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Abstract 
 

The Netherlands boasts an extensive road network that requires meticulous maintenance 

and preservation. Dutch asphalt pavements are assessed through functional properties 

such as mix stiffness and resistance to fatigue. However, current testing practice for these 

properties is intensive in time and resources, leading to the exploration of alternative 

methods for performance prediction. Recently, Artificial Intelligence (AI) has emerged as 

a tool for performance prediction in pavement engineering. Despite its potential, the 

application of AI is constrained by its limited interpretability and inconsistency with 

known physical laws. To enhance consistency and interpretability in AI predictive models, 

Physics Informed AI (PIAI) emerges as a promising approach.  

 

This research develops a PIAI framework for physics infusion in pavement performance 

predictions. This infusion is accomplished through a Physics-Informed Loss Function 

balancing data and physics components in model training. The data component assures 

model predictions approximate the targets, whereas the physics component enforces a 

subset of features to follow a preset physical model. These components are also present 

during feature selection, where the physical model is used to guide the inclusion of 

important features in a PIAI model.  

 

Using the developed framework, this research presents two PIAI prediction models based 

on the NL-LAB datasets. These models infuse homogenization theory and energy 

dissipation theory to enhance interpretability and consistency in stiffness and fatigue 

predictions. The results obtained on both models suggest that physics infusion is feasible 

without compromising prediction accuracy, balancing physical and statistical knowledge 

when predicting pavement performance. These findings also indicate that the PIAI 

framework is a promising approach for infusing physics into AI prediction models. Physics 

infusion can potentially enhance the acceptance and trust of AI within the pavement 

engineering community. Furthermore, the developed framework has the potential to 

accelerate pavement performance assessments by reducing the need for extensive 

material testing. Its flexibility also supports the incorporation of new physical models, 

fostering innovation and sustainability in pavement engineering. 
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1. Introduction 

 

The opening chapter of this thesis introduces the research topic and delineates the 

structure of the report. It begins by presenting the motivation for investigating Physics 

Informed AI (PIAI) in pavement engineering, followed by a detailed problem statement. 

The chapter then defines the research objectives and questions and concludes with an 

overview of the research methodology and an outline of the subsequent chapters. 

 

1.1. Research Motivation 

 

A well-developed road network fosters economic development by facilitating passenger 

and freight transportation [1]. Hence, investing in road construction and asset 

management is a fundamental policy decision for governments worldwide [2]. The 

Netherlands has one of the densest road networks in the European Union [3]. A road 

network this extensive is a valuable asset that must be meticulously maintained, 

preserved, and improved [4]. This is reflected in the significant budgetary expenditures 

undertaken in road construction and maintenance by the Dutch government [5]. 

 

In the Netherlands, asphalt pavements are assessed through functional properties related 

to field performance [6]. Understanding this relationship is crucial for pavement 

engineering researchers and practitioners. For this purpose, an extensive research 

program named NederLands Langjarig Asfalt Bemonsteringsprogramma (NL-LAB) [6] 

was initiated. The NL-LAB program aimed to better understand the relationships between 

asphalt mix composition, construction, and field performance in the Netherlands [6]. 

 

A primary concern of asphalt field performance is bearing capacity [6], as traffic loads 

must be adequately dissipated through the pavement structure. Accordingly, the NL-LAB 

datasets contain two functional properties related to bearing capacity: mix stiffness and 

fatigue resistance [6]. These two properties are measured through the 4-point bending 

beam (4PBB) test [6]. The 4PBB test applies a periodic bending with constant strain to an 

asphalt mix beam, and records the resulting stress, strain, and phase angle per cycle [7], 

[8]. Mix stiffness is defined by the stress-strain ratio at the 100th load cycle [7], whereas 

fatigue resistance is measured via the initial strain corresponding to a fatigue life of 1x106 

cycles (ε6) [8].  

 

Although the 4PBB is a routine test for assessing mix stiffness and fatigue resistance, its 

execution can be complicated and time-consuming [9]. Pavement performance prediction 
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models are an alternative approach to predicting fatigue resistance and stiffness. 

Prediction models in pavement engineering have traditionally followed three approaches, 

each with benefits and limitations [10]. Empirical models base on experimentation results 

and relate statistically pavement performance and explanatory variables, but often lack 

strong physical foundations [10]. Mechanistic models leverage a strong physical or 

mechanical foundation to model pavement functional properties, but their application is 

restricted by the complex nature of pavement engineering problems [10]. Mechanistic-

Empirical models leverage empirical relationships between pavement performance and 

physics-based calculated pavement responses, infusing physics and statistics in a single 

modelling approach [10]. However, Mechanistic-Empirical models incorporate local 

calibration factors that require extensive fine-tuning procedures [11].   

