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Abstract

Multi-label learning is becoming more and more
important as real-world data often contains multi-
ple labels. The dataset used for learning such a
classifier is of great importance. Acquiring a cor-
rectly labelled dataset is however a difficult task.
Active learning is a method which can, given a
noisy dataset, identify important instances for an
expert to label. This greatly reduces the amount
of instances needed to train an accurate classi-
fier, and thus reduces the cost of cleaning a noisy
dataset. Therefore, this paper aims to present an ac-
tive learning algorithm, focused on wrongly labeled
data, combined with a deep neural network for
multi-label image classification. The proposed ac-
tive learning solution is divided into two measures;
a mislabelling likelihood and an informativeness
measure together with an option to identify and
use highly probable clean instances in the dataset.
Experiments performed on the real world dataset,
called Microsoft COCO, with 20, 40 and 60% in-
jected label noise show that Multi-AL outperforms
the current state-of-the-art multi-label learning al-
gorithm called ASL by 28% while only using 600
labelled instances in total and 250 extracted ’clean’
instances. Multi-AL additionally outperforms ran-
dom sampling by 3% on average for 20 and 40%
random label noise when sampling from a wrongly
labelled dataset of 23k instances.

1 Introduction
Multi-Label learning, where each instance contains multiple
labels, has become more and more important as real world
data often contains multiple labels. A key difference and dif-
ficulty that arises when dealing with multi-label data is the
explosion of possible label combinations [1]. Wrong labels
present in the dataset used as ground-truth result in a longer
time-to-convergence and an almost surely decrease in robust-
ness [2].

A correctly labeled dataset is of great importance when
training a multi-label deep neural network. The acquisi-
tion of a dataset which accurately represents real world data

and does not contain noise is expensive and time consum-
ing [3]. Acquiring data that does contain noisy labels is of-
ten cheap and simple to acquire with crowdsourcing methods
such as Amazon Mechanical Turk [4]. Active Learning is a
method in machine learning which, given a pool of unlabeled
or wrongly labeled instances, can iteratively identify misla-
belled instances and select the most informative examples to
query an expert for its true label [5]. Therefore, reducing the
amount of queries needed to achieve a high accuracy classi-
fier while also limiting the cost of the expert labeller.

Even though multiple active learning solutions exist, there
are limited active learning algorithms available for multi-
label learning domains and even less that focus on finding
mislabelled instances in the training data. The methods dis-
cussed in [6], [7] focus on finding the potentially mislabeled
instances by calculating the uncertainty of the classifier, addi-
tionally [7] calculates an informativeness measure which lim-
its the amount of queries needed even more. However, pre-
vious methods all focus on single-labeled data. A multi-label
solution is discussed in [8]. This method focuses on the labels
of the instances with the most similar features but does not
deal with an expert labeller. Multi-label methods discussed
in [9]–[12] all discuss potential ways to limit the amount of
queries needed yet do not focus on finding the wrongly la-
beled instances in the dataset.

Therefore, this paper aims to solve the problem of multi-
label learning with wrong label noise. The proposed solu-
tion is an active learning algorithm called Multi-label Active
Learning (Multi-AL). Multi-AL deals with training data that
contain wrong labels, that is, the ‘true’ labels of some images
have been switched out with wrong labels. An illustration of
this can be seen in Figure 1.

Figure 1: Illustration of data with wrong labels



Figure 2: Accuracy ASL with 40% random label noise

Multi-AL is build on a state-of-the-art multi-label classifier
that consists of a TresNet [13] backbone with an asymmetric
loss function from [14] which we will call ASL from now on.
ASL achieves high accuracy when trained on multi-label data
that is accurately labelled, however, the performance quickly
degrades if the dataset contains random label noise, as can
be seen in Figure 2. Multi-AL is divided into two measures
where one is used to calculate the mislabelling likelihood of
an instance and the other to identify the most informative in-
stances to relabel. The mislabeling likelihood is calculated
based on the conflicts between the predicted labels and the
labels present in the noisy dataset using the output probabil-
ity of the deep neural network. This mislabelling likelihood
is then used to identify highly probable safe and mislabelled
instances in the dataset. Two separate informativeness mea-
sures were designed and evaluated, a Conflict-Based Infor-
mativeness Measure (CBIM) and an uncertainty-based mea-
sure. CBIM, used as a baseline, only calculates a value for
the potential mislabelled instances and focuses on the contri-
bution of features towards the predicted label and the poten-
tially wrong label. The uncertainty-based measure focuses
on the entire dataset and calculates the uncertainty entropy of
every instances. The informativeness measure used in Multi-
AL is the uncertainty entropy based on better performance for
all levels of noise.

Evaluation performed on the Microsoft COCO dataset [3]
for 20, 40 and 60% random label noise indicate that on aver-
age Multi-AL outperforms current state-of-the-art multi-label
learning algorithm called ASL by 28% while only using 600
labelled instances in total. Multi-AL also shows a 3% in-
crease of accuracy on average for 20 and 40% label noise
when compared to random sampling.

The contributions of this paper are as follows:
• A multi-label mislabelling likelihood based on the con-

flict between predictions of the network and the ground
truth.

• An instance based usefulness measure based on the con-
tribution of features towards the predicted and ground
truth labels.

• An instance based uncertainty measure that calculates
the uncertainty of the classifier.

• An experiment that showcases the effect of using Multi-
AL on Microsoft COCO for different levels of random

label noise.
This paper is organized as follows. In section 2, we start by

discussing the related work. In section 3, an active learning
algorithm is proposed which first identifies clean and wrong
instances in the dataset using a mislabelling likelihood and
then identifies the most important instances to relabel with an
informativeness measure. In section 4 an empirical analysis
is conducted on the mislabelling likelihood. In section 5 we
present the experimental setup and the results of the experi-
ment and discuss the achieved performance of the different
methods. In section 6, the ethical implications and repro-
ducibility of the research are discussed. Finally, in section
7, we present the future work and conclusion of the research.

2 Related Work
In this section multiple different types of active learning
strategies will be discussed. Ranging from single-label meth-
ods to multi-label, instance based to instance-label based
methods.

Multi-Class Active Learning
In [6], [7], possible mislabelling likelihood measures are dis-
cussed that calculate the uncertainty of the classifier for an
instance or instance-label pair. Either the uncertainty is cal-
culated based on the classifier’s uncertainty and label uncer-
tainty [6] or based on the contradicting label the classifier out-
puts and the label in the ground truth [7]. Both these papers
however focus on multi-class classification which only deals
with single-labeled data.

Active Learning with Label Correlation
A different approach to active learning is to focus on the la-
bel correlation [12]. Wu et al. [12] proposes a multi-label
active learning algorithm which utilizes label correlations to
construct a unified sampling strategy and evaluates the infor-
mativeness of each label-pair. A down-fall of this method
however is that for each label-pair four classifiers need to be
trained.

Feature-based Active Learning
Mikalsen et al. [8] proposes a multi-label dimensionality re-
duction method which uses the features of instances to con-
struct a neighbourhood graph. The sampling method uses this
neighbourhood graph to extract the nearest neighbours and
compares its features and labels. This method uses label prop-
agation to label instances instead of a reliable labeller and
therefore does not deal with the problem of limited queries.

Impact Based Active Learning
The final active learning algorithms that will be discussed
are the strategies that focus on instances that have the most
impact on the classifier [9]–[11]. Li, Wang and Sung [10]
proposed two selection strategies: Max Loss and Mean Max
Loss. The max loss strategy in contrast to the mean max loss
strategy only focuses on the most certainly predicted class
of the image and ignores the other labels. Both strategies
query the instances to relabel which contribute the most to
the loss function. Kremer, Sha and Igel [15] proposes to



use noise-aware loss functions to increase the influence of
noisy examples. Furthermore, the paper adopts a maximum
expected model change strategy. Impact based algorithms
are essential in designing a good active learning method.

Previously discussed method mostly focus on identify the
most informative instances to label from a selection of un-
labeled data. The problem we are trying to answer however
has to deal with data with wrong labels. This paper aims to
combine a mislabeling likelihood together with an informa-
tiveness measure to identify which multi-label instances to
relabel. The resulting active learning algorithms should ad-
ditionally deal with the problem of limiting the amount of
queries to the expert while maximizing the performance.

3 Active Learning Multi-label Algorithm
This section introduces formal problem statement, explains
the pipeline and architecture of Multi-AL in combination
with ASL and explains the designed mislabelling and infor-
mativeness measures in more detail.

3.1 Problem Statement
Multi-label classification is similar to multi-class classifica-
tion, but instead of classifying an instance into a single class
the instance can belong to multiple classes (or labels). As-
sume that x of size K represents an image with K pixels, Y
represents a set of multiple labels of a certain maximum size
L. Given a data-set D = {(xi, Yi) | 1 ≤ i ≤ N}, the goal of
multi-label classification is to map images {x1,x2, . . . ,xN}
of K pixels into a set of multiple labels Y of maximum L
labels, xi ∈ XN×K into Yi ⊆ Y = {y1, y2, ..., yL}.

The problem that is discussed here is more specific. The
assumption is made that the given data-set D has wrong la-
bels, i.e. a fraction labels of a subset of samples are swapped
from its true label. The goal of the classifier is to train an
accurate classifier with as little queries to the expert labeller
as possible. The amount of queries that are available is called
the query budget.

The overall method is as follows. First, identify the mis-
labeled instances and then choose the most informative in-
stances to relabel by the expert with a limited budget. Af-
ter training of the multi-label classifier, an evaluation is per-
formed on a test set. In the following section, the calculation
for the mislabelling likelihood and different informativeness
measures are discussed. But first, the overall method will be
discussed in more detail together with the integration into the
current state-of-the-art multi-label classifier called ASL [14].

3.2 ASL and Active Learning
Both the mislabelling likelihood and the informativeness
measure are combined into one active learning sampling
method that needs a classifier prediction. The classifier used
is the deep neural network from [14].

Each iteration of Multi-AL is split up into three phases.
The pipeline can be seen in Figure 3.

First, the mislabelling analysis phase, the mislabelling like-
lihood of all instances in the dataset is calculated and the in-
stances with a mislabelling score lower than t1 are saved as

Figure 3: Pipeline of a training round

the ’clean’ dataset Xc. Instances with a score higher than a
certain threshold are marked as mislabeled.

Second, the selection phase, which starts with evaluating
the informativeness for each instance. Subsequently, the k
most informative instances are selected for relabeling, and an
increasing portion of instances per iteration is selected from
Xc.

Finally, the training phase during which both the relabeled
instances and the selected ’clean’ instances are used to train
the qualifier.

3.3 Mislabelling Likelihood
The mislabelling likelihood is used to identify possibly
wrongly labelled instances and identify the highly probable
clean instances in the dataset. The underlying idea is that the
difference in the probability of the predicted labels and ob-
served labels in the training data is high when an instance is
mislabeled. The measure used is a slightly adapted version of
the measure used in [7].

First, assume Y xt are the labels present in the training data
for instance x and Y xp are the respective predicted labels
where |Y xt | = |Y xp | =M .

Y xp = argmax
y∈Y ′,Y ′⊂Y,|Y ′|=M

(
P (y|x)

)
(1)

Thus, Y xp denotes the M highest probable labels for in-
stance x. Y xc = Y xp ∩ Y xt is used to denote the set of cor-
rect labels. Since we only want to calculate the mislabeling
likelihood for labels that are wrong, and not for correct la-
bels, we only look at the conflicting labels. This means that
we only look at the predicted labels Y xp − Y xc and compare
them to labels present in the training data Y xt − Y xc . From
now on, we denote these sets as Y Cxp and Y Cxt respectively.
The mislabelling likelihood in [7] is a single-label approach.
We define the multi-label mislabelling likelihood as visible in
Formula 2. For each possible label pair combination that can
be constructed from set Y Cxp and Y Cxt we calculate the mis-
labelling value and the maximum value encountered is given
to instance x. An example of the construction of the label
pair combinations can be found in Figure 4.



Figure 4: Construction of label pairings

Instances are identified as mislabeled when D1(x) > t1.
The resulting label-pairings that satisfy this threshold are
saved for later evaluation together with their score.

D1(x) = max
yp∈Y Cx

p ,yt∈Y Cx
t

( P (yp|x)− P (yt|x)
max(P (yp|x), P (yt|x))

)
(2)

3.4 Informativeness Measure
In the previous section, the possible mislabeled instances and
clean instances are identified. The next step is to select the
most informative instances to relabel. The goal of the in-
formativeness measure is to limit the amount of queries to
the expert while maximizing the usefulness of the queried in-
stances. Two informativeness measure will be explained; a
conflict-based informativeness measure (CBIM) which cal-
culates the effect of each feature present in the neural net-
work on the predicted labels and then uses the informative-
ness measure from [7], and the uncertainty entropy.

Conflict-Based Informativeness Measure (CBIM)
The Conflict-Based Informativeness Measure (CBIM) is a
usefulness measure and the measure is an adaptation from
[7]. The measure focuses on the amount of conflicting infor-
mation between the features.

CBIM is originally designed for single-label data and uses
a Support-Vector-Machine as base classifier. When differ-
ent features can equally attract a certain instance to the pre-
dicted label and the label present in the dataset, we say that
the instance has conflicting information. According to [7],
instances which contain stronger conflicting information are
more informative to relabel.

We define the contribution of features, extracted from the
DNN, as follows. First, the weights w and output of the
second-to-last layer z1(x) for instance x are extracted from
the network, see Figure 5 for a clearer definition of the
weights and outputs. fi is used to represent a specific fea-
ture where fi ∈ F, |F | = λ. Then, a feature contribution
matrix FC of all features is calculated using the dot-product
between the weight matrixw and output of the second-to-last-
layer z1(x) as can be seen in Formula 3. We define column
i as the contribution of feature fi towards all possible labels.
Each row represents how much each feature contributes to
classifying an instance in class yj . Thus column i, row j
represents how much feature fi contributes to classifying in-
stance x into the label yj .

n2
1

wλ,1

wλ,L

nλ
1

n1
1

n1
2

nL
2

w1,1

w1,L

z1
1

z2
1

Second-to-
last Layer (1)

Last Layer
(2)

z1
2

zλ
1

zL
2

Figure 5: Weights and outputs last two layers of TResNet-m network
[13]
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...
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...
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 ·
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z1

1

z2
1

...
zλ

1


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
w1,1z1

1 w2,1z2
1 . . . wλ,1zλ

1

w1,2z1
1 w2,2z2

1 . . . wλ,2zλ
1

...
...

...
...

w1,Lz1
1 w2,Lz2

1 . . . wλ,Lzλ
1


(3)

From this matrix, we divide the features into two sets Fp
and Ft to denote the sets of features that contribute more to
the predicted label p and training label t respectively, see For-
mula 4. As can be seen in Formula 5, qp and qt are the
summed difference in contribution values of features in Fp
and Ft respectively.

Fp = {fi|wi,pzi1 > wi,tzi
1}

Ft = {fi|wi,pzi1 < wi,tzi
1}

(4)

qp =
∑
fi∈Fp

(wi,pzi
1 − wi,tzi1)

qt =
∑
fi∈Ft

(wi,tzi
1 − wi,pzi1)

(5)

The usefulness can then be calculated using the original
Formula 6 as in [7].

I =
√
qp × qt (6)

The focus in this paper however is on multi-label instances.
CBIM calculates the informativeness measure I for each
saved label pairing, constructed from the sets Y Cxp and Y Cxt
as in Figure 4, and outputs the maximum value encountered.
Formula 7 shows the final defined formula for CBIM.

CBIM(x) = max
yp∈Y Cx

p ,yt∈Y Cx
t

√
qp × qt (7)



Uncertainty Entropy
Another possible solution to identify informativeness in-
stances is to query those instances that the classifier is least
certain about.

The decimal probabilities for each label can be calculated
using a Sigmoid function from the output of the neural net-
work. These probabilities can then be used to calculate the
entropy of each individual label yi ∈ Y as can be seen in
Formula 8.

H(x) = −(P (yi|x) ∗ log2(P (yi|x))
+(1− P (yi|x)) ∗ log2(1− P (yi|x)))

(8)

We calculate the total entropy as the individual entropy of
each class summed together. This value however will not
be between [0, 1] and therefore needs to be divided by the
amount of labels present in the data. The full formula can be
seen in Formula 9.

H(x) = −
∑
yi∈Y

(P (yi|x) ∗ log2(P (yi|x))

+(1− P (yi|x)) ∗ log2(1− P (yi|x)))/L
(9)

4 Empirical analysis
In this section, the design choice for the used mislabelling
likelihood will be discussed and substantiated.

Two mislabelling measures can be found in [7] called D1
and D2 respectively. D1 calculates a value based on the pre-
dicted label of the classifier (yp) and the label present in the
data (yt), while D2 is calculated from the feature values and
the contribution of these features towards the predicted label
and the ground-truth label. qp and qt reflect the summed dif-
ference in contribution values of dominant features for label
yp and yt. A more detailed mathematical explanation on how
these values are calculated can be found in Section 3.4.

D1(x) =
P (yp|x)− P (yt|x)

max(P (yp|x), P (yt|x))
(10)

D2(x) =
qp − qt

max(qp, qt)
(11)

Both D1 and D2 are designed for single-label data but can
be slightly modified to work for multi-label data by analysing
the D1 and D2 for all possible label-pairings for an instance.
BothD1 andD2 have a range between 0 and 1, where a lower
value indicates a lower probability of an instance being mis-
labeled.

An experiment was performed to analyse the actual perfor-
mance of both measures. Firstly, an initial classifier is trained
on 100 instances for 20 epochs. Secondly, the mislabelling
value for all instances in a noisy dataset is calculated. And
lastly, all instances are queried by the expert and the ratio of
true clean instances to wrong instances for 0.1 size intervals
is calculated and can be seen in Table 1 and Table 11.

Table 2 shows that it can better identify between true clean
instances and instances with wrong labels, however when
looking at the actual number of clean instances, in Table 3,
it can be seen that the true clean instances are more spread
out for mislabelling measure D2.

Figure 6: Validation and training accuracy of initial classifier for
different training lengths

5 Results
In this section, the experimental setup is discussed in detail
and the results of the performed experiment are presented and
discussed. .

5.1 Experimental Setup
Experiments are conducted on a portion of the Microsoft
COCO [3] dataset. This dataset contains 83k instances and 80
labels. 40% of the samples were used to sample from (23497
instances). The instances with only 1 label are removed, and
all images are resized to be 224x224 Pixels. The Mean Aver-
age Precision is used to evaluate the accuracy obtained on the
validation set.

Initial classifier. A small labelled dataset of 100 instances
is used to train an initial classifier with, as active learning re-
lies on a base classifier. The base classifier is a Convolutional
Neural Network architecture called TResNet [13], which uses
an Asymmetric Loss Function [14]. The specific TResNet ar-
chitecture is called TresNet-m and a model1 pretrained on the
ImageNet dataset[16] is used to reduce training time needed
significantly. The initial classifier is trained for 40 epochs
with an early stop at epoch 20. Training for more epochs
leads to no large increase of validation and training accuracy
as can be seen in Figure 6.

Noise ratios. The sampling set was injected with 20, 40
and 60 % randomized label noise. This means that a cer-
tain percentage of labels are swapped with an irrelevant label.
The initial training set and the test set are not subject to label
noise.

Training procedure. After training the initial classifier,
the classifier is trained using the selected active learning
method. Each active learning iteration consists of a selection
phase, during which 50 instances are relabelled and added to
the already labelled dataset. If Safe mode enabled for any of
the evaluated sampling methods, 25 instances from the iden-
tified set of ‘clean’ instances Xc are selected for additional

1https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-
zoo/ASL/MS_COCO_TRresNet_M_224_81.8.pth



Table 1: Ratio of true clean instances to wrong instances for different intervals using mislabelling measure D1

Noise Intervals of mislabelling value
[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9-1.0]

40 % 8.02 2.56 1.85 1.00 0.56 0.29 0.16 0.08 0.05 0.02
60 % 3.05 1.79 0.79 0.51 0.2 0.12 0.05 0.02 0.01 0.02

Table 2: Ratio of true clean instances to wrong instances for different intervals using mislabelling measure D2

Noise Intervals of mislabelling value
[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9-1.0]

40 % 8.7 0.00 0.00 0.00 0.00 35.00 1.63 0.40 0.13 0.04
60 % 4.65 0.00 0.00 0.00 0.00 4.0 0.91 0.16 0.03 0.01

Table 3: Number of clean instances for different intervals using mislabelling measure D1 and D2

Noise Mislabelling measure Intervals of mislabelling value
[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9-1.0]

40 % D1 449 295 494 713 944 972 842 423 116 6
D2 261 0 0 0 0 35 1327 2358 1189 85

60 % D1 183 129 175 302 322 375 303 152 42 7
D2 107 0 0 0 0 16 534 863 435 35

training during the iteration. Every iteration, the model is
trained for 20 epochs. Thus, the model will be trained for
200 epochs and in the final iteration, 600 instances labelled
by the expert would be used, and 250 instances with the low-
est mislabelling value if Safe is enabled. The accuracy of the
model is evaluated every 5 epochs on a validation set of 12k
instances.

Deep learning hyperparameters. We use a weight decay
of 10−4 and each iteration a scheduler is used to determine
the learning rate which lies between 10−4 and 10−6. The
training phase is done in mini-batches of 32 instances. The
Adam optimization algorithm [17] is used as optimizer.

System specifications. The experiments were performed
using two google cloud platform virtual machine instances
connected to a personal computer using an SSH connection.
Both virtual machine instances are equipped with of 8 vCPUs
(SkyLake), 30 GB RAM, 60 GB disk space with a Nvidia
Tesla T4 GPU and running Ubuntu (20.04).

Alternative baselines. We compare Multi-AL with the
following approaches:

• Barebone ASL; all instances are used to train the classi-
fier on and no sampling method is applied.

• Random sampling; randomly select instances each iter-
ation to be relabeled.

Furthermore, random sampling is evaluated with Safe mode
enabled, which means that a portion of instances from Xc

is used during training and Multi-AL is evaluated with Safe
mode disabled.

5.2 Evaluation
In this section, the performance evaluation of the different
sampling methods for different levels of noise will be dis-
cussed. These experiments were performed using the experi-
mental setup discussed previously.

Figure 7a, Figure 8a, Figure 9a show the validation accu-
racy during each active learning iteration. Figure 7b, 8b and

Figure 9b show the validation accuracy after the final sam-
pling iteration.

mAP difference using Safe mode. The results for Figure
7a and 8a confirm that Safe mode indeed improves the the
achieved validation accuracy. An explanation for this could
be that the number of instances used from Xc contain a suffi-
cient number of actual clean instances so the classifier is not
negatively influenced. Figure 9a shows that using ’clean’ in-
stances for 60 % label noise still improves the accuracy but
not as significantly as for lower levels of noise. This further
supports this theory.

Difference across approaches. Results from Figure 7, 8
and 9 show only a slight increase of performance when se-
lecting instances based on uncertainty entropy compared to
random sampling. Figure 7, 8 and 9 additionally show a sig-
nificant drop in performance when using the informativeness
measure that focuses on calculating the usefulness of mis-
labeled instances. This achieved result is different from the
work it has been based on [7]. A possible explanation might
be the difference in setup, as [7] only focuses on single-label
data and combines the used informativeness measure with a
weighting setup.

Comparison ASL and Multi-AL In Figure 10 the perfor-
mance of barebone ASL and Multi-AL are compared for 20,
40 and 60% noise. The results indicate that indeed Multi-
AL outperforms ASL significantly for all noise levels even
though ASL uses a much larger dataset. 23k instances used
vs 100 initial correctly labelled instances, 500 additionally
labelled instances and 250 extracted ’clean’ instances.

