system aimed to strengthen the link with
clinical applications and to contribute to the data production necessary
for the development of predictive models. To investigate the effects of
pitching biomechanics on the development of elbow injuries, the cohort
study also would have included weekly data collection of sport-related
health problems using the OSTRC questionnaire on health problems
integrated in the OptiForm health monitoring system developed by
VUmc. However, due to the COVID-19 pandemic, the cohort study
had to be cancelled, and longitudinal data were not collected. For
this thesis, this resulted in a “plan B” in which the development of
algorithms focusing on the prediction of direct performance measures
and biomechanical variables from wearable sensor data became the
central research theme.

1.4.1. LINK BETWEEN REPEATED MEASUREMENT DATA AND
INDIVIDUALISED PREDICTIVE MODELLING

Assuming mostly linear dependencies between the biomechanical
input variables and performance and health outcomes, classical linear
regression seems like a natural choice of statistical analysis. However,
if the data vary by group (in this case athlete), a natural thing to do
is to predict the desired outcome for an in- or out-of-sample individual
athlete. This is not such a straightforward task for a classical regression
and if it includes group effects, it still does not have an automatic way
of predicting for a new group. To account for the similarities within
individuals and at the same time allow for the gradation of differences
between them, the thesis demonstrates the application of multilevel
modelling on data from repeated measurements to provide tailor-made
predictions of performance and health outcomes of interest.

FROM CLASSICAL REGRESSION TO MULTILEVEL MODELLING
When dealing with repeated measurements data and their inherent
hierarchical structure, it is reasonable to start by fitting simple classical
regressions and work our way up to a multilevel model. This section
offers two possible starting points, complete pooling, and no pooling,
and compares them to multilevel modelling. An example dataset
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has been generated to highlight the strengths and limitations of the
three approaches (complete pooling, no pooling, multilevel modelling)
within the Bayesian modelling toolbox in the analysis of repeated
measurements data.

We used the dataset from the annual Cherry Blossom Ten Mile race
in Washington, D.C. [29]. The data contain running times and ages for
a subset of 36 runners that participated in the race in multiple years.
With running times and age being measured repeatedly for the same
individuals over multiple years in which the race took place, the data
have a hierarchical structure where measured running times and age on
an individual–level are nested within individual runners on a group–level.
Motivated by the examples in [30] and [31], this toy example aims
to compare the performance of a complete pooling, no pooling and
multilevel Bayesian models in the analysis of repeated measurements
data through estimation of running times for an individual runner based
on their age.

COMPLETE POOLING MODEL
The subset of 36 runners, with a mean age of 55.0 ± 2.3 years,
participated multiple times over the years in the annual Cherry Blossom
race. With each participation, their running time and age have been
recorded. Let’s assume we want to estimate the running time based on
age for each runner by using the complete pooling model, also known
as a classical regression model.

The complete pooling model pools data across all participants,
assuming that all observations belong to the same individual. It involves
fitting a single linear regression to the full dataset under the assumption
that the relationship between age and running time is the same for
all observed runners. The outcome of the complete pooling model
visualized with blue solid lines in Figure 1.2, suggests that all runners as
they get older will cross the finish line of the race within almost the same
running time as in previous years. The increase in running time is 0.30
min for each year of age and it is the same for all runners. If we focus
on observed running times (the black dots in Figure 1.2) for the four
selected runners, it is visible that the running times of each individual
runner increase with age and at a more rapid rate than suggested by
the complete pooling model. Furthermore, it is clear that the increase
in running times with age is different for every runner (e.g. the running
time of Runner 20 increases more rapidly with age compared to Runner
5).

The reason why complete pooling fails to capture differences between
runners is because the model ignores any hierarchical structure or group-
level variance by assuming that the relationship between predictors and
the outcome is the same across all groups. This approach is appropriate
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when the data come from a single population or when group-level
differences are negligible. However, if there are substantial differences
between groups, complete pooling fails to account for within-group
correlations or varying group-level effects. Therefore we need to move
away from the complete pooling approach and explore the models that
account for variation between individuals.

NO POOLING MODEL
The alternative to a complete pooling modelling approach is no pooling.
Unlike complete pooling, no pooling treats each group separately
by fitting an independent model for each group without any shared
parameters. No pooling includes group indicators and estimates the
model classically.

The no pooling model estimates running time based on age for
each individual runner separately and each individual has its own
intercept and slope (the red dashed lines in Figure 1.2). This approach is
appropriate when there are big differences between groups (i.e. runners)
that clearly describe the relationship between predictors and outcomes
for each specific group. However, when the number of observations
within individuals is small, by using no pooling we are facing a risk of
overfitting the data within each individual. In this case, the estimates
from the no pooling model overstate the variation among individuals
and tend to make the individuals runners seem more different than they
actually are.

In the task of estimating running time based on age, the no pooling
model performance for selected runners shown in Figure 1.2 seems to
be a good choice, but can we use the same model also to predict the
running time of a new runner from which we don’t have any previous
data? The answer is no. Due to the lack of pooling, the no pooling
model does not benefit from the information available about other
individuals, which can be important for identifying common patterns
across individuals. The separately fitted models do not extend beyond
individuals included in the initial dataset which means that it is not
possible to use the no pooling approach to predict the running time for
a new, out-of-sample runner of any age.

Understanding the strengths and limitations of complete pooling and
no pooling is crucial for choosing the right modelling strategy based
on the characteristics of the available data and formulated research
questions. We can conclude that neither of these two approaches alone
is fully adequate for the prediction task based on hierarchical data
illustrated in this example. What we need is a compromise between
complete pooling and no pooling approach in the form of a partial
pooling model.
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MULTILEVEL MODEL
Multilevel models are also known as a partial pooling models. A
multilevel model represents a compromise between two extremes:
complete pooling, in which the group indicators are not included in
the model, and no pooling, in which separate models are fit within
each group. This approach borrows strength across groups with fewer
observations while accounting for individual differences.

Figure 1.2.: The blue solid line, red dashed line and green dotted
line show the complete pooling, no pooling and multilevel
estimates respectively.

In the toy example, we fitted the varying–intercept, varying–slope
multilevel model which means that every runner has its own intercept
and slope. The outcome of the multilevel model is illustrated with the
green dotted lines in Figure 1.2. A multilevel model is most effective
when it is close to complete pooling, especially for the groups with
a small sample size. In this setting, we can allow estimates to vary
between groups while still estimating them precisely. For groups with
a small sample size the multilevel estimate can be close to complete
pooling and close to no pooling for groups with large sample sizes,
resulting in good performance for both groups.

1.4.2. MODEL PERFORMANCE AND MODEL SELECTION
Evaluating the performance of a Bayesian multilevel model includes
assessing the fit of the model to data and its predictive performance.
The Posterior Predictive Check (PPC) is a method used to evaluate
whether the model fits the data adequately. The PPC process includes
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data simulation according to the fitted model by sampling from the
posterior predictive distribution. This is the distribution of the outcome
variable implied by the posterior distribution of the model parameters.
The simulated data is then compared to the observed data to highlight
the differences. We interpret the generated data as the data sample
that we might collect tomorrow if the data collection process remains
the same as it initially was. If the model fits the data well, the important
features of the observed data should be replicated in the simulations as
well [32]. Posterior predictive checks were used to test the performance
of the model and visually inspect how much generated data samples
match the observed ones [32, 33].

Figure 1.3.: Posterior predictive checks for complete pooling, no pooling
and multilevel model. Posterior predictive checks compare
the observed outcome variable y to the average of simulated
datasets yrep from the posterior predictive distribution
for complete pooling, no pooling and multilevel model
respectively.

Figure 1.3 shows the kernel density estimate of the observed data set
y (dark blue curve), with density estimates for 100 simulated data sets
yrep drawn from the posterior predictive distribution (light blue curves)
[33]. Even though visually no pooling and multilevel model both seem
to fit the data well, it is clear that they can simulate new data that are
more similar to the observed running time values than the complete
pooling model can.

To select the model with the best predictive performance we used
leave-one-out (LOO) cross-validation. Following the approach in [34],
the predictive performance of a model is defined as the expected
log-predictive density (epd). Predictive performance is a useful quantity
in assessing a single model. It can be estimated by training the
model on all observations except one and then predicting the hold-out
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observation. This is then repeated for all n observations.

Figure 1.4.: Estimates of absolute expected log-predictive density (elpd)
difference (dot) using leave-one-out cross-validation. Vertical
error bars for each model indicates the standard error of the
elpd difference estimates. The order on the x-axis follows
the ranking starting with the model with best predictive
performance on the left.

The expected log-predictive density (elpd) was a chosen measure of
model fit and was subsequently used to compare models for model
selection. The difference in elpd of the fitted complete pooling, no
pooling and multilevel Bayesian models is shown in Figure 1.4. The
ordering of the models reveals that the multilevel model shows the best
predictive performance, and it is therefore the selected model.

1.4.3. PREDICTION
After assessing the performance of models and selecting the multilevel
model as a preferred one, let’s use the multilevel model to predict what
will be the running time of five in-sample runners when they will be 60
years old.

The posterior predictive model (Figure 1.5) reflects the two sources
of uncertainty in the prediction of the running times - the within–group
sampling variability (we cannot perfectly predict runner’s running time
from their mean model) and posterior variability (the parameters
defining the runner’s relationship between running time and age are
unknown and random). Due to the lack of data for the new runner, the
third source of uncertainty that is reflected in its running time prediction
is a between-group sampling variability (baseline speeds vary between
runners) [30].

Based on previously observed trends, it was reasonable to expect
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Figure 1.5.: Posterior prediction for the running times of five in-sample
runners and one out-of-sample runner at the age of 60.

that at the age of 60 runner 20 will run slower than runner 5. This
is also confirmed by the posterior expectation shown in Figure 1.5.
The prediction for the new runner is somewhere in between those two
extremes. Given that we have no prior information about the new
runner, the default assumption is that its running time will be around
the average running time of the population included in the analysis.
The uncertainty in this assumption is reflected by the relatively wide
posterior predictive model (Figure 1.5). Compared to the new runner, the
posterior predictive model of other runners is narrower. In conclusion,
we are more certain about how fast they will run the Cherry Blossom
race at the age of 60 due to the availability of their running times from
earlier years.

1.4.4. DEVELOPMENT OF INJURY RISK PROfiLE
The thesis presents a novel approach to individualized performance
(chapter 2, chapter 3) and injury risk prediction (chapter 4, chapter
5). The methods proposed in each chapter offer solutions for dealing
with the data with hierarchical structure collected with high-end
wearable sensors, self-reported questionnaires and motion capture
systems. Integration of the available data from different sources and
implementation of the statistical models that can translate them to
relevant outcomes, serve as a base for the development of athlete’s
injury risk profile.
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1.5. THESIS OUTLINE
Chapter 2 presents a Bayesian multilevel model for individualised
prediction of the ball velocity based on pitching kinematics recorded
with wearable sensors. The chapter investigates the added value of
individuality to the predictive performance of the developed model [35].

Chapter 3 demonstrates the novel application of machine learning for
binary and multiclass classification of pitch types based on wearable
sensor data input [36].

Chapter 4 presents a Bayesian multilevel model for prediction of the
external valgus torque, used as a proxy of elbow load, based on
(inter)segmental rotation in baseball pitching. The model provides
individualised estimation of the elbow loading based on the pitcher’s
kinematics during every pitch [37].

Chapter 5 proposes the multistate injury framework where a latent
Markov model is used to predict injury risk. The model is used to
analyse longitudinal panel data derived from repeated administration
of the OSTRC questionnaire and athletes’ time-varying weekly training
exposures. The proposed approach enables the prediction of injury risk
trajectories based on future training scenarios.
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2.1. INTRODUCTION
Proper pitching mechanics play an important role in both success and
health of baseball pitchers. In overhead pitching, the lower extremity
and trunk generate and transfer energy to the upper extremity. The
optimal sequential activation of body parts while pitching, known as
the kinetic chain, can result in reduced elbow and shoulder stress
and maximise pitching performance [2, 3]. On the other hand, poor
mechanics can lead to increased loading of the elbow or shoulder, and
increase the injury risk. Injuries of the throwing arm, such as the ones
to the shoulder and elbow, are common in the overhead pitching motion
of baseball. Major League Baseball pitchers are especially prone to
injury because of the throwing velocities commonly seen approaching
and even exceeding 100 mph. To create such high ball velocities,
high energy levels pass through the components of the kinetic chain
that affect the weakest links among them, especially the elbow [4].
Therefore, there is a need for assessment of the throwing technique
that enables players to throw fast pitches in the strike zone without an
overload.

Throwing velocity plays an important role in a success of a baseball
game. Pitchers increase their chances for success by throwing faster
and diminishing the hitter’s decision time of whether or not to strike the
ball [5]. Furthermore, high ball velocities restrict the offense’s ability
to advance bases and score runs [6]. Among other parameters, ball
velocity is considered an important performance measure sought after
by coaches and scouts. It enables baseball players to improve their
ability to play and to be noticed by coaches and scouts for higher
levels of competition. Therefore, every pitcher aims to increase the ball
velocity [7, 8].

The pitching biomechanics in baseball is studied to improve players’
performance and prevent sport-related injuries. With development of the
measurement and analytical tools, pitching coaches and biomechanists
can accurately analyse the rapid and complex movements during
the pitching motion [9]. Although professional baseball teams have
used biomechanical analysis for years already, recent advances in
technology give amateur players and clubs opportunities to measure
their mechanics and improve performance. Body worn sensors, such
as inertial measurement units (IMUs), are a low-cost alternative to
motion capture systems with passive markers, with no space limitation
or cumbersome setup procedure. Portable, affordable, and easy-to-use,
they monitor athlete’s performance without obstructing it [10].

As the quality of the throw is mainly determined by the pitcher’s
throwing mechanics, we can use IMUs to measure kinematic parameters
shown to be linked to ball velocity [8, 9, 11]. Enhancing pitching
technique through the optimal position and timing of proper pitching
mechanics, can result in a fast and accurate throw. Estimating
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ball velocity based on IMU recordings can be the first step towards
assessment of the pitching technique that results in fast throws with
reduced injury risk.

Ball velocity is mostly measured in high level games and in training
situations. Although a radar gun gives an accurate reading of a ball
velocity, a required strict protocol and high price represent a big issue
for baseball clubs, especially the smaller ones. On the other hand, IMUs
do not need a fixed location on the field for measuring ball velocity, thus
they can be used on many different occasions. The previous studies
demonstrated the potential use of IMUs for estimation of the ball velocity
in different overhead-throwing sports, including baseball [12–14].

The use of IMUs represent a potential for the estimation of the ball
speed in different on-field situations based on kinematic parameters
measured by the same sensors. However, each pitcher is a unique
individual and his individual characteristic may display individuality
contributing to imparted velocity to the ball [8, 15]. With IMUs,
every throw of an individual pitcher can be recorded: during warm-up,
training, before and during the game, which contributes to the element
of individualisation. Therefore, in this paper, we present a method for
predicting ball velocity in baseball pitching based on pitcher’s kinematics
measured by IMUs and individual characteristics. We investigate the
added value of the individuality to predictive performance of developed
models.

2.2. MATERIALS AND METHODS
2.2.1. PARTICIPANTS
Data were collected from 25 baseball pitchers with a mean age of 14.7 ±
1.5, mean body height 176.91 ± 11.03 cm and mean body weight 65.6
± 14.4 kg. Participants were recruited from the national U18 baseball
team, as well as all six baseball academies in The Netherlands, at which
the most talented baseball players of that region train. This research
was conducted in accordance with the Declaration of Helsinki and the
Department of Human Movement Sciences’ local ethical committee
approved the measurement protocol [ECB 2013-53]. Both participants
and their parents were informed of the procedure and study aims before
the start of the measurements. Informed consent was obtained from the
parents of the participants before involvement in the study.

2.2.2. METHODOLOGY
The measurements were performed at the indoor facilities of the
academies. After performing several anthropometric measurements,
pitchers were given unlimited amount of time for their standard warm-
up. They were instructed to prepare just as if they were going to pitch
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in a game. Warm-up included a general warm-up, j-band exercises, and
longtoss, which is a standard warm-up for baseball pitchers before the
game. The pitchers wore sneakers, athletic shorts, and no shirt. They
also wore their catching glove to mimic the game situation as much
as possible. After warm-up, the pitcher was instructed to perform 10
fastball pitches with maximal effort towards a catcher sitting behind
home plate.

Figure 2.1.: Placement of the sensors.

The pitching motion was recorded using two 9-DOF IMUs (MPU-9150,
Invensense, San Jose, CA, USA, Accelerometer ± 16 g, Gyroscope ±
2000 deg/s). Sensors were rigidly attached to pelvis and sternum
(Figure 2.1) using double-sided adhesive tape and used to record body
segment rotation. Every sensor was embedded in a protective casing
together with a battery and SD-card, onto which the data were logged
at a sample frequency of 500 Hz. IMU’s gyroscope recorded angular
velocities continuously throughout the participant’s session. Previous
studies used peak values of kinematic measures to address their effect
on the ball velocity in baseball pitching [3, 7, 8, 11]. Therefore, for
the gyroscope signal, we calculated the peak angular velocity as its
Euclidean norm. Each recording was manually segmented into parts
containing only a single pitch. We performed the segmentation by
plotting the entire gyroscope signal and locating the 10 peaks each
corresponding to a pitch (see Figure 2.2). This was done in a similar way
in [13] for ball velocity data obtained in handball.

The ball velocity (mph) reached during the pitches was measured from
behind the home plate using a Stalker pro 2 radar gun (Stalker Radar,
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Figure 2.2.: Segmenting the baseball pitches using gyroscope peaks.
For the gyroscope signal, we calculated the peak angular
velocity as its Euclidean norm. Each recording was manually
segmented into parts containing only a single pitch. We
performed the segmentation by plotting the entire gyroscope
signal and locating the 10 peaks each corresponding to a
pitch.

Plano, TX, USA). We coupled recorded ball speed with corresponding
peak angular velocities during single pitch.

2.2.3. STATISTICAL ANALYSIS
The repeated measurements of individual pitchers can be grouped into
a hierarchical structure. The differences between participants arise from
differences in personal characteristics, such as age, body weight, and
height, that, next to the kinematic parameters of pitching mechanics,
may contribute to increased ball velocity [2, 3, 9]. Observations in this
study are ball throws nested within different participants and the link
between individual- and group-level is participant’s indicator (ID).

Statistical models that can deal with units grouped on different levels
are known as multilevel models. Multilevel models extend standard
regression models to data which are structured in groups and where
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coefficients are allowed to vary by groups. The feature that distinguishes
multilevel models from classical regression is the modeling of variation
between groups. This enables us to study the effects that vary by group.
Therefore, in this paper we introduce multilevel modeling as the main
method for ball velocity prediction in baseball pitching.

At the same time as including repeated measurements of segment
rotation per participant, the multilevel approach enables us to examine
the added value of the individuality in ball velocity prediction. Group-
level predictors were selected among personal characteristics that were
collected prior to the measurements. We addressed the high correlation
between pitcher’s height, weight and age. It is reasonable to expect
that older pitchers will be taller and therefore weigh more. To select
group-level predictors and avoid poor prediction performance due to
correlation of predictors, we applied a random forest (see for instance
chapter 8 in [16]), as implemented in the caret package [17]. Based on
variable importance (Figure 2.3) calculated with varImp from a caret
package [17], we selected pitcher’s height as a group-predictor. We
developed three multilevel Bayesian regression models for ball velocity
prediction using R 4.0.3 and rstanarm [18, 19].

In the following, yi denotes the ball speed for the observation indexed
.

1. Complete-pooling model (Observations)

The complete-pooling model is a single classical regression model
completely ignoring group information. In other words, the
model treats all ball throws as different observations of the same
participant. The model is given by

yi = β0 + β11i + β22i + εi (2.1)

where {1i, 2i} are individual-level predictors, namely peak angu-
lar velocity of pelvis and trunk, respectively. The complete-pooling
model does not make a distinction between different pitchers and
in that way neglects their personal characteristics.

2. Two-level varying-intercept model (Personal)

The two-level varying-intercept model is a regression that opposed
to complete-pooling includes indicators for groups. In this model
an intercept is calculated for every group and one joint slope is
assumed for the entire sample. The model is given by

yi = αj + εi (2.2)

αj = γ0 + γ1j + ηj (2.3)

where j is a centred group-level predictor, namely pitcher’s height.
The group membership j[ ] denotes pitcher j throwing a ball .
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In this model pitching technique is neglected and the outcome
depends only on height of an individual pitcher.

3. Two-level varying-intercept, varying-slope model (Full)

The varying-intercept, varying-slope model represents the model in
which both the intercept and the slope vary by group. The model is
given by

yi = αj[i] + β1j[i]1i + β2j[i]2i + εi (2.4)

αj = γα
0
+ γα

1
j + ηα

j
(2.5)

β1j = γ
β1
0 + γ

β1
1 j + η

β1

j (2.6)

β2j = γ
β2
0 + γ

β2
1 j + η

β2

j (2.7)

and includes both individual- and group-level predictors. In (2.3),
(2.5), (2.6) and (2.7), the coefficient γ0 can be interpreted as the
ball speed of a ball thrown without any pelvis and trunk rotation by
the pitcher of an average height. The εi in (2.1), (2.2) and (2.4)
and ηj in (2.3), (2.5), (2.6) and (2.7) represent independent error
terms at each of the two levels.

All individual- and group-level predictors were rescaled to have sample
variance 1. The scaling is done by dividing the centred predictor 
by its standard deviation. We used scaling to transform the data to
comparable values.

We used leave-one-out (LOO) cross-validation to select out of the
three proposed models the model with best predictive performance.
LOO resulted in a total of 224 folds as 224 pitches from 25 pitchers were
included in the analysis. Following the approach in [20], the predictive
performance of a model is defined as the expected log-predictive density
(elpd). Predictive performance is a useful quantity in assessing a single
model. It can be estimated by training the model on all observations
except one and then predicting the hold-out observation. This is then
repeated for all n observations

elpd =
n
∑

=1

logp(yi | y-i) (2.8)

where

p(yi | y-i) =
∫

p(yi|θ)p(θ|y-i)dθ (2.9)

is the LOO predictive density upon leaving out the th data point. If the
posterior p(θ | y-i) is summarised by B simulation from θ,b, then we can
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Figure 2.3.: Visual representation of the variable importance calculated
by applying random forest. The horizontal axis should
be interpreted as a measure for relative importance of
predictive variables. The figure reveals Height to be the
most important predictor for ball speed which is, therefore,
selected as group-level predictor.

approximate logp(yi | yi=1) by

Öelpdi =
1

B

B
∑

b=1

p(yi | θ,b)

leading to Öelpd =
∑n

=1
Öelpdi as an estimate for Öelpd.

Different models can be compared against each other according to
their elpd-value. Suppose we wish to compare models M1 and M2, with

estimated elpd values Öelpd
1

and Öelpd
2
, respectively.

Since the same set of n data points is being used to fit all models,
we can use a paired estimate to compute a standard error of their
difference:
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Here, for numbers {i}n=1 we define Vn
=1i =

1
n−1

∑n
=1(i − ̄n)2.
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2.3. RESULTS
We included in the analysis 224 pitches from 25 pitchers for which
the ball velocity was recorded and sensor clipping did not occur.
Characteristics of the measured ball and peak angular velocities of
pelvis and trunk are summarised in Table 2.1.

Mean ± Standard Deviation

Peak pelvis angular velocity (°/s) 690.2 ± 90.9
Peak trunk angular velocity (°/s) 1172.4 ± 239.5

Ball velocity (mph) 68.3 ± 6.5

Table 2.1.: Summary of measured ball and peak angular velocities.
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Figure 2.4.: Ball velocity observations (dots) vs. average simulated
value of the ball speed (line) from the posterior predictive
distribution of the Observations model. This graphical
representation suggests that Observations model leaves a
large amount of variation in the data unexplained.

We consider the model called Observations model as base model.
The other two proposed models, Personal and Full, are extensions
since they have two instead of one level and they introduce the group
participation that makes a distinction between pitchers of a different
height. Therefore, comparing the developed models determines the
contribution of the kinematic parameters related to pitching mechanics
and body height of a pitcher to accuracy of ball speed prediction. The
graphical representations (Figures 2.4–2.6) show that both the models
Personal and Full provide a good fit to the observed data, while the fit of
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Observations is unsatisfactory.
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Figure 2.5.: Ball velocity observations (dots) vs. average simulated value
of the ball velocity (line) from the posterior predictive distri-
bution of the Personal model. This graphical representation
suggests that Personal model is a good fit to collected data.
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Figure 2.6.: Ball velocity observations (dots) vs. average simulated
value of the ball velocity (line) from the posterior predictive
distribution of the Full model. This graphical representation
suggests that Full model is a good fit to collected data.

The Full model is a preferable model, followed by the Personal and
Observations model (see Tables 2.2 and 2.3).
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Öelpd
Full
−Öelpd

Personal
−5.5 (3.3)

Öelpd
Full
−Öelpd

Observations
−308.3 (13.5)

Table 2.2.: Comparison of fitted models. The rows show the difference

in Öelpd, with estimated standard error in brackets, between
the Full model and remaining models (Personal and Observa-
tions).

R2 RMSE

Full 0.975 0.014
Personal 0.973 0.014

Observations 0.137 0.089

Table 2.3.: Comparison of fitted models.

2.4. DISCUSSION
The aim of this study was to predict a ball velocity in baseball pitching
such that prediction is tailored to the individual pitcher. The proposed
method included pitcher’s body segment rotation, which determines his
technique, and pitcher’s height that displays individuality in imparted
velocity to a ball. We used multilevel modeling to develop three models
with different predictors and examined their predictive performance.
By comparing developed models, we investigated the added value of
individuality to ball velocity prediction.

Ball velocities presented in this study are similar to the ones reported
in the previous studies. Pitchers with a mean age of 14.7 ± 1.5
years threw balls with average velocity 30.6 ± 2.9 m/s, while Dun
[21] reported average ball velocity of 26.3 ± 3.8 m/s measured in a
population of youth pitchers throwing fastballs.

In the overhead pitching, the lower extremity and trunk generate and
transfer energy to the upper extremity. To examine the relationship
between ball velocity and variations in pitching biomechanics on
individual level, previous studies identified maximum pelvis and trunk
angular velocity as kinematic parameters linked to ball velocity [8, 9,
11]. Recent technological developments brought IMUs to a spotlight as
an alternative to marker-based systems used in a laboratory setting.
Since IMU’s gyroscope enables measuring body segment rotation, we
assessed pitching technique by positioning IMU sensors on pelvis and
trunk. Measured peak angular velocity of pelvis of 690.2 ± 90.9
deg/s and trunk of 1172.4 ± 239.5 deg/s supports the findings in
previous studies [3, 21]. As the gyroscopes recorded angular velocities
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continuously throughout the participant’s session, manual segmentation
was required. In future work, we wish to develop a method for automatic
detection of single throws and segmentation of the continuous-time
gyroscope signal when the boundaries between different throws are
unclear. This will automatise the use of predictive models for predicting
ball velocity. Filtering methods from signal processing may prove to be
useful for this purpose.

Among the compared models, model Full shows the best predictive
performance (Table 2.3). Model Observations is worse than model Full
by 308.3 of log predictive probability values. The difference in estimated
elpd-values is big compared to estimated standard error of 13.5. Hence,
adding pitcher’s height to the Observations model improves predictive
accuracy. Model Personal includes only the pitcher’s height as a
predictor and ignores the pitching technique. The model shows that
taller pitchers throw faster and it is possible to already estimate ball
velocity only by knowing the pitcher’s height. This information can
be useful for scouts in search for baseball talents. A pitcher’s height
compared to other personal characteristics, such as age and weight, is
the most important predictor for ball velocity in baseball pitching. On
the other hand, of course neither pitchers nor coaches can influence
height. The outcome of this paper demonstrates the added value of a
pitcher’s height to predictive accuracy.

The proposed method can potentially be adopted in baseball practice.
IMUs are easy-to-wear low cost sensors that do not influence a pitcher’s
performance and can be a valuable source of data. It can provide
information on pitching performance in every situation and with a
method proposed in this paper, gain ball velocity without use of a radar
gun. Ball velocity prediction can give a better insight into pitcher’s
performance and represents a potential for predictions of future throwing
speed when pitchers grow taller.

For future studies, we suggest also to include separation time and
pitch types in the presented model. Following the concept of a kinetic
chain, the relative timing of the moments of pelvis and trunk peak
angular velocity, when throwing fastballs, is associated with ball velocity
in skilled pitchers [22]. Furthermore, to the best of our knowledge, no
study has classified pitch types based on IMU data solely. Classification
of pitch types outside the laboratory or game environment provides
benefits in designing and outlining training routines and represents a
potential research direction in the future. Following the segmentation of
continuous gyroscope signals, we suggest extracting additional features
next to the peak angular velocities, such as skewness, mean, and
difference between minimum and maximum. This would result in
more parameters that may be included in the model and improve the
classification of different pitch types and the prediction of ball velocity.
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3.1. INTRODUCTION
Data-driven decision-making is establishing itself in training and high-
level sports performance. Data made available through game statistics
and technology integrated with training routines serve as the input
for big data analytics in sports. Data analysis started in many sports
disciplines with some form of video analysis. Currently, a variety of
different metrics can be extracted and analysed not only from videos,
but also sensors integrated into sleeves, straps, watches, rings, and
smart fabrics. For instance, in baseball, for over 100 years, the
difference between a slider and a curveball was defined based on
previous experience. Following the technological advancements in pitch
tracking, the concept of pitch types is quantified and explained by
the speed, spin rate, and spin axis of the ball. Information on the
ball (Rapsodo), the bat (Blast), and body movement (PITCHPERFECT)
has become widely accessible, creating a new flow of data, which are
valuable for performance assessment and pitchers’ overall success.

The advancements in wearable technology are changing the traditional
approach to athlete training and performance monitoring. Wearables
enable measurements in a wide range of settings during training and
matches. This removes any practical limitation compared to a lab and
offers unlimited athlete availability, which results in high numbers of
recorded repetitions. While biomechanical measurements in the lab as
well as coaching sessions during training are often limited to one athlete
at a time, the utilization of wearables ensures that every pitch thrown
by the pitchers is recorded, even the ones during warm-up sessions.
The use and collection of data from wearables can be performed by any
motivated team that might lack the resources available to professional
sports teams, and this enables coaches to retrospectively provide
feedback to every pitcher. Such performance tracking in terms of pitch
counts enables players to pitch without fatigue, directly adhering to
the pitch count limit regulated by the federations in order to limit the
workload and prevent shoulder and elbow injuries [2].

Next to the pitch count, the pitching mechanics and pitch type are
considered the main factors in pitching training, which are relevant not
only for pitchers’ performance, but also for the prevention of injuries
[3–6]. As the pitcher’s response to a given training stimulus is highly
individualized [7], continuous and prospective individual monitoring is
crucial in managing the effect of the intense training and competition
schedule on the pitcher’s performance and health. The use of wearable
sensors may provide the opportunity to achieve this.

Information extracted from wearables creates the opportunity to
understand the body mechanics of each pitcher on an individual level.
Detailed pitch-to-pitch information can help the pitcher learn safe and
efficient pitch mechanics. In general, pitching mechanics follow the
kinetic chain principle in which the pelvis and trunk serve as a link in the



3.1. Introduction

3

37

transfer of the momentum generated by the lower extremities to the
upper extremities. Efficient proximal-to-distal timing between the pelvis
and trunk allows momentum transfer to the ball, resulting in increased
throwing velocity [8–10]. On the contrary, poor pitching mechanics in
combination with the repetitive mechanical strain of throwing through
a high pitch count can negatively affect pitching performance and, at
the same time, put the pitcher at risk of shoulder and elbow injuries [2,
4–6].

To translate training success into game success, pitchers need to
translate their movement skills into a variation of pitch trajectories. A
successful pitcher alters the velocity and trajectory of the ball to keep
the batters off balance and discourage their anticipation of a particular
pitch type. To obtain a variation of ball trajectory, in theory, the pitcher
manipulates the grip on the ball at the release point, which results
in different rotations of the ball out of the hand of the pitcher. The
particular seams of a baseball lead to air pressure variations around
the ball, which creates the bending, curving, or sliding motions of the
pitch. It should be noted though that multiple studies have reported
differences in the pelvis and trunk kinematics between pitch types [4,
11–14]. From a strategic point of view, a pitcher may want to achieve
similar kinematics among all pitch types to make pitch identification
difficult for the batters [12]. If that were the case, it would be unlikely
that the pitch type could be distinguished from the body mechanics
alone. However, the aforementioned studies acquired their data in a lab
setting with highly trained individuals. It can be expected that, at lower
levels of play, the movement variation within the individual is even
higher.

Except the skill difference, there are obvious differences in financial
resources and staff availability as well. Although it is common in youth
baseball that a volunteer manually counts the amount of pitches, the
tracking of the pitch types is very limited, and in particular, off-speed
pitches lead to wildly inaccurate manual classifications given the skill
level of the person performing the tagging. Therefore, the automatic
detection of pitch types might be extremely beneficial, especially for
baseball players who cannot afford expensive camera systems and rely
on the manual tracking of pitch types. In this context, it should also
be noted that off-speed pitches are associated with an increased risk of
shoulder and elbow injuries in youth baseball pitchers. In combination
with the increased number of pitches per game and the full baseball
calendars, pitchers are at risk of not only acute problems, but also
overuse injuries in the later stages of their careers [2].

Translating collected wearables data into actionable insights may
bridge the gap between scientific knowledge from biomechanical
studies and daily practice. We provide a machine learning approach to
the utilization of wearables data through pitch type classification based
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on the pelvis and trunk peak angular velocity and their separation time
recorded using body-worn motion sensors. Machine learning methods
showed promising results in pitch type classification investigated in
similar contexts [15–21]. Opposed to predicting the next pitch thrown
based on the information available prior to that pitch [15–17], our
approach relies on inclusion of post-delivery features to detect which
pitch was thrown purely based on pitching mechanics. Having pitch
type readily available on every pitch, in combination with kinematic
data, might help us provide insight into pitching technique to baseball
pitchers of various levels. On top of that, overview of such performance
metrics can be presented to the athletes in real time, enabling players
to track their progress throughout the whole season and empowering
them to shape the training accordingly.

To the best of our knowledge, this is the first study investigating
baseball pitch type detection based on pelvis and trunk kinematics
during pitching and, moreover, based on such data obtained from
wearables. This approach allows for workload monitoring, which is
important for maintaining safe and efficient pitching performance during
the full course of the season. Therefore, this study aims to establish the
methodology for pitch type classification based on biomechanical input
from wearables by comparing performance of the various classification
algorithms.

3.2. MATERIALS AND METHODS
3.2.1. PARTICIPANTS
Out of 24 pitchers initially participating in the measurements, 19
pitchers were included in this study (age 18.5 ± 3.7 years, height 178.3
± 11.1 m, weight 71.9 ± 18.3 kg, experience 7.3 ± 3.7 years). The
participants were members of the elite youth academies of the Royal
Dutch Baseball and Softball Federation (KNBSB). The included pitchers
were pain- and injury-free during the course of the measurements. This
research was conducted in accordance with the Declaration of Helsinki,
and the Ethics Committee of the Delft University of Technology approved
the measurement protocol (approval no. ETC_TUDelft_1394). Informed
consent was signed by the participants or the general manager of the
respective baseball academy.

3.2.2. DATA COLLECTION AND DATA PRE-PROCESSING
The data were collected during the pitchers’ regular training at the
training facilities of the affiliated baseball academy. To maintain pitching-
specific routines, warm-up and pitch count were not standardised. After
performing their standard warm-up, the pitchers were instructed to
throw a selection of pitch types they usually throw during the game,
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containing a minimum of three different pitch types. The pitchers
followed their own training routine in accordance with the training
program set by their pitching coach. The bullpen session consisted of
a minimum of 20 pitches from mound toward a catcher at the official
distance of 18.45 or 16.45 meters, depending on the pitcher’s age.

The pitching motion was recorded using the PITCHPERFECT system
(PITCHPERFECT, Breda, The Netherlands) consisting of two synchronised
3-DOF IMUs (Gyroscope ±2000 (°/s)) showed on Figure 3.1. Sensors
were taped with Leukoplast FixoMull® stretch (BSN Medical GmbH,
Hamburg, Germany) on processus Xiphoideus on the chest and in the
middle of the left and right posterior superior iliac spine on the lower
back of the pitcher before starting the bullpen (Figure 3.2). Pitch types
were manually coded by experienced off-field staff members based on
the visual inspection, hand signal and pitcher–catcher agreement prior
to each throw. The ball velocity (mph) was measured from behind
the pitcher with a Pocket radar Ball coach, Model PR1000-BC (Pocket
Radar Inc., Santa Rosa, CA, USA). The accuracy of the pitch was noted,
distinguishing only between a wild pitch or not, wherein a wild pitch was
noted if the catcher was unable to catch the ball with reasonable effort.

Figure 3.1.: Pitch Perfect sensor system for measuring pelvis and trunk
kinematics and separation time between them.

The outcome of the PITCHPERFECT system consists of the pelvis and
trunk peak angular velocity and the separation time between them.
Pre-processing of the raw sensor signal and computing Euclidean norms
from the raw data were conducted by the algorithm developed by
the manufacturer (PITCHPERFECT, The Netherlands). Details of the
algorithm are property of the manufacturer.

In this study, we used a database created by PITCHPERFECT that
characterizes each pitch with three features used directly from the
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system (Table 3.1). Data were pre-processed and analyzed using the
R programming language (version 4.3.1). Data of five players were
excluded from the analyses because their peak angular velocity was
below the threshold of 400 (°/s) of the PITCHPERFECT system. Individual
pitches were included based on three inclusion criteria: (1) the pitch
type is a Fastball (FB), Curveball (CU) or Change-up (CH), as they were
the most occurring pitch types among the included pitchers; (2) the
thrown ball was not a wild pitch; and (3) all three kinematic parameters
(Pelvis, Trunk, Separation) were recorded (i.e., sensor clipping did not
occur). All continuous features were scaled and centered.

Figure 3.2.: Placement of the sensors. Figure adopted from the study of
Gomaz et al. [22].

Features Definitions

Pelvis (°/s) Pelvis peak angular velocity available directly from
PITCHPERFECT.

Trunk (°/s) Trunk peak angular velocity available directly from
PITCHPERFECT.

Separation (ms) The timing between pelvis and trunk peak angular
velocity, available directly from PITCHPERFECT.

Table 3.1.: Included features for pitch type classification.
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3.2.3. DATA ANALYSIS
The automatic detection of pitch types from sensor data is a classification
problem. The goal is to learn a mapping from inputs x to outputs y,
where y ∈ {1, ..., C}, with C being the number of classes. Inputs x are
the features (Table 3.1) and outputs y are pitch types, where C denotes
number of different pitch types.

This study utilized classifiers integrated in the caret package [23]
including K–Nearest Neighbors (KNN), Naive Bayes (NB), Random
Forest (RF) and Support Vector Machine (SVM). We investigated
the performance of the classifiers in both binary and multiclass
classification, including additional Logistic Regression (LOGREG) for
binary and Multinomial Logistic Regression (MNOM) for the multiclass
classification task.

Binary classification is a classification task that has two class labels.
In this study, it is used to detect whether the pitch was Fastball or not
by classifying recorded pitches in one of the two classes—FB and Other
(Figure 3.3 (left)). Among the recorded pitches, 48.7% were originally
labelled as FB and 51.3% as Other.

Figure 3.3.: The baseball pitch type classification approaches. (Left)
The binary classification approach classifies pitch types
into two categories—Fastball and Others—based on input
from wearables (pelvis and trunk peak angular velocities
and separation time). (Right) The multiclass classification
approach classifies pitch types into three categories—
Fastball, Curveball and Change-up—based on input from
wearables (pelvis and trunk peak angular velocities and
separation time). Both approaches used four classifiers—
K-Nearest Neighbors (KNN), Naive Bayes (NB), Random
Forest (RF) and Support Vector Machine (SVM)—to assess
their classification performance, including additional logistic
regression (LOGREG) for binary and multinomial logistic
regression (MNOM) for the multiclass classification task.

Multiclass classification refers to classification tasks that have more
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than two class labels. Unlike binary classification, it classifies non-
fastball pitches in different classes and therefore detects whether the
pitch was Fastball (FB), Curveball (CU) or Change-up (CH) (Figure 3.3
(right)). Among the recorded pitches, 48.7% were originally labelled as
FB, 26.4% as CH and 24.9% as CU. Due to variations in the number
and type of off-speed pitches (CU and CH) among pitchers, the collected
data show unequal distribution between classes. Such disparity in the
frequencies of the observed classes can have a negative impact on
model fitting. A possible solution is to subsample the training data in
such a way that mitigates the issue (e.g., under- and oversampling).
Hence, to address this issue, the minority classes (CU and CH) were
up-sampled so that each class was of equal size.

We set up our training and testing cases following the 80% (training)
and 20% (testing) split. To achieve a fair understanding of the
generalizability of the classifiers, in the designated training set, Leave-
One-Group-Out Cross-Validation (LOGO-CV) was carried out. LOGO-CV
is a specific type of k-fold cross-validation that utilizes data from each
individual pitcher as a test set. The number of folds therefore equals the
number of pitchers. For every fold, the model is trained on data from
J − 1 pitchers and tested on the data from the one left-out pitcher.

The performance of the classifiers is evaluated by four evaluation
criteria—Accuracy (3.1), Sensitivity (3.2), Precision (3.3) and F1-score
(3.4)—which can be calculated from the confusion matrix. The confusion
matrix provides a summary of the prediction results of a classification
algorithm. In the matrix, the numbers of correct and incorrect
predictions are summarised with count values and broken down by each
class. The output True Positive (TP) represents the number of positives
classified correctly, whereas True Negative (TN) represents the number
of correctly classified negatives. False Positive (FP) shows the number of
negatives that are classified as positives, whereas False Negative (FN)
indicates the number of positives classified as negatives.

Accrcy =
TP + TN

Tot smpe
, (3.1)

Senstty =
TP

TP + FN
, (3.2)

Precson =
TP

TP + FP
, (3.3)

F1 =
2TP

2TP + FP + FN
. (3.4)

The hyper-parameters were tuned using grid search, a default method
for optimizing tuning parameters in the caret package [23]. Feature
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selection was performed using correlation analysis. Since the correlation
between the features was low, the models were trained and tested using
all variables derived from the PITCHPERFECT system (Table 3.1).

3.3. RESULTS
A total of 353 pitches thrown by 19 pitchers met the inclusion criteria
and were included in the study. Descriptive statistics for binary
and multiclass classification is presented in Table 3.2 and Table 3.3,
respectively. A total of 284 pitches were used for training the models
and 69 pitches were used for their testing.

Features
FB Other

(n = 172) (n = 181)

Mean SD Mean SD

Pelvis (°/s) 737 138 695 120
Trunk (°/s) 799 228 827 262
Separation

(s)
0.03 0.13 0.06 0.13

Speed (m/s) 33.1 3.82 28.6 3.81

Table 3.2.: Descriptive statistics for binary classification.

Features
CH CU FB

(n = 93) (n = 88) (n = 172)

Mean SD Mean SD Mean SD

Pelvis
(°/s)

708 129 681 109 737 138

Trunk
(°/s)

831 277 823 247 799 228

Separation
(s)

0.06 0.15 0.06 0.11 0.03 0.13

Speed
(m/s)

29.9 3.72 27.2 3.40 33.1 3.82

Table 3.3.: Descriptive statistics for multiclass classification.

3.3.1. BINARY CLASSIfiCATION
The performance of the K-Nearest Neighbors, Naive Bayes, Random
Forest, Support Vector Machine and Logistic Regression algorithms in
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the binary classification problem was evaluated using four performance
metrics (3.1)–(3.4). Among the trained classifiers, the Naive Bayes
algorithm performed the best in classifying fastballs among the recorded
pitches. The confusion matrix seen in Figure 3.4 shows the summary
of the prediction performance for Naive Bayes (Accuracy = 71.0%,
Precision = 71.9%, Sensitivity = 67.6%, F1-score = 69.7%). The
accuracy of the NB algorithm was 7.2% higher than for KNN, 1.4%
higher than for RF, 5.8% higher than for SVM and 20.3% higher than
for LOGREG. The sensitivity of the RF algorithm is 11.8% higher than for
KNN, 3% higher than for NB, 5.9% higher than for SVM and 17.7% higher
than for LOGREG. The precision of the NB algorithm was 7.4% higher
than for KNN, 3.3% higher than for RF, 7.2% higher than for SVM and
21.9% higher than for LOGREG. The F1-score of the NB algorithm was
8.2% higher than for KNN, 0.1% higher than for RF, 5.0% higher than
for SVM and 18.3% higher than for LOGREG. The confusion matrices
with corresponding performance metrics of the remaining algorithms
are shown in Appendix A.
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0.71

Kappa

0.42

Figure 3.4.: Two-class confusion matrix summarizing the performance of
Naive Bayes in classification of fastballs.

3.3.2. MULTICLASS CLASSIfiCATION
The four metrics are used to evaluate the performance of the K-Nearest
Neighbors, Naive Bayes, Random Forest, Support Vector Machine and
Multinomial logistic regression algorithms in the multiclass classification
problem. Among the trained classifiers, the Random Forest algorithm
performed the best in classifying pitches in three different classes of
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pitch types (FB, CH and CU). The confusion matrix seen in Figure 3.5
shows the summary of prediction performance for Random Forest.
The accuracy of the RF algorithm was at 52.2%, which is 7.2%
higher than for KNN, 7.2% higher than for NB, 11.6% higher than
for SVM and 8.7% higher than for MNOM. The confusion matrices
with corresponding performance metrics of the remaining algorithms
are shown in Appendix A. Performance metrics of the Random Forest
algorithm are reported in Table 3.4.
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Figure 3.5.: Three-class confusion matrix summarizing the performance
of Random Forest by class in classification of baseball pitch
types.

Class Accuracy Sensitivity Precision F1

CH 0.500 0.333 0.261 0.293

CU 0.600 0.353 0.429 0.387

FB 0.739 0.706 0.750 0.727

Table 3.4.: Performance metrics of multiclass Random Forest in classifi-
cation of three different pitch types.

3.4. DISCUSSION
The aim of this study was to establish a methodology for pitch type
classification based on biomechanical input from wearables. We used
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pelvis and trunk peak angular velocity and separation time between
them as an input and evaluated the performance of five machine
learning classifiers in the binary and multiclass classification task. The
Naive Bayes algorithm showed the best performance in classifying
Fastballs with an accuracy of 71%. Furthermore, in the classification
of pitch types as Fastball, Curveball or Change-up, the Random Forest
algorithm performed the best with an average accuracy of 61.3% over
those three pitch types.

Binary classification was used to detect whether the pitch was Fastball
or not. Fastball can be considered a "normal" throw. Fastball is the
most common pitch type thrown, specifically among youth pitchers.
This has to do with the physical development of youth pitchers where
the Fastball pitch is used to learn proper body mechanics and throwing
accuracy before learning more demanding off-speed pitches. Therefore,
to explore the possibility of pitch type classification based on pitching
mechanics, it makes sense to first investigate whether we can detect
fastballs. Previous studies that used a binary approach for pitch type
prediction focused on predicting whether the next pitch will be Fastball
rather than detecting whether Fastball was thrown [16, 20]. They used
pre-pitch ball data as an input, which resulted in accuracies of 70%
[16] and 77.45% [20]. Even though such approach offers benefits for
choosing the right strategy, it does not contribute to the pitch tracking
as part of the workload monitoring for an individual pitcher.

The multiclass classification task classified recorded pitch types into
three categories—Fastball (FB), Change-up (CH) and Curveball (CU). It
serves as a base for pitch tracking and detects different pitch types
thrown. The Random Forest algorithm performed the best with a 50.0%
accuracy in classifying CH, a 60.0% accuracy in classifying CU and a
73.9% accuracy in classifying FB. The performance metrics reported
in Table 3.4 show the performance of the RF classifier for each pitch
type versus the rest. Multiclass classification has been a subject
of several studies before, focusing on pitch type classification based
on pre-pitch ball data. Compared to the accuracy of the Random
Forest algorithm revealed in this paper, those studies reported higher
predictive accuracies, from 74.5% [21] for the SVM algorithm to 93.63%
for the KNN algorithm with Manhattan distance [18, 19]. This may be
due to the sensitive nature of wearable data and inconsistent pitching
mechanics of different pitchers among various pitch types. The feature
importance for the Random Forest multiclass classifier revealed that
the pitcher’s pelvis peak angular velocity is considered most important
for the pitch type classification task, whereas the trunk peak angular
velocity is considered the least important (Figure A.9).

Although we are confident that the proposed methodology could be
key to predict pitch type based on biomechanical data from wearables,
the reported accuracies leave much to desire. One limitation of this
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study was that the amount of collected data was low (n = 353). The
proof of methodology provided in this paper could serve for a study on
a larger scale. Additionally, due to the small sample size of individual
pitchers, we were not able to perform the classification of pitch types
per individuals. The data from the pitchers have a hierarchical structure,
suggesting that pitching mechanics [22] as well as pitch kinematics
[24] among different throws are more similar for an individual pitcher
compared to others. Therefore, it may be sensible to classify pitch
types for individual pitchers. Pitch type prediction by pitch count and by
pitcher showed improved performance in the prediction of the next pitch
the pitcher will throw based on features available from the previous
throws [16, 17, 19]. Our study would have benefited from longitudinal
data collection including kinematic data during the full season. This
would allow us to perform classification tasks for different pitch types
for individual pitchers. Moreover, matching pitching kinematics with ball
speed data may also increase the accuracy of the model.

To the best of our knowledge, this is the first study that uses
biomechanical data from wearables to predict pitch types, and thus
enriches the available data from an easy-to-use motion sensor system. It
is important to clarify that this method is proposed for the classification
of the pitch thrown and not the prediction of the next pitch. Pitch
prediction uses information available prior the pitch to judge which pitch
can be expected. However, pitch type classification uses information
available post pitch to determine which pitch type was thrown. Previous
studies used post-pitch data from PITCHf/x describing the characteristics
of the ball from when it leaves the hand of the pitcher until it crosses
the home plate [18, 19]. Defining the pitch type from ball flight data
is related to the inherent need of redefining pitch types. Traditional
pitch type description is not sufficient any longer, with the newly
available data in professional pitching. Our methodology aims to expand
this knowledge to situations such as youth baseball, where expensive
PITCHf/x systems are not prevalent.

The proposed classification method, based on a limited amount of data
from youth baseball pitches, shows promising performance in predicting
Fastball vs. off-speed pitches. Application of this binary classification
method in youth baseball training can create a major advantage for the
development of individual players. Since nowadays pitch count is the
only variable that is noted, and mostly manually recorded, the automatic
tracking of pitch counts, biomechanical data and pitch types can be
of great value to coaches and players. Given that youth players are
still learning how to throw different pitch types and their susceptibility
to injuries is higher when throwing off-speed pitches [2], implementing
the proposed methods in baseball practice may provide a wealth of
information relevant for both pitchers and coaches in those situations.

Implementing similar technologies for elite athletes’ training could
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benefit from the aforementioned suggestions to improve the accuracy
of the multiclass classification model. However, further studies should
determine the necessity of such a system since high-level players often
have access to other resources that can measure or calculate pitch
trajectory. Indirect pitch type prediction may thus not be needed for
players at a high level with many resources at their disposal.

3.5. CONCLUSIONS
The accessibility of wearable sensors for performance tracking during
both training and games represents a new source of large amounts
of data that need powerful algorithms for their analysis, resulting in
actionable insights relevant for pitchers’ performance and injury risk
management. This study established machine learning methods for
the detection of the pitch type that was thrown based on pitching
mechanics recorded with wearables. The Naive Bayes algorithm showed
the best performance in the detection of fastballs, whereas the Random
Forest algorithm performed best in the multiclass (FB vs. CH vs. CU)
classification task. While these findings demonstrate the potential for
the utilisation of wearables in baseball pitching, further development of
the classification algorithm, as well as longitudinal data collection, is
required. Providing insight into pitch count, pitching mechanics and pitch
type enables pitchers to throw safely and efficiently. Through automatic
tracking of pitch types, every pitch is counted. Thus, monitoring pitching
mechanics and providing an informative feedback to the pitchers may
lead to safe and efficient pitching and increase a pitcher’s chances of
success.
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ABBREVIATIONS
The following abbreviations are used in this chapter:
FB Fastball
CH Change-up
CU Curveball
KNN K-Nearest Neighbors
NB Naive Bayes
RF Random Forest
SVM Support Vector Machine
LOGREG Logistic Regression
MNOM Multinomial Logistic Regression
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Figure A.1.: Confusion matrix for binary K-Nearest Neighbors algorithm.
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Figure A.2.: Confusion matrix for binary Random Forest algorithm.
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Binary Classification
 Support Vector Machine
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Figure A.3.: Confusion matrix for binary Support Vector Machine algo-
rithm with radial basis kernel function.

Binary Classification
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Figure A.4.: Confusion matrix for binary Logistic Regression algorithm
with radial basis kernel function.
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Figure A.5.: Confusion matrix for multiclass K-Nearest Neighbors algo-
rithm.
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Figure A.6.: Confusion matrix for multiclass Naive Bayes algorithm.
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Multiclass Classification
 Support Vector Machine
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Figure A.7.: Confusion matrix for multiclass Support Vector Machine algo-
rithm with radial basis kernel function.
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Figure A.8.: Confusion matrix for multiclass Multinomial Logistic Regres-
sion algorithm with radial basis kernel function.
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A.3. VARIABLE IMPORTANCE

Importance

Trunk

Separation

Pelvis

90 95 100

Figure A.9.: Visual representation of the feature importance for Ran-
dom Forest multiclass classifier calculated with varImp from
caret package. The horizontal axis should be interpreted
as a measure for relative importance of predictive variables.
The figure reveals Pelvis to be considered as the most impor-
tant for the multiclass classification task, whereas Trunk is
considered as the least important.
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4.1. INTRODUCTION
The baseball pitch is a full-body throwing motion that, due to its
repetitive nature, exposes the elbow to significant loads [2, 3]. This
leads to a high incidence of overused elbow injuries among baseball
pitchers at all levels of play [4–6]. The injury aetiology seen in youth
and adult pitchers has been linked to high elbow external valgus torques
[7, 8]. The external valgus torque imparts a tensile force to the medial
elbow structures [9, 10], which in combination with repetitive loading
results in injuries to the medially located ulnar collateral ligament (UCL).
This indicates that external valgus torque can be used as a proxy of
elbow load [11, 12]. Thus, continuous and prospective elbow load
monitoring, both in training and in game, plays an essential role in
pitchers’ performance enhancement whilst minimizing the risk of elbow
injuries [13].

To assess the external valgus torque, it is important to understand
pitching mechanics. Pitching mechanics can be described by the two
well-known biomechanical principles; the summation of speed principle,
also known as the kinetic chain, and the principle of optimal coordination
of partial momenta [14]. Both principles consider the human body as a
linked segment model and explain the biomechanics of pitching in terms
of peak angular velocities of body segments and their intersegmental
timing. Overhead throwing motion, such as baseball pitching, is more
likely to follow the kinetic chain [14]. Regardless of the principle, the
high end-point velocities imparted to the ball depend on the contribution
of all segments [15].

In the pitching motion, energy is generated in the driving leg and
transferred through the stride leg to the pelvis [16]. While part of the
energy in the pelvis is transferred back to the stride leg to form a stable
base around which the pelvis and trunk can rotate [17], most energy is
transferred via the trunk up to the throwing arm [3]. In such complex
sequential movement, pelvic and trunk kinematics play an essential role
in transferring the momentum generated by the lower extremities to the
upper extremity. Optimal proximal-to-distal timing between the pelvis
and trunk results in the maximized ball velocity at the most distal end
[3, 14]. The timing between the pelvis and trunk peak angular velocities
is also referred to as separation time. If this kinematic sequencing
or timing is not optimal, energy is dissipated into the upper extremity
which results not only in decreased ball velocity [14, 18], but also the
potentially increased risk of injuries [19].

Manipulation of biomechanical parameters within the kinetic chain
may affect the external valgus torque and help in managing the risk
of excessive UCL loading. By increasing trunk peak angular velocity,
pitchers may throw faster, but with an increased external valgus torque
[20]. There is likely a threshold above which the exceeded external
valgus torque represents a significant injury risk. The efficiency of the
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kinetic chain may contribute to the reduction of external valgus torque
levels at this critical point while still maintaining high levels of ball speed
and overall pitching performance [11].

We expect that the levels of external valgus torque will differ
between pitchers due to variations in anthropometric measures, pitching
technique, level of play, and within-individual load variability [21,
22]. Multilevel modelling is well-suited for the analysis of repeated
measurements that are considered to be “clustered” within individual
pitchers [23]. Such measurements are assumed to be independent
as the observations within a cluster are more likely to be similar than
observations from different clusters. Since regression- and ANOVA-
based techniques do not meet this assumption, they are not fully
appropriate for dealing with this type of data structure. Multilevel
modelling techniques for repeated measurements allow us to analyse
the relationships between data collected at the pitcher- or group-level,
and data collected on variables that change with trials at the unit- or
individual-level [24].

The aim of the study is to contribute to monitoring the external valgus
torque in baseball pitching by developing a prediction model based on
the pelvis and trunk peak angular velocities and their separation time.
It is hypothesized that external valgus torque for an individual pitcher
can be predicted based on the pelvis and trunk peak angular velocity
and separation time between them. In addition, we expect that the
model including both pelvis and trunk peak angular velocity and their
separation time will have the best predictive performance.

4.2. MATERIALS AND METHODS
4.2.1. PARTICIPANTS
Eleven male Dutch national (AAA) youth elite baseball pitchers
participated in the study, with a mean age of 17.4 (± 2.2) years, mean
body mass of 80.6 (± 11.7) kg, mean body height of 1.86 (± 6.3) m
and mean ball speed was 34.0 ± 1.4 m/s (76.6 ± 3.2 mph). Only
participants without present musculoskeletal injuries and who did not
have musculoskeletal injuries in the last six months were included in
this study. Participants gave written consent to use the data information
for analysis and publication after being fully informed. If participants
were under 16 years, their parents or guardians were informed about
the study and required to sign an informed consent form. This research
was conducted as part of a larger study [22] and was performed
in accordance with the Declaration of Helsinki and the local ethics
committee. The local ethics committee of the Faculty of Behavioral
and Movement Sciences (VCWE) approved the study protocol (reference
number: VCWE2019-033).
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4.2.2. PROCEDURE
Data collection was performed in an indoor movement laboratory at
the Royal Netherlands Football Association. The participants wore
sneakers, athletic stretch shorts, catching gloves, and no shirts.
Forty-three reflective markers were attached with double-sided tape on
the bony landmarks. Participants performed their regular warming-up,
which contained stretching, drills, and several warming-up pitches.
Subsequently, they threw several pitches from the mound to become
familiar with the research setup. The participants were instructed to
throw 25 fastball pitches at full effort toward a squared strike zone
(height 0.64m; width 0.38m). The pitching rubber was attached to the
top of the mound at 0.55m above the ground and had a distance of
18.44 m to the home plate. The time between each pitch was not
controlled but regulated by the pitcher himself, like in a normal game.

4.2.3. DATA ACQUISITION
Full body position data of the pitchers were collected with a VICON
eight-camera motion capture system. Data were sampled at 400Hz
(model V5; Vicon Motion Systems Ltd., Yarnton, UK). The ball speed was
measured with a radar gun positioned next to the strike zone (Stalker
Radar, Plano, TX, USA).

4.2.4. DATA PROCESSING
Three-dimensional position data of the fourteen bony landmarks were
used in this study (Table 4.1). The position data were interpolated with
a third-order cubic spline polynomial and filtered with a fourth–order
Butterworth filter with a cut-off frequency of 12.5 Hz. To calculate the
segment angular velocities and the elbow valgus torque an anatomical
coordinate system was constructed for the pelvis, trunk, upper arm,
forearm, and hand according to the ISB recommendations [25].

The segment angular velocities were computed directly from the
rotation matrices following the method described in the study of
Zatsiorsky [26]. Subsequently, the Euclidean norm was calculated over
all three different axes. The exact moments of peak angular velocities
were found analytically by fitting a second-order polynomial function to
eleven measured data points. These data points included five samples
before and after the samples closest to the maximum angular velocity.
The separation time was calculated as the time interval between the
pelvis and trunk peak angular velocities [18].

Elbow joint torques were calculated based on the top-down method
based on the Newton–Euler equation of motion, starting in the hand
of the throwing arm. The segment center of mass position and the
moments of inertia were estimated according to Zatsiorsky [26] and De
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Leva et al. [27]. The baseball was modelled with a mass of 0.145kg
attached to the hand. The mass linearly reduced by 10% over the
last ten samples (0.025s) before ball release. Ball release was defined
as the moment the wrist exceeded the position of the elbow in the
forward direction. The elbow joint coordinate system was expressed in
the anatomical coordinate system of the forearm, located in the middle
between the medial and lateral humeral epicondyle. The time series of
external elbow valgus torque was determined for each individual pitch,
covering the duration from foot contact to ball release. Subsequently,
the peak external valgus torque was derived from this time series data.
The time series of the segment angular velocities and external valgus
torque were visually checked for errors and mistakes.

Bony landmarks
(1) third proximal interphalangeal
(2) ulnar process styloid
(3) radial process styloid
(4) lateral humeral epicondyle
(5) medial humeral epicondyle
(6) acromion
(7) xiphoid process
(8) incisura jugularis
(9) 7th cervical vertebrae
(10) 8th thoracal vertebrae
(11 & 12) anterior superior iliac spine
(13 & 14) posterior superior iliac spine

Table 4.1.: Bony landmarks used in the study.

4.2.5. STATISTICAL METHODS AND MODELING
For the -th throw, let yi, i1, i2, i3, i4 and 5 denote the
external valgus torque, pelvis angular velocity, trunk angular velocity,
separation time, weight and height respectively. Set i = (i1, i2, i3)
and i = (i4, i5). We aim to model the relationship between yi and
(i,i). The simplest type of model for this is the linear model given by

yi | β0, β, σ
2 ind∼ N(β0 + β′i + γ′i, σ

2) (4.1)

where the symbol
ind∼ denotes "independently distributed as". However,

note that the data from repeated measurements such as in this study
have the structure in which observations on an individual-level (pelvis
and trunk peak angular velocities, separation time, external valgus
torque) are nested within baseball pitchers on a group-level. As such, a
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simple linear model like (4.1) won’t be able to take into account that
throws by the same pitcher tend to be more similar than throws by
different pitchers. This phenomenon is illustrated in Figure 4.1, where
we have also included weight and height to see how external valgus
torque is affected by these characteristics. This figure strongly suggests
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Figure 4.1.: Exploratory data analysis for the relation between external
valgus torque and pelvis peak angular velocity (pelvis PAV),
trunk peak angular velocity ttrunk PAV) and separation time.
In each subpanel, the influence of one predictor on external
valgus torque is displayed. In the upper three panels,
least-squares fits have been superimposed (separately, for
each player).

a two–level linear model, with both varying intercepts and varying
slopes. The need for such a model is most easily seen from the panel
with "Trunk PAV". If we would fit a single line through the data, this
would imply a negative relationship between external valgus torque and
trunk peak angular velocity (Trunk PAV), whereas for each individual
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player, this relationship is positive. This can be seen as an instance of
Simpson’s paradox, well known in statistics. Specifically, we propose
the following model:

yi | α1, . . . , αJ, β1, . . . , βJ, σ
2 ind∼ N(μi + γ′i, σ

2)

μ = αj[i] + β′
j[i]
i

(4.2)

We have J = 11, the total number of pitchers in the study, and j[ ] = k
if the -th throw corresponds to k-th pitcher in the data set. We
follow the Bayesian approach to statistics, where unobserved quantities
get assigned a prior distribution, reflecting the (lack of) information
we have about their values before collecting the data. We impose

α1, . . . , αJ
iid∼ N(0, σ2

α
), β1, . . . , βJ

iid∼ N3(0, σ2β 3×3) and γ ∼ N(0, σγ2). The

symbol
iid∼ denotes ”independent and identically distributed as”. We took

default values from rstanarm [28], which means σα = σβ = σγ = 2.5.
Taking mean-zero priors is justified as we standardized (i.e. transformed
to zero-mean and unit standard deviation) each of the predictors before
fitting the model. Also for σ, σα and σβ we took the default prior
mean-one Exponential distribution from rstanarm [28].

We used leave–one–group–out cross–validation (LOGO–CV) to select
the model with the best predictive performance. LOGO–CV is a specific
type of k–fold cross–validation that utilizes data from each individual
pitcher as a test set. The number of folds, therefore, equals the number
of pitchers. For every fold, the model is trained on data from J-1 pitchers
and tested on the data from the one left-out pitcher. Models were
compared according to their expected log-predictive density (elpd) as
described in the work of Vehtari [29, 30].

We used posterior predictive distributions to generate data samples
whose average is then compared to the real data. We interpret the
generated data as the data sample that we might collect tomorrow if the
data collection process remains the same as it initially was. Posterior
predictive checks were used to test the performance of the model and
visually inspect how much generated data samples match the observed
ones.

4.3. RESULTS
A total of 240 throws by 11 pitchers were included in the analysis. The
number of pitches varied from 19 to 25 throws per pitcher. Descriptive
statistics of included variables are shown in Table 4.2.

Expected log–predictive density (elpd) was a chosen measure of
model fit and it was subsequently used to compare models for model
selection. The difference in elpd of the fitted two-level varying–intercept,
varying–slope Bayesian models is shown in Figure 4.2. Models include
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Variables Mean ± Standard Deviation

Pelvis peak angular velocity [°/s] 669.87 ± 99.06
Trunk peak angular velocity [°/s] 964.85 ± 68.61

Separation time [ms] 32.70 ± 22.98
Weight [kg] 80.47 ± 11.11
Height [cm] 186.26 ± 5.85

External valgus torque [Nm] 52.76 ± 9.59

Table 4.2.: Descriptive statistics for the variables included in the analysis.

Figure 4.2.: Estimates of absolute expected log–predictive density (elpd)
difference (dot) using leave–one–group–out cross–validation.
Vertical error bar for each model indicates the standard
error of the elpd difference estimates. The order on the
x–axis follows the ranking starting with the model with best
predictive performance on the left. Predictors included in
the analysis are pelvis peak angular velocity (P), trunk peak
angular velocity (T), separation time (S), pitcher’s weight
(W) and height (H).

various combinations of observed kinematic predictors (P – pelvis peak
angular velocity, T – trunk peak angular velocity, S – separation time)
with the addition of pitcher’s weight (W) and height (H) to all the
models. The ordering of the models in Figure 4.2 reveals that the
model including a set of predictors TSWH showed the best predictive
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performance, and it is therefore the selected model. Table 4.3 shows
parameter estimates from the selected model TSWH, based on a table
generated by shinystan [31]. The small elpd differences between
the selected model TSWH and the second ranked model TWH indicate
almost similar performance in predicting external valgus torque.

Figure 4.3.: Posterior predictive checks compare the observed outcome
variable y to the average of simulated datasets yrep from
the posterior predictive distribution for the selected model
TSWH. The model includes a set of predictors of trunk peak
angular velocity (T), separation time (S), pitcher’s weight
(W), and height (H). Bayesian conditional R2 value is 0.916
(95% CI [0.899, 0.931]), and the marginal R2 value 0.927
(95% CI [0.847, 0.969]), where CI is a confidence interval.
The marginal R2 considers only the variance of the fixed
effects, while the conditional R2 takes both the fixed and
random effects into account [32].

The performance of the final model TSWH was tested through a
posterior predictive check. In Figure 4.3 the average of the data samples
generated from the posterior predictive distributions is compared to the
observed data. If the model is a good fit for the data, then observed
and simulated data should be aligned. The posterior predictive check
shows that the observed data are more dispersed compared to the
average of the generated data samples from the posterior predictive
distributions. Bayesian conditional R2 value is 0.916 (95% CI [0.899,
0.931]), and marginal R2 value 0.927 (95% CI [0.847, 0.969]), where CI
is a confidence interval. The marginal R2 considers only the variance
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of the fixed effects, while the conditional R2 takes both the fixed and
random effects into account [32].

4.4. DISCUSSION AND IMPLICATIONS
Poor pitching mechanics [33] and overloading of the pitching arm can
negatively affect pitching performance and at the same time put the
elbow joint at great risk of injuries [12, 34]. Therefore, estimation of
the external valgus torque based on pitching mechanics is an important
step toward monitoring the elbow load in the field. This study shows
promising results of Bayesian hierarchical models in the prediction of
the external valgus torque, used as a proxy of elbow load, based
on (inter)segmental rotation in fastball pitching.

The results show that it is possible to predict the elbow external
valgus torque based on the pelvis and trunk kinematics and separation
time. Although it was hypothesized that the model including all three
parameters would have the best performance, according to LOGO-CV
the best predictive model is TSWH which includes peak trunk angular
velocity, separation time, weight, and height (Bayesian conditional R2

value is 0.916, marginal R2 value is 0.927). The reason why the pelvis
angular velocity was not included in the final model might be explained
by the fact that the trunk angular velocity contains information from the
proximal pelvis segment according to the proximal-to-distal sequence.
The contribution of the separation time to the prediction of the external
valgus torque indicates the importance of optimal timing between the
pelvis and trunk segments in the kinetic chain for safe and efficient
pitching. However, it is yet unknown what the “optimal” separation time
is. The results in this study showed that certain pitchers exhibited a
positive correlation between separation time and external valgus torque,
while others demonstrated a negative or no correlation (Figure 4.1).
Oyama et al. [35] did not find a relationship between the separation
time and external valgus torque on group level. This might indicate that
the optimal timing is individually depended, with the proviso that the
pelvis and trunk are in sequence. The trunk can produce a lot of power
due to its segmental mass, although proper timing is needed for optimal
contribution to the ball speed [36, 37]. The increase in trunk rotation
does not only increase the ball speed, but it increases the external
valgus torque as well [20]. In line with our results, several studies
showed a relationship between trunk kinematics and the external valgus
torque [7, 20, 36]. In addition, we showed that it is possible to predict
the external valgus torque for individual pitchers based on their trunk
peak angular velocity and the separation time.

Predictions of the external valgus torque based on the trunk peak
angular velocity and the separation time are important in relation to
elbow injuries. Manipulation of these biomechanical parameters with



4.4. Discussion and implications

4

71

training increases the ball speed [38] and may decrease the external
valgus torque [20]. However, a pitcher throwing according to an optimal
kinetic chain, with a reduced level of external valgus torque is still at risk
of sustaining an injury due to repetitive pitching. Therefore, monitoring
the external valgus torque is important for managing the risk of
excessive elbow loading. Taking into account that the values of external
valgus torque vary among pitchers of different ages, levels of play [21],
and the variability within-individual pitchers [22], understanding the
elbow loading for each pitcher based on his individual characteristics
and pitching mechanics may be the base for the development of an
“early warning system” for safe and efficient pitching.

This paper introduces the application of Bayesian hierarchical models
to repeated measurements of pitching kinematic and temporal param-
eters. Such models account for the within–pitcher similarity and at the
same time allow for the gradation of differences between the pitchers in
the prediction of the external valgus torque. The small difference in elpd
between the selected model TSWH and the model TWH ranked second
in terms of LOGO–CV refers to their similar predictive performance
(Figure 4.2). In addition, posterior predictive checks reveal similar
model fit for the TWH model compared to the TSWH model. From
the practical point of view, this means that monitoring external valgus
torque is already possible based on the single kinematic variable (trunk
peak angular velocity). However, the separation time is related to the
efficiency of the kinetic chain and its breakdown may be an indicator
of the fatigue [39]. Therefore, considering the practical relevance of
both parameters for elbow load monitoring over a longer period, we
select the predictive model including trunk peak angular velocity and
separation time as the final one. The comparison between the Bayesian
and frequentist approach to multilevel analysis and fitting the final
TSWH model is discussed in the Appendix B.

One of the limitations of this study is the inclusion of only fastball
pitches. Studies have shown that the elbow load is lower in the
change-up or breaking balls [40], however, the link between the torso
kinematics and elbow load has not been investigated yet. Furthermore,
the current study had a very low sample size (n = 11) and included
repeated measurements from a single data collection event. The low
sample size could affect Bayesian mixed models in terms of overfitting
and imprecise inferences. However, the selected model performance
criteria based on elpd can help mitigate these issues. The lack of
longitudinal data collection limits the detection of patterns in elbow
loading based on pitching mechanics. A larger data sample including a
wider range of age groups and levels of play may improve the predictive
performance and lower the uncertainty in predicted external valgus
torque. Collecting longitudinal data, including reported injuries, would
allow us to link the loading on the elbow joint to injury occurrence in
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individual pitchers. This information can be used as a base for setting
a pitcher’s injury threshold. If the elbow loading exceeds the estimated
threshold, the pitcher will likely have increased injury risk. Such
information may help coaches in training subscription and modification
of the pitching technique that leads to reducing the external valgus
torque and therefore the risk of elbow injury.

The final model proposed in this paper considered the practical
relevance of trunk kinematics and separation time between the pelvis
and trunk in managing injury risk and shows its potential utilization for
elbow load monitoring on the field. Trunk peak angular velocity and
the separation time can be recorded with wearable sensors, like inertial
measurement units [23, 41]. Such data recorded with sensors may be
used as input for the proposed model and provide actionable insight for
injury prevention in baseball pitching.

4.5. CONCLUSION
In this study, a model has been proposed to predict elbow load based
on the pelvis and trunk peak angular velocities and separation time
between them. Application of Bayesian hierarchical models on data
including the trunk peak angular velocity and the separation time
between the pelvis and trunk peak angular velocities show promising
results for the prediction of the external valgus torque in fastball
pitching. Such an approach allows individualized prediction of the
external valgus torque for each pitcher, which has a great practical
advantage compared to group–based predictions in terms of injury
assessment and injury prevention.
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In the Appendix we compare the outcome of the multilevel linear model
fitted within frequentist framework with the outcome of the Bayesian
hierarchical model presented in the paper.

We used a frequentist approach to fit the final model (TSWH) includ-
ing trunk peak angular velocity, separation time, pitcher’s weight, and
height as predictors. The analysis was performed using the lme4 R pack-
age (version 1.1.26). When fitting a multilevel model within the fre-
quentist framework using the lme4 package, parameter estimation is
done by performing restricted maximum likelihood (REML) estimation.
The extended summary including corresponding p-values from the lmerTest
R package is listed in Figure B.1.

Figure B.1.: Outcome of the linear mixed-effects TSWH model using R
package lme4. TSWH model includes following set of predic-
tors: trunk peak angular velocity, separation time between
pelvis and trunk peak angular velocity, pitcher’s weight and
height.

The residual within-pitcher standard deviation is estimated as 0.28620.
The estimated standard deviations of the pitcher intercepts are 0.58907.
The estimated standard deviations of the pitcher slope for Trunk_PAV and
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Separation_Pelvis_Trunk are 0.37041 and 0.03299 respectively. The fixed
regression slopes for Weight and Height are significant, meaning taller
and heavier pitchers have higher external valgus torque. The error term
(Variance) for the slope of Trunk_PAV is 0.137205 and for the slope of
Separation_Pelvis_Trunk is 0.001088.

Unlike the frequentist approach, the Bayesian approach accounts for
all the uncertainty in the parameter estimates when predicting varying
intercepts and slopes. We used rstanarm R package (version 2.21.1)
to obtain simulations that summarize uncertainty about coefficients and
predictions. Bayesian estimation is performed via Markov Chain Monte
Carlo (MCMC) estimation approach whose each step involves random
draws from the parameter space.

The summary of the final TSWH model whose parameter estimates are
listed in Table 4.3 is shown in Figure B.2.

Figure B.2.: Outcome of the linear mixed-effects TSWH model using R
package lme4. TSWH model includes following set of predic-
tors: trunk peak angular velocity, separation time between
pelvis and trunk peak angular velocity, pitcher’s weight and
height.

The estimated standard deviations of the pitcher intercepts are 0.626,
which is larger than the REML estimate (0.58907). The estimated stan-
dard deviations of the pitcher slopes for the parameters Trunk_PAV and
Separation_Pelvis_Trunk are 0.353 and 0.092. Those estimates are both
larger than the REML estimates (0.37041 and 0.03299 respectively).
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The difference in estimates between frequentist and Bayesian approaches
lies in the difference in estimation approaches. While lme4 uses in this
case restricted maximum likelihood (REML) estimation, rstanarm per-
forms full Bayesian inference via MCMC. REML tends to underestimate
uncertainties due to relying on point estimates of hyperparameters. On
the other hand, the Bayesian approach propagates the uncertainty in the
hyperparameters throughout all levels of the model.

The advantage of multilevel models fitted within the Bayesian frame-
work is a specification of prior distributions over the regression coeffi-
cients and any unknown covariance matrices.

This can help in stabilizing computation as well as in incorporating im-
portant information into the analysis that is not included in the data. One
of the limitations of multilevel models fitted with rstanarm compared to
lme4 is the computation speed. Fitting models with REML tends to be
much faster than fitting a similar model using MCMC.
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5.1. INTRODUCTION
Sport-related injuries impair individual and team participation and
performance. The probability that an athlete will sustain an injury is
determined by the interconnection between the internal and external
risk factors and (a series of) events that may lead to an injury [2–4].
Constant interaction between the athlete and the environment and
changes in training load affect the time needed for the athlete’s
recovery and training adaptation and change the athlete’s susceptibility
to injury over time [3, 5, 6].

Injuries are traditionally classified based on the mode of onset.
Sudden onset injuries, also known as acute injuries, result from a
specific identifiable event. On the other hand, injuries with a gradual
onset, known as overuse injuries, are caused by repeated microtrauma
[7]. Overuse injuries often go unnoticed in their early development
phase due to the lack of associated symptoms (e.g. pain, functional
limitation). Consequently, athletes are likely to continue to train and
compete despite the increased risk of sustaining a more severe injury
in the long run [8, 9]. While overuse injuries are generally considered
to be preventable [10, 11], the absence of a specific inciting event and
their gradual onset make them difficult to foresee.

In 2020, the International Olympic Committee published a consensus
statement offering recommendations for collecting and reporting data
on injury and illness in sports [7]. The severity of health problems
in sports can be described based on several criteria, including time
loss, athlete’s self-reported health complaints, clinical extent of the
illness or injury and societal cost. The Oslo Sports Trauma Research
Center Questionnaire on Health Problems (OSTRC) [9, 12] is a widely
adopted monitoring tool that complements time-loss severity measures.
Additionally, it records symptoms and functional consequences of
injuries. The OSTRC questionnaire is used to evaluate athletes’ health
status through the domain of reduced sports participation, training
modification, performance reduction and symptoms associated with
injuries. The responses to each of the four main questions are allocated
a numerical value from 0 to 25 that sum up into the severity score
ranging from 0 to 100 at specific time points. One of the limitations
of the adopted OSTRC outcome is that the severity score has not yet
been validated as a proxy for injury severity. Secondly, the severity
score represents an ordinal-scale variable with 25 possible outcomes.
Consequently, several researchers addressed the analytical benefits of
representing various states of athletes’ health on an ordinal scale [9,
13, 14].

Given the longitudinal nature of the data collected with the OSTRC
questionnaire and the often mixed acute and repetitive mechanisms of
injuries, we propose a multistate injury framework as a novel approach
to the analysis of the OSTRC data. In this framework, we assume
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an athlete can be in a set of latent states, each state representing
athlete’s health status. Athletes can transition between the states many
times during the follow-up based on their monthly, weekly, or even
daily changes in training exposure. The statistical model we use for
an athlete’s health status is known as a latent Markov model. Latent
Markov models are well established in the literature of longitudinal data
analysis [15–17] when the interest lies in describing individual changes
with respect to a latent status [18]. The latent status is represented
by an unobserved process which is modelled by a first-order Markov
chain. In the proposed framework, the latent status of interest is the
athlete’s injury state. The number of unobserved (latent) injury states is
estimated from the response variables of the OSTRC questionnaire.

The application of latent Markov models is demonstrated in data
collected by the repeated administration of the OSTRC questionnaire
from the Dutch Olympic waterpolo monitoring program [19]. The
application investigates how the athlete’s injury state changes over
time depending on time-varying training exposure. Furthermore, the
study aims to demonstrate the application of the proposed model for
predicting injury risk in the form of a probability of transition between
the injury states under future training scenarios.

Our main contributions are: (i) using latent Markov models for
analysing the OSTRC-questionnaire and forward prediction under future
training schedules, this is done using the LMest package in the statistical
language R; (ii) a novel Bayesian analysis for drawing from the posterior
distribution using the probabilistic programming language Turing in the
language Julia; (iii) application of these methods to data obtained from
the Dutch Olympic waterpolo team.

This chapter is organised as follows. In Section 5.2, we describe the
dataset from a longitudinal study performed on waterpolo players within
the Dutch Olympic monitoring program. Section 5.3 describes the latent
Markov model with time-varying covariates. Section 5.4 presents the
results of applying the proposed approach using the LMest R package.
In Section 5.5 we fit a submodel of the model fitted with LMest using
the probabilistic programming language Turing. The chapter ends with
a discussion, Section 5.6, followed by conclusion in Section 5.7. The
Appendix C contains some technical details for the approach used in
Section 5.5.

5.2. OSTRC OVERUSE INJURIES QUESTIONNAIRE
In order to illustrate the application of latent Markov models to assess
changes in athlete’s injury status, we consider OSTRC data derived from
a longitudinal study on 24 waterpolo players within the Dutch Olympic
monitoring program [19]. The study is carried out through the repeated
administration of the OSTRC questionnaire that has been filled in by the
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athletes on a weekly basis over the 72–week–long follow–up. The data
contain athletes’ weekly exposure (for different types of training and
competition [7]) as well as data on athlete’s health complaints.

We focus on the dichotomous questionnaire outcomes, which are
formulated in a way that responding 1 to any of the questions indicates
the presence of a health complaint affecting the corresponding domain.
We consider four items (i.e. 4 main questions) — listed in Table 5.1 —
and three time–varying covariates:

• time spent on a sport-specific activity in the last 7 days (in hours),
• time spent on a strength training in the last 7 days (in hours),
• time spent on a competition in the last 7 days (in hours).

The interval between consecutive occasions at which the questionnaire
was administered is one week, equal for all participants.

Table 5.1.: The questions selected for the injury risk assessment. The
last column denotes the percentage of response 1 (which
means the answer to the question was “yes”) to each
question during the follow-up.

Question %

Participation: Have you had any difficulties participating in
training due to injury, illness, or other health
problems during the past seven days?

22.36

Modification: Did you have to modify your training due to
injury, illness, or other health problems during
the past seven days?

12.29

Performance: Have your injury, illness, or other health
problems affected your performance during
the past seven days?

14.72

Symptoms: Have you experienced symptoms/health com-
plaints during the past seven days?

22.89

5.3. STATISTICAL METHODS: LATENT MARKOV MODELS
Hidden Markov models, also known as state-space models, are well
known statistical models for modelling serial dependence. Such models
consist of two components: (i) a latent (unobserved) Markov chain
which represent a “state” we are interested in; (ii) observations at each
time that depend on the latent state at that time. We will use this
framework as follows: for each subject we assume the hidden process
takes values in {1, . . . , k}, which represents to what extent the subject
is injury prone. Observations at each time are provided by answers to 4
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binary questions extracted from the OSTRC questionnaire. Transitions of
the latent process over time are possibly affected by characteristics of
the subject and training load characteristics. Based on the questionnaire
outcomes we then aim to find out how many latent states best fit
the data, and how training loads affect state-transitions. Moreover,
we aim to reconstruct latent states (this is known as “smoothing” in
signal processing literature). A key advantage is that once the model
has been fitted, we can simulate future scenarios where we assess
the consequences of a particular training schedule to risk of injury.
Introducing a model with temporal dependence is therefore of key
importance.

In the following, as common in statistics, we denote random quantities
by capital letters and their realisations (i.e. observations) by lower case
letters. Let yijt ∈ {0,1} denote the response variable to the jth question
in the OSTRC questionnaire administered by the ith subject in week t,
with  = 1, . . . , n, j = 1, . . . , J and t ∈ 1, . . . , Ti. We use the convention
that yijt = 1 means that the question has been answered by “yes”.
The response vector for subject  at time t is given by the vector of
all answers yit = (y1t , . . . , yiJt) ∈ {0,1}J. For subject i, let xit be the
vector of time-varying covariates at time t. In our application, these are
the times spent in the last 7 days (in hours) on sport-specific activity,
strength training and competition.

Following the latent Markov approach, for each subject , we assume
the existence of latent process (Ui1, ..., UiT). The latent variable Uit
represents the injury status of the ith subject in week t. The sequence
of latent variables Ui1, ..., UiT is assumed to follow a (first–order) Markov
chain with state space {1, . . . , k}, where k is the number of latent
states. For mathematical convenience, we assume that the responses
at time t for subject , Yi1t, . . . , YiJt, are independent conditional on the
latent state Uit.

5.3.1. SPECIfiCATION OF LATENT PROCESS
The latent process is assumed to be a first order Markov chain. This
means that its dynamics are fully governed by specifying the distribution
of its initial state and the distribution of transitioning from time t − 1 to
time t.

INITIAL PROBABILITIES OF THE LATENT PROCESS
Let πi be the initial probability vector that is the column vector with
elements π() for  ∈ {1, . . . , k}.

i1() = P(Ui1 =  | xi1). (5.1)

We allow these probabilities to depend on the individual covariates as
an adjustment for the differences between the individuals in terms of
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their injury status at the beginning of the follow-up. As we assume that
the latent states are ordered, we require that the initial probabilities
depend on the individual covariates xi1 by adopting a multinomial logit
parametrization as follows:

log
i1(d)

i1(1)
= 〈x̃i1,βu〉, d = 2, . . . , k, (5.2)

where x̃it = (1,xit) and 〈,b〉 denotes the inner product of two vectors 
and b. An equivalent description to (5.2) is given by1

(i1(1),i1(2), . . . ,i1(k)) = softmx(0, 〈x̃i1,β2〉, . . . , 〈x̃i1,βk〉).

This helps in interpreting βu: i1() is an increasing function of x̃′i1βu,
for  ̸= 1.

TRANSITION PROBABILITIES OF THE LATENT PROCESS
For each subject , we assume the latent Markov process {Uit}Tt=1 is a
first order Markov chain where the initial state satisfies (5.1). Let it be
the transition probability matrix with elements it(d | ), , d = 1, . . . , k
that gives the probabilities of transitioning from state  at time t − 1
to state d at time t. We assume transition probabilities of the latent
Markov chain to depend on individual covariates

it(d | ) = P(Uit = d | Ui,t-1 = ,xit), t = 2, . . . , T.

Following [20], we adopt the following multinomial logit parametrization

log
it(d | )

it( | )
= x̃′

it
γud, d ∈ {1, . . . , k} \ d. (5.3)

5.3.2. SPECIfiCATION OF CONDITIONAL RESPONSE PROBABILITIES
In case subject  at time t answers “yes” to question j, then yijt = 1,
else yijt = 0. We assume that the distribution of the response variables
depends only on the latent status by imposing

p(Yijt = 1 | Uit = ,xit) = λj() (5.4)

for each , j, t and  ∈ {1, . . . , k}. Moreover, we require these conditional
probabilities to satisfy the constraint

0 < λj(1) ≤ λj(2) ≤ ... ≤ λj(k) < 1 (5.5)

for j = 1,...,J. This assumption has been used before in [20] and ensures
identifiability. The constraint (5.5) implies that the latent states are

1The softmax function is given by softmx(1, . . . , k) = (e1 , . . . , ek )/
∑k

=1 e
i .
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ordered such that the individuals in the first state are those with the
best status (least injury prone) and individuals in the last state are those
with the worst injury status. Note that while (5.4) is the same for all
subjects, each subject’s injury status is modelled by a separate latent
process.

5.3.3. PARAMETER ESTIMATION AND MODEL SELECTION
Parameter estimation of β and γd is done by maximum likelihood in
LMest. Up to this point, we have considered the number of latent states
to be fixed. For choosing it in a data adaptive way, we rely on the
Bayesian Information Criterion (BIC) given by

BC = −2ℓ̂ + p log(n) (5.6)

where ℓ̂ denotes the maximum log-likelihood of the model, n denotes
the number of subjects and p denotes the number of free parameters.
The optimal number of latent states is the one corresponding to the
minimal value of BIC [20, 21].

5.3.4. PATH PREDICTION
Given the estimated model, interest lies in predicting the most likely
injury state based on the latest state occupied and the scheduled
weekly training exposure. The predicted states over time follow a path
that illustrates the progression of injury status over time based on
the time-varying training exposure. This indicates the predicted injury
risk for an individual athlete at the next time point and serves as a
support for sports practitioners and coaches in decision-making during
the training process.

Assume that at time T parameters have been estimated based on
all subjects in the study. Additionally assume for subject  a training
schedule has been determined for the upcoming S weeks, i.e. weeks
T + 1, . . . , T + S. This implies xi,T+1, . . . ,xi,T+S have been specified. Then
we can forward simulate scenarios from the latent process {Uit}

T+S
t=T to

assess injury risk for subject  under the proposed training schedule.
This is simply an instance of Monte Carlo simulation where we use a
large number of forward simulations which are initialised according to
inferred probabilities for UiT.

5.4. APPLICATION USING LMEST PACKAGE
In this section, we show the results obtained from the application of latent
Markov models on the OSTRC longitudinal data from Dutch Olympic
waterpolo players described in Section 2. The original questionnaire
outcome was dichotomized, where 1 indicates the presence of a health
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complaint. We used the following covariates: the sport-specific training
exposure (in hours), the strength training exposure (in hours), and the
competition exposure (in hours) in the last 7 days. We consider the
latent Markov model, where these time-varying covariates affect both
initial and transition probabilities.

We illustrate the application of latent Markov models fitted with R
package LMest [22]. Whereas the lmest function within the LMest
package knows how to deal with missing questionnaire responses, it
does not allow missing data in covariates. As the data set we study is
very unbalanced, with a different follow-up duration for all participants,
it was preprocessed to make it balanced by adding missing values in the
response and setting missing covariates equal to zero. This last choice
implies that when the covariates are missing we assume transitions of
the latent process to all states are equally likely, something which is
questionable and can in fact be avoided (see Section 5.5.1).

The first step of the analysis aimed to choose the number of latent
states k. We fitted the model for increasing values of k until the BIC
index decreased with respect to the previous value.

k ℓ̂ np BIC

1 -3526.16 4 7065.04

2 -1707.37 20 3478.30

3 -1625.84 44 3391.52

4 -1596.51 76 3434.55

Table 5.2.: Latent Markov models with covariates: Maximal log-likelihood

(ℓ̂), number of parameters (np) and BIC index for a number
of latent states k between 1 and 4. The lowest value of the
BIC index indicates that the most suitable number of latent
states is k=3.

For a number of latent states k ranging from 1 to 4, Table 5.2 displays
the maximum value of the likelihood (ℓ̂), the number of parameters
(np) and the value of the BIC index. We conclude that the lowest
value of the BIC index is obtained for the model with k = 3 latent
states. Therefore, the resulting multivariate latent Markov model with
covariates will include three latent states.

The estimates of the conditional response probabilities λj() are
reported in Table 5.3 for each latent state  and OSTRC question j. The
ordered latent states represent three different levels of the injury status
for an individual athlete.

Based on the results the first latent state corresponds to athletes
with a very low tendency to experience any physical complaints. The
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j u = 1 u = 2 u = 3

1 0.00 0.95 1.00

2 0.00 0.19 0.93

3 0.00 0.33 0.99

4 0.01 0.96 1.00

Table 5.3.: Estimates of the conditional response probabilities λj() as
given in (5.4), where j represents the item (i.e. question from
the OSTRC questionnaire) and  represents the latent state
(i.e. injury status). As an example λ2(3) = 0.93 is to be
interpreted as the probability that a subject in state 3 answer
“yes” to the second question. It is clear that subjects in state
3 answer “yes” to all of the questions with high probability.
In addition, questions 1 and 4 mostly distinguish between
either state 1 or states 2 and 3. Questions 2 and 3 better
distinguish between states 2 and 3.

second latent state corresponds to athletes with a high tendency to
experience difficulties participating in training due to health complaints
and related symptoms but a lower tendency to modify their training due
to health complaints or have their performance affected by it. The third
latent state corresponds to athletes with a high tendency to experience
physical complaints.

Figure 5.1.: Estimates for β2 and β3, affecting the distribution of the
initial probabilities of the latent Markov process (Cf. (5.2)),
obtained by LMest. The dots represent the estimates; the
horizontal line segment corresponding to a dot shows the
estimate ± its standard error. Note the different scaling of
the horizontal axes in both panels.
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Estimates of β2 and β3 that affect the initial probabilities of the latent
Markov process are visualised in Figure 5.1. The estimated negative
intercepts indicate that, in general, athletes report full participation
without health complaints at the beginning of the follow-up. The positive
Competton estimates indicate that more hours spent in competition
leads to a higher probability of a worse initial injury status.

Figure 5.2.: Estimates for γd ( ̸= d), the transition probabilities of the
latent Markov process (Cf. (5.3)) obtained by LMest. The
dots represent the estimates; the horizontal line segment
corresponding to a dot shows the estimate ± its standard
error. As an example, the topright panel shows the estimates
for γ13. It can be seen that the coefficient for strength is
negative. This means that an increase of strength will lower
the probability of transitioning from state 1 to 3.

Estimates of the regression coefficients for γd ( ̸= d), the transition
probabilities of the latent Markov process are visualised in Figure 5.2.
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In this figure, the scale of each subpanel is fixed. To better read off
the coefficients for Sport, Strength and Competton, this figure is also
shown in a different way in Figure 5.3. Here, the estimate for intercept
is not shown and the scaling of each subpanel varies freely. The given
estimates measure the influence of sport-specific training exposure,
strength training exposure and competition exposure on the transition
between different injury states.

Figure 5.3.: Adjustment of Figure 5.2, where the estimates for the
intercepts have been removed and the scales for each
subpanel are not fixed.

The influence of the covariate Sport is negative. This means that
the probability that an athlete moves from the first to the third injury
state is lower for athletes with more sport-specific training exposure
than for the ones with less (first row in Figure 5.2). On the other
hand, Strength has a positive effect on the transition from the first
to the second state. In other words, more strength training exposure
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increases the probability that an athlete experiences difficulties in
training participation and health complaint - related symptoms. The
positive effect of the covariate Competton indicates the increased
probability of health complaints affecting training participation and
causing related symptoms when the competition exposure is higher.

5.4.1. PREDICTION OF INJURY RISK UNDER DIFFERENT TRAINING
SCENARIOS

By plugging in the parameter estimates, the latent process can be
forward simulated under different training schedules. Here, we consider
the training schedule shown in Figure 5.4.

Figure 5.4.: Training schedule for 10 weeks.

In Figure 5.5 we show the marginal distribution over the 3 states
obtained from the method outlined in Section 5.3.4. Here, week "0"
represents the actual state of the athlete. The top panel shows changes
in injury risk for an athlete who was for sure in state 1 at the end of the
follow-up. The predicted path indicates that given the weekly training
exposure, the athlete’s probabilities are changing every week, with the
highest probability of staying in state 1 for all the upcoming ten weeks.
The middle panel shows how injury risk changes for the athlete who
was in state 2 at the end of the follow-up. With the changes in weekly
training exposure, the athlete’s probabilities of occupying each state
also change over time. Modifications in the training exposure result in
a reduced probability of staying in the second state and an increased
probability of transitioning to the first state. Finally, the bottom panel
shows the changes in predicted probabilities in injury risk for an athlete
that was in the third state. With the modifications in the weekly
training exposure the probability of staying in the same state reduces,
with probabilities of occupying the second and the first state increasing
accordingly.
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Figure 5.5.: Marginal distribution over the 3 states obtained from the
method outlined in Section 5.3.4. Here, week "0" represents
the actual state of the athlete.

5.5. BAYESIAN APPROACH
In this section we adopt a fully Bayesian approach. Contrary to our earlier
approach this incorporates uncertainty in the parameter estimates in
path prediction. Moreover, we show that our implementation is more
friendly to missing data. In particular, observing different athletes over
different time spans poses no restriction and therefore there is no need
to artificially add missing data, as was needed to fit the models with
LMest.

We assume a prior specification on the initial latent state of each
subject. In addition we will detail prior distributions on γd ( ̸= d)
and the conditional response probabilities in (5.4). Once specified, the
Bayesian paradigm postulates that all inferential conclusions are based
on the posterior distribution. As this distribution is not available in closed
form, we recursively compute the likelihood and use the probabilistic
programming language Turing [23] within the Julia-language ([24]) to
sample from the posterior. Details can be found in Section C.
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5.5.1. TRANSITION PROBABILITIES OF THE LATENT PROCESS
To reduce notation, we assume below that the number of latent states
is 3. As before, the number of questions in the questionnaire is denoted
by J and hence J = 4 in our data example.

The numerical results presented in this section assume a submodel of
the model specified in Section 5.3.1, where only transitions to adjacent
states are possible. Hence, we parametrise the transition matrix by
vectors γ12, γ21, γ23 and γ32 such that

t = softmx .





0 〈x̃t ,γ12〉 −∞
〈x̃t ,γ21〉 0 〈x̃t ,γ23〉
−∞ 〈x̃t ,γ32〉 0



 , (5.7)

where softmx . denotes that the softmx function is to be applied to
each row of the matrix. If any component of t is missing, we set t
equal to the identity matrix. This corresponds to assuming the latent
state does not change between times t − 1 and t.

5.5.2. PRIOR SPECIfiCATION
For γ12, γ21, γ23 and γ32 we impose conditionally independent standard
multivariate normal priors with covariance matrix σ times the identity
matrix. We assign σ the Exponential distribution with mean 3. The
underlying ideas is to provide tractable “uninformative” priors.

For each question j ∈ {1, . . . , J} we need to specify a prior on
λj := (λj(1), . . . , λj(3)) satisfying the ordering constraint in (5.5). We
give a construction for that. Let Zj(1), Zj(2), Zj(3) be independent
random variables with the standard Exponential distribution. Set
ψ() = 2 logistic(3/4) − 1, where logistic = 1/(1 + e−) and note that ψ
maps [0,∞) to [0,1). Then set

λj(ℓ) = ψ

 

ℓ
∑

=1

Zj()

!

, j = 1, . . . , J.

In Figure 5.6 we show histograms based on 10_000 samples from the
prior. As all Zj() are supported on the positive halfline and ψ is
increasing, (5.5) is satisfied.

We assume a uniform prior on the initial state of the latent process,
thereby avoiding estimation of β2 and β3.

5.5.3. APPLICATION
The recursive computation of the loglikelihood was implemented in the
Julia-language in the package LatentMarkovQuest (https://github.
com/fmeulen/LatentMarkovQuest). Subsequently the package Turing

https://github.com/fmeulen/LatentMarkovQuest
https://github.com/fmeulen/LatentMarkovQuest
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Figure 5.6.: Visualisation of distribution of λj by Monte-Carlo simulation.

Figure 5.7.: Estimates for γd ( ̸= d) obtained by the Bayesian approach,
the transition probabilities of the latent Markov process (Cf.
(5.3)). The dots represent the posterior means; the
horizontal line segment corresponding to a dot shows the
estimate ± its posterior standard deviation.

was used to draw from the posterior using the No-U-Turn-Sampler
(NUTS). Cf. [25].

We ran 4 chains for 2000 iterations of which the first half part is
considered burning. All Rhat values (Gelman-Rubin diagnostics, see e.g.
Chapter 13 in [26]) were very close to one, indicating convergence of
the MCMC chain. All density plots of parameter estimates (not included)
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look bell-shaped. Posterior summary plots are given in Figures 5.7 and
5.8.

Figure 5.8.: Adjustment of Figure 5.7, where the estimates for the
intercepts have been removed and the scales for each
subpanel are not fixed.

In Table 5.4 we have converted posterior means estimates for Zj(1),
Zj(2) and Zj(3) to conditional response probabilities. These estimates
are close to that found using the LMest package (see Table 5.3).

j u = 1 u = 2 u = 3

1 0.00 0.92 0.98

2 0.00 0.30 0.94

3 0.00 0.42 0.94

4 0.01 0.94 0.98

Table 5.4.: Estimates of the conditional response probabilities λj() as
given in (5.4), where j represents the item (i.e. question from
the OSTRC questionnaire) and  represents the latent state
(i.e. injury status). Results obtained by the Bayesian method
where posterior means for Zs were converted to λs.

In Figure 5.9 we added predictions for future states, depending on
whether the initial state was 1, 2 or 3. This figure is compared to be
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with the outcomes obtained by LMest shown in Figure 5.5 in Section 5.4.

Figure 5.9.: Forward simulated paths using Bayesian model for 3
atheletes.

5.6. DISCUSSION
In this paper we propose a multistate injury framework where the
latent Markov model is used to predict the risk of injury in the form
of a probability. This approach comes with several limitations. In this
application, we focused on the binary response variable where reporting
1 denotes the presence of a health complaint. The limitation of such an
approach is that it does not capture the full scale on which the health
complaint affects the four main domains. The next step would be to
test the proposed model on an original OSTRC outcome. Secondly, if
fitted by LMest, the adopted model does not allow missing data in the
covariates. This may affect the parameter estimates describing the
effect of each covariate on the probabilities of each injury state. Thirdly,
the percentage of reported complaints is low.

The approach proposed in this paper can be adopted in various sports
disciplines for any type of panel data as well as time-constant and/or
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time-varying positional, biometric and biomechanical data coming from
various sources (e.g. wearables). Injury risk prediction based on the
latent Markov model has the advantage of considering the dynamic
nature of the injury state. The outcome of the model can be used to
define an injury risk profile for an individual athlete. Such a framework
can support clinicians in making real-time risk management decisions in
training and (clinical) practice.

The predictions provided by LMest and the Bayesian method
qualitatively agree, but there are clear differences. These can probably
be attributed to either of the following:

• LMest does not allow for restricting the model to only transition
to neighbouring states, whereas we believe for this application
this is a reasonable assumption. The Bayesian approach uses this
restriction and therefore assumes a different model.

• Both methods use different handling of missing data. LMest
requires adding missing data to get the data in rectangular format,
i.e. have data for all participants over the same period. In
case covariates in a particular week are missing, it is assumed
that transitions to all states are equally probable. The Bayesian
approach assumes no state transition in this case.

• Estimates on LMest are based on maximum likelihood, whereas
the Bayesian reported estimates are posterior means. As in any
Bayesian analysis with small sample size, the prior may have some
influence on the estimates obtained.

There is clearly room for follow-up work. Most notably, we believe model
checking should be done. Due to the binary nature of the response
this is however much harder than for example in classical regression
analysis. As the primary aim of this paper is to show the potential of
latent Markov models, we leave this to future research.

5.7. CONCLUSION
This paper demonstrates the application of a latent Markov model for
injury risk prediction in a multistate injury framework. The application
of latent Markov models allows us to estimate the optimal number
of injury states and the influence of included personal characteristics
and performance measures on the transition between those states over
time. Furthermore, we show that it is possible to predict the injury risk
in the form of a probability for occupying each of the injury states based
on provided individual covariates.
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C.1. DRAWING FROM THE POSTERIOR
In this section we detail how we obtain samples from the posterior dis-
tribution. As can be seen, it consists of a simple recursive procedure
for computing the loglikelihood. This is subsequently passed on to the
probabilistic programming language.

C.1.1. RECURSIVE LIKELIHOOD COMPUTATION
It is well known that the likelihood can be computed efficiently in a recur-
sive way. Here we propose to use the backward information filter, which
can be viewed as a message passing algorithm. This is well known in the
literature, see e.g. [1] and [2]. Below, we denote the entrywise product
of two vectors by ⊙: for ,b ∈ Rk,  ⊙ b = (1b1, . . . , kbk). Let 1 ∈ R3
denote the vector with all elements equal to 1.

To reduce notational overhead, first assume just one subject, with re-
sponses y1, . . . , yT , where yt = (yt1, . . . , yt4), and latent process 1, . . . , T .

Define  7→ ht() = P(Yt = yt , . . . ,YT = yT | Ut = ). As  ∈ {1, . . . , k}
this map can be identified with the vector ht = (ht(1), . . . , ht(k)). The
backward information filter consists of the following steps:

• for t = 1, . . . , T, let

gtj =

¨

λj if ytj = 1

1 − λj if ytj = 0

and set gt = ⊙
J
j=1gtj;

• set hT = gT and

ht = gt ⊙ (,t+1ht+1) , t = T − 1, . . . ,1; (C.1)

• set h0 = 1h1, where 1 is the prior on the initial latent state.

The output of this scheme, h0 is the likelihood. Notationally, we have
suppressed any dependence on the parameter vector θ which under
model specification (5.7) is given by the θ obtained by concatenating
γ12, γ21, γ23, γ32 and λ1, . . . ,λJ. If we would do so, then indeed θ 7→
h0(θ) is the likelihood function. The extension to multiple subjects/par-
ticipants is straightforward, we run the backward information filter for
each subject and multiply the resulting likelihoods.

If an element in ytj is missing, we can simply set gtj equal to a vector
of length k containing only ones. If a covariate vector t is missing, we
need to specify t separately. There are two natural choices here: the
identity matrix (meaning no latent state-transition at the time the co-
variate is missing), or assigning equal probability to all state transitions.
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The latter can be obtained by setting the vector of covariates (including
the intercept) equal to the zero-vector. In our numerical results we have
chosen the former option.

Remark 1. Direct implementation of the scheme in C.1 is numerically
unstable. Instead, each time ht is computed we normalise it, i.e. we
divide each element in the vector by the sum of all elements. If we
denote this sum by Sθ(ht), then it follows that

log L(θ) = logh0(θ) +
T
∑

t=1

logSθ(ht). (C.2)

This avoids numerical underflow problems.

C.1.2. USING TURING
The basic implementation for inference in Turing reads as follows:� �

@model function logtarget(Os, p)
σ ~ Exponential(3.0)

γ12 ~ filldist(Normal(0.0, σ), p.DIM_COVARIATES)
γ23 ~ filldist(Normal(0.0, σ), p.DIM_COVARIATES)
γ21 ~ filldist(Normal(0.0, σ), p.DIM_COVARIATES)
γ32 ~ filldist(Normal(0.0, σ), p.DIM_COVARIATES)

Z1 ~ filldist(Exponential(), p.NUM_HIDDENSTATES)
Z2 ~ filldist(Exponential(), p.NUM_HIDDENSTATES)
Z3 ~ filldist(Exponential(), p.NUM_HIDDENSTATES)
Z4 ~ filldist(Exponential(), p.NUM_HIDDENSTATES)

θ = ComponentArray(γ12 = γ12, γ23 = γ23, γ21 = γ21, γ32 = γ32,
Z1=Z1, Z2=Z2, Z3=Z3, Z4=Z4)

Turing.@addlogprob! loglik(θ, Os, p)
end

model = logtarget(Os, p)

map_estimate = maximum_a_posteriori(model)
mle_estimate = maximum_likelihood(model)
chain = sample(model, Turing.NUTS(), MCMCThreads(), 2000, 4)� �

In the first part of the model definition the prior specification is given.
The observations are in the data-structure Os and all that is needed is
a function that computes the loglikelihood as outlined in Section C.1.1.
This function, called loglik, needs to implemented such that automatic-
differentiation libraries can operate on it to compute the gradient of the
log posterior density. p contains the number of covariates, the number
of hidden states and number of questions.

Once the model has been specified, the MAP (Maximum A Posteriori)-
and MLE (Maximum Likelihood Estimator) estimates can be computed
and MCMC-sampling can be carried out to draw from the posterior. Here,
we have chosen the No-U-Turn-Sampler.



C.1. Drawing from the posterior

C

111

Remark 2. Chapter 29.4.4 in [3] considers Bayesian Hidden Markov
Models and remarks that a Gibbs sampler that alternates sampling from
the smoothing distribution and updating the parameter θ may suffer
from bad mixing due to high correlation between the latent path and
θ. Here, we follow what he calls “collapsed” inference, where the latent
states of each person have been integrated out.
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The thesis established a methodology for the individualised prediction
of direct performance measures and biomechanical variables from
wearable sensor data collected through repeated measurements in
baseball pitching (chapter 2, chapter 3, chapter 4). By integrating
an athlete’s training exposure and health outcomes within a multistate
injury framework (chapter 5), the thesis strengthens the information
chain from training data collected with various data sources (wearable
devices, motion capture system, self-reported questionnaires) via
statistical models to actionable insights for injury risk management.

6.1. REPEATED MEASUREMENTS

Figure 6.1.: Hierarchical structure of the repeated measures data.

Performance and health monitoring in sports often involves repeated
measurements of individual athletes. This entails a single performance-
related (e.g. speed, distance) or health-related measurements (e.g.
heart rate, RPE) that are repeatedly collected over time on each
athlete that we want to monitor. Such repeated measurements
on the same individuals establish a two–level data hierarchy with
measurements or observations as level 1 units and athletes as level
2 units (Figure 6.1). Measurements are clustered within the groups
(athletes), where predictors can be available both on an individual–level
(level 1) or a group–level (level 2). The groupings on level 2 often
arise due to the differences between the individuals and their individual
characteristics [1, 2]. In other words, different athletes may not perform
equally in the measurements due to variations in their anthropometric
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measures, age, gender, experience and level of fitness. Therefore,
when analysing a single athlete’s data from repeated measurements, it
is beneficial to treat each athlete as one group. Implicit to this example
is the assumption that measurements from the same athlete are more
similar than measurements from other athletes that are monitored at
the same time. This supports a strong hierarchy in the structure of
repeated measurement data due to generally more variation between
individual athletes than between measurements within individuals.

The core of the thesis is an individualised analytical approach placing
individual athlete in the centre. Each athlete has its own set of internal
risk factors (e.g. age, gender, fitness level, history of injury) that when
interacting with extrinsic risk factors, such as training load, determines
the athlete’s susceptibility to injuries. This means that individual
athletes may respond differently to a given training stimulus and the
training load required for positive adaptation may significantly differ
between athletes despite a similar training background [3].

In the baseball setting, differences between pitchers of different ages
and levels of play have already been well established in the literature.
College level pitchers generally show higher trunk and pelvis peak
angular velocities than youth and high school pitchers [4]. Furthermore,
the development of pitchers’ throwing abilities follows their physical
development. Consequently, the stress applied on the elbow during
pitching varies among pitchers of different ages, and levels of play
[4] but also within an individual pitcher [5], and exposes pitchers to
different levels of injury risk.

Chapter 2 and chapter 4 highlight the inherent between-pitcher
differences and establish the methodology for the analysis of repeated
measurement data when the interest lies in individualised prediction of
future performance or injury outcomes. The chapter outcomes reveal
that enriching kinematic data with the pitcher’s personal characteristics
results in better predictions of ball velocity [6] and elbow loading [7] in
a single pitch. Chapter 5 proposes a multistate framework that binds an
individual’s training exposure and health status as a base for estimated
risk of injury. Such an approach may support the coaching team in
decision-making for an individual athlete and provide a tailor-made
advice for individual performance improvement in a healthy manner.

6.2. WEARABLE SENSORS FOR WORKLOAD MONITORING
IN BASEBALL PITCHING

Wearable sensors have become a widely used tool for the collection
of positional, biometric and biomechanical data. Sensor technology
integrated into watches, sleeves, straps and fabrics allows continuous
data collection during physical activity and it is suitable for athletes of
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all levels and all sports disciplines. Such massive data production can
be leveraged to create knowledge about the individual performance of
athletes. The understanding of an athlete’s body response to physical
activity enables us to use wearable devices not only for data collection
but also to provide personalised training advice to ensure consistent
and safe participation in sport.

Since the 1920s, people have been trying to utilize baseball data
to their advantage to predict outcomes and create winning teams [8].
Over the years, baseball grew into one of the biggest data-driven sports.
However, even though data are driving the decision-making process,
the use of data from wearables for workload monitoring and assessment
of baseball pitching performance is still limited.

Pitching mechanics, pitch count and pitch type are considered the
main factors in pitching training. A successful pitcher translates
movement skills into a variation of ball velocities and trajectories to
keep the batter off balance and complicate their anticipation of a
particular pitch type. Slight changes in pelvis and trunk kinematics may
result in a higher or lower ball velocity [9] which also determines the
success of the intended pitch type [10–14]. However, the duration of
the full pitching sequence is only 0.145s [15] which makes these small
modifications in kinematics and timing difficult to assess and capture.

High-end wearable sensors, such as PitchPerfect (PitchPerfect, The
Netherlands), are a suitable option for on-field measurements of pitching
performance. Equipped with a gyroscope that can record angular
velocities up to 2000 °/s, the PitchPerfect sensor system represents a
solution for capturing the rapid pitching motion and subtle differences
in pelvis and trunk kinematics and (inter)segmental timing. It enables
individual pitcher monitoring, both during training and games, and
captures every pitch thrown during warm–up, in the bullpen, as well as
on the pitch.

To establish the relevance of kinematic data for baseball pitchers, it
is necessary to develop the translation process between the collected
data and personalised information provided to the pitcher. Kinematic
data collected through repeated measurements often consider irregular
patterns in the number of observations as well as inherited hierarchical
structure. By accounting for hierarchy in the available data, we
can apply a set of multilevel modelling techniques that will allow any
pattern of measurements while providing statistically efficient parameter
estimation [1].

This thesis investigates the application of Bayesian multilevel models
[6, 7] and machine learning classification algorithms [16] for performance
and workload prediction based on pitching mechanics. The type of data
used as a model input is the same as data recorded with the PitchPerfect
system, making adopted predictive models suitable for implementation
in the system. The implementation offers a possibility for direct on-field
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feedback through existing mobile applications. The feedback is directed
to the individual pitcher and contains pitch type recognition, pitching
mechanics assessment and estimated ball velocity and elbow loading
based on the PitchPerfect recordings. This creates a chain of information
from longitudinal performance data via data science to actionable
insight relevant to the improvement of the pitching performance and
management of the elbow loading. However, the integration of new
technologies and performance feedback is a timely process that requires
interdisciplinary collaboration based on knowledge exchange between
baseball practitioners, pitchers and scientists. This step is necessary to
bridge the gap between science and practice and to bring new insights
from pitch–to–pitch data to the field.

6.3. PREDICTING PITCHING PERFORMANCE
Detailed pitch-to-pitch information can be used for training adaptations
aiming to improve the performance of a pitcher. To translate training
success into game success, pitchers need to translate their movement
skills into a variation of pitch trajectories.

Ball velocity plays an important role in the success of a baseball game.
Throwing faster diminishes the batter’s decision time of whether or not
to strike the ball and restricts the offence’s ability to advance bases
and score runs [17, 18]. Therefore, when we talk about performance
improvement in baseball pitching, this often implies maximizing ball
velocity.

An individual’s maximal throwing velocity is the result of optimal
pitching mechanics [19]. The baseball pitch is a full-body throwing
motion that starts when the pitcher lifts the lead foot, progresses to
a linked motion in the pelvis and trunk, and ends with a whip-like
action of the throwing arm propelling the ball towards home plate.
The maximal ball velocity is a product of pelvis and trunk kinematics
and their (inter)segmental timing that leads to the effective transfer of
momentum to the baseball [19, 20].

Even if pitchers throw the baseball with a similar speed, the throws
from the same pitcher tend to be more similar than the throws by
other pitchers. Each pitcher has his or her own set of individual
characteristics that enables them to throw faster or move better. This
implies that optimal pitching mechanics are not of a unique size that
fits all and that for each pitcher the optimal value of pelvis and trunk
peak angular velocity may be slightly different. Consequently, inherent
between-pitcher differences need to be considered in performance
assessment.

Multilevel modelling techniques, such as Bayesian multilevel models
adopted in chapter 2 and chapter 4 of the thesis, allow us to analyse the
relationships between the data collected on the pitcher-level (height,
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weight) and the data that change with each measurement trial (pelvis
and trunk peak angular velocity). Next to the pelvis and trunk peak
angular velocities that ensure the optimal transfer of energy to the
ball, including pitcher’s length has an added value in assessment of the
pitching performance. Pitcher’s length is an individual characteristic that
in addition to pitching kinematics improves the ball velocity prediction of
a single pitch for every pitcher [6]. By using available observations from
individual pitchers, Bayesian multilevel models can predict how fast the
next single pitch of each of those pitchers will be with a high level of
certainty. Additionally, using the group average, the same models can
be used to predict how fast a new, out-of-sample pitcher can throw. The
level of uncertainty in this case will be greater than if previous data
on the new pitcher would already be available. Bayesian multilevel
models account for hierarchical structure in the data and are suitable
for the prediction of ball velocity not only for the athletes included in
the analysis but also for the new, out-of-sample pitchers. This may
provide valuable insight to the coaches and scouts in the process of
player recruitment.

The implementation of the ball velocity prediction in practice creates
more opportunities for monitoring multiple pitchers at the same
time. Having an insight into the speed of every pitch contributes to
personalised workload monitoring and can help pitchers understand the
connection between their movement patterns and ball velocity. The
adopted movement skills can then be used to alter ball velocity and ball
trajectory for various pitch types.

Manual pitch type annotation is a common way of keeping track of
pitches during training. Opposed to the big baseball games where
the pitch type is detected based on ball data, in baseball practice
the high-tech equipment for an automatic pitch type recognition task
is often not available. Furthermore, existing methods for pitch type
recognition are based purely on ball data, without considering variations
in the pitching mechanics among the pitchers. From a strategic point
of view, one could say that pitching kinematics for every pitch type is
intended to stay the same to make it difficult for the batter to recognise
the pitch [11]. However, in practice, the kinematic differences are
visible in the data [10–14] and are expected to be more apparent among
youth pitchers who still don’t have enough strength and physical ability
to properly throw off-speed pitches [21]. In chapter 3 of the thesis, we
introduced a method for automatic pitch type recognition from kinematic
data recorded with PitchPerfect sensors [16]. Even though the data
sample used for training the machine learning model was limited, the
outcome showed the potential of pitch type detection in a novel way.

Automatic detection of the fastball pitches has the potential for
implementation in youth baseball training. Real-time information on
pitch count, pitch type and pitching mechanics can be of great value
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for coaches and players. It can support youth pitchers in the process
of adopting the right movement patterns for throwing fastballs with
maximized speed. The detection of the three common pitch types
(fastball, curveball, change–up) from kinematic data would have a great
benefit for the players during the training process. However, for that
further studies need to be conducted with larger data sets to increase
the accuracy of the classification.

With the use of wearable devices during training every pitch counts.
Adopted predictive models create an opportunity for direct insight into
pitching mechanics, ball speed and pitch type and open the door for
wearable data utilization on the field in the assessment of pitching
performance and workload monitoring.

6.4. DEVELOPMENT OF AN INJURY RISK PROfiLE
Integrating a pitcher’s training schedule with performance measures
and health outcomes represents the potential for the development of an
injury risk profile. An Injury Risk Profile (IRP) strengthens the information
chain from training and health data coming from various data sources
via data science to the actionable insights aiming to support athletes
and sports practitioners in decision–making and injury risk management
process.

Sport-related injuries occur due to a complex interaction of many
internal and external risk factors gathered in a pattern of either positive
adaptation (increased fitness), or negative adaptation (injury). The
repetitive nature of the high-speed full-body pitching movement exposes
the pitcher’s elbow to high loads. However, when high is too high, it is
not easy to determine how much load will result in a positive adaptation
and improved performance. Furthermore, measuring the exact value of
load applied to the elbow during a single pitch is extremely complicated.

The injury aetiology seen in youth and adult pitchers has been linked
to high elbow external valgus torques [22, 23]. The external valgus
torque imparts a tensile force to the medial elbow structures [24, 25],
which in combination with repetitive loading results in injuries to the
medially located ulnar collateral ligament (UCL). This indicates that
external valgus torque can be used as a proxy of elbow load [26, 27]
and chapter 4 provides a suitable predictive model for estimating the
value of the external valgus torque, hence elbow loading. The proposed
Bayesian hierarchical model in chapter 4 uses an individualised approach
to elbow load prediction based on the pitcher’s weight, height, trunk
peak angular velocity and the time between peak angular velocities
of the pelvis and trunk [7]. Combining elbow load information with
performance measures such as ball speed and pitch type would allow
athletes to modify their pitching mechanics with an immediate insight
into the effects those modifications have on performance metrics and
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elbow loading. In other words, it would allow a pitcher to fine–tune his
movement pattern towards increased ball speed for a desired pitch type
and reduced stress that is applied to an elbow.

An IRP can be provided in the form of a probability, carrying the
information on the likelihood of sustaining an injury. However, an
injury outcome is not always dichotomous. Injuries often arise from the
mixture of acute and repetitive mechanisms, where they get overseen in
the early stage of development due to the lack of apparent symptoms.
Therefore, chapter 5 presents a multistate injury framework that can
be the base for the development of an athlete’s injury risk profile. An
IRP can then be used as an early warning system providing feedback
on injury risk which allows pitchers to modify their training schedule
while their sport participation is still not affected. The multistate injury
framework adopts a latent Markov model to infer the number of injury
states based on the athlete’s responses to the health questionnaire such
as the OSTRC questionnaire. Inferred injury states are not observed
and they represent different levels of injury status for an individual
athlete. Given the prescribed training load, each athlete has a certain
risk level that determines how likely it is to be in a specific injury state.
Ideally, the latent Markov model would also have a multilevel structure
that provides an individualised effect of prescribed training load in the
prediction of injury risk trajectory. However, with available data, the
implementation of such a model was not possible within the scope of
this thesis.

The thesis illustrates a novel approach to individualised IRP prediction
that accounts for the dynamics of the injury development process. The
integration of advanced monitoring techniques plays an important role in
the pursuit of high-level sports performance. The utilization of wearable
sensors serves that purpose. It allows continuous athlete assessment
and provides feedback on the relevant health and performance metrics
in real–time. The methods established in the thesis offer solutions for
dealing with different quality, time scale and hierarchical structures
of the data collected with high-end wearable sensors, self-reported
questionnaires and motion capture systems. Integration of the available
data from different sources and implementation of the statistical models
that are able to translate them to the relevant outcome, may provide an
actionable insight for performance improvement and injury prevention in
a variety of sports disciplines and improve training and injury prevention
programs.
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