 

In current days, Artificial Intelligence (AI) is seen as an alternative tool in pavement 

engineering that can potentially bridge some limitations of traditional modelling 

approaches. AI applications in pavement engineering encompass distress detection, 

distress quantification, performance prediction, and maintenance programming and 

scheduling [12]. Although AI applications can potentially bring benefits, AI usage also 

entails a set of limitations [13]. Purely data-driven AI models are limited to the scope of 

the training data used and have limited generalizability [13]. Likewise, predictions made 

by data-driven models can be physically inconsistent, often earning the label of ‘black-box’ 

models [13]. 

 

This ‘black-box’ label relates to the challenges regarding interpretability of purely data-

driven AI models [13]. These challenges can be potentially addressed via physics infusion 

in AI models [13]. This modelling approach is often known as Physics Informed AI (PIAI) 

and aims to develop physically consistent AI models [14]. It is noted that PIAI models have 

been developed for different fields in scientific computing such as fluid mechanics, solid 

mechanics, and material science [13]. However, limited applications in the field of 

pavement engineering are found in the past literature ([15], [16], [17], [18]). And, to the 

best of the researcher’s knowledge, a framework to generate PIAI models for different 

pavement functional properties is underdeveloped.   

 

1.2. Problem Statement 

 

Research in pavement engineering is ongoing since the 18th century, with significant 

advancements and an increased research output emerging in the 1950s [19]. 

Consequently, a myriad of physical and empirical relationships — commonly referred as 

"physical models" — have been popularly employed in pavement engineering ever since. 

PIAI is a promising approach towards infusing physical models and AI capabilities for 
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enhancing predictions. However, it remains uncertain whether such physics infusion is 

feasible in AI models predicting pavement performance based on the NL-LAB datasets. It 

is also unknown if a physical model should meet a set of conditions to facilitate physics 

infusion. Moreover, it is desired to understand the impact of this potential physics 

infusion on the accuracy, interpretability, and consistency of model predictions.   

 

1.3. Research Objective and Questions 

 

The main objective of this research is to design and validate a novel PIAI framework for 

predicting pavement functional properties based on the NL-LAB stiffness and fatigue 

datasets. Accordingly, the corresponding main research question reads as follows. 

 

 
 

The development of the PIAI framework requires the selection of an adequate physics 

infusion method. This method should be suitable for the characteristics of the datasets 

and the physical model to infuse. Hence, the first research sub-question reads as follows. 

 

 
 

This research acknowledges that the choice of a physical model for infusion into AI 

predictions is influenced by the characteristics of the NL-LAB dataset and the physics 

infusion method. To address this, clear selection criteria for physical models within the 

developed framework are defined, as outlined in the second research sub-question, which 

reads as follows. 

 

 
 

The PIAI models developed for stiffness and fatigue predictions are evaluated using a 

multi-criteria performance assessment considering accuracy, interpretability, and 

consistency. Accuracy is measured by the PIAI models’ ability to closely predict the target 

values [20]. Interpretability assesses the extent to which the model predictions adhere to 

the constraints imposed by the physical model [21]. Furthermore, given that AI model 

initializations are often performed randomly [22], consistency examines how well the 

Can physics be infused to enhance AI prediction models for stiffness and fatigue of 
asphalt mixtures?  

 

Which method for infusing physics in AI models better suits the characteristics of the 
NL-LAB stiffness and fatigue datasets?  

What conditions are required to infuse a physical model into a PIAI prediction model 
for the NL-LAB stiffness and fatigue datasets?  
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physical constraints are maintained across different initializations [15]. The effects of 

physics infusion on these performance criteria are investigated, as addressed by the third 

and final research sub-question, which reads as follows. 

 

 

 

1.4. Research Methodology  

 

Figure 1-1 shows the 4-stage methodology adopted to attain the research aim and answer 

the research questions.  The first stage refers to data collection, exploration, and 

provenance. The data provenance review enables an understanding of the testing 

conditions under which the dataset instances were generated [23]. The second stage 

contains a review and selection of a method for physics infusion in AI prediction models. 

The third stage dives into the development of a PIAI framework for prediction models 

based on the NL-LAB fatigue and stiffness datasets. This stage elaborates on physical 

model selection, data preparation, feature selection analysis, and model training and 

optimization for physics infusion. The fourth and last stage assesses the obtained PIAI 

models accuracy, interpretability and consistency.  

 

How does infusing physics impact model accuracy, interpretability, and consistency?  
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selection

Feature Selection

Model training 
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Stage 2

Stage 3

Stage 4

Data preparation

 

Figure 1-1. Research methodology. 

1.5. Report Outline 

 

This report contains five chapters, with the remaining four chapters being structured as 

follows. Chapter 2 presents a literature review concerning the NL-LAB datasets and 

physics infusion method in AI models. Chapter 3 presents a conceptual introduction to 

the developed PIAI framework. Chapter 4 presents and discusses the results obtained for 

the developed PIAI fatigue and stiffness models. Finally, Chapter 5 presents the 

conclusions and future recommendations. 
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2. Literature Review 

 

This research performed a literature review to identify a suitable method for infusing 

physics into AI models. This infusion method should fit the characteristics of the NL-LAB 

datasets and consider the properties of the physical model to infuse. Accordingly, this 

literature review is organized as follows. The review starts with Section 2.1, which focuses 

on possible AI physics infusion methods and PIAI applications developed in pavement 

engineering and related fields. Section 2.2 introduces the NL-LAB program and the 

stiffness and fatigue datasets. Then, Section 2.3 focuses on the testing procedures and 

physical models for predicting asphalt stiffness and fatigue resistance. Finally, Section 2.4 

concludes the literature review with an introduction to the selected physics infusion 

method, answering the first research sub question. 

 

2.1. Infusing physics into AI models 

 

With PIAI, researchers strive to improve the performance of AI predictive models by 

leveraging prior domain knowledge in the form of a physical model [24]. Physics infusion 

is possible via a Physics-Informed Loss Function [14], a Physics-Informed Architecture 

[14], Physics-Informed Pre-Training [14], and hybrid methods [25]. The following 

subsection details physics infusion via a Physics-Informed Loss Function. 

 

2.1.1. Physics-Informed Loss Function 

 

In statistical learning, a model loss is a scalar value that quantifies the closeness between 

model predictions and targets [26]. This model loss can be conceptualized as a function of 

the model parameters (𝜙) [26], obtaining the loss function L[𝜙] [26]. Training an AI 

model means finding a set of model parameters that map each training input to its 

associated target as closely as possible [26]. When a model is trained, the loss function 

reached a local minimum with an associated set of optimal model parameters [26]. 

 

A Physics-Informed Loss Function incorporates a penalty term into the model loss [14]. 

Since this penalty term guides the model towards reaching physically consistent solutions 

[14], it can be interpreted as a physics learning bias [24]. However, a model with a penalty 

term will approximate but not guarantee the infuse physical model [24]. Therefore, 

Physics is weakly incorporated in the predictive model through a Physics Informed Loss-

Function [24]. 
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Equation 2-1 shows an example of a Physics-Informed Loss Function. The exemplified loss 

function has one data-driven component (LossD) and three physical components (LossP1, 

LossP2, and LossP3). All components have associated weight factors (λi), which can be 

interpreted as model hyperparameters that require tuning [27]. 

 

1 2 1 3 2 4 3 ...D P P PLoss Loss Loss Loss Loss   =  +  +  +  +

 
 

Equation 2-1 

where: 
 
λi: Weight factor for component i.  
LossD: Data-driven component of the loss function 
LossP1: (Possible) first physical component of the loss function. 
LossP2: (Possible) second physical component of the loss function. 
LossP3: (Possible) third physical component of the loss function. 
 

An application of a Physics-Informed Loss Function in pavement engineering was 

developed by Deng et al. [15] for rut depth prediction in asphalt mixtures. The author 

enforced rut depth predictions to follow a monotonically increasing trend with respect to 

increasing temperature and number of wheel passes in the Hamburg Wheel Tracking test 

[15]. The author infused the desired physical behaviour through a loss function with two 

physics-based components containing ReLU functions that penalized non-monotonic 

predictions [15]. The author demonstrated that this implementation improved model 

stability and rationality [15]. Noticeably, the author’s research focused on tabular data 

without spatial or temporal relationships between instances. The NL-LAB datasets 

present similar characteristics (see Section 2.2).  

 

Another application of a Physics-Informed Loss Function in pavement engineering was 

developed by Han et al. [18] for asphalt fatigue prediction. The author leveraged a dual 

pathway model architecture [18] to predict the damage characteristic (C-S) curve of 

asphalt mixtures [18]. The obtained model predicts the pseudo-stiffness (C) value with an 

average error of 5.2% for different temperatures and frequencies and infusing visco-elastic 

continuum dynamics [18]. Although the author reported that the obtained model had 

improved precision accuracy and generