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How Does OpenAI’s Whisper Interpret Dysarthric Speech?

Orhan Agaoglu1

Abstract
This paper investigates how OpenAI’s Whisper model pro-

cesses dysarthric speech by probing its internal acoustic fea-
ture representations. Utilizing the TORGO database, we ana-
lyzed Whisper’s capability to encode significant acoustic fea-
tures specific to dysarthric speech across its encoding layers.
Our findings reveal that initial layers are particularly effective
in capturing distinct features, while deeper layers show gener-
alized representations. Despite this, Whisper’s zero-shot per-
formance in distinguishing dysarthric speech severity levels is
noteworthy. We employed a series of probing tasks tailored
to dysarthric speech characteristics to pinpoint specific features
and their transformation across the model’s layers. This study
highlights Whisper’s potential in handling atypical speech pat-
terns without fine-tuning, paving the way for further research
into the interpretability and application of transformer-based
models in medical and assistive technologies. We discuss the
implications of these results for enhancing transparency, relia-
bility, and safe AI integration in healthcare.
Index Terms: Interpretability, Whisper, Probing, Dysarthic
Speech, Acoustic Features

1. Introduction
Since its release, OpenAI’s Whisper models have emerged as
a standout example of transformers their capabilities the field
of Automatic Speech Recognition (ASR). Demonstrating great
performance across recognition benchmarks, Whisper has ex-
celled in converting raw audio into accurate textual represen-
tations [1]. Its transformer architecture not only meets the de-
manding benchmarks of ASR but also shows promising results
in a variety of downstream tasks. These include enhancing
speech translation, speaker identification, and various classifi-
cation tasks underscoring the model’s adaptability and broad
applicability[2].

Whisper’s architecture is rooted in the weakly supervised
encoder-decoder structure, designed to handle complex, vari-
able input patterns efficiently. At the core of Whisper’s ef-
fectiveness is its multi-layered encoder, which processes au-
dio signals through a series of encoding blocks. Each block
applies self-attention mechanisms that adaptively focus on dif-
ferent aspects of the audio input, capturing nuances critical
for accurate recognition[1]. This encoding blocks are so well-
trained that they further enhance the capability of Whisper on
atypical speech domain[3]. This training process enables the
model’s encoding layers to develop a robust understanding of
non-standard speech patterns, such as those found in dysarthric
speech[4].

Dysarthric speech is characterized by slurred or slow
speech that can result from muscle weakness or neuro-

logical damage, presents significant challenges for ASR
technologies[5]. Historically, dysarthric speech has been ana-
lyzed using a variety of acoustic features and machine learn-
ing models, exploring its prosodic, spectral, cepstral, and voice
quality dimensions[6, 7]. Within these studies, certain acous-
tic features were extracted from the voice samples and a ma-
chine learning model was trained based on the hypothesis that
these features are indicative of dysarthic speech. Many studies
concluded well results in the recognition and classification of
dysarthic speech through these acoustic features [8] yet Whisper
is also considerably capable of competing with the studies[9].

Recent advancements have shown that applying transfer
learning techniques to the Whisper’s encoding layers is an ef-
fective way of recognizing dysarthric speech[4]. By fine-tuning
Whisper with dysarthric speech datasets, researchers have been
able to tailor the model’s sensitivity to the specific acoustic fea-
tures of speech impairments. The contrast between the use of
transformers and the prior studies is that the features extracted
from Whisper are more difficult to interpret. Therefore, these
studies are based on the assumption that within the encoding
layer’s Whisper is capable of capturing high level acoustic fea-
tures that containts the information related to dysarthic speech.

The competitive performance of Whisper in processing
dysarthric speech raises important questions about the model’s
interpretability, particularly in handling complex and atypi-
cal speech patterns. This aspect remains largely unexplored
in the existing literature, highlighting the need for further in-
vestigation. While previous voice foundation models such as
wav2vec2 [10] and MockingJay [11] have been probed for their
ability to process and interpret speech features [12], the probing
of Whisper’s encodings and its adaptability to atypical speech
types like dysarthric speech remains an unstudied question.

The main motivation of interpreting ”How Whisper pro-
cesses dysarthric speech” is rooted in the potential benefits
of applying explainable AI (XAI) techniques in medical do-
mains [13]. By understanding the mechanisms through which
Whisper processes dysarthric speech, we can further improve
the model’s reliability and trustworthiness, which is crucial
for medical applications where decisions can significantly im-
pact patient care. Interpreting such transformers, provides
transparency, allowing clinicians to understand and trust the
AI’s decision-making process. Additionally, insights gained
from such interpretability can drive improvements in model de-
sign, leading to more robust and accurate ASR systems tai-
lored for dysarthric speech. The application of XAI in this
domain supports the broader goal of integrating advanced AI
technologies into healthcare, ensuring they are used safely and
effectively[14, 13].

Therefore my thesis aims to fill this gap in literature by ana-
lyzing how Whisper adapts to and processes dysarthric speech,



Figure 1: Illustration of the Whisper model architecture

utilizing its encoders to interpret what Whisper learn from the
speech that undergoes through encoding layers and potential
improvements in the field of ASR for impaired speech condi-
tions. The specific contributions of this research are outlined as
follows:

1. Probing Tasks Specific to Dysarthric Speech: To gain
insights into the encoder’s capabilities, 12 distinct probing
tasks tailored specifically to the characteristics of dysarthric
speech are chosen based on previous papers [6, 7]. These
tasks are designed to test the encoder’s ability to identify and
differentiate between various severity levels of speech im-
pairments, and to understand how the model’s internal rep-
resentations change in response to these variations.

2. Detailed Analysis of Layer-wise Learning in the Encoder:
Each layer of Whisper’s encoder potentially encodes differ-
ent aspects of the speech input. A detailed analysis of what
is learned at each layer aims to map the transformation of
the acoustic signal from raw input to the model’s final learnt
representation.

3. Comparative Analysis of Normal and Dysarthric Speech
Processing: A core aspect of this research involves com-
paring how Whisper processes normal speech versus various
severity levels of dysarthric speech. This comparison will not
only reveal the differences in how the model treats these two
types of speech but will also shed light on its generalization
capabilities across different speech conditions.

To the best of my knowledge, this is the first attempt towards
interpreting Whisper’s encodings within the atypical speech do-
main. This exploration aims to contribute significant insights
into the adaptability and limitations of current transformer-
based ASR technologies in handling diverse and challenging
speech impairments.

2. Methodology
This section presents the methodology employed to investigate
Whisper. It covers the technical aspects of the model’s archi-
tecture, the data employed for analysis, and the specific probing
tasks designed to evaluate the model’s capability. The objective
is to decode the internal mechanics of Whisper, thus providing
insights into its ability to adapt and respond to the intricacies of

speech affected by dysarthria. Each subsection will explain the
entitled methodology followed.

2.1. Dataset

In this study, the TORGO database [15] will be used, which
consists of high-quality audio recordings from individuals with
various degrees and types of dysarthria, as well as age- and
gender-matched controls. The variety of severity conditions and
corresponding control group will allow us to perform a well-
assessed analysis. We will use these speech files to extract both
acoustic features that we are going to probe and internal repre-
sentations from the Whisper model. These features and repre-
sentations will then be analyzed through probing tasks, which
are designed to assess how well Whisper captures the unique
acoustic characteristics of dysarthric speech. The specifics of
these probing tasks and their relevance to Whisper’s perfor-
mance will be detailed in the following paragraphs.

Speech samples are categorized into severity levels based
on previous papers [16, 17] in Table 1, aiming a detailed anal-
ysis and evaluation of Whisper’s performance on various sever-
ity of dysarthric speech. The dataset is divided into training
and testing sets, with 80% allocated to training and 20% to test-
ing. The training set is used to train the probing models, while
the testing set is reserved for evaluating the representations of
acoustic features within encodings of Whisper. This approach
allows us to measure the variation of impairment levels affect
on Whisper’s capabilities.

Severity Level # of Patients # of Speech Files
Normal 7 6236

Very Low 2 864
Low 2 976

Medium 4 1341
Table 1: Number of people and total number of speech files per
severity level

2.2. Whisper

The Whisper model processes audio inputs through a encoder-
decoder pipeline that begins with the conversion of audio wave-
forms into log-mel spectrograms as seen in Figure 1. These
spectrograms are then passed through two convolutional layers
with GELU activation [18] to extract salient features. Following
feature extraction, sinusoidal positional encoding is applied to
incorporate sequence information. The core of the architecture
consists of 24 encoder blocks [1](in the medium configuration
of Whisper), each utilizing a multi-head self-attention mech-
anism followed by Multi Layer Perceptrons (MLP)[19]. This
structure allows the model to capture and emphasize different
aspects of the audio signal, generating a series of internal rep-
resentations at each layer. These representations are key to our
study; they will be extracted and analyzed to understand how
Whisper processes and encodes features of dysarthric speech
across its layers. This analysis will inform our probing tasks,
aiming to reveal how the model discriminates between typical
and atypical speech patterns and what features each encoding
layer captures in dysarthric speech.

2.3. Probing

To interpret the process that input goes through, probing models
[20] will be used. These regressors (g) are utilized to evaluate
the internal representations (r) generated by the Whisper model



Table 2: Architecture details of the Whisper model family.

Model Layers Width Heads Parameters

Tiny 4 384 6 39M
Base 6 512 8 74M
Small 12 768 12 244M
Medium 24 1024 16 769Mk
Large 32 1280 20 1550M

across its layers. The performance of the regressors will be used
to quantify Whisper’s capability in encoding properties specific
to dysarthric speech.In the following subsections, the method-
ology for probing will be explained.

2.3.1. Extracting Representations

For each audio input x, Whisper produces a set of layer-specific
representations:

rl = fl(x),

where l indexes the layer, for layers l = 1, . . . , L, and L is the
total number of layers in the medium configuration of Whisper.

2.3.2. Designing Probing Tasks

Probing tasks are structured to predict distinct linguistic or
acoustic properties z from the representations rl. Each task t
is aimed at assessing a particular feature of dysarthric speech.
From now on, CV will refer to the coefficient of variation. The
specific features chosen for the probing tasks, based on their sig-
nificance in detecting dysarthric speech as analyzed in previous
studies, are as follows:

• Loudness: The average loudness of the speech signal.
• 50th Percentile Pitch (Semitone): The median pitch mea-

sured in semitones.
• Mean Spectral Slope 500-1500 Voiced: The average spec-

tral slope in the 500-1500 Hz range for voiced segments.
• Mean Harmonic Difference H1-H2: The average difference

in amplitude between the first and second harmonics.
• Mean F2 Bandwidth: The average bandwidth of the second

formant.
• Mean Harmonic Difference H1-A3: The average difference

in amplitude between the first harmonic and the third formant
peak.

• CV MFCC3: The coefficient of variation of the third Mel-
frequency cepstral coefficient.

• CV HNR: The coefficient of variation of the Harmonics-to-
Noise Ratio.

• CV Spectral Flux: The coefficient of variation of the spec-
tral flux.

• CV F2: The coefficient of variation of the second formant
frequency.

• CV F3 Bandwidth: The coefficient of variation of the third
formant bandwidth.

• Log HNR: The logarithm of the Harmonics-to-Noise Ratio.

These features are specifically chosen for their performance
in previous studies and their ability to be used as discriminators
for dysarthric speech.

2.3.3. Probing Model

Depending on the task the complexity of the probing model
varies. In similar studies it is often chosen as a simple architec-
ture like MLP’s. By examining the performance of this probing
model, we gain insights into how well different layers of Whis-
per encode the features of interest.

2.3.4. Probing Analysis

The described probing regressor gt is applied to predict the
property z from rl. The regressor’s performance is evaluated
by mean square error(MSE) loss:

MSE(gt(rl), z),

which reflects how well the property z is represented within rl.
Low loss indicates effective encoding of z, whereas high loss
values suggests inadequate representation or extractability.

2.3.5. Interpretation of Results

Differential loss across layers and tasks will be examined to de-
duce the depth at which Whisper processes and encodes features
present in dysarthric speech. In order to prove the validity of the
information representation, a control task consisting on random
vectors will be compared as a baseline probe [20].

2.4. SVM Classifier

To evaluate our findings about the features we employed a Sup-
port Vector Machine (SVM) [21]classifier to evaluate the ef-
fectiveness of Whisper’s internal representations in the down-
stream task of in discriminating different severity levels of
dysarthric speech. The SVM classifier provides a reference per-
formance for Whisper encodings by assessing their capability
to classify the severity levels at each layer of the model. This
approach helps in understanding the discriminative power of the
internal representation and encoded features.

3. Experiments
3.1. Data Preparation

The dataset was divided into four severity levels: Normal, Very
Low, Low, and Medium, based on the speaker IDs outlined in
Table 1. Then the dataset was used to extract acoustic fea-
tures using the openSmile library [22] and additional scripts
to calculate chosen features. Additionally, the voice samples
are fed into the frozen Whisper model to extract the representa-
tions where Whisper is configured to ignore paddings. The ex-
tracted representations are time-averaged, preparing the dataset
for SVM classifier and probing tasks.

3.2. SVM Classifier

To evaluate the effectiveness of Whisper’s internal represen-
tations in discriminating between different severity levels of
dysarthric speech, we employed a SVM classifier. The SVM
classifier serves as a reference performance measure for Whis-
per encodings, assessing their capability to classify the severity
levels at each layer of the model.

For each encoding layer of Whisper, the extracted represen-
tations were used to train an SVM classifier with a radial basis
function (RBF) kernel. The classifier was configured with a reg-
ularization parameter C = 5. The dataset was split into train-
ing (80%) and testing (20%) sets, ensuring stratified sampling



Figure 2: Illustration of the model architecture

to maintain equal representation of severity levels in both sets.
The use of stratified sampling is crucial in this context, as it al-
lows us to assess the effectiveness of Whisper’s representations
in distinguishing between severity levels, rather than optimizing
for the best accuracy. This approach ensures an equal distribu-
tion of severity levels, providing a more accurate evaluation of
whether Whisper’s internal representations carry severity infor-
mation through the layers. The SVM classifier was trained on
the scaled representations, and its performance was evaluated
based on accuracy and confusion matrix metrics.

3.3. Model

We trained separate probing regressors for each severity level,
each layer, and each acoustic feature. The regressors were con-
figured as MLP with one hidden layer consisting of 128 neu-
rons, using a ReLU activation function [23] and dropout reg-
ularization [24]. The training process involved optimizing the
MSE loss using the ADAM optimizer [25] with a learning rate
of 0.001. The entire pipeline, including data preparation and
probing, can be seen in Figure 2. This approach ensures a de-
tailed analysis of Whisper’s internal representations and their
effectiveness in capturing dysarthric speech features.

In addition to training probing models on the actual repre-
sentations, a control task was conducted using randomly gener-
ated vectors. These random vectors were matched in size to the
original representations and trained on the same acoustic fea-
ture labels. This control task allows for a baseline comparison
to validate that the probing models are indeed capturing mean-
ingful information from Whisper’s representations, rather than
merely learning from the labels. By comparing the performance
of probing models on true representations against the random
baseline, we can have a better understanding of the selectivity
of the probing model.

3.4. Evaluation of Results

The results were evaluated in multiple ways:
1. Across Severity Levels: We analyzed how well Whisper’s

internal representations could discriminate between different
severity levels of dysarthric speech. This was done using both

the probing models and the SVM classifier, comparing their
performance across the severity levels.

2. Across Features: We examined how different acoustic fea-
tures were encoded across the layers of Whisper. The prob-
ing models’ performance on each feature provided insights
into which layers of Whisper were most effective in captur-
ing specific acoustic characteristics of dysarthric speech.

3. Comparison with Control Task: By comparing the perfor-
mance of probing models on true representations against the
probe based on random vectors, we assessed the selectivity
and effectiveness our probes of representing Whisper’s capa-
bility in encoding meaningful information.

4. Results Discussions
4.1. PCA Visualization of Representations

To understand how Whisper processes and represents dysarthric
speech across its encoding layers, we performed principal com-
ponent analysis (PCA) [26] on the extracted representations.
Plots in Figure 3, illustrate the distribution of representations
for different severity levels at Encoding Layers 1, 14, and 23,
respectively.

In the initial layers (e.g., Encoding Layer 1), the represen-
tations of different severity levels are more dispersed. This in-
dicates that these layers capture distinctive features, making it
easier to differentiate between the severity levels. As we move
deeper into the network (e.g., Encoding Layer 23), the represen-
tations converge and become more centralized around the ”Nor-
mal” severity level. This centralization suggests that deeper lay-
ers encode more generalized features, which may reduce the
classifier’s ability to distinguish between different severity lev-
els.

4.2. Probe Analysis Across Severity Levels

4.2.1. Normal Severity

The plot (Figure 4) shows the test loss for each feature across
the layers for Normal severity. Most features demonstrate con-
sistent trends across the layers with minimal fluctuations in test
loss, suggesting stable representations. Features like ”Loud-



Figure 3: PCA of Representations for Encoding Layers 1, 14, and 23.

ness” and ”50th Percentile Pitch (Semitone)” show low variabil-
ity, indicating effective capture of these characteristics. Some
features, such as ”Mean Spectral Slope 500-1500 Voiced” and
”Mean Harmonic Difference H1-H2,” exhibit higher fluctua-
tions, indicating challenges in consistent capture across lay-
ers. The average loss, represented by the black dashed line,
increases slightly in deeper layers, suggesting these layers fo-
cus more on generalized features rather than specific acoustic
characteristics.

The initial layers (e.g., Encoding Layer 1) effectively cap-
ture distinct features, making it easier to differentiate between
severity levels, as indicated by the dispersed PCA plots and
low test losses. However, as representations progress through
deeper layers (e.g., Encoding Layer 23), they become more gen-
eralized, converging around the ”Normal” severity level and re-
sulting in higher test losses.

Figure 4: Test Loss of Features Across Layers (Normal).

To validate the probing results, we compared the minimum
test loss of each feature against a random baseline, as shown in
Figure 5. The baseline was generated using randomly assigned
vectors, providing a control to ensure that the probes capture
meaningful information from Whisper’s representations.

From the comparison, it is evident that the actual probes
perform significantly better than the random baseline for most
features. For instance, feature ”CV HNR” has much lower test
losses compared to the random baseline, indicating that Whis-
per’s internal representations contain valuable information for
these features. However, feature ”CV MFCC3” show worst
performance compared to the random baseline, suggesting that
these features are not effectively encoded or more challenging
to learn from the representations.

Figure 5: Minimum Test Loss for Normal Compared to Random
Baseline

4.2.2. Very Low Severity

The analysis for the ”Very Low” severity level, illustrated in
Figure 6, demonstrates varied performance across different
acoustic features throughout Whisper’s encoding layers.

For most of the features the minimal loss is achieved in the
first couple layers. For the feature CV MFCC3, the performance
is minimal in the 9th layer, indicative of a characteristic to the
feature that leads to be encoded in deeper layers. Contrastingly,
CV HNR show significant spikes in test loss throughout layers.
Notably, it experiences a sharp increase around Encoding Layer
12 and then again around Encoding Layer 18. This observa-
tion might be indicative of Whisper’s process of normalizing
the speech characteristic and capturing the distinctive proper-
ties again.

The average loss generally increases in the later layers, par-
ticularly noticeable after Encoding Layer 15. This trend is in-
dicative of a reduction in the model’s ability to discriminate be-
tween different severities as it moves to deeper layers, correlat-
ing with the PCA analysis.

The comparison between the minimum test loss for Very
Low severity and the random baseline probe is presented in Fig-
ure 7. The random baseline, shows higher test losses compared
to the actual Very Low severity probes in all features except
Mean F2 Bandwith. This indicates either a lack of learning
from the representations or the absence of this information in
the encodings. For the rest of the features, this graph under-
scores that, while the probes for Very Low severity might not
capture the acoustic features as effectively as those for Normal
severity, they still outperform the random baseline, indicating
some level of learning from the representations.



Figure 6: Test Loss of Different Features Across Layers (Very
Low Severity)

Figure 7: Minimum Test Loss for Very Low Compared to Ran-
dom Baseline

4.2.3. Low Severity

The analysis of probing tasks for the Low severity level, as
shown in Figure 8, indicates varied performance across different
features. The relative performance percentage for different fea-
tures across the encoding layers shows that while some features
like ”Mean F2 Bandwidth” demonstrate increasing test loss as
we go deeper into the layers, others maintain a more stable loss
profile. ”Mean F2 Bandwidth” shows a peaking increase in loss
particularly around Encoding Layers 10 and 20, suggesting that
Whisper struggles to encode or loses this feature in these re-
gions.

Interestingly, the average loss, represented by the black
dashed line, increases steadily in the deeper layers. This trend
suggests that Whisper’s deeper layers capture more generalized
features, potentially losing specific information necessary for
distinguishing Low severity dysarthric speech.

To further validate these findings, the minimum test loss
for Low severity probes against a random baseline is depicted
in Figure 9. The results indicate that while most features
show a noticeable difference between the actual and random
probes, ”50th Percentile Pitch Semitone,” ”CV HNR,” and ”CV
MFCC3” could not surpass the baseline. These results suggest
that Whisper’s representation for these features does not capture
meaningful information for Low severity speech or our probes
struggle to learn effectively from the representations.

Figure 8: Test Loss of Different Features Across Layers (Low)

Figure 9: Minimum Test Loss for Low Compared to Random
Baseline

4.2.4. Medium Severity

The analysis of probing tasks for the Medium severity level, as
shown in Figure 10, indicates notable performance fluctuations
across different features throughout Whisper’s encoding layers.
In the initial layers, the probes generally demonstrate better per-
formance, with lower test loss values, indicating that Whisper’s
early layers capture more specific information relevant to sever-
ity dysarthric speech, correlating with the rest of the severity
levels.

Notably, ”CV MFCC3” exhibit dramatic peaks and valleys
in test loss across the layers. It displays fluctuations with drastic
peaks around Encoding Layers 5 and 15, and a sharp decline at
Layer 21 where it reaches its minimal test loss. This suggests
that while certain layers struggle to encode this feature effec-
tively, others, such as Layer 21, capture it very well.

The average loss, represented by the black dashed line, also
exhibits an increasing trend in the deeper layers, similar to other
severity levels. As expected from the PCA analysis, the deeper
layers show a reduction in the model’s ability to discriminate
between different severities. While these layers capture more
abstract and generalized features, they seem to lose some of the
detailed information crucial for distinguishing the severity of
dysarthric speech.

The comparison between the minimum test loss for
Medium severity probes and the random baseline is depicted



in Figure 11. Most features show a clear distinction between
the actual probes and the random baseline, underscoring the ef-
fectiveness of Whisper’s representations in encoding relevant
information. However, ”CV F3 Bandwith” the probes perform
worse than the random baseline, indicating either inadequate
learning from the representations or the absence of useful infor-
mation in the encodings for these specific features.

Figure 10: Test Loss of Different Features Across Layers
(Medium)

Figure 11: Minimum Test Loss for Medium Compared to Ran-
dom Baseline

4.3. Evaluation and Discussion

To validate our probing analysis, we employed an SVM clas-
sifier to evaluate Whisper’s internal representations for distin-
guishing dysarthric speech severity levels. The SVM results
provide a downstream task perspective to see if our probe-based
insights align with actual classification performance.

The SVM classification accuracy across different encoding
layers is presented in Figure 12. The highest accuracy of ap-
proximately 0.988 was observed at Encoding Layer 3, while
the lowest accuracy of around 0.906 was observed at Encoding
Layer 22. This suggests that the initial layers capture more dis-
tinctive features relevant to classifying the severity of dysarthric
speech.

The PCA visualizations and SVM accuracy results together
illustrate that Whisper’s initial layers maintain distinct and dis-
persed representations for each severity level, capturing detailed

Figure 12: SVM Classification Accuracy Across Layers.

acoustic features that facilitate differentiation. However, as the
representations move through deeper layers, they become more
generalized, centralizing around ”Normal” speech, and result-
ing in a decline in classification accuracy.

This trend concludes that deeper layers, while effective for
general speech recognition, may lose specific information cru-
cial for distinguishing different severities of dysarthric speech.
The observed increase in average test loss for probing tasks in
deeper layers further supports this, suggesting a shift from spe-
cific acoustic details to more abstract, high-level features.

In a broader scope for acoustic features, ”CV MFCC3”
shows minimal loss around layer 21 in Medium severity and
layer 9 in Very Low severity. This indicates that ”CV MFCC3”
is better captured in the later encoding layers, highlighting its
importance in representing severe dysarthric speech, which is
less prevalent in normal speech. The variation in loss for ”CV
MFCC3” across severity levels suggests it captures unique char-
acteristics of dysarthric speech that are less apparent in typical
speech patterns. This feature’s effective capture in deeper lay-
ers may indicate Whisper’s ability to progressively refine and
highlight these unique characteristics, crucial for distinguishing
more severe dysarthric conditions. Conversely, the normalizing
behavior of Whisper and fluctuating acoustic feature represen-
tations across severe speech display the need for an in-depth
analysis of the reasons behind the variations.

Overall, the results indicate that Whisper’s initial encoding
layers are more effective at capturing specific acoustic features
crucial for distinguishing between severity levels. This effec-
tiveness diminishes in the deeper layers, where representations
become more generalized. While this generalization benefits
overall speech recognition, it poses challenges for tasks requir-
ing fine-grained discrimination, such as identifying dysarthric
speech severity. Despite this, the SVM’s ability to distinguish
severity levels even in deeper layers indicates that some dis-
criminatory power is maintained, highlighting the intricate ca-
pabilities of Whisper’s internal representations. Notably, Whis-
per demonstrates a strong zero-shot capability in encoding sig-
nificant acoustic features pertinent to dysarthric speech, despite
not being fine-tuned specifically for this task. This suggests that
with fine-tuning, Whisper’s performance in recognizing and dif-
ferentiating the severity levels of dysarthric speech could see
substantial improvements, making it a valuable tool for applica-
tions in medical settings.



5. Conclusion
Within this study we tried to demonstrate an interpretation for
Whisper’s performance of effectively capturing properties of
dysarthric speech. With probing, we analyzed the presence of
discriminative features spesific for dysarthic speech. This anal-
ysis revealed that Whisper’s initial encoding layers are particu-
larly adept at capturing acoustic features yet it still better rep-
resents some features like ”CV MFCC3” in deeper layers. De-
spite the generalization in deeper layers that causes the incras-
ing trend in loss values, Whisper maintains some discriminatory
power, as evidenced by the SVM classification results.

By diving into the internal workings of Whisper, we aimed
to demystify the ”black box” nature of transformer models, pro-
moting transparency and safety in AI applications, especially in
medical settings. Understanding how Whisper processes atyp-
ical speech enhances its reliability and trustworthiness, paving
the way for its broader adoption in healthcare. These insights
are crucial for advancing the field of ASR, making sophisti-
cated AI technologies more interpretable and beneficial for real-
world, critical applications.

6. Responsible Research
This research adheres to ethical standards and promotes
transparency. All datasets used, specifically the TORGO
database, are publicly available, ensuring no privacy or
copyright issues. Our methodologies and experimental
procedures are thoroughly documented to facilitate repro-
ducibility. The Python code and scripts used in this
study are available at [https://github.com/Oagaoglu/Probing-
Whisper-for-Dysarthic-Speech/], allowing others to replicate
and build upon our work. Proper citations are provided for all
referenced studies. By sharing our findings and tools, we aim
to contribute to ethical and transparent AI research, particularly
in medical applications.
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