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Abstract

The Netherlands boasts an extensive road network that requires meticulous maintenance
and preservation. Dutch asphalt pavements are assessed through functional properties
such as mix stiffness and resistance to fatigue. However, current testing practice for these
properties is intensive in time and resources, leading to the exploration of alternative
methods for performance prediction. Recently, Artificial Intelligence (AI) has emerged as
a tool for performance prediction in pavement engineering. Despite its potential, the
application of Al is constrained by its limited interpretability and inconsistency with
known physical laws. To enhance consistency and interpretability in Al predictive models,
Physics Informed AI (PIAI) emerges as a promising approach.

This research develops a PIAI framework for physics infusion in pavement performance
predictions. This infusion is accomplished through a Physics-Informed Loss Function
balancing data and physics components in model training. The data component assures
model predictions approximate the targets, whereas the physics component enforces a
subset of features to follow a preset physical model. These components are also present
during feature selection, where the physical model is used to guide the inclusion of
important features in a PIAI model.

Using the developed framework, this research presents two PIAI prediction models based
on the NL-LAB datasets. These models infuse homogenization theory and energy
dissipation theory to enhance interpretability and consistency in stiffness and fatigue
predictions. The results obtained on both models suggest that physics infusion is feasible
without compromising prediction accuracy, balancing physical and statistical knowledge
when predicting pavement performance. These findings also indicate that the PIAI
framework is a promising approach for infusing physics into Al prediction models. Physics
infusion can potentially enhance the acceptance and trust of AI within the pavement
engineering community. Furthermore, the developed framework has the potential to
accelerate pavement performance assessments by reducing the need for extensive
material testing. Its flexibility also supports the incorporation of new physical models,
fostering innovation and sustainability in pavement engineering.
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1. Introduction

The opening chapter of this thesis introduces the research topic and delineates the
structure of the report. It begins by presenting the motivation for investigating Physics
Informed AI (PIAI) in pavement engineering, followed by a detailed problem statement.
The chapter then defines the research objectives and questions and concludes with an
overview of the research methodology and an outline of the subsequent chapters.

1.1. Research Motivation

A well-developed road network fosters economic development by facilitating passenger
and freight transportation [1]. Hence, investing in road construction and asset
management is a fundamental policy decision for governments worldwide [2]. The
Netherlands has one of the densest road networks in the European Union [3]. A road
network this extensive is a valuable asset that must be meticulously maintained,
preserved, and improved [4]. This is reflected in the significant budgetary expenditures
undertaken in road construction and maintenance by the Dutch government [5].

In the Netherlands, asphalt pavements are assessed through functional properties related
to field performance [6]. Understanding this relationship is crucial for pavement
engineering researchers and practitioners. For this purpose, an extensive research
program named NederLands Langjarig Asfalt Bemonsteringsprogramma (NL-LAB) [6]
was initiated. The NL-LAB program aimed to better understand the relationships between
asphalt mix composition, construction, and field performance in the Netherlands [6].

A primary concern of asphalt field performance is bearing capacity [6], as traffic loads
must be adequately dissipated through the pavement structure. Accordingly, the NL-LAB
datasets contain two functional properties related to bearing capacity: mix stiffness and
fatigue resistance [6]. These two properties are measured through the 4-point bending
beam (4PBB) test [6]. The 4PBB test applies a periodic bending with constant strain to an
asphalt mix beam, and records the resulting stress, strain, and phase angle per cycle [7],
[8]. Mix stiffness is defined by the stress-strain ratio at the 100t load cycle [7], whereas
fatigue resistance is measured via the initial strain corresponding to a fatigue life of 1x100
cycles (e6) [8].

Although the 4PBB is a routine test for assessing mix stiffness and fatigue resistance, its
execution can be complicated and time-consuming [9]. Pavement performance prediction
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models are an alternative approach to predicting fatigue resistance and stiffness.
Prediction models in pavement engineering have traditionally followed three approaches,
each with benefits and limitations [10]. Empirical models base on experimentation results
and relate statistically pavement performance and explanatory variables, but often lack
strong physical foundations [10]. Mechanistic models leverage a strong physical or
mechanical foundation to model pavement functional properties, but their application is
restricted by the complex nature of pavement engineering problems [10]. Mechanistic-
Empirical models leverage empirical relationships between pavement performance and
physics-based calculated pavement responses, infusing physics and statistics in a single
modelling approach [10]. However, Mechanistic-Empirical models incorporate local
calibration factors that require extensive fine-tuning procedures [11].

In current days, Artificial Intelligence (AI) is seen as an alternative tool in pavement
engineering that can potentially bridge some limitations of traditional modelling
approaches. Al applications in pavement engineering encompass distress detection,
distress quantification, performance prediction, and maintenance programming and
scheduling [12]. Although AI applications can potentially bring benefits, Al usage also
entails a set of limitations [13]. Purely data-driven AI models are limited to the scope of
the training data used and have limited generalizability [13]. Likewise, predictions made
by data-driven models can be physically inconsistent, often earning the label of ‘black-box’
models [13].

This ‘black-box’ label relates to the challenges regarding interpretability of purely data-
driven Al models [13]. These challenges can be potentially addressed via physics infusion
in AI models [13]. This modelling approach is often known as Physics Informed AI (PTIAI)
and aims to develop physically consistent AT models [14]. It is noted that PIAI models have
been developed for different fields in scientific computing such as fluid mechanics, solid
mechanics, and material science [13]. However, limited applications in the field of
pavement engineering are found in the past literature ([15], [16], [17], [18]). And, to the
best of the researcher’s knowledge, a framework to generate PIAI models for different
pavement functional properties is underdeveloped.

1.2. Problem Statement

Research in pavement engineering is ongoing since the 18t century, with significant
advancements and an increased research output emerging in the 1950s [19].
Consequently, a myriad of physical and empirical relationships — commonly referred as
"physical models" — have been popularly employed in pavement engineering ever since.
PIAI is a promising approach towards infusing physical models and Al capabilities for



enhancing predictions. However, it remains uncertain whether such physics infusion is
feasible in AI models predicting pavement performance based on the NL-LAB datasets. It
is also unknown if a physical model should meet a set of conditions to facilitate physics
infusion. Moreover, it is desired to understand the impact of this potential physics
infusion on the accuracy, interpretability, and consistency of model predictions.

1.3. Research Objective and Questions

The main objective of this research is to design and validate a novel PIAI framework for
predicting pavement functional properties based on the NL-LAB stiffness and fatigue
datasets. Accordingly, the corresponding main research question reads as follows.

Can physics be infused to enhance Al prediction models for stiffness and fatigue of
asphalt mixtures?

The development of the PIAI framework requires the selection of an adequate physics
infusion method. This method should be suitable for the characteristics of the datasets
and the physical model to infuse. Hence, the first research sub-question reads as follows.

Which method for infusing physics in AI models better suits the characteristics of the
NL-LAB stiffness and fatigue datasets?

This research acknowledges that the choice of a physical model for infusion into Al
predictions is influenced by the characteristics of the NL-LAB dataset and the physics
infusion method. To address this, clear selection criteria for physical models within the
developed framework are defined, as outlined in the second research sub-question, which
reads as follows.

What conditions are required to infuse a physical model into a PIAI prediction model
for the NL-LAB stiffness and fatigue datasets?

The PIAI models developed for stiffness and fatigue predictions are evaluated using a
multi-criteria performance assessment considering accuracy, interpretability, and
consistency. Accuracy is measured by the PIAI models’ ability to closely predict the target
values [20]. Interpretability assesses the extent to which the model predictions adhere to
the constraints imposed by the physical model [21]. Furthermore, given that AT model
initializations are often performed randomly [22], consistency examines how well the



physical constraints are maintained across different initializations [15]. The effects of
physics infusion on these performance criteria are investigated, as addressed by the third
and final research sub-question, which reads as follows.

How does infusing physics impact model accuracy, interpretability, and consistency?

1.4. Research Methodology

Figure 1-1 shows the 4-stage methodology adopted to attain the research aim and answer
the research questions. The first stage refers to data collection, exploration, and
provenance. The data provenance review enables an understanding of the testing
conditions under which the dataset instances were generated [23]. The second stage
contains a review and selection of a method for physics infusion in Al prediction models.
The third stage dives into the development of a PIAI framework for prediction models
based on the NL-LAB fatigue and stiffness datasets. This stage elaborates on physical
model selection, data preparation, feature selection analysis, and model training and
optimization for physics infusion. The fourth and last stage assesses the obtained PIAI
models accuracy, interpretability and consistency.
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Figure 1-1. Research methodology.

1.5. Report Outline

This report contains five chapters, with the remaining four chapters being structured as
follows. Chapter 2 presents a literature review concerning the NL-LAB datasets and
physics infusion method in AI models. Chapter 3 presents a conceptual introduction to
the developed PIAI framework. Chapter 4 presents and discusses the results obtained for
the developed PIAI fatigue and stiffness models. Finally, Chapter 5 presents the
conclusions and future recommendations.



2. Literature Review

This research performed a literature review to identify a suitable method for infusing
physics into AI models. This infusion method should fit the characteristics of the NL-LAB
datasets and consider the properties of the physical model to infuse. Accordingly, this
literature review is organized as follows. The review starts with Section 2.1, which focuses
on possible Al physics infusion methods and PIAI applications developed in pavement
engineering and related fields. Section 2.2 introduces the NL-LAB program and the
stiffness and fatigue datasets. Then, Section 2.3 focuses on the testing procedures and
physical models for predicting asphalt stiffness and fatigue resistance. Finally, Section 2.4
concludes the literature review with an introduction to the selected physics infusion
method, answering the first research sub question.

2.1. Infusing physics into AI models

With PIAI, researchers strive to improve the performance of Al predictive models by
leveraging prior domain knowledge in the form of a physical model [24]. Physics infusion
is possible via a Physics-Informed Loss Function [14], a Physics-Informed Architecture
[14], Physics-Informed Pre-Training [14], and hybrid methods [25]. The following
subsection details physics infusion via a Physics-Informed Loss Function.

2.1.1. Physics-Informed Loss Function

In statistical learning, a model loss is a scalar value that quantifies the closeness between
model predictions and targets [26]. This model loss can be conceptualized as a function of
the model parameters (¢) [26], obtaining the loss function L[¢] [26]. Training an AI
model means finding a set of model parameters that map each training input to its
associated target as closely as possible [26]. When a model is trained, the loss function
reached a local minimum with an associated set of optimal model parameters [26].

A Physics-Informed Loss Function incorporates a penalty term into the model loss [14].
Since this penalty term guides the model towards reaching physically consistent solutions
[14], it can be interpreted as a physics learning bias [24]. However, a model with a penalty
term will approximate but not guarantee the infuse physical model [24]. Therefore,
Physics is weakly incorporated in the predictive model through a Physics Informed Loss-
Function [24].



Equation 2-1 shows an example of a Physics-Informed Loss Function. The exemplified loss
function has one data-driven component (Lossp) and three physical components (Lossps,
Lossp2, and Lossps). All components have associated weight factors (A:), which can be
interpreted as model hyperparameters that require tuning [27].

Loss = A4, -Loss, + A, - Loss,, + A4, -Loss,, + A4, -Loss,, +... Equation 2-1

where:

Ai: Weight factor for component i.

Lossp: Data-driven component of the loss function

Lossp:: (Possible) first physical component of the loss function.
Lossp:: (Possible) second physical component of the loss function.
Lossps: (Possible) third physical component of the loss function.

An application of a Physics-Informed Loss Function in pavement engineering was
developed by Deng et al. [15] for rut depth prediction in asphalt mixtures. The author
enforced rut depth predictions to follow a monotonically increasing trend with respect to
increasing temperature and number of wheel passes in the Hamburg Wheel Tracking test
[15]. The author infused the desired physical behaviour through a loss function with two
physics-based components containing ReLU functions that penalized non-monotonic
predictions [15]. The author demonstrated that this implementation improved model
stability and rationality [15]. Noticeably, the author’s research focused on tabular data
without spatial or temporal relationships between instances. The NL-LAB datasets
present similar characteristics (see Section 2.2).

Another application of a Physics-Informed Loss Function in pavement engineering was
developed by Han et al. [18] for asphalt fatigue prediction. The author leveraged a dual
pathway model architecture [18] to predict the damage characteristic (C-S) curve of
asphalt mixtures [18]. The obtained model predicts the pseudo-stiffness (C) value with an
average error of 5.2% for different temperatures and frequencies and infusing visco-elastic
continuum dynamics [18]. Although the author reported that the obtained model had
improved precision accuracy and generalizability, model interpretability is lacking [18].
Moreover, the model developed takes data in the form of time series, which differs from
the characteristics of the NL-LAB datasets.

Physics-Informed Neural Networks (PINNs) are a sub category of Physics-Informed Loss
Function [13]. Researchers mostly use PINNs when the physical model or relationship to
infuse is in the form of partial differential equations (PDEs) and partial differential
inequalities (PDIs) [25]. Considering the example of Equation 2-1, PINNs can incorporate
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physical components in the loss function relating to the residuals of physical equations,
boundary conditions, and initial conditions [13]. PINNs can also include a data-driven
component in the loss function when observations are available [13].

PINNs work by leveraging automatic differentiation, a computational method to
differentiate the outputs of a neural network with respect to its inputs [13]. Through
automatic differentiation, PINNs can solve forward and inverse problems involving PDEs
[27]. In forward problems, PINNs can be used to compute solutions to PDEs [27].
Whereas, in an inverse problem, PINNs are used to discover unknown PDE parameters
using observational data [27].

Despite various promising developments using PINNs, they entail several limitations.
First, they can be affected by vanishing and exploding gradients, as with any deep learning
task [26]. Also, neural networks tend to learn lower frequency solutions first and be biased
towards smooth functions, which is known as spectral bias [28]. Notably, PINNs need to
be retrained for every instance of a problem, for example, with a change in initial or
boundary conditions.

To the best of the researcher’s knowledge, PINN applications have been developed in
engineering fields related to pavement engineering. In structural engineering, Kapoor et
al. [29] investigated PINN applications for forward and inverse problems in complex
beam systems. The author used three physics-driven components in the loss function for
the forward problem, accounting for residuals of the governing PDE, boundary conditions,
and initial conditions [29]. Moreover, a data-driven component was incorporated when
solving the inverse problem [29]. The author demonstrated that PINNs can solve
nondimensionalized Euler-Bernoulli and Timoshenko complex beam systems [29].
Although the application developed showed promising results, the NL-LAB dataset does
not contain spatial or temporal series. Therefore, the relevance of the findings towards
predicting pavement performance is limited.

Another PINN application was developed by Kapoor et al. [30] for moving load problems
in beams. The author found that PINNs can solve forward and inverse problems
considering Euler-Bernoulli beam theory [30]. Additionally, the author found that
modelling a point load as a Gaussian function instead of a Dirac delta function prevents
instability when training vanilla PINNs [30]. This work provides interesting insights into
PINN applications for structural engineering. However, the characteristics of the NL-LAB
datasets are not compatible with problems involving temporal or spatial discretization.



By incorporating a physics-informed loss function, physics is approximated without
changing the model architecture. However, it is possible to modify such architecture to
meet physical constraints, as detailed in the next subsection.

2.1.2. Physics-Informed Architecture

Model architecture is a term is used to describe the arrangement of layers, connections,
and components that condition data flow through an AI model [31]. Model architecture
choice often depends on the characteristics of the task at hand [26]. Thus, it is possible to
encode physical or empirical dependencies in the core architecture of a model [13] [14].

Conventional neural networks [32] propagate information only in the forward direction,
from inputs to targets, lacking mechanisms to learn dependencies among targets [33].
Previous knowledge about target dependencies can be infused in neural networks as
inductive biases [26]. For example, Convolutional Neural Networks (CNNs) are designed
to handle data on regular grids, assuming nearby data in space is highly correlated [26].
Likewise, Recurrent Neural Networks (RNNs) are tailored to process sequential and/or
dynamic data, assuming high correlation between two inputs close in time [32]. Similarly,
Graph Neural Networks (GNN) are suited to represent data in irregular graphs.

Despite its efficiency, a physics-informed architecture method has several limitations
[24]. Task with relatively simple and well-defined physics tend to perform better than
tasks with more complex physics [24]. Besides, this method requires careful elaboration
and implementation, especially regarding the appropriate selection of an inductive bias
[24]. Finally, implementation scaling or extension to more complex tasks is challenging,
as the underlying physics is not well understood or is hard to encode in the network [24].

Kapoor et al. [33] introduced a novel framework to enhance generalization in physics-
informed models by combining PINNs and neural oscillators. A neural oscillator is a
specific network type that involves building RNN architectures based on Ordinary
Differential Equations (ODEs) [33]. The author demonstrated that their proposed
framework enables an AI model to learn the long-time dynamics of solutions to the
governing PDEs [33]. The findings are promising for enhancing generalization
performance in Physics-Informed AI models. However, the results are based on numerical
experiments and not on an existing dataset. Moreover, none of the PDEs solved by the
author correlates to a performance indicator modelled in this research.



Another plausible method for infusing physics in AI models involves training a data-
driven model with physics-compliant inputs and targets. The following subsection
discusses this method and its applications to real-world data.

2.1.3. Physics-Informed Pre-Training

With Physics-Informed Pre-Training, a data-driven model is initialized using physically
consistent inputs and targets [13]. In a later stage, the model can be fine-tuned with
observational or real-world data [25]. Although the initialization procedure may speed up
model convergence to consistent solutions [14], physics is weakly infused in the prediction
model [24].

Despite its effectiveness, a Physics-Informed Pre-Training framework brings several
limitations. Pre-training often requires a large amount of data which can be
computationally expensive to collect and process [24]. Moreover, the generated models
are purely data-driven and thus are prone to learn the trend and noise in the pre-training
set rather than the underlying physics [13]. Consequently, model generalizability beyond
the pre-training set is challenging, and there is no guarantee of satisfying initial and
boundary conditions [13].

PIAI applications using Physics-Informed Pre-Training have been developed in pavement
engineering. Kargah-Ostadi et al. [16] developed a Physics-Informed Pre-Training
framework for predicting the International Roughness Index (IRI). The author pre-
trained a neural network using theoretical solutions of the Quarter-Car model from LTPP
[34] road profile measurements and vehicle suspension properties, speed and
acceleration response [16]. Then, the author fine-tuned the model to predict the IRI
measurements contained in the LTPP database [34]. The final model showed good
accuracy, precision, and generalization potential for smooth road profiles. Yet, the author
acknowledged that sparse training samples from rougher road profiles in the LTPP
database [34] limit model generalizability [16]. The framework developed highlights the
potential of Physics-Informed Pre-Training for diverse pavement engineering problems.
However, input features must be consistent between the pre-trained and fine-tuned
models [16]. For the NL-LAB datasets, this consistency means that a physical or empirical
model considering all features should exist, which is seldom the case.

The methods discussed for physics infusion in Al are not mutually exclusive [25]. Hence,
they can be combined in a single PIAI framework, as detailed in the following subsection.
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2.1.4. Hybrid Methods

Hybrid methods for physics infusion refer to combining different infusion methods in a
single pipeline, aiming to enhance model generalizability [24]. To the best of the
researcher’s knowledge, hybrid physics-infusion methods have been developed for
engineering domains other than pavement engineering.

Kapoor et al. [35] developed a hybrid modelling framework between transfer learning and
causality-respecting PINNs for Euler-Bernoulli and Timoshenko beams on a Wrinkler
foundation. The author first trained a causality-respecting model and then used the
trained parameters as initialization for similar problems [35]. This framework
outperformed other PINN implementation frameworks in predicting displacement and
rotations in Wrinkler beams [35]. Moreover, the author concludes that this framework
addresses the need to re-train a model when the initial conditions or computational
domain change [35]. The hybrid modelling framework developed enhances AI
generalization capabilities for extended temporal and spatial domains. However, the
characteristics of the NL-LAB datasets do not match with the spatial and temporal
domains in the work by Kapoor et al. [35].

Daw et al. [36], developed a hybrid modelling framework combining Physics-Informed
Pre-Training and a Physics-Informed Loss Function to predict lake temperature profiles.
The author first trained a surrogate model [37] to predict the output of the General Lake
Model for a given set of input drivers [36]. The author added a Physics-Informed Loss
Function to the surrogate model to enforce consistency between the predicted
temperature, water density, and lake depth [36]. The model loss function had one physical
component that penalized temperature predictions inconsistent with a monotonic
increase in water density with depth [36]. The author concluded that the obtained model
showed better generalizability and produced physically meaningful results compared to
conventional data-driven models [36]. Although the model developed is distant from
pavement engineering, a similar approach can be leveraged to enforce monotonical
relationships in predictions based on the NL-LAB datasets.

This section presented four different methods for infusing physics in prediction models
according to the relevant literature. The application examples enable understanding
possible relationships between the physics-infusion method, the available data and the
physical model to infuse. Hence, the following section introduces the NL-LAB program,
and the characteristics of the datasets generated for stiffness and fatigue prediction in
asphalt mixtures.
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2.2, The NL-LAB program

The NL-LAB [6] program started in 2012 aiming for a better understanding of the
relationships between functional properties and field performance of Dutch asphalts [38].
Under the NL-LAB [6] program, samples were collected from six road construction
projects in the Netherlands [39]. These samples correspond to intermediate and base
asphalt layers with recycled asphalt pavement (RAP) [40]. Data collection in the NL-LAB
[6] program occurred in phases. Each phase indicates a distinct combination of asphalt
mix and compaction setups, as shown in Table 2-1. It is noted that phase 3 includes
samples collected at various time intervals, incorporating aging as an additional variable.

Table 2-1. NL-LAB phase overview ([41]).

Phase Mixing Compaction Time Interval Component Assessed
1 Lab
Lab . .
2 Plant After construction Asphalt and Bitumen
3
3a 6 months .
. . Bitumen
3b Field Field 1year
3c 2 years )
Asphalt and Bitumen
3d 6 years

Table 2-2 details the tests standards used the NL-LAB program to assess pavement
functional properties. The testing results, along with mix design and sample identification
information, comprise the NL-LAB datasets [6]. The program generated datasets for four
functional properties: resistance to fatigue, stiffness, resistance to rutting, and water
sensitivity. In line with the scope of this research, Appendix A shows an overview of the
raw (unprocessed) features contained in the NL-LAB fatigue and stiffness datasets.

Table 2-2. Testing standards for pavement functional properties.

Material Test Name Standard Temperature Frequency
Needle penetration NEN-EN 1426 [42] 25°C N/A
Softening point via the ring
and ball method NEN-EN 1427 [43] N/A N/A
Bitumen Complex shear modulus
and phase angle using the o
Dynamic Shear Rheometer NEN-EN 14770 [44] 20°C 10 rad/s
(DSR)
.| Bulk density of bituminous
Asphalt Mix specimens NEN-EN 12697-6 [45] N/A N/A
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Material Test Name Standard Temperature Frequency
NEN-EN 12697-26
Stiffness 97-26 171 20°C 8 Hz
Method B
. . NEN-EN 12697-24 [8]
Resistance to fatigue 20°C 8 Hz
Method D
NEN-EN 12697-25 [46
Cyclic compression test 97-25 [46] 40°C 1Hz
Method B
NEN-EN 12697-12
Water sensitivity 97-12 47] 15°C N/A
Method A

Identifying possible physical models for infusion requires a prior understanding of the
testing conditions under which the pavement functional properties were obtained. The
following section details these conditions, along with possible physical models developed
for stiffness and fatigue prediction in asphalt mixtures.

2.3. Pavement functional properties

Testing in pavement engineering is essential to quantify functional properties of bitumen
and asphalt mix impact pavement performance [48]. Since bitumen is crucial for resisting
tensile stresses within an asphalt mix, bitumen functional properties focus on assessing
its capacity to withstand tensile strain without failure [48]. Moreover, testing in asphalt
mixtures tests aim to assess the material quality and the suitability of the mixture
components [48]. The following subsection elaborates on the tests performed on bitumen
samples.

2.3.1. Bitumen Testing

Under the NL-LAB program, tests on bitumen samples included: i). Penetration, ii).
Softening point, and iii). Dynamic shear rheometer. This subsection provides an
explanation of the corresponding test procedures.

The penetration test measures the distance a standard needle penetrates vertically into a
bitumen sample after 5 seconds of loading [42]. The usual measurement units in this test
are tenths of a millimetre (1/10 mm) [42]. Higher penetration values indicate a softer
bitumen, while lower penetration values are associated with a stiffer bitumen [49].
Although penetration grading was the first standardized bitumen grading system [48], the
test approximates bitumen consistency empirically and does not measure any
fundamental bitumen property [50].
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The softening point of bitumen is determined by the Ring and Ball test [43]. In this test,
two 3.5-gram steel balls are placed on bitumen discs in a water bath and heated steadily
until they fall 25.0 + 0.4 mm [43]. The temperature at which this fall occurs is recorded
as the bitumen softening point [43]. The bitumen Penetration Index (PI) [51] integrates
the results of the penetration test and softening point test [51]. When calculating the PI, it
is assumed that bitumen penetration at the softening point is 800 1/10 mm [51]. Lower PI
values indicate high-temperature susceptibility, whereas higher PI values indicate low-
temperature susceptibility [49]. Since the PI performs bitumen characterization over a
small temperature range [49], the understanding of bitumen rheological properties is
limited.

The Dynamic Shear Rheometer (DSR) is used to characterize bitumen rheological
properties [49]. In the DSR test, an oscillatory shear stress is applied to a bitumen sample
sandwiched between two parallel plates [49]. The resulting shear deformation is also
oscillatory, with the same frequency as the applied shear stress and a phase lag, as shown
in Figure 2-1. The complex shear modulus norm (|G*|) is the ratio between the maximum
applied shear stress and the maximum shear strain [49]. The phase angle (6) is the
measured lag between the shear stress and strain plots [49]. The phase angle enables
decomposing the complex modulus into the storage (G’) and loss modulus (G”), as shown
in Figure 2-2.

Shear stress, t

&
Q.
wn
2 4
P
=
1
1
= A
e 16*
~ 8
A
Stress @ P TT====== )
Phase angle, & IG’| Elastic part
Figure 2-1. Components of the complex modulus Figure 2-2. Complex modulus
([49D. decomposition ([48]).

In every load cycle in the DSR test, a hysteresis loop forms in the strain-stress domain
[52]. The area enclosed under this hysteresis loop indicates the amount of dissipated
energy and is calculated via Equation 2-2 [52].
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W =7zr,p,sInd Equation 2-2

where:

W : dissipated energy

7, : shear stress amplitude

7, shear strain amplitude

A bitumen sample is subjected to strain-controlled sinusoidal loading in fatigue testing
[52]. Assuming all the strain energy dissipates to control fatigue cracking, Equation 2-2
can be rewritten as Equation 2-3. From Equation 2-3, it is noted that a lower value of
|G*|sind reduces the dissipated energy. This observation led to the introduction |G*|sind
as a parameter to minimize for controlling fatigue cracking in the Superpave design
method [52].

W =7y} ‘G*‘sin ) Equation 2-3

Although bitumen functional properties are relevant to assess pavement performance,
further testing in asphalt mixtures is fundamental for a comprehensive analysis [48]. The
following subsection presents the test procedures for asphalt mix under the NL-LAB
program.

2.3.2. Asphalt Mix Testing

Testing procedures on asphalt mix samples under the NL-LAB program included: i).
Density and air voids, ii). Fatigue resistance, iii). Stiffness, iv). Rutting resistance, and v).
Water sensitivity. Given the scope of this research, the testing procedures for rutting
resistance and water sensitivity are not detailed in this section.

2.3.2.1. Density and Air Voids

The air voids content of an asphalt mix is the ratio between the volume of air voids in the
mix and the bulk volume of the compacted mix [48]. The air voids content was determined
using the bulk density of the compacted mix and the theoretical maximum mix density
[53]. The bulk density of the compacted mix corresponds to a Saturated Surface Dry (SSD)
condition [45], whereas the theoretical maximum mix density was obtained via the
volumetric procedure specified in NEN-EN 12697 [54]. Data regarding density and air
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voids content in the NL-LAB datasets was collected by the contractors involved in the
program [6].

Density and air voids content often correlate to pavement performance. Researchers [48]
related low air voids content with higher rutting probability and high air voids content
with premature cracking and ravelling in asphalt mixtures. The effects of premature
cracking on pavement life were assessed by Linden et al. [55], finding that an increase of
1% in air voids content reduced pavement service life by up to 10%. On the contrary, a
lower air void content is linked to higher asphalt mix densities [48]. Mogawer et al. [56]
found higher asphalt mix densities to increase the mix dynamic modulus for different
temperatures and frequencies [56].

2.3.2.2. Mix Stiffness

Stiffness quantifies the ability of an asphalt mix to dissipate an applied load [49]. In a
pavement structure, two material layers with the same thickness but different stiffness
will transfer different load magnitudes to the underlying layer [49]. Notably, a stiffer
asphalt layer will be more prone to fatigue cracking, whereas a layer with low stiffness
tends to be more affected by rutting. Hence, stiffness is a key functional property for
designing an adequate pavement structure for specific loading, environmental, and site
conditions.

An elementary definition of stiffness is given by the stress-strain ratio shown in Equation
2-4 [7]. Since an asphalt mix is a viscoelastic material, its loading response is temperature
and frequency-dependent [7]. Hence, for a linear visco-elastic material, stiffness is defined
in terms of a complex modulus (E*) and a phase angle (8), as shown in Equation 2-5.

E_ o Equation 2-4
&

where:
E : stiffness modulus

o : Maximum applied stress

& : Maximum measured strain response

E” =|E"|-(cos(8)+i-sin(5)) Equation 2-5
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where:

‘E*‘ : Norm of the complex modulus, defined by the stress strain
ratio.

o : Phase angle.

Under the NL-LAB program stiffness was determined using the 4PBB test [7], following
the setup shown in Figure 2-3. This test applies periodic bending with constant amplitude
(see Figure 2-4) to an asphalt sampled conditioned at a given temperature [7]. At the
100th load cycle, the norm of the complex modulus is determined via Equation 2-4 [7].
The resulting value is the target of the NL-LAB stiffness dataset and corresponds to the
mix stiffness at 20°C and 8 Hz [40].

4
3 ] X
2
where: where:
F: Applied load. 1. Peakload .
. 2. Pulse repetitions period
L: Distance between supports. . .
3. Loading time
[: Distance between loading points. 4. Minimum Load
X. Time
Y. Force
Figure 2-3. 4PBB test schematization. Source: Figure 2-4. Applied load in the 4PBB test.
[7]. Source: [7].

Research on asphalt stiffness modulus prediction has been extensively carried out since
the 1950s [57], with continuous development to the present day. A set of stiffness
prediction models incorporates homogenization theory, where the effective stiffness of a
composite material is determined based on the stiffness of its different phases [58].
Examples of this model family are the Christensen model [59], the modified Christensen
model [60], and the model proposed by Zhang et al. [58]. Other relevant stiffness
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prediction models include the developments by Shell [49], the University of Nottingham
[61], the U.S. Asphalt Institute [62], and Witczak & Fonseca [63]. It is noted that none of
the reviewed physical models include all features of the NL-LAB datasets.

2.3.2.3. Fatigue Resistance

Asphalt fatigue is a pavement distress characterized by a series of interconnected cracks
[51]. Fatigue cracking initiates at the bottom of the asphalt layer, where the tensile strain
is highest, and propagates upwards as one or more parallel longitudinal cracks [51].
Fatigue cracking indicates pavement structural deficiencies, especially in areas subjected
to traffic loading [51].

Under the NL-LAB program, fatigue resistance is quantified using the 4PBB test [40].
After determining the mix initial stiffness, the test applies periodic bending until reaching
a failure condition [8]. This failure condition corresponds to a 50% reduction in the initial
stiffness [8]. The fatigue life of a sample is the number of cycles needed to reach the failure
condition (Nfs0) [8]. After testing multiple samples, it is possible to plot a fatigue line
relating the applied initial strain and the fatigue life of each sample in the logarithmic
plane [8]. Fitting a linear regression to the fatigue line eases the computation of the initial
strain corresponding to a fatigue life of 1x100 cycles. This initial strain is labelled as € and
is the target of the NL-LAB fatigue dataset.

Different authors correlated fatigue resistance and other bitumen or mix properties. Bahia
et al. [64] studied the relationship between the Superpave fatigue parameter (|G*|sind)
and the fatigue life in mixtures with Polymer Modified Bitumen (PMB). The author found
weak correlations considering different aggregate types and mix compositions, which they
linked to measuring fatigue only in the linear viscoelastic range [64]. Ishaq & Giustozzi
[65] developed a correlation between bitumen fatigue life and HMA fatigue life in the
4PBB test, obtaining an R2 value of 0.82. Shen & Carpenter [66] developed a model
correlating the fatigue life with the Plateau Value (PV) from energy dissipation theory. The
author also devised a model to correlate the PV with the HMA tensile strain, flexural
stiffness, volumetric composition, and aggregate characteristics [66]. Similar to mix
stiffness, physical models for fatigue resistance prediction do not incorporate all features
in the NL-LAB datasets.

This subsection concludes the review on the test protocols and physical models for
stiffness and fatigue resistance in asphalt mixtures. It was found that the reviewed
physical models do not include the entirety of the features in the stiffness and fatigue
datasets. In the following section, the literature review is concluded by selecting a physics
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infusion suitable to the characteristics of the NL-LAB datasets and the physical models
reviewed.

2.4.Conclusion

Table 2-3 summarises the PIAI studies reviewed in this research. Literature suggests a
relationship between framework for physics infusion, the data available, and the physical
model to infuse. Using a Physics-Informed Loss function is possible when handling
tabular inputs, as the effect of a subset of features on the model output can be constrained.
However, PINNs are preferred when a model contains partial differential equations, as
exemplified in [29], [30], [33] and [35]. Hence, to leverage PINNs, data instances should
be correlated in time or space. Moreover, specifying a Physics-Informed Architecture is
crucial to account for possible correlations between data instances. The example shown in
[33] devises an architecture fitted to capture the temporal dynamics of the problem at
hand. Physics-informed pre-training can handle tabular data, with or without temporal or
spatial correlation between data instances. The application developed in [16]
demonstrated that Physics-Informed Pre-Training is possible when the features for

physics pre-training and data-driven fine tuning are the same.

Table 2-3. Examples of PIAI applications.

Physical/Empirical
Author | Framework Used Model Infused Features Targets
Monotonic increasing Tabular data containing
Deng et Physics- constraint of rut depth bitumen and aggregate
5 Informed Loss predictions considering properties. No Rut depth
al. [15] . . T
Function temperature and correlations in time or
number of wheel passes. space identified.
Phvysics- Historical data of fatigue
Han et Inforrille d Loss Visco-Elastic C-S curve as a time Pseudo-
al. [18] F . Continuum Dynamics. | series. Data instances are Stiffness (C).
unction
temporally related.
Physics- Euler-Bernoulli beam Numerlc:?llly genergted
Informed Loss . data points to verify
. equation. . A
Kapoor Function compliance of governing Beam
et al. [29] ' Timoshenko beam PDE, boundgry ‘ displacements.
Specifically, equation conditions and initial
PINN q ) conditions.
Physics- Numerically generated
Informed Loss data points to verify
Kapoor Functi Euler-Bernoulli b liance of i B
ot al unction uler-Bernoulli beam compliance of governing ~ Beam
[ 0]' equation. PDE, boundary displacements.
3 Specifically, conditions and initial
PINN conditions.
Capoor | P | VPeow e | Samrially gt
et al. Informed q ) li P ¢ ) Unspecified.
[33] Architecture . compliance of governing
Allen-Cahn equation. PDE, boundary
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Author | Framework Used Phg;gggl/ E} nflupslé(llcal Features Targets
conditions and initial
Nonlinear Schrédinger conditions. Also,
equation. numerically generated
data to validate model
Euler-Bernoulli beam generalization.
equation.
Tabular data of vehicle
properties, FHWA LTPP
Ostadi et Informed Pre- Quarter-Car Model. yIEe IRI values.
L. acceleration responses.
al. [16] Training
Input data is correlated
in space and time.
Hybrid Approach Fuler-Bernoulli beam Numericz.llly genera}ted
Kapoor equation data points to verify
Physics- ! ) compliance of governin Beam
etal formed PDE, boundary | displ
[35] Informed Pre- Timoshenko beam PDE, boundary Isplacement.
Training and equation conditions and initial
PINN ) conditions.
Hybrid Approach
Phvsi General Lake Model. Tabplar inputs rela“?g to
ysics- environmental and time-
Daw et Informed Pre- . . . of-the -year conditions. Lake
al. [36] Training and Monotonic increasing Lake depth is also an temperature
’ Physics relation of water density ‘nput. Thus. instances profile.
Y with respect to depth. put. 2hus,
Informed Loss are spatially correlated.
Function

The characteristics of the NL-LAB datasets limit the applicability of some reviewed
infusion methods. These datasets contain instances that are not correlated in time or
space, which hinders the use of PINNs and a Physics-Informed Architecture. Moreover,
models developed in pavement engineering for fatigue and stiffness predictions rarely
contain all features present in the datasets, challenging a Physics-Informed Pre-Training.
However, some fatigue and stiffness physical models contain a subset of features present
in the datasets. Hence, by specifying the effect of a subset of features in Al model
predictions, physics can be infused in AI model predictions. In consequence, a Physics-
Informed Loss Function is the selected physics-infusion method.

The literature review concludes with the selection of a suitable physics-infusion method
for the NL-LAB datasets’ characteristics. However, the development of a PIAI framework
for stiffness and fatigue predictions necessitates further considerations regarding the
desired physical model and PIAI model training. These considerations are detailed in the
following chapter.
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3. PIAI Framework for the NL-LAB
datasets

This chapter presents the developed PIAI framework for prediction models based on the
NL-LAB datasets, corresponding with Stage 3 of the research methodology (see Figure
1-1). Figure 3-1 shows the four stages for model development under the PIAI framework.
These stages are explained across four distinct sections in this chapter. Section 3.1
presents the developed criteria for selecting a physical model, answering the second
research sub question. Section 3.2 introduces the different steps performed for data
preparation. Then, Section 3.3 introduces the physics and data-driven feature selection
method incorporated in the PIAI framework. Finally, Section 3.4 provides a detailed
description of the procedures for model training and optimization under the development
framework.

Data Collection

[}

[ ]

E Physical model Selecting a physical model
H selection compatible with the dataset
[}

L

| Data cleaning and aggregation |

v

(]
(]
(]
(]
(]
(]
Data preparation | Encoding categorical variables | H
(]
(]
(]
(]
(]
(]

v
| Data splitting |

Physics-driven feature selection | | Data-driven feature selection
Feature Selection ' 3

| Correlation analysis |

e 2
H | Data scaling | E
.

: s '
E Model training and | Physical featurelﬁs compatibility | ;
! optimization for ¥ ¥ H
! physics infusion PIAI model data-driven training | | PIAI model physics-based training | §
] L | '
H 10-fold cross-validation and :
H hyperparameter optimization E
.

Figure 3-1. Proposed PIAI model development framework for the NL-LAB datasets.
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3.1. Selection of a Physical Model

Datasets generated under the NL-LAB program consider a substantial number of features
that aim to explain pavement performance (see Appendix A — Table A 1). To the best of
the researcher’s knowledge, there is seldom a physical model in pavement engineering
containing the same features and targets as the NL-LAB datasets. Hence, this research
established the following compatibility criteria for selecting a physical model:

e The dependent and independent variables of the physical model must be among the
dataset features. Otherwise, it must be possible to calculate the physical model
variables from the dataset features.

e The physical model must include the target variable of the dataset. Preferably, the
dataset target should be included explicitly as a variable in the physical model.
However, physics infusion is also possible using a physical model considering a
variable calculated from the dataset target.

e The testing conditions of the physical model should closely match the testing
conditions of the dataset. If not, it should be possible to implement a correction.
Examples of corrections include using master curves to account for different
temperature and loading conditions. Failure to meet this requirement does not prevent
physics infusion in AI models but can lead to inconsistencies.

e The physical model should be a validated development in the pavement engineering
domain. Like in the previous requirement, failing to meet this requirement does not
prevent physics infusion in AI models. However, it poses a risk of infusing an
inadequate physical behaviour.

These compatibility criteria are further explained through an example. Consider a dataset
with 5 features (X1,..., X5) and a target (Y) as shown in Table 3-1. Each feature and the
target contain k entries (X14,..., X1x). Consider also the candidate physical model presented
in Equation 3-1. The independent variable of the candidate physical model corresponds to
the target of the toy dataset. Additionally, the toy candidate physical model calculates the
independent variable as a linear combination of functions of a subset of the features in the
dataset (X1, X2). Under the assumption that the features X1, and X2 are independent and
uncorrelated, it is possible to infuse the toy candidate model in an AI prediction model.
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Table 3-1. Example dataset for explaining physical model compatibility.

Input Features (Xp) Target
X1 X2 X3 X4 X5 Y
X1, | X20 | X3 | X4, | X5 Ys

X1, | X2, | X3, | X4, | X5, \E
X1s | X25 | X3s | Xds | X5s Ya

XTe | X2¢ | X3¢ | X4 | X5 Yi

Y =C1° f(X1)+C2°g(X2)+C3 Equation 3-1

where:

Y: Independent variable of the dataset.
f(X1): Function of feature X.

g(X2): Function of feature Xo.

Ci, Cs, C3: Model constants.

Selecting a physical model conforming to the abovementioned compatibility criteria is
fundamental for enhancing pavement performance predictions. In the following
subsections, the selected physical models to infuse in the PIAI prediction models for
stiffness and fatigue are presented.

3.1.1. Physical model for stiffness prediction based on micromechanics

The selected physical model to infuse in the PIAI stiffness prediction model was proposed
by Zhang et al. [58] for Open Graded Mixes (OGMs). This model belongs to a family of
models based on homogenization theory [58]. In homogenization theory, the effective
micromechanical properties of a composite material are determined based on the
properties of its different phases [58]. In an asphalt mix three phases can be identified
[59]: bitumen, aggregates, and air voids. Figure 3-2 shows three phase arrangements used
by researchers ([58], [59], [60]) in homogenization models.
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where:
f: Phase. a: Aggregate.
p: Parallel component. b: Bitumen.
s: Series component. v: Air voids.

Figure 3-2. Arrangement of the Christensen model for asphalt mixes. From [58].

a). Original arrangement [59], b). Simplified arrangement [60], ¢). Proposed modified
arrangement [58].

Christesen et al. [59] developed the first homogenization theory application in pavement
engineering, devising the phase arrangement shown in Figure 3-2(a) for improved
accuracy in mix stiffness predictions. Later, Christensen & Bonaquist [60] found the series
component of this initial arrangement to be futile for mix stiffness prediction, and
proposed the parallel arrangement shown in Figure 3-2(b).

Zhang et al. [58] proposed a revised parallel arrangement to better account for aggregate
contact interaction. This revised arrangement considers the total volume of bitumen,
aggregates, and air voids, as shown in Figure 3-2(c). Moreover, the author introduced the
Aggregates Organization Factor (Pa) to describe the frequency and temperature-
dependent contribution of the aggregate phase in mix stiffness prediction. The resulting
model for mix stiffness prediction is shown in Equation 3-2.

E’| (f)=PR,(f)f,E,+3f,|G"

b ( f ) Equation 3-2

mix
where:

| E*|mix(f): Mix stiffness, frequency dependent.
Pq(f): Aggregate organization factor, frequency dependent.
fa: Volume fraction of the aggregate phase.
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Ea: Aggregate Young’s modulus.
fv: Volume fraction of the bitumen phase.
|G*|b(f): Dynamic shear modulus of the bitumen phase, frequency dependent.

Zhang et al. [58] validated the proposed model by developing master curves for mix
stiffness and bitumen shear modulus. Through this validation, the author demonstrated
that Pq is frequency dependent, approximating a sigmoidal function when frequency
increases [58]. Thus, the author proposed the regression model shown in Equation 3-3.

*

exp(b+cin(f,)/(f,+1,)-|6
Lvexp(b+cin(f,)/(f,+1,):

b+d(g+n»

P,=a+(1-a) -
pﬂ(%+ﬁﬂ

Equation 3-3
G

where:

Jfv: Volume fraction of the air voids phase.
a, b, ¢, d: Regression coefficients. a = 0.0017, b =0.62,c =0.72,d = -0.17
|G*|v, and f» are described in Equation 3-2.

The model developed by Zhang et al. [58] satisfied the compatibility criteria for physical
model selection. The target of the NL-LAB stiffness dataset is incorporated in Zhang et al
[58]’s model as independent variable. The model variables fs, f» and |G”|b correspond to
the features “VA”, “Volume_Target_Bitumen” and “bit2_ Gstar” of the NL-LAB stiffness
dataset. Furthermore, This research assumed 53000 MPa as the Young’s modulus of the
aggregate phase (Ea) [58]. Finally, the volume fraction of the aggregate phase was
calculated using Equation 3-4, and stored in a new feature named
“Volume_Agg_Fraction”.

f,=1-1f,-f, Equation 3-4

fa, fv, and fv are described in Equation 3-2 and Equation 3-3.

After performing the abovementioned calculations, Po was obtained via Equation 3-3 and
stored in a new feature named “Pa”. With Pq, the expected mix stiffness was calculated via
Equation 3-2. The PIAI stiffness model was trained to approximate this expected mix
stiffness in the physics component.
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The selection of Zhang et al.’s [58] model as the physical model to infuse in stiffness
predictions entailed three limitations for this research. The first limitation was related to
the stiffness test procedure. While Zhang et al. [58] used the Cyclic uniaxial compression
test [67] to obtain mix stiffness, the stiffness values reported in the NL-LAB dataset
correspond to the 4PBB test [7]. Therefore, it was assumed that the stiffness values
obtained through both testing procedures are comparable. The second limitation was
brought by the regression model introduced by Zhang et al. [58] (see Equation 3-3) being
applicable only to OGMs. Hence, to bridge this limitation it was assumed that the samples
contained in the NL-LAB stiffness dataset correspond to OGMs. The third and last
limitation was related to the calculation of fa, as it was implicitly assumed that no bitumen
was absorbed by the aggregates.

3.1.2. Physical model for fatigue prediction based on energy dissipation
theory

The selected physical model to infuse in the PIAI fatigue model was developed by Shen &
Carpenter [66]. Using energy dissipation theory, the authors proposed a prediction model
relating the Plateau Value (PV) to the initial flexural stiffness, and parameters referring to
mix volumetrics and aggregate gradation [66].

Energy dissipation theory states that the area under the stress-strain curve represents the
energy applied to a material under loading conditions [66]. This applied energy fully
recovers when the unloading curve follows the same path as the loading curve [66]. When
the loading and unloading paths differ, a hysteresis loop is formed. In viscoelastic
materials, the as the area of this hysteresis loop corresponds to the dissipated energy (see
Equation 3-5).

Wi =T -0;"& -sin (¢|) Equation 3-5

where:

Wi: Energy dissipated in cycle i.
oi: Stress level in cycle i.
ei: Strain level in cycle i.

¢i: Phase angle in cycle i.

Material damage is related to changes in dissipated energy [66]. Two different hysteresis
loops in successive load cycles indicate material damage occurred [66]. Only the relative
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amount of energy dissipation created by each additional load cycle will produce further
material damage [66]. In consequence, the relative change of dissipated energy has a
direct relationship with damage accumulation [66]. Hence, the Ratio of Dissipated Energy
Change (RDEC) (see Equation 3-6) is often used as a testing parameter to assess HMA
fatigue damage [66].

DE ,-DE
RDEC = # Equation 3-6

where:

RDEC: Ratio of Dissipated Energy Change.
DE;:: Energy dissipated in cycle i.

A curve with three distinct zones (see Figure 3-3) is obtained when plotting the RDEC and
the number of loading cycles [68]. The Plateau Value (PV) corresponds to the constant
RDEC value shown in zone II. The PV is often determined as the RDEC value
corresponding to the load cycle in which the initial stiffness is reduced by 50% [66].

Dissipated Energy Ratio

—— Plateau Value

Log Load Repetitions

Figure 3-3. RDEC vs Load Cycles. From [68].

Shen & Carpenter [66] proposed a PV prediction model using 19 mixtures from the Illinois
Department of Transportation [66]. These mixtures presented various air void contents,
different gradations, and both neat and polymer-modified bitumen [66]. Mixtures were
compacted using a rolling wheel compactor and tested via a four-point bending beam
fatigue test according to AASHTO T321-03 [66]. This test applies a constant strain
amplitude to the mix at a frequency of 10 Hz and a temperature of 20°C [66]. Equation
3-7 shows the developed PV prediction model.
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PV =44.422£514829%/pt#oGp 040 Equation 3-7

where:

PV Plateau Value.

e: Tensile strain.

S: HMA initial flexural stiffness (20°C, 10Hz) [MPa].

VP: Volumetric parameter, described in Equation 3-8.

GP: Aggregate gradation parameter, described in Equation 3-9.

AV
= AV 1V Equation 3-8
b
where:
VP: Volumetric parameter.
AV: Mix air voids.
Vb: Bitumen content by volume.
Puws — P
GP = % Equation 3-9
200

where:

GP: Aggregate gradation parameter

Pnus: Percentage of aggregate passing the nominal maximum sieve size.

Prcs: Percentage of aggregate passing the primary control sieve (PCS = 0.22:-NMS).
P-o0: Percentage of aggregate passing the No. 200 (75um) sieve size.

Shen & Carpenter [66] also proposed a relationship between the PV and the number of
load cycles to failure, shown in Equation 3-10. The authors verified this relationship to be
unique for different mixtures, loading modes, and testing conditions at normal damage
levels [66]. Moreover, the authors employed the same failure condition used in the NL-
LAB fatigue dataset [66].

Nf =0.4801- PV %% Equation 3-10
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where:

Nr. Fatigue life, i.e. number of cycles for a 50% stiffness reduction.
PV: Plateau value.

The model developed by Shen & Carpenter [66] satisfied the compatibility criteria for
physical model selection. The target of the NL-LAB fatigue dataset is one of the dependent
variables of the selected physical model. Moreover, the initial stiffness was retrieved from
the NL-LAB stiffness dataset. Additionally, mix stiffness was obtained by. The volumetric
parameter (see Equation 3-8) was calculated using “VA” and “Volume_ Target_ Bitumen”.
The calculated value for this parameter was stored in a new feature named “VP”. Finally,
the aggregate gradation parameter (see Equation 3-9) was obtained by constructing
aggregate gradation curves from the target composition values (see Appendix B). The
calculated value for this parameter was stored in a new feature named “GP”.

Since the target of the NL-LAB fatigue dataset is €6, the number of cycles to failure is Ny =
1x10%. With the number of cycles to failure, the PV was calculated via Equation 3-10.
Furthermore, Equation 3-7 was reworked to isolate € from the calculated PV. Hence, the
PIAI model for fatigue prediction was trained to approximate this expected stiffness in the
physics component.

This research incurred in two limitations when selecting Shen & Carpenter’s [66] model
as the physical model to infuse in fatigue predictions. The first limitation is related to the
testing procedure. Although the 4PBB test was used in both the physical model and the
NL-LAB dataset, the reference cycle for obtaining the initial stiffness differs. In the NL-
LAB dataset, initial stiffness was determined at the 100t load cycle [7]. However, Shen &
Carpenter’s model uses an initial stiffness value obtained at the 50t load cycle [69].
Therefore, it is assumed that mix stiffness values determined via the 4PBB test at the 50th
and 100t load cycle are comparable. The second limitation is related to the determination
the Nominal Maximum Aggregate Sieve Size (NMAS). This research found no information
about the NMAS of the mixtures tested in the NL-LAB program. Therefore, a NMAS of
16mm was assumed based on the aggregate target composition, as illustrated in Appendix
B.

This subsection introduced the selected physical models for infusion in the PIAI stiffness
and fatigue models. Although selecting a physical model is fundamental for PIAI model
development, raw data needs to be prepared for use in predictive models. The following
section presents the data preparation procedures performed in this research.
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3.2.Data Preparation

Data preparation is a fundamental step prior to model training as raw data is rarely
suitable for direct use in Al predictive models [70]. This research introduced different data
preparation procedures to ensure that input data was usable for PIAI model training. Data
preparation comprised data cleaning and aggregation, encoding categorical features, and
data splitting.

Data cleaning involved removing informational features (see Appendix A - Table A 1) and
instances containing missing entries from the datasets. The categorical features “work”
and “phase” were removed as each “work” and “phase” combination can be represented
by a “mix_setup” and “comp_setup” combination, as seen in Appendix C.

Furthermore, data aggregation included the generation of gradation curves from the
target aggregate mass composition values in the datasets. With the gradation curves, the
volume percentages of gravel (retained in 4.75 mm sieve [71]), and sand (passing the 4.75
mm sieve but retained in the 0.075 mm sieve [71]) were determined. These percentages
were included in the datasets as “Volume_Target_Gravel” and “Volume_Target_Sand”,
in lieu of the target aggregate composition values per sieve size.

Encoding categorical features is another crucial data preparation step. Categorical
features contain class values instead of numerical values [70]. These class values are often
text or numerical inputs referring to categories [70]. Encoding a categorical feature strives
to assign numerical values to represent each category contained in the feature [70].
Methods for encoding a categorical feature include one-hot encoding, ordinal encoding,
feature hashing, and target encoding or bin counting [70], [72]. After consideration of the
drawbacks and benefits of each encoding method, this research used one-hot encoding for
handling categorical variables. Although one-hot encoding generates additional binary
features for each possible category, it provides better interpretability over the effects of
each category in model predictions. Figure 3-4 illustrates an example of one-hot encoding.
In the example, “Mix Type” is a categorical feature with 3 (k = 3) possible categories. One-
hot encoding creates k binary features, corresponding to k possible categories. However,
one-hot encoding creates a linear dependency between the binary features, as knowing
the values of k-1 features enables deducing the value of the kth feature [72]. Therefore, it
is necessary to remove one feature which serves as a benchmark or reference category. In
the example, the category “HMA Dense” is the benchmark for the “Mix Type” feature.
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Sample Mix Type Sample |HMA Dense | HMA Open WMA
1 HMA Dense 1 1 0 0
2 HMA Open R 2 0 1 0
3 WMA i 3 0 0 1
4 WMA 4 0 0 1
5 HMA Open 5 0 1 0

Figure 3-4. Example of One-Hot Encoding.

Data cleaning, data aggregation, and encoding categorical variables involved the creation
and removal of features in the NL-LAB datasets. Table 3-2 summarizes the changes in the
dataset features and a brief explanation of the justification behind these changes. It is
noted that the data preparation procedures resulted in a net addition of 2 features to the
dimensionality of the NL-LAB datasets. Moreover, Appendix A (Table A 2) provides a list
of the obtained features after data preparation, along with relevant descriptive statistics.

Table 3-2. Added and removed features from each dataset.

A cpr e
Dataset Features e Justification
Removed
“Volume_ Aggregate_Fraction”, i i
Stiffness _Aggregate_ Added Needed for the stiffness physical
“Pa” model
. “VP”’ ) .
Fatigue “«GP” Added | Needed for the fatigue physical model
“Volume_Target_Gravel”, .
Both “Volume_Target_Sand” Added | Aggregated gradation features.
“Volume_Target_C22_47,
“Volume_Target_C16”,
“Volume_Target_C11_2”" . .
— — g— M h
Both “Volume_Target_Co08”, Removed C:arzit;irz;dfg;:u:eeslggregated
“Volume_Target_Cos_6", & )
“Volume_Target_ Coo2mm”,
“Volume_Target_ Cooo63mu”
“WOI‘k”, . “o e ”
Both Removed E{eﬂected by s’})emﬁc. ml?c_setup and
“phase” comp_setup” combinations
Both | “mix_setup” Removed | Categorical feature
“Forced action mixer”, Categories of the “mix_setup
Both «pl o Added | feature. Benchmark category:
anetory mixer “Asphalt plant”
Both | “comp_setup” Removed | Categorical feature
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Dataset Features Added / Justification
Removed
“Hand roller”,
“Mini roller”, Categories of the “comp _setup”.
Both | , Added | feature. Benchmark category: “Field
Segment compactor”, roller”
“Shear box”
Since work 6 included and the “work”
feature was removed, this binary
Both “PMB” A . ’
ot dded indicator accounts for PMB presence
in the asphalt mix.

Data splitting is the final step of the data preparation stage. Training an Al model using
all available data may lead to overfitting and undermine model performance [70]. Hence,
splitting data into training, validation, and test sets can prevent overfitting. This research
utilized a ratio of 80%-10%-10%, as shown in Figure 3-5. The training, validation, and test
subsets play different roles in AI model development. The training set helps obtain the
optimal model parameters [73]. The validation set allows finding the optimal model
architecture through hyperparameter tuning [73]. The test set enables the acquisition of
unbiased performance metrics [73].

Training Val. Test
80% 10% 10%

Figure 3-5. Training-validation-test split.

Through data preparation, raw features in the NL-LAB datasets were transformed to
facilitate incorporation in PIAI prediction models. Data preparation resulted in 22 and 23
features for the NL-LAB stiffness and fatigue datasets respectively. Since the datasets
contain 425 instances, it was decided to reduce the number of input features to prevent
overfitting in the PIAI models. This research reduced the number of input features with a
feature selection procedure, as explained in the following section.

3.3. Feature Selection

Figure 3-6 illustrates the principle of the feature selection method performed in this
research. The outcome of the feature selection analysis is the set of important features.
The important feature set is a subset of the feature space and is formed by the union of the
sets of important features from a physics and a data-driven perspective.
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Selected Features

Important Important
Features Features

(Physics) (Data)

Feature Space

Figure 3-6. Illustration of the feature importance analysis.

This research introduced a feature selection method comprising physics and data-driven
components. While the physics component aims to preserve all features needed to
compute the outputs of the physical model, the data component aims to preserve features
with strong statistical relationships to the target [70]. A feature required to compute the
output of a physical model must not be removed irrespective of the results of the data
component. The following section provides a description of the selected method for
feature selection in the data-driven component.

3.3.1. Data-driven feature selection through BorutaShap

This research used BorutaShap [74] as the data-driven feature selection method.
BorutaShap is a wrapper [70] method that brings together the Boruta [75] feature
selection algorithm with SHAP [76] values. Boruta is an iterative selection method that
compares the importance score [70] of the features in a dataset with the maximum
importance score achievable by pure randomness [77]. The importance score in
BorutaShap is obtained with SHAP [76] values. SHAP values leverage a sound
mathematical foundation on cooperative game theory to quantify the contribution of each
feature in model predictions (see Appendix D) [78].

By incorporating statistical testing to determine feature importance, BorutaShap
eliminates the need for presetting thresholds related to minimum model performance or
a desired number of features [74]. Such thresholds are typically required in other wrapper
methods, including Forward Selection [79] and Recursive Feature Elimination (RFE) [79].
The principles underlying BorutaShap, as well as its relevance to this research, are best
illustrated through an example.
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Consider a dataset with 5 features (X1, ..., X5), 1 target (Y) and 5 instances, as shown in
Table 3-3. After fitting a tree-based regressor to this dataset, feature importance scores
are calculated using the mean SHAP value across all predictions [80], as shown in Figure
3-7. These importance scores can be integrated into different feature selection methods.
In Forward selection, a prediction model is constructed using the most important feature
(X1) and the target (Y) [79]. If this model fails to meet the preset performance criteria, the
next most important feature (X2) is added, and the model is retrained [79]. Conversely,
RFE removes the least important feature (X5) first and retrains the models [79]. With
RFE, the least important feature is successively removed until the model reaches the
desired performance threshold or until the feature number is reduced to the preset
minimum [79].

Table 3-3. Example dataset for BorutaShap illustration.

Dataset Features (Xp) Target
X1 X2 X3 X4 X5 Y
X1 X2 X3: X414 X51 Y:

X1z X2> X32 X42 X52 Y.
X13 X23 X33 X4s3 X53 Y3

X.lk Xék XSk X4k Xsk Yk

X1 +1.19
X2
X3
X4 +0.55
X5 +0.55
0.0 02 0.4 0.6 0.8 10 12

mean(|SHAP value|)

Figure 3-7. Example SHAP values for BorutaShap illustration (/81)).

BorutaShap differs from Forward Selection and RFE by identifying as important only
those features that have been statistically proven to enhance model performance [74].
BorutaShap extends the original feature space by creating one shadow feature per original
feature using random permutation [82], as shown in Table 3-4. A tree-based regressor is
then fitted to this extended feature set and the target variable [74]. This trained regressor
is used to compute importance scores for both the original and shadow features using
SHAP values [76], as shown in Table 3-5. An original feature is considered to have scored
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a “hit” if its importance score is higher than the maximum importance score of all shadow
features [82]. In the given example, X1, X2 and X3 scored a “hit”.

Table 3-4. Example dataset extended with shadow features.

Extended Features Target

Shad. | Shad. | Shad.
X1 X2 X3

X1, X2, X3, X1, X2, X3. Y,
X1, X2, X3. X1, X2; X3, Y.
X1, X2, X33 X1; X2, X3s Y,
X1, X2, X3, X1, X2, X3 Y,
X1; X2, X3s X1, X2, X3, Y;

X1 X2 X3

Table 3-5. Example of SHAP importance scores and hits per feature.

Feature X1 X2 X3 Shad. X1 | Shad. X2 | Shad. X3
SHAP Importance o o1 o1 o012 0.16 0.0
Score 37 13 ud ' (max) o0
Hit
.. . 1 0] 1 N/A N/A N/A
(This iteration)

This procedure is repeated across several iterations to account for different random
permutations in the shadow features [82]. After n iterations, the experiment is modelled
with a binomial distribution with p = 0.5 [74]. BorutaShap then performs a two-sided
equality test based on this distribution to determine a feature’s importance from the
number of hits it accumulated [74]. This iterative process enhances the robustness of the
feature selection method by ensuring that only the features consistently deemed
important across multiple iterations are retained.

By default, BorutaShap uses a Random Forest as the base regression model from which
the importance scores are calculated. However, extending the feature space through
shadow features may incorporate noise and result in overfitting during feature selection
[83]. Since overfit models exhibit little bias and high variance [26], minor data changes
may result in different important features [83]. Hence, a regressor exhibiting low variance
is desired for enhanced robustness in feature selection.

As mentioned in previous paragraphs, the default base regression model in BorutaShap is
a Random Forest [84]. However, BorutaShap enables the setting of different base
regression models. This research compared different base regression models such as XGB

35



[85], CatBoost [86] and Extra-Trees [87] to find the model with the lowest variance in the
selected features. The hyperparameters of each base regression model were not tuned in
this analysis. Each base regression model was run considering different seed values [22]
as the importance score is calculated on the test set, which results from a split made at
random [74]. As seen in Table 3-6 and Table 3-7, for each seed, the number of important
features identified by each model can differ. Additionally, the number of iterations
required to achieve convergence varies with different seeds.

To enhance the robustness of feature selection, a stopping criterion was established in the
BorutaShap analysis. This criterion required that the set of accepted features must not be
zero. Additionally, it required that the number of accepted features must either remain
the same in the last two runs or that the number of tentative features be zero, whichever
occurred first.

BorutaShap was run multiple times for each base regression model and seed combination.
Each run had a different number of iterations, starting with “200” iterations for the first
run. For successive runs, the number of iterations was doubled if the stopping criterion
was not met. This iterative approach aimed to determine the number of iterations needed
to stabilize the number of accepted features. Therefore, the number of iterations reported
in Table 3-6 and Table 3-7 corresponds to the final run, where the number of accepted
features remained constant over the last two runs.

To evaluate the variance of different base regression models, this research introduced the
average Common Important Feature Ratio (CIFR), as shown in Equation 3-11. The CIFR
of each base model assesses variance by measuring the proportion of accepted features
preserved over different random seeds. The CIFR ranges between 0 (no features
preserved) and 1 (all features preserved), with higher values indicating reduced variance.
Table 3-6 and Table 3-7 presents the results of the BorutaShap sensitivity analysis on the
stiffness and fatigue dataset. This research selected Extra Trees [87] as BorutaShap base
regression model, as it indicated lower variance through a higher CIFR and better
accuracy through a higher mean R2 on the test set. Similarly, this research selected
Random Forest [84] as the base regression model for the BorutaShap analysis on the
fatigue dataset.

CIFR, =

1 & # Common Important Features, _
H : Z Equation 3-11

7= #Important features,

where:
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CIFRi = Common Important Feature Ratio of base model i.

n: Number of seeds per base model.

# Common Important Features: Number of common important features over all seeds

for base model i.

# Important features: Number of important features of base model i considering seed j

Table 3-6. Results of the BorutaShap sensitivity analysis for the stiffness dataset.

R2 Mean
. Test | Important Common R2
R il Seed | Iterations set Features | Important Features | Test CIORIE
set
o} 1600 0.77 12
Random 7 6400 0.80 15
Forest [84] 31 1600 0.84 12 9 0.80 | 0.70
42 1600 0.77 13
0] 200 0.77 7
XGB 7 400 0.68 8 6 o -
Regressor [85] 31 400 0.86 8 77 | 0.7
42 400 0.76 9
0 1600 0.77 18
CatBoost 7 400 0.88 17
Regressor [86] | 31 400 0.84 16 15 0.83 | 0.88
42 1600 0.83 17
0 1600 0.82 21
Extra-Trees 7 1600 0.86 21
Regressor [87] | 31 1600 | 0.88 21 21 0.85 | 0.98
42 400 0.83 23
Table 3-7. Results of the BorutaShap sensitivity analysis for the fatigue dataset.
R2 Mean
: Test | Important Common R2
BaseModel Seed | Iterations set Features | Important Features | Test GRS
set
o) 1600 0.77 11
Random 7 6400 0.56 12
Forest [84] 31 1600 | 0.70 11 10 0.68 | 0.89
42 1600 0.68 11
0] 200 0.59 5
XGB 7 400 0.45 8 060 | o
Regressor [85] | 31 400 0.72 5 4 : .73
42 400 0.63 5
CatBoost 0 1600 0.72 8 7 0.62 | 0.79
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R2 Mean
. Test | Important Common R2
e ikl sesd | linions set Features | Important Features | Test G
set
Regressor [86] 7 400 0.47 11
31 400 0.73 (0]
42 1600 0.58 8
o} 1600 0.75 11
Extra-Trees 7 1600 0.49 13
Regressor [87] 31 1600 0.70 10 8 0.66 | 0.72
42 400 0.73 11

The introduced data and physics driven feature selection method enabled reducing the
number of input features by filtering out unimportant features for model performance or
physical model computation. However, this method does not account for the correlation
between the selected features. By analysing the correlation between features, the number
of input features can be further reduced. The following section introduces the correlation

analysis method leveraged by this research.

3.3.2.Correlation Analysis

This research used Spearman's correlation rank (see Equation 3-12) to assess correlation
between the remaining features after the physics and data-driven feature selection. This
analysis aims to further reduce the feature space and preserve the assumptions required
for infusing a physical model (see Section 3.1).

where:

,0_

4 6-> d’
n-(n?-1)

p : Spearman correlation coefficient.

d =x-Y,

X;, ¥;: Observation i of variables x and y

n: Total number of observations

Equation 3-12

The Spearman correlation rank measures the strength of a monotonic relationship
between two variables. A positive Spearman correlation coefficient indicates that variable
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y tends to increase as variable x increases [88]. A negative value indicates that variable y
tends to decrease when variable x increases [88]. A correlation coefficient of zero indicates
no tendency for y when x changes [88]. The Spearman correlation rank was selected
because the NL-LAB datasets include continuous and categorical features, and
relationships between variables are non-linear [39], [40]. It is noted that no feature
required for computing the output of a physical model was removed after correlation
analysis.

The correlation analysis is the last step in the feature selection process. The outcome of
this process is a reduced set of input features to be used in PIAI model training. The
following section presents the considerations for PIAI model training and optimization
under the framework developed.

3.4.Model Training and Optimization

PIAI Model training in this research serves a twofold purpose. The PIAI model must
generate appropriate mappings between the selected features and targets and
approximate the behaviour dictated by the chosen physical model. Deng et al. [15]
suggests that neural networks can be leveraged to infuse physics in prediction models for
tabular data in pavement engineering. Hence, the PIAI framework developed in this
research uses neural networks as the base model architecture.

Since neural networks fit targets using a weighted sum of input variables, they require
prior scaling of features and targets [70]. Scaling brings robustness and stability to model
training by accounting for differences between measurement units of features [70].
Scaling is possible through normalization and standardization [70]. This research used
normalization as the scaling method. Normalization rescales the data so that all values
range between 0 and 1 [70] as shown in Equation 3-13. Normalization was preferred over
standardization as it preserves the binary features obtained through one-hot encoding.

X. — X .
X, = Xl—mm Equation 3-13

max Xin

where:

xs: Scaled feature value.
xi: Original feature value.

Xmax: Maximum feature value.
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Xmin: Minimum feature value.

Figure 3-8 illustrates the developed PIAI framework, which contains a data component
and a physics component. The data component aims to generate predictions (yp) that
closely match the targets (yp), as with conventional AI applications. The physics
component strives to enhance the predictions by infusing physical knowledge from
pavement engineering. This physical knowledge is infused within the PIAI framework
through a physical model, from which the physics targets (yr) are calculated.
Subsequently, the physics component of the PIAI framework model is trained to generate
predictions (yp) closely matching the physics targets.

Data Component (elements in green)

Targets (yp)
Input Features Prediction
> . Data Loss
(Xo) ‘ (NN e

Physics-Informed i
Al Model Model Loss

: T
Physical Model —T \_» Prediction Physics Loss

Features (Xp) (§r)

Physical Physics
> Model targets (ye)

Physics Component (elements in blue)

Figure 3-8. Developed PIAI framework.

The PIAI framework utilizes two feature sets: the Input Features (Xp) and the Physical
Model Features (Xp). Xp and Xp have identical dimensions to ensure compatibility during
PIAI model training [15]. Although Xp is derived from Xb, it is specifically tailored to
enable training in the physics component. Xp preserves only the features needed to
compute the physical model output and averages the remaining features [15]. While Xp
leverages an extensive set of relevant features to enhance PIAI model accuracy, Xp
facilitates the infusion of physical knowledge for enhanced PIAI model consistency and
interpretability. Figure 3-9 illustrates an example of Xp generation using a toy dataset of 5
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features. The example assumes that X1 and X2 are required to compute the output of a
selected physical model. Consequently, X1 and X2 are preserved in Xp in the same order
they had in Xp, while X3, X4, and X5 are averaged.

Input Features (Xp)

Physical Model Features (Xp)

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

X1, X2, X3 X4 X51 X1 X2; | X3av g X4av g X5av g
X1o X25 XSQ X42 X52 X1o X925 XSa\'g X4a\ g XSJ\'g
X135 X23 X33 X435 X53 X153 | X235 Xgm-g X4m-g XSm-g
Xllk Xék XSk X.4k X5k Xlk X2k X ém- g X4£11' g X 5 avg

Figure 3-9. Example of Physical model features definition

In the framework illustration shown in Figure 3-8, a model loss is introduced. This loss is
described by Equation 3-14. Three elements compose the model loss: a data loss (Lp), a
physics loss (Lr), and a physics tuning hyperparameter (A). The physics tuning
hyperparameter controls how much importance is given in the training process to the
physics loss. A significantly low value of A will result in a model with low physics
compliance in its predictions, while a high value of A will result in physics-compliant
predictions that diverge from the observations (yp). Furthermore, the researcher selected
the mean square error (MSE) loss to calculate the data and physics losses. By selecting
MSE, the implicit assumption is that the conditional distribution of the targets for a given
input value is Gaussian [89]. Hence, the MSE loss is minimized when the model predicts
the mean of the conditional target distribution regression problems [89].

L=L,+A-L,

where:

Lp: Data loss.
Lp: Physics loss.
A: Physics tuning hyperparameter.

1 < .
MSE = = (%~ §)

Equation 3-14

Equation 3-15
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where:

y;: Target.
¥, : Prediction.

N : Number of instances.

Training the PIAI model consists in minimizing the model loss (see Equation 3-14). This
research used the PyTorch [90] library for model training. Figure 3-10 shows a flow
diagram of the training loop devised in this research. Defining a model class in PyTorch
[90] involves determining the layer type, activation function, and neural network
parameter initialization method. This research used Xavier’s Uniform [91] initialization,
which has been successfully leveraged in other PIAI applications [35]. Then, a model
instance was created by specifying hyperparameters as the number of hidden layers, the
number of nodes per hidden layer, and the dropout rate. After creating a model instance,
an instance of the Adam [92] optimizer was also initialized. The optimizer finds a
minimum loss after iterations through multiple epochs. An epoch refers to a single pass
through the entire training dataset [26]. Each epoch involved making predictions,
calculating the data and physics loss, computing loss gradients, performing
backpropagation [26], and updating model parameters. Within the training loop, the
researcher implemented an early stopping strategy to prevent overfitting. This strategy
consisted in monitoring the decrease in the validation loss with every epoch. Hence,
training was halted when the validation loss had not decreased for a given number of
epochs [89]. Then, the model parameters yielding the lowest validation loss were kept as
the optimal model parameters [89].
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Define a model class in
PyTorch

1
Initialize a model

instance
l

Initialize the optimizer

Compute model outputs Compute model outputs
with the data (Xp) with the physics (Xp)
training set training set
Compute model training Compute model physics
data loss training loss
| |
1)
Compute model outputs Compute model outputs Compute the model
with the data (Xp) with the physics (Xp) training loss
validation set validation set
i N
Compute model data Compute model physics Compute the gradients of
validation loss validation loss the training loss
| | l
J, Update model
Compute the model parameters and reset -
validation loss gradients

s the validation loss
decreasing?

No
)

)

Figure 3-10. Training loop flow diagram.

The training process previously described does not allow for finding the optimal set of
model parameters for different train-test-validation splits. To account for different train-
validation-test splits during training, this research performed 10-fold cross-validation as
shown in Figure 3-11. Cross-validation enables model training using a larger proportion of
the data, aiming to reduce variance [26]. This method partitions the training and
validation sets into k (k = 10) disjoint subsets or folds. For each fold, the model is trained
with k-1 subsets and validated with the remaining subset [26]. The cross-validation error
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is the average validation error over all folds [20]. The researcher selected k=10 as it has
been empirically demonstrated to yield test error estimates without excessively high
variance or high bias [20].

Training Val. Test

Figure 3-11. 10-fold cross validation.

Since model hyperparameters are fixed while executing 10-fold cross-validation, it is not
possible to determine an optimal model architecture. This research leveraged
hyperparameter optimization [93] to obtain the optimal model architecture. With
hyperparameter optimization, it is possible to identify the set of hyperparameters that
minimize the cross-validation loss [93]. The evaluated hyperparameters include the
number of hidden layers and neurons per layer, the dropout rate, the learning rate [26]
and the physics tuning hyperparameter (A). Methods for hyperparameter optimization
include Manual Search, Grid Search, Random Search, Gradient-based optimization, and
Bayesian Optimization [93]. This research selected Bayesian Optimization as the
hyperparameter tuning method. Bayesian Optimization leverages information from
previous runs to hasten convergence to a local minimum, improving algorithm
performance with respect to other hyperparameter tuning methods [93]. This research
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used the Optuna [94] package to perform Bayesian Optimization, for which Appendix E
provides further details.

Table 3-8 presents the predefined range of variation for the model hyperparameters used
in Bayesian Optimization. The ranges for the number of hidden layers, neurons per layer,
dropout rate, and learning rate were selected based on common practice observed in the
reviewed PIAI applications (see Table 2-3). The limits for the physics tuning
hyperparameter (A) vary by model and are based on the results from preliminary trials
and subsequent graphical assessments of performance related to both data and physical
constraints. The results from these trial runs are provided in Appendix F.

Table 3-8. Range of variation of model hyperparameters in Bayesian Optimization.

Hyperparameter Model Lower Limit Upper Limit Progression
No. of hidden Both 2 4 In steps of 1
layers
By a factor of 2
No. of neurons Both 4 128 y
per layer (e.g., 4, 8,16, ...)
Dropout rate Both 0 0.5 In steps of 0.1
Learning rate Both 1x10-7 1x10! Logarithmic
Physics tuning Stiffness 1xX10-12 1X107° Logarithmic
hyperparameter
) Fatigue 1x10-7 1X10! Logarithmic

This section concludes the chapter concerning the development of PIAI models for the
NL-LAB stiffness and fatigue datasets. Through 10-fold cross-validation and Bayesian
Optimization, the optimal set of model hyperparameters was found for each model. This
optimal set included the value of the physics tuning hyperparameter that resulted in the
lowest cross-validation loss. The following chapter presents and discusses the prediction
results of the final PIAI fatigue and stiffness models.
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4. Results and Discussion

This chapter presents the obtained PTAI models for stiffness and fatigue predictions based
on the NL-LAB datasets. The results are presented in two sections corresponding with the
last two stages of PIAI model development (see Figure 3-1). Section 4.1 introduces the
results from the physics and data-driven feature selection analysis and the final features
used for PIAI model training. Then, Section 4.2 introduces the results from model training
and optimization for physics infusion. The multi-criteria assessment of these results
provides an answer to the third research sub-question.

4.1. Feature Selection

The feature selection method introduced in this research comprises both physics and data-
driven components. As delineated in Section 3.3, the physics component of feature
selection automatically identified as important those features necessary for the
computation of the physical model’s output. Conversely, the important features from a
data-driven perspective were those found to have a statistically significant impact in the
model predictions. The data-driven component employed BorutaShap [74] as the feature
importance analysis tool. The results of the BorutaShap feature importance analysis are
presented through the normalized importance score (or Z-score) [74], obtained with
SHAP values (see Appendix D). For each feature, a boxplot illustrates the median
importance score, as well as the 25t percentile, the 75th percentile, and any outliers
identified.

The importance score of each feature was compared with the maximum importance score
of all shadow features to obtain the number of hits [74]. As mentioned in Section 3.3.1, an
important feature is likely to have a higher number of hits than an unimportant feature.
BorutaShap uses statistical testing with a binomial distribution to determine whether a
feature is ‘important’, ‘unimportant’ or ‘tentative’ [74]. Important features have a
statistically significant high number of hits [74]. Unimportant features scored
significantly low hits and should not be included in predictive models [74]. Features
labelled as ‘tentative’ are those for which a two-sided equality test yielded unconclusive
results [74]. In BorutaShap boxplots, features are coloured in green, red, and blue.
Features in green indicate features deemed as ‘important’, features in red were deemed as
‘unimportant’, and features in blue represent the importance score of the shadow features.

Figure 4-1 shows the importance scores obtained for the stiffness dataset. BorutaShap
deemed 17 features as important and 5 features as unimportant. It is noted that two
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accepted features (“Volume_Target_Sand” and “Segment compactor”) reported similar
median importance scores as four rejected features (“Volume_Target_Gravel”, “PMB”,
“Shear box”, and “Field roller”). However, it is believed that the higher variability on the
importance scores of the two accepted features yielded a higher number of hits that
resulted in the acceptance verdict. Moreover, the important features from the physics
component are also important features from a data-driven perspective (“Pa”,
“Volume_Agg Fraction”, “Volume_Target_bitumen”, “bit2_ Gstar”).

The accepted features of the stiffness dataset were subjected to a correlation analysis using
Spearman’s correlation rank. As shown in Figure 4-2, 7 features reported high (|p| > 0.8)
correlation ranks. The features “Pa”, “Volume_Agg_Fraction”, and “bit2_ Gstar” could not
be removed due to their relevance to the physical model. Hence, the features “VA” and
“densities” were removed as they were highly (|p| > 0.8) correlated with the features
“Volume_Agg Fraction”. Finally, the feature “bit2_ TRenK” was removed as it showed
high (|p| = 0.94) correlation with the feature “bit2_pen”. Appendix G presents further
details on the results of the correlation analysis for the stiffness dataset.

Feature Importance

2%}

10° 1

Z-Score
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Figure 4-1. Data-driven feature importance results for the stiffness model.
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Figure 4-2. Correlation analysis for the stiffness model.

Figure 4-3 depicts the importance score for the fatigue dataset. BorutaShap deemed 12
features as important and 11 features as unimportant. Similar to the case of the stiffness
model, two accepted features (“bit2_delta” and “percentage_PR”) have similar median
importance scores as two rejected features (“Planetory mixer” and “densities”). It is noted
that two necessary features for computing the physical model output (“GP and “VP”) were
included in the set of accepted features. Although the feature “stiffness” was deemed as
unimportant by BorutaShap, it was preserved given its importance for the physics
component.

The accepted features of the fatigue dataset were subjected to a correlation analysis using
Spearman’s correlation rank. As shown in Figure 4-4, 2 features reported perfect
monotonic increasing relationship (|p| = 1.00). Since the feature “VP” is relevant for
computing the physical model output, the feature “VA” was removed from the dataset.
Appendix G presents further details on the results of the correlation analysis for the
fatigue dataset.
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Figure 4-3. Data-driven feature importance results for the fatigue model.
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Table 4-1 outlines the final features incorporated into the PIAI stiffness and fatigue
models. The inclusion of these features follows the results of the physics and data-driven
components of feature selection. The PIAI stiffness model includes 14 features, of which
10 were identified as important by the data-driven component, and 4 were recognized as
important by both the physics-based and data-driven components. Similarly, the PIAI
fatigue model comprises 13 features, with 10 of them selected based on their importance
for the data-driven component. Notably, 1 feature was deemed important exclusively by
the physics component, while 2 features were considered important by both components.

Table 4-1. Relation of final features per model.
Model Selected Features

Data component: “bit2_pen”, “bit2_delta”, “target_density”,

“percentage_PR”, “Volume_ Target_ filler”, “Volume_Target_Sand”, “year”,
Stiffness “Forced action mixer”, “Mini roller”, “Segment compactor”.

Data and physics component: “bit2_ Gstar”, “Volume_Target_bitumen”,
“Volume_Agg Fraction”, “Pa”.

Data component: “bit2_ TRenK”, “bit2_ Gstar”, “bit2_ delta”,

“target_density”, “percentage_PR”, “Volume_Target_filler”,
Fatigue “Volume_Target_bitumen”, “year”, “PMB”.

Physics component: “stiffness”.

Data and physics component: “GP”, “VP”.

The final set of features was employed for the training and optimization of the PIAI
stiffness and fatigue models. As outlined in Section 3.4, the optimal PIAI model
architectures were determined through Bayesian Optimization. These optimized
architectures were subsequently used to train the final PIAI stiffness and fatigue models.
The following section presents the final PIAI stiffness and fatigue models along with a
multi-criteria performance evaluation.

4.2.PIAI models for fatigue and stiffness predictions

This section presents the results obtained from applying the PIAI framework developed
to generate prediction models for the NL-LAB fatigue and stiffness datasets. This research
aimed to unveil the effects of physics infusion on PIAI model performance. The selected
performance criteria were accuracy, interpretability, and consistency. The definitions and
metrics used for each criterion are explained below.

Accuracy refers to the extent to which the PIAI model predictions (¥p) align with the
dataset targets (yp) [20]. This research selected three accuracy metrics: the R2 value, Root
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Mean Square Error (RMSE), and Mean Average Percentage Error (MAPE). The R2 value
(see Equation 4-1) quantifies the proportion of the target variance explained by the model
features [95]. It ranges between - and +1, with the upper limit indicating a perfect fit
between predictions and targets [95]. Negative R2 values suggest the model performs
worse than a baseline model represented by a horizontal line at the target mean (y) [95].

The RMSE (see Equation 4-2) indicates the average distance between model predictions
and targets [95]. An RMSE value of 0 indicates a perfect fit, while increasingly higher
values indicate an increasing discrepancy between predictions and targets [95]. The
MAPE (see Equation 4-3) also measures the distance between predictions and targets, but
it does so in relative terms [95]. Like the RMSE, a MAPE of 0 indicates a perfect fit while
higher values indicate a worse model fit [95]. Given that R2 is generally more informative
for evaluating the quality of a regression model [95], this research adopts the
interpretation scale shown in

Table 4-2 [39]. It is also noted that the accuracy metrics were calculated by comparing
PIAI model predictions (¥p) with the targets (yp) in the data-driven component (see Figure

3-8).

i(yl _yi)2

RZ=1-1% Equation 4-1

Z (Y-V )2
i=1
where:

yi: Prediction of instance i.
yi: Target of instance 1.
y: Target mean over all instances

n: Number of instances

RMSE = % i( A )2 Equation 4-2
i=1

Vi, Vi, and n were explained in Equation 4-1.
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Yi =i
Yi

MAPE=£-ZH:

Equation 4-3
n o

Vi, Vi, and n were explained in Equation 4-1.

Table 4-2. Proposed interpretation scale for model accuracy and interpretability ( [39]).

Accuracy interpretation Lower R2 value Upper R2 value
Poor -00 0.65
Moderate 0.65 0.75
Good 0.75 0.85
High 0.85 0.95
Very High 0.95 1.00

While accuracy metrics provide insights on the predictive power of a developed AI model,
an additional analysis is required to assess interpretability. An interpretable Al model
should follow a set of physical constraints to improve the understanding on the
predictions generated [21]. The physical model infused in the PIAI models can be
understood as a constraint on the effect of a subset of features in model predictions.
Hence, a user familiar with the physical model infused can make better informed decisions
on whether to trust the PIAI model predictions [21]. This research assessed
interpretability as the extent to which model predictions (yr) in the physics component
satisfy the soft constraint imposed by the physical model (yp). It was opted to assess
interpretability by comparing yr and yr graphically and without incorporating any metrics.
Although the abovementioned accuracy metrics could also quantify interpretability, they
were purposefully omitted to maintain clarity on the conceptual difference between
accuracy and interpretability.

The accuracy criterion was extended to account for different model initializations with the
consistency assessment. Since model parameters are initialized randomly using Xavier’s
Uniform distribution [91], the final parameters are expected to vary with different random
seeds [22] after training. This research assessed consistency as the extent to which the
average prediction over m (m = 10) different random seeds approximate the infused
physical model. The effect of physics infusion on the variability among different
predictions in the physics component was also assessed using the average coefficient of
variation (see Equation 4-4). A lower average coefficient of variation is indicative of higher
consistency on the predictions in the physics component [15]. Hence, the consistency
assessment was performed with and without considering physics infusion in the model.
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— Equation 4-4

where:

CVavg: Average coefficient of variation.

oi: Standard deviation of the prediction vector of seed i.
ui: Mean of the prediction vectors corresponding to seed i.

m: Number of random seeds evaluated.

This section provided detailed definitions, metrics and scales for three selected
performance criteria: accuracy, interpretability, and consistency. The following
subsections present the results from applying the PIAI framework to generate prediction
models for the NL-LAB stiffness and fatigue datasets. The upcoming subsection bases on
the preset criteria to assess the performance of the PIAI stiffness model.

4.2.1. PIAI model for stiffness prediction infused with micromechanics

Table 4-3 shows the architecture of the PIAI model for stiffness prediction infused with
micromechanics. This architecture was obtained via Bayesian optimization by minimizing
the cross-validation loss. As mentioned before (see Equation 3-14), the model loss is the
sum of the data loss, and the physics loss weighted by the physics tuning hyperparameter
(A). The optimal A value for the PIAI stiffness model was determined to be 3.80x10-10,
However, the hyperparameter importance analysis performed in Optuna [94] deemed A
to be the least influent hyperparameter on the cross-validation loss, as shown in Figure
4-5. Therefore, it was decided to further analyse the effects of A in prediction accuracy.

Table 4-3. Model architecture — PIAI stiffness model.

Hidden Nodes per Activation Dropout | Physics tuning Learning
Layers Layer Function rate parameter (1) rate
ReLU
3 32 (linear activation in 0] 3.80x10-10 1.93X105
outer layer)
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Figure 4-5. Hyperparameter Importances — PIAI stiffness model.

To further explore the low importance score of A, this research conducted a sensitivity
analysis. This analysis aimed to further understand the influence of A in the model loss by
training multiple models with a fixed optimal architecture and different A values. For each
model, the data and physics components of the model loss were calculated for the training,
validation, and test sets. Although the losses of the data and physics component were
calculated using the MSE, the RMSE was preferred for this analysis due to its consistency
with the model target units. Figure 4-6 shows the variation of the RMSE with respect to A
for the data and physics components of the PIAI stiffness model. This figure unveiled the
existence of a physics infusion region between A = 1x10* and A = 1x10°8, encompassing
the optimal A value. In this region, the losses of the data and physics component are
balanced. When A is lower than 1x101t a low model loss is achieved in the data component
at the expense of a physics agnostic model. Similarly, when A is higher than 1x10-8, the
PIAI model adheres to the underlying physical model but fails to predict the model targets.
Notably, within the physics infusion region, small changes in A have a small effect on the
model loss. Hence, the low A influence is likely related to its low importance score, which
may be attributed to an early narrowing of the search space in Bayesian Optimization.
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Figure 4-6. A vs RMSE sensitivity analysis — PIAI stiffness model.

Table 4-4 and Figure 4-7 present the accuracy metrics and visualize the data fit of the PIAI
stiffness model across different datasets. The model demonstrates a very high
performance on the training set with an R2 of 0.96 and a low RMSE of 418.18 MPa,
effectively capturing the variance present in the target. These findings are further
supported by the results on the validation set. The model maintains a high performance
with an R2 of 0.94 and an RMSE of 432.60 MPa, showcasing the model ability to fit unseen
data during the validation phase. The model continues to exhibit good performance on the
test set. In this set, the model reported an R2 of 0.82 and a RMSE of 672.30 MPa. While
there is some increase in the error metrics, the model captures more than 80% of the
target variance with completely unseen data. Moreover, the MAPE exhibits a consistent
pattern across the datasets, ranging from 3.21% to 5.17%. These results reflect the model
stable predictive power, highlighting its reliability for stiffness prediction in asphalt mixes.

Table 4-4. Accuracy metrics of the PIAI stiffness model.

Set R2 RMSE [MPa] MSE MAPE [%]
Training 0.96 418.18 174,873.16 3.21
Validation 0.94 432.60 187,144.06 3.78
Test 0.82 672.30 451,987.75 5.17

Interpretability of the PIAI stiffness model was assessed by the extent to which the model
adhered to the physical constraint imposed by Zhang et al.’s [58] model. Figure 4-8
compares the predictions of the physics component (yp) with the targets given by the
physical model (yp). A visual assessment of this figure showcases the ability of the PIAI
stiffness model to adhere to the infused physical model. The physical model is
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approximated in an impressive way for the training and test set, and to a slightly lower but
still good extent for the validation set. These results validate the developed PIAI
framework as a promising approach to infuse physics in Al predictive models for asphalt
mix stiffness.
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Figure 4-8. Predictions vs. Targets — PIAI
stiffness model (Physics component).

Figure 4-7. Predictions vs. Targets — PIAI
stiffness model (Data component).

Figure 4-9 and Figure 4-10 illustrate the results of the consistency assessment for the PIAI
stiffness model. Figure 4-9 shows the mean and 95% confidence band of the predictions
in the physics component (yp) when physics infusion is not considered in the PIAI model.
As shown, the mean prediction in the physics component situates between 7,500 MPa and
12,500 MPa, without approximating the infused physical model. Moreover, the average
coefficient of variation between predictions in the physics component was 6.49%. Figure
4-10 shows the results obtained when infusing physics in the PIAI model. The mean
prediction closely approximates the infused physics for values lower than 25,000 MPa.
Although model predictions over 25,000 MPa slightly underestimate the physical model
targets, the physics approximation is also remarkable in this region. Moreover, the
average coefficient of variation was reduced by an impressive 56% when physics was
infused in the prediction model.
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The results obtained for the PIAI stiffness prediction model were satisfactory and
promising regarding accuracy, interpretability and consistency. These results validate the
effectiveness of the PIAI framework to infuse Zhang et al.’s [58] model in AI predictive
models for asphalt mix stiffness. The following subsection introduces the results obtained
after applying this framework to generate a PIAI model for asphalt fatigue prediction
infused with energy dissipation theory.

4.2.2.PIAI model for fatigue prediction infused with energy dissipation
theory

Table 4-5 shows the hyperparameters of the PIAI fatigue prediction model infused with
energy dissipation theory. The hyperparameters correspond to the model architecture that
achieved the lowest cross-validation loss in Bayesian Optimization. The optimal A value
for the PIAI fatigue model is 8.50x10%. Like in the PIAI stiffness model, A was found by
Optuna [94] to be the least influent hyperparameter on the cross-validation loss, as shown
in Figure 4-11.

Table 4-5. Model architecture — PIAI fatigue model.

Hidden Nodes per Activation Dropout | Physics tuning Learning
Layers Layer Function rate parameter (1) rate
ReLU
3 128 (linear activation in 0 8.50x1076 1.21X10°5
outer layer)
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Figure 4-11. Hyperparameter Importances — PIAI fatigue model.

Given the low importance score of A, a sensitivity analysis was conducted to further
investigate its impact on the PIAI fatigue model's loss. The sensitivity analysis followed
the same procedure described for the PIAI stiffness model. The results of the sensitivity
analysis for the fatigue model are shown in Figure 4-12. The variation in the RMSE with
respect to A for the data and physics components unveiled a physics infusion region for
the PIAI fatigue model. This region lies between A = 1x10¢ and A = 1x103 and comprises
the optimal A value. Within this range, both the data and physics component losses remain
low. When A is lower than 1x10-6, the data component loss is small, but the model does not
approximate the infused physics. Similarly, when A is higher than 1x10-3, the PIAI model
adheres to the underlying physical model sacrificing prediction accuracy. Within the
physics infusion region, small changes in A led to minimal changes in the model data and
physical losses. Hence, as concluded for the PIAI stiffness model, the low importance
score of A is likely related to an early narrowing of the search space in Bayesian
Optimization.
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Figure 4-12. A vs RMSE sensitivity analysis — PIAI fatigue model.
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Table 4-6 and Figure 4-13 present a detailed overview of the accuracy metrics and visualize
the data fit of the PIAI fatigue model across different datasets. The model demonstrated
good performance on the training set, with an R2 of 0.81 and an RMSE of 10.06 pe,
capturing a significant amount of the variance present in the target. These findings are
further supported by the model performance on the validation set. On this set, the model
exhibited an enhanced prediction accuracy with a reported R2 of 0.82 and an RMSE of
9.53 ue. However, when tested in unseen data, the prediction accuracy of the PIAI fatigue
model decreases with an R2 of 0.44 and an RMSE of 15.53 pe. It is believed that this
accuracy decrease may be related to the limited number of data instances and to the model
architecture. The employed architecture is a neural network, which is simpler and more
prone to overfitting compared to other alternatives like ensemble methods [96].

Table 4-6. Accuracy metrics of the PIAI fatigue model.

Set R2 RMSE [pe] MSE MAPE [%]
Training 0.81 10.06 101.22 6.26
Validation 0.82 9.53 90.82 7.53
Test 0.44 15.53 241.33 10.56

The interpretability of the PIAI fatigue model was assessed by the extent to which the
model adhered to the physical constraint imposed by Shen & Carpenter’s [66] model.
Figure 4-14 compares the predictions of the physics component (yp) with the targets given
by the physical model (yp). A visual assessment of this figure showcases the ability of the
PIAI fatigue model to adhere to the infused physical model. Despite the differences in
performance reported for the data component, the physical model is approximated to a
very good extent in all subsets. These findings reinforce the effectiveness of the developed
PIAI framework in infusing physics in prediction models. The framework offers the
potential to incorporate interpretability prediction models, even when an inferior
accuracy is reported.
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Figure 4-13. Predictions vs. Targets — PIAI Figure 4-14. Predictions vs. Targets — PIAI
fatigue model (Data component). fatigue model (Physics component).

Figure 4-15 and Figure 4-16 illustrate the results of the consistency assessment for the
PIAI fatigue model. Figure 4-15 shows the mean and 95% confidence band of the
predictions in the physics component (¥r) when physics infusion is not considered in the
PIAI model. The figure shows that the mean of the predictions in the physics component
does not approximate the physical model in any region. Additionally, the average
coefficient of variation between predictions in the physics component was 29.94%, with
higher predictions exhibiting wider confidence bands. Figure 4-16 shows the results
obtained when infusing physics in the PIAI model. The mean prediction closely
approximates the infused physics for all the considered values. Moreover, the average
coefficient of variation was reduced by a remarkable 88%, demonstrating the substantial
impact of physics infusion in model consistency.

300 Fatigue - Physical Madel Validation. A = 0 200 Fatigue - Physical Model Validation. A = 8.50E-06
= —&— Mean /’ = —8— Mean
2 = 95%Cl L 2 = 95% Cl
= 250 1 —=- Line of equality /’ = 250 1 —-—- Line of equality
[ - []
© . ©
e <]
E E
= 2001 < 2004
u (%)
0 n
z z
o 150 - o 1504
" "
2 2
o 1004 w 1001 ~
w w -
o o et
g o -
@ 50 © 50 i
(=X # (=% "
b s Average Coefficient of Variation: 29.94%} i et [Average Coefficient of Variation: 3.54% |
0+= : 0+- :
0 50 100 150 200 250 300 0 50 100 150 200 250 300
€6 (ue) - Predicted using Xp (¥p) €6 (uE) - Predicted using Xp (¥p)

Figure 4-15. Consistency assessment — PIAI Figure 4-16. Consistency assessment — PTAI
fatigue model (without physics). fatigue model (with physics).
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The results obtained for the PIAI fatigue prediction model were satisfactory and promising
regarding interpretability and consistency. These results validate the effectiveness and the
PIAI framework to infuse Shen & Carpenter’s [66] model in Al asphalt fatigue predictions.
However, future research is needed to improve the accuracy of the PIAI fatigue model
[66].

This Chapter concludes with the presentation and discussion of the prediction results of
PIAI models developed for the NL-LAB fatigue and stiffness datasets. Based on the
outcomes obtained, and the insights gained during framework development, the following
Chapter presents the conclusions, answers to research questions, and recommendations
for future research.
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5. Conclusions and future
recommendations

This Chapter provides the conclusions of this research and recommendations for future
research work in three distinct sections. Section 5.1 provides general conclusions and
introduce the main findings and societal relevance of this research. Then, Section 5.2
presents the answers to the research questions posed in Section 1.3. Finally, Section 5.3
provides future recommendations regarding data collection, testing, and PIAI model
development.

5.1. General Conclusions

This research successfully developed a Physics-Informed Artificial Intelligence (PIAI)
framework to infuse physical models in Al predictive models for pavement engineering.
The PIAI framework offers a systematic approach to enhancing Al prediction models with
physics for pavement performance predictions. Two prediction models were developed for
the NL-LAB [6] fatigue and stiffness datasets. The PIAI fatigue model infused energy
dissipation theory through Shen & Carpenter's [66] model. Similarly, the PIAI stiffness
model infused micromechanics and homogenization theory through Zhang et al.'s [58]
model.

An important finding of this research is that physical models seldom encompass all
features and targets of the NL-LAB datasets. This challenge was addressed in the proposed
PIAI framework with the implementation of several alignment controls. This research
introduced, based on the dataset characteristics, a set of compatibility requirements for a
candidate physical model to infuse (see Section 3.1). Additionally, the physics component
introduced during feature selection (see Section 3.3) ensured preserving the necessary
features for computing the physical model regardless of the data-driven component
output. Furthermore, to ensure adequate physics infusion during PIAI model training, the
features required to evaluate the physical models were isolated while preserving model
dimensionality (see Section 3.4).

The developed PIAI framework effectively integrates physics into tabular data without
spatial or temporal correlations, infusing physical models based on linear combinations
of functions of features in the datasets. Hence, the application scope is limited to
predictive tasks matching these conditions. When data has spatial or temporal
correlations, it is recommended to modify the model architecture and loss function
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accordingly. Moreover, when the physical model to infuse is in differential form, it is
recommended to modify the model loss to match that of a PINN (see Section 2.1.1).

The societal relevance of this research is underscored by its potential to foster greater
acceptance and trust in AI within the pavement engineering community. By infusing well-
researched physical models, PIAI can help demystify Al's "black box" perception while
exploiting its ability to infuse new models. Moreover, PIAI can potentially make pavement
performance assessments more expedite by reducing the need for extensive material
testing. Remarkably, the PIAI framework can infuse new developments in pavement
engineering concerning recycled and biobased materials, driving sustainability and
innovation in the field.

5.2. Answers to Research Questions

This section provides an answer to the research questions posed in Section 1.3. The main
research question is answered as follows:

Q: Can physics be infused to enhance Al prediction models for stiffness and
fatigue of asphalt mixtures?

A: Yes, physics was successfully infused into AI models for stiffness and fatigue prediction
in asphalt mixtures. The developed PIAI models satisfactorily approximate the infused
physical model to enhance interpretability and consistency without compromising
prediction accuracy. An analysis on the effects of physics infusion on prediction accuracy
revealed the existence of a “physics infusion region”. In this region the model losses of the
data and physics component are both low, with small changes in the physics tuning
hyperparameter (A) resulting in small changes on both losses. For the PIAI stiffness model
the physics infusion region lies between A = 1x10'! and A = 1x10°8 (see Figure 4-6. A vs
RMSE sensitivity analysis — PIAI stiffness model.) whereas in the PIAI fatigue model this
region lies between A = 1x10-6 and A = 1x103 (see Figure 4-12). Notably, the optimal value
of the physics tuning hyperparameter was found in the physics infusion region in both
models.

Q: Which method for infusing physics in AI models better suits the
characteristics of the NL-LAB fatigue and stiffness datasets?

A: The selected method for physics infusion in prediction models for the NL-LAB fatigue
and stiffness datasets was a Physics-Informed Loss Function. The main reason behind this
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selection is twofold. Candidate models to infuse often contain a subset of all features in
the datasets. Hence, physics infusion aimed to constrain the effect of this subset of
features without removing the impacts of additional features in the predictions. Previous
PIAI applications [15] in PIAI pavement engineering successfully constrained the effects
of a subset of features via a Physics-Informed Loss Function. Furthermore, instances in
NL-LAB datasets were uncorrelated in time or space, limiting the applicability of a
Physics-Informed Neural Network or a Physics-Informed Architecture.

Q: What conditions are required to infuse a physical model into a PIAI
prediction model for the NL-LAB fatigue and stiffness datasets?

A: This research established criteria to ensure the infusion of a given physical model in
Al predictive models. A physical model can only be infused in Al predictive models if its
dependent and independent variables are part of the dataset features or were calculated
from them. Besides, the dataset target must be included in the physical model, either
explicitly or through a traceable calculation. Moreover, the testing conditions of the
dataset features should match those used to obtain the physical model. It is possible to
infuse physics without meeting this requirement. However, doing so without accounting
for differences in testing conditions can lead to inconsistencies. Finally, the researcher
recommends incorporating previously validated developments as physical models to
minimize the risk of infusing flawed physical behaviour.

Q: How does infusing physics impact model accuracy, interpretability, and
consistency?

A: Table 5-1 presents the accuracy metrics obtained by the PIAI models developed in this
research compared to previous research in the same datasets [40], [39]. It is noted that
Martini [39] did not develop a predictive model for fatigue prediction. The developed PIAI
fatigue and stiffness models underperformed compared to previous research efforts. The
researcher believes that the PIAI model architecture explains the lower accuracy of the
obtained model. Prior research used gradient-boosting decision trees, which leverage a
more efficient strategy for overfitting than the train-validation split [86]. In addition, this
research used 10% of the data for testing, which may have been insufficient to ensure
similar distributions in the training, validation, and test sets.

Table 5-1. Comparison of model accuracy with previous research.

Dataset Author R2 - Test set
. Mota Lontra [40] 0.80
Fatigue _
This research 0.44
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Dataset Author R2 - Test set
Martini [39] 0.96

Stiffness Mota Lontra [40] 0.95
This research 0.82

This research produced novel insights into the interpretability and consistency of
predictive models on the NL-LAB fatigue and stiffness datasets. Interpretability was
assessed as the extent to which model predictions in the physics component satisfy the
soft constraint imposed by the physical model. The results obtained suggest that the
developed PIAI stiffness and fatigue models have an enhanced interpretability, as both
models approximated remarkably the infused physical behaviour (see Figure 4-8 and
Figure 4-14). Prediction consistency was assessed considering the predictions in the
physics component of 10 different model initializations. The average prediction over all
initializations approximated the infused physical behaviour in a remarkable way for both
PIAI models (see Figure 4-10 and Figure 4-16). Moreover, physics infusion allowed for a
reduction in the coefficient of variation in the physics component by 56% and 88% for the
PIAI stiffness and fatigue models respectively. These results highlight the PIAI
framework's capability to produce predictive models that reliably approximate the infused
physical model across various initializations.

5.3. Future recommendations

Building upon the findings and insights gained from this research, a series of
recommendations are proposed to guide future work in both data collection and PIAI
model development. The recommendations presented in Section 5.3.1 focus on data
collection and material testing within the NL-LAB project, whereas the recommendations
presented in Section 5.3.2 address important considerations for advancing PIAI model
development.

5.3.1. Recommendations on data collection and material testing

During the development of the PIAI framework, it became apparent that the NL-LAB
datasets exhibit limited variability in feature values, with some features having fewer than
10 unique values among 371 entries. To address this issue, it is recommended to expand
the NL-LAB datasets with additional data instances encompassing a broader range of mix
compositions, sample ages, and bitumen functional properties. This increased variability
is expected to uncover more intricate relationships between features and targets, thus
potentially increasing accuracy in PIAI models.
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The need for expanding the datasets is also relevant for addressing the differences in the
test frequencies in the DSR test for bitumen shear modulus and the 4PBB test for asphalt
mix stiffness. Considering these discrepancies is fundamental when developing future
prediction models. Hence, the NL-LAB datasets should be expanded with master curve
coefficients for the shear modulus/mix stiffness and the phase angle of bitumen and mix
samples. Master curves incorporate the time-temperature superposition principle to
enable calculations of visco-elastic material properties at different temperatures and
frequency ranges. By accounting for the differences between test frequencies, stronger
relationships between bitumen and asphalt mix functional properties could be obtained.

A related challenge lies in the generation of the NL-LAB fatigue dataset targets via
extrapolation based on a single fatigue line spanning multiple samples. It is recommended
to modify the target of the NL-LAB fatigue dataset to the number of cycles to failure (Nfso).
Since Nfso was measured for each sample, a prediction model can potentially find
enhanced relationships with this new target variable. Moreover, by incorporating the
Ratio of Dissipated Energy Change (RDEC) per load cycle, it is feasible to directly calculate
the plateau value (PV). This direct PV calculation could provide a basis for the infusion of
new physical models in PIAI fatigue prediction.

5.3.2. Recommendations on advancing PIAI model development

To advance the PIAI framework developed in this research, several improvements are
recommended. First, the robustness of data-driven component of feature selection
method should be enhanced. Although this research performed a detailed analysis to
select an adequate base regression model in BorutaShap [74], this analysis did not include
hyperparameter tuning. Thus, it is recommended that future research incorporates
hyperparameter tuning in the feature selection procedure to enhance the alignment
between the selected features and their effect on model performance.

Beyond feature selection, the exploration of different model architectures can enhance the
PIAI models accuracy, interpretability and consistency. The current PIAI framework relies
on a neural network to infuse physics in model predictions. It is recommended to explore
the feasibility and effectiveness of physics infusion considering other model architectures,
such as tree-based learners or support vector machines. Infusing physics in different
model architectures can provide new insights into the effects of physics infusion in Al
models.

It is also recommended to assess the PIAI models interpretability and consistency on
different datasets. Expanding these assessments to a broader range of data can provide a
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further understanding on the adaptability of the framework and the validity of the infused
physical model in different scenarios.

The final recommendation of this research is related to exploring infusion of multiple
physical models into a single PIAI framework. Incorporating a wider range of physical
constraints can potentially enhance the understanding of the predictions generated. This
incorporation can also provide new insights on the interaction of different research areas
in pavement engineering, broadening the scope of the PIAI models.
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Appendix A. Features in the NL-LAB Datasets

This appendix details the features contained the NL-LAB datasets during different stages
of PIAI model development. Table A 1 shows an overview of the raw features contained in
the dataset, prior to the data preparation stage. Table A 2 provides and overview of the
resulting features in the datasets after implementing the data preparation procedures
discussed in Section 3.2. Finally, Table A 3 shows the final features included in the PIAI
models for stiffness and fatigue prediction. These features were deemed important after
applying the physics and data-driven feature selection method outlined in Section 3.3.

Table A 1. Raw features from the NL-LAB datasets.

Feature Description Category Dataset
filename Filename Informational All
phase_tot Abbreviation Work-Phase-Lab-Year Informational All

work Work Categorical All
phase Phase Categorical All
lab Laboratory Informational All
year Measurement year Mix property All
monsternames Sample name Informational All
densities Specimen (bulk) density Mix property All
VA Air voids Mix property All
bitz_TRenK Softening point of recovered binder [°C] | Bitumen property All
; P ion of i . .
bit2_pen enetration of recovered binder [0.1 Bitumen property All
mm]

. Complex modulus [G*] of recovered .
bitz2_Gstar binder [Pa] @ 10 rad/s, 20°C Bitumen property All

. Phase angle [8] of recovered binder [°] .
bit2_delta @ 10 rad/s, 20°C Bitumen property All

target_density Target density [kg/m3] Mix property All

percentage. PR Percentage of Recl;allizied Asphalt in the Mix property All

percentage_bit Percentage of bitumen in the mix Mix property All
Target volume fraction of C22/4 .

Volume_Target C22_4 aggregate Mix property All

Volume_Target_Ci16 Target volume fraction of C16 aggregate Mix property All

Volume._Target_Ci1_2 Target volume fraction of C11/2 Mix property All

aggregate

Volume_Target _Co8 Target volume fraction of Co8 aggregate Mix property All
Target volume fraction of Co5/6 .

Volume_Target _Cos5_6 aggregate Mix property All
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Feature Description Category Dataset
Volume_Target _Coo2m Target volume fraction of Coo2mm Mix property All
m aggregate
Volume_Target_C00063 Target volume fraction of Coo063mu Mix property All
mu aggregate
Volume_Target_filler Target volume fraction of filler Mix property All
Volume_Target_bitumen Target volume fraction of bitumen Mix property All
Mass_Target _C22_4 Target mass fraction of C22/4 aggregate Mix property All
Mass_Target_C16 Target mass fraction of C16 aggregate Mix property All
Mass_Target_Ci11_2 Target mass fraction of C11/2 aggregate Mix property All
Mass_Target _Co8 Target mass fraction of Co8 aggregate Mix property All
Mass_Target_Cos_6 Target mass fraction of Co5/6 aggregate Mix property All
Mass_Target_Coozmm Target mass fraction of Coo2mm Mix property All
aggregate
Mass_Target _Coo063m Target mass fraction of Coo063mu Mix property All
u aggregate
Mass_Target_filler Target mass fraction of filler Mix property All
Mass_Target_bitumen Target mass fraction of bitumen Mix property All
mix_setup Type of mixer Categorical All
comp__setup Type of compactor Categorical All
stiffness Stiffness [MPa] @ 8 Hz, 20°C Target Stiffness
EPS6._individual Individual calculated strain at 10”6 load Target Fatigue
cycles [ue]
Table A 2. Features of the NL-LAB datasets after data preparation.
. Unique Min. Max. Standard
I e Values Value Value LE deviation
Specimen (bulk) .
density [kg/m3] Continuous 371 2,307.81 2,453.60 2,391.09 31.71
Air voids [-] (fa) Continuous 371 0.01 0.07 0.04 0.02
Softening point of
recovered binder Continuous 22 55.80 82.60 63.32 8.02
[°C]
Penetration of
recovered binder Continuous 16 11.00 53.00 25.54 10.55
[0.1 mm]
Complex modulus
[G*] of recovered . 194,139. | 6,632,724. | 1,140,421. | 1,650,702.
binder [Pa] @ 10 Continuous 23 51 39 61 97
rad/s, 20°C
Phase angle [8] of
recovered binder [°] | Continuous 23 39.96 66.57 58.35 8.16
@ 10 rad/s, 20°C
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Unique

Min.

Max.

Standard

Feature Description Type Values Value Value Lo deviation
Tarﬁg /(rig;l]s 1ty Continuous 6 2,360.00 | 2,399.00 2,380.85 10.71
Percentage of
Reclaimed Asphalt | Continuous 4 50.00 65.00 58.28 6.19
in the mix [%]
Target volume .
fraction of filler [%] Continuous 6 5.76 7.65 6.30 0.60
Target volume
fraction of bitumen | Continuous 6 0.10 0.13 0.11 0.01
[%] (fb)
Target volume .
fraction of Gravel Continuous 6 36.42 42.48 39.54 2.10
Target volume Continuous 6 38.94 46.63 43.24 2.19
fraction of Sand ’ ’ ) )
Measurement year Continuous 4 0.00 6.00 0.54 1.23
Binary indicator of Categorical
Polymer Modified °8 2 0.00 1.00 N/A N/A
Bi (binary)
itumen
Binary indicator of | Categorical
Forced action mixer (binary) 2 0.00 1.00 N/A N/A
Binary indicator of | Categorical
Planetory mixer (binary) 2 0.00 1.00 N/A N/A
Binary indicator of Categorical
Field roller 8 2 0.00 1.00 N/A N/A
(binary)
compactor
Binary indicator of Categorical
Mini roller 8 2 0.00 1.00 N/A N/A
(binary)
compactor
Binary indicator of Catggorlcal 5 0.00 100 N/A N/A
Segment compactor (binary)
Binary indicator of .
Shear box Catggorlcal 2 0.00 1.00 N/A N/A
(binary)
compactor
Volume fraction of .
Aggregates [-] (fa) Continuous 371 0.82 0.89 0.85 0.01
Aggregate
organization factor | Continuous 371 0.29 0.87 0.51 0.16
[-]
Aggregate Gradation .
Parameter [-] Continuous 6 0.39 0.50 0.45 0.04
Volumetric Continuous 2 0.0 0.40 0.2 0.0
Parameter [-] 44 05 4 24 09
Stiffness [MPa] Continuous 371 6,144.00 | 17,866.47 9,737.44 2,095.35
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. Unique Min. Max. Standard
Feature Description Type Values Value Value Mean deviation
Initial strain
yielding a fatigue .
fife of 1076 cycles Continuous 371 37.14 177.48 112.78 22.70
[pe]

Table A 3. Final features included in the PIAI stiffness and fatigue prediction models.

Feature Feature Description Model Compopent that
deemed important
“s » Penetration of recovered .
bit2_pen binder [0.1 mm] Stiffness Data
Complex modulus [G*] of ?Si?fzggs Ir)r}ll(})lcslle(ﬁ
“bit2_ Gstar” recovered binder [Pa] @ 10 Both
rad/s, 20°C Data (Fatigue model)
«las ” Phase angle [8] of recovered
bit2_ delta binder [*] @ 10 rad/s, 20°C Both Data
“target_density” Target density [kg/m3] Both Data
« » Percentage of Reclaimed
percentage_ PR Asphalt in the mix [%] Both Data
« ” Target volume fraction of
Volume_ Target_ filler filler [%] Both Data
Data and Physics
« . » Target volume fraction of (Stiffness model)
Volume_ Target_bitumen bitumen [%] (fb) Both
Data (Fatigue model)
“Volume_ Target_Sand” Target volg;rfdfractlon of Stiffness Data
“year” Measurement year Both Data
« » Binary indicator of Polymer .
PMB Modified Bitumen Fatigue Data
“Forced action mixer” Binary 1n(11cat01.* of Forced Stiffness Data
action mixer
“Mini roller” Binary indicator of Mini Stiffness Data
roller compactor
“Segment compactor” Binary indicator of Segment Stiffness Data
compactor
“Volume_Agg_ Fraction” Volume fraction of Stiffness Data and Physics

Aggregates [-] (fa)
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Component that

Feature Feature Description Model e ——
“Pa” Aggregate organization Stiffness Data and Physics
factor [-]
“GP” Aggregate Gradation Fatigue Data and Physics
Parameter [-]
“VP” Volumetric Parameter [-] Fatigue Data and Physics
“stiffness” Stiffness [MPa] Fatigue Physics
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Appendix B. Gradation Curves

Figure B 1 illustrates the gradation curves of the NL-LAB stiffness and fatigue datasets. As
both datasets utilize the same set of raw features, the gradation curves are identical. These
curves depict the sieve sizes associated with features corresponding to gravel and sand
content. Additionally, the plots highlight the passing percentages for the assumed

Nominal Maximum Aggregate Size (NMAS) and Primary Control Sieve (PCS), as
discussed in Section 3.1.2.

Passing percentage (%)

100 Gradation - Stiffness and Fatigue dataset

Gravel content
80 1 Sand content

-—— Assumed NMAS
-—-- Assumed PCS5

60 -

40

20 1

0.1 1.0
Sieve size (mm)

Figure B 1. Gradation curves for the stiffness dataset.
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Appendix C. Mix and compaction setups on the NL-LAB datasets

This appendix provides further background behind the decision to remove the “work” and
“phase” features from the datasets during the data preparation stage. Table C 1 presents
the relationship between “work” and “phase” combinations and “mix setup” and “comp.
setup” combinations. Since every possible “work-phase” combination is reflected in a “mix
setup — comp setup” combination, the features “work” and “phase” could be removed from
the dataset. Moreover, the “work” feature refers to the project number where each sample
originates [6], which by itself is not expected to influence pavement performance
predictions. However, since it is known that work 6 contains Polymer Modified Bitumen
(PMB) [6], an additional feature was created to distinguish samples with PMB.

Table C 1. Phase-Work and Mix-Compaction setup relationship in the NL-LAB datasets.

Phase 1 2 3
Work T=Ts e s 6] =Ts alsT6 1 =5 als]s
Mix Comp. Number of entries
Setup Setup
Field roller - - - - - - - - - 154 |18 |29 |54 | 36| 18
Hand roller - - - - 6 - - - - - - - - _ _
AS{>ha1t Mini roller - - -] - S T 2 e e L e L T I
plant
Segment _ _ _ _ 18 | - - 11818 | - - - - - -
compactor
Shear box - - - - - 10| - - - - - - - _ _
Hand roller 12 - - - - - - - - - - - - - -
Forced Mini roller - 18 | - - - - - - - - - - - - -
action Segment
mixer compactor 8 |18 - | 1818 - - - -] - - - - - - -
Shear box - - - - - - - - - - - - - - -
Planetory Mini roll _ _ _ _ _ _ _ - - _ - - - - -
mixer iniroller | 9
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Appendix D. Supplementary Material on SHAP Values

SHAP values are used in BorutaShap as the feature importance score, as mentioned in
Section 3.3. SHAP stands for Shapley Additive Explanation [76] values. SHAP values serve
the purpose of explaining a prediction of an instance x by computing the contribution of
each feature to the prediction [78]. For doing so, a mathematical foundation on
cooperative game theory is used, in which the features (players) form coalitions to make
predictions (game) [78]. Lloyd Shapley introduced the Shapley value [97] as a method to
understand the contribution of a specific member of a coalition in the value generation
task [40].

Consider a model f(x) that is explained by an explanation model g(z’) as shown in Equation
D 1. Figure D 1 illustrates how the Shap values ¢; explain how to get from the model output
when no features are known (E[f{z)]), to the current output f(x) are known [76].

Equation D 1

g(Z')=¢O+Z¢j ’Z,j

Where:
, M ..
e {0,1} : Coalition vector.
M : Maximum coalition size.

¢0 : Null output of the explanation model.

¢, : Feature attribution (Shapley value) for a feature j.

0 E[f(z)] E[f(z)| 21 = 1] fla) Elf(z) | 212 =mx12] Elf(2)| 2123 =2123
1 1 1 1 L 1
—_—

. > i
) » P » 3
| o]

.
>

ay

Figure D 1. SHAP values illustration ([76]).

It is worth noting that the order in which the coalition is formed is important, and
therefore, the SHAP values for a feature j on a single prediction are calculated as the mean
value of ¢); across all possible coalitions [76]. Furthermore, the global SHAP value is the
one used in BorutaShap [74]. This is calculated by averaging the absolute Shapley values
per features across the data [78], as shown in Equation D 2.
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Where:
I, : Global SHAP importance value for feature j.

¢§I) : SHAP importance value for feature j, in data instance 1.

n: Number of instances (rows) in the data.

Equation D 2
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Appendix E. Supplementary Material on Bayesian Optimization

Different approaches can be followed to find an optimal set of hyperparameters, such as
Manual Search, Grid Search, Random Search, Gradient-based optimization, and Bayesian
Optimization [93]. Among these methods, Bayesian Optimization offers faster
computational efficiency by leveraging previous results to decide whether narrowing
down or expanding the search space [93]. Yang & Shami [93] provided an overview of the
Bayesian Optimization procedure, as follows:

1. Generating a probabilistic surrogate model of the objective function. In this research
the objective function is the cross-validation loss (see Section 3.4). The surrogate
model is represented by the probability of a model performance score y given the

hyperparameters x p(y|x) [40].
2. Determining the optimal hyperparameters on the surrogate model.
3. Evaluating the original objective function with the newly obtained hyperparameters.
4. Updating the surrogate model with the results obtained.

5. Repeating steps 2-4 for a given number of iterations.

This research employed the Optuna [94] package for Bayesian Optimization. Optuna uses
a Tree-structured Parzen Estimator (TPE) [98] as probabilistic surrogate model [94].
Using a TPE is advantageous as it enables optimization for combinations of continuous
and discrete hyperparameters [26]. With TPE, the probabilistic surrogate model is
constructed by modelling p(x|y) and p(y) and using Bayes’ theorem to get the posterior
probability, as shown in Equation E 1 [98].

p(y|x) = M Equation E 1
p(x)

where:

x: Model hyperparameters.
y: Model performance score.

TPE approximates the likelihood function p(x|y) using two non-parametric density
functions [(x) and g(x), as shown in Equation E 2 [98].
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I (X) ify<y Equation E 2

p(XIy)={

g(x) ify>y

where:

[(x): Density formed by using the observations x( such that the loss_f(x(V) was less than
y.
g(x): Density formed by using the remaining observations.

y": Threshold of the objective function.

Furthermore, TPE uses the Expected Improvement (EI) [98] criterion to find the optimal
set of model hyperparameters (x*). Equation E 3 illustrates the EI calculation procedure.
The EI is maximized by values of x that have high probability under 1(x) and low
probability under g(x) [98]. Finally, in every iteration, TPE will return the candidate value
x* with the highest EI [98].

1(x)

, -1 Equation E 3
El=[(y'-y)p(yIx)dy = (7+M(1—7)J

—00

where:

EI: Expected Improvement.

y: Objective function value.

y”: Threshold of the objective function.

y: Quantile of the observed values so that p(y<y*) =y

Through Optina, it is also possible to obtain hyperparameter importances [94]. Optuna
uses using the f~ANOVA [99] hyperparameter importance evaluation algorithm [94]. This
algorithm fits a Random Forest Regressor that predicts the objective function value
obtained in every trial from the set of hyperparameters used in said trial [94].
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Appendix F. Results of trial model runs

This appendix presents the results of the trial runs of the PIAI models to determine the
range of A values to include in Bayesian Optimization, as mentioned in Section 3.4. The
lower A value is that in in which PIAI model predictions approximate the model targets
but do not infuse the physical model. Conversely, the upper value of the range is a A value
that guarantees physics infusion at the expense of a decreased prediction accuracy.

To preliminarily evaluate the effects of A on prediction accuracy and physics component
of PIAI models, the architecture shown in Table F 1 was used for model training. This
preliminary architecture was used for both PIAI stiffness and fatigue models and
corresponds to common practice in Al predictive modelling [26]. It should be noted that
the final model architecture differs per model and was obtained via Bayesian Optimization
in a later stage.

Table F 1. Model architecture — PIAI stiffness model.

z::::i: N(;j:;sel;er Activation Function Dr:;;;:ut Learning rate
ReLU
3 64 (linear activation in outer o 1X104
layer)

For the preliminary PIAI stiffness model, the evaluation range for A varies between A =
1x1012 and A = 1x1076. Figure F 1 and Figure F 2 show the results on the data and physics
component of the lower value of A (1x10-12). The results obtained show an adequate model
accuracy in the data-driven component but a limited capability of physics infusion.
Conversely, Figure F 3 and Figure F 4 show the effects of the upper value of A (1x10-6) on
the data and physics components of the preliminary model. These results show that the
upper A value approximates physics but sacrifices prediction accuracy. It is expected that
the optimal A value for the PIAI stiffness model lies between A = 1x10712 and A = 1x10°.
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stiffness model (Data component). Trial with
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stiffness model (Physics component). Trial
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In the preliminary PIAI fatigue model, the selected evaluation range for A varies between
A =1x107 and A = 1x10%. Figure F 5 and Figure F 6 show the results on the data and physics
component of the lower value of A (1x1077). The results obtained show an adequate model
accuracy in the data-driven and no physics infusion in model predictions. Conversely,
Figure F 7 and Figure F 8 show the effects of the upper value of A (1x10*) on the data and
physics components of the preliminary model. These results show that the upper A value
approximates physics at the expense of a reduce prediction sacrifices prediction accuracy.
Hence is expected that the optimal A value for the PIAI stiffness model lies between A =
1x107 and A = 1x10™%.
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Appendix G. Correlation results

This appendix presents an extended version of the correlation analyses performed after
feature selection in the stiffness and fatigue datasets. Three figures are presented for each
dataset. The first figure corresponds to the correlation matrix comprising the entire set of
accepted features. The second figure corresponds to the reduced correlation matrix with
only the elements reporting a high (|p| > 0.8) Spearman correlation rank. The third figure
presents the correlation matrix after removal of the highly correlated features in each
dataset (see Section 4.1).
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Figure G 1. Correlation analysis for the stiffness dataset considering all important features.
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Spearman Correlation Coefficients - Stiffness dataset
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Figure G 2. Features of the stiffness dataset reporting high (|p| > 0.8) correlation.
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Figure G 3. Correlation analysis for the stiffness dataset after removing correlated features.
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Spearman Correlation Coefficients - Fatigue dataset
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Figure G 4. Correlation analysis for the fatigue dataset considering all important features.
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Spearman Correlation Coefficients - Fatigue dataset
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Figure G 5. Features of the fatigue dataset reporting high (|p| > 0.8) correlation.
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Figure G 6. Correlation analysis for the fatigue dataset after removing correlated features.
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