6 Responsible Research

In this section, the ethical implications and reproducibility
of the research are discussed. This section focuses on the
ethical implications that arise when performing the evaluation
and creating a new multi-label deep learning active learning
algorithm.



(a) Validation accuracy according to the number of labeled in-
stances

(b) Final Validation Accuracy after final sampling iteration

Figure 7: Reported Accuracy for 20 % label noise according to different relabeling strategies

(a) Validation accuracy according to the number of labeled in-
stances

(b) Final Validation Accuracy after final sampling iteration

Figure 8: Reported Accuracy for 40 % label noise according to different relabeling strategies

(a) Validation accuracy according to the number of labeled in-
stances

(b) Final Validation Accuracy after final sampling iteration

Figure 9: Reported Accuracy for 60 % label noise according to different relabeling strategies

6.1 Ethical Implications
When performing an evaluation of any sort it is important to
handle result data in a correct way. Leaving results out it is
allowed but not without a justifiable explanation. This type
of data manipulation is called data trimming and is also a rel-
evant topic in this research. Numerous experiments were per-

formed and not all results obtained proved to display helpful
additional information. Thus, the choice has been made to
left them out.

One more important ethical implication to keep in mind
is data integrity, especially when training a classifier. Data
integrity is key to training a high performance classifier, as



Figure 10: Accuracy barebone ASL compared to Multi-AL for dif-
ferent random label noise levels

a deep neural network will learn from the dataset that it has
been given. The main data-set used in this research is the MS
COCO dataset. This dataset contains many instances that are
not labeled at all or only contain a single label. The choice
was made to leave these instances out as the goal is to train
a multi-label classifier, furthermore, a single-label instance
cannot be given a wrong label without also containing a cor-
rect label. The MSCOCO dataset contains around 83k in-
stances, the evaluation system used however could not in rea-
sonable time train a classifier using the entire dataset. That is
why only 40 % of the dataset was used.

6.2 Reproducibility
Reproducibility is a key principle to keep in mind when per-
forming research or designing a system of any sort. Espe-
cially for research in the deep learning field, reproducibility
is a great challenge.

Henderson et al [18] discuss multiple factors that influence
the difficulty of reproducing the same results. To minimize
the difficulty of reproducing the results, presented in the pre-
vious section, the used network and hyper-parameters of the
neural network were explained as detailed as possible.

In addition, the neural network and asymmetric loss func-
tion ASL [14] are not changed in the process and are open-
source. Further reducement of the randomness that occurs
when training a deep neural network was achieved by per-
forming each evaluation two times and taking the average of
the results.

7 Conclusions and Future Work
The aim of this report was to present an solution to the
problem of multi-label learning with wrong label noise. To
achieve this, an active learning algorithm was designed which
consists of two measures; a mislabelling measure which can
accurately identify clean and mislabelled instances, and, two
informativeness measures called the Conflict-Based Informa-
tiveness measure and the uncertainty sampling. Additionally,
a Safe mode was designed which samples instances from the
identified clean instances to use during training. The uncer-
tainty entropy outperformed CBIM for all experiments thus
forms the basis of the Multi-AL algorithm. Additionally, a
portion of the identified clean instances was used throughout
training.

The results of the conducted experiments show that Multi-
AL outperforms barebone ASL significantly for 20, 40 and
60% label noise while only using 600 labelled instances in
total. Random sampling was outperformed on average by 2%
and even more for 20% and 40% random label noise.

The informativeness measures were evaluated and com-
pared, however, the informativeness measure that focused on
the conflicting information between the feature, called the
usefulness measure, did not performed as expected. Further
work is needed to discover the reason behind this decrease in
performance. A first step would be to look at the single-label
case again or evaluate the method using additional weights.
Multiple experiments were performed to analyze the perfor-
mance but only one dataset was used to experiment on. Fur-
ther work is necessary to find out the different environments
in which Multi-Label AL might not perform well. In the per-
formed experiments 250 ’clean’ instances were used in the
final iteration of Multi-Label AL for all levels of noise. A
more thorough analysis needs to be performed to determine
if a different number of ’clean’ instances leads to significantly
better performance for different noise levels.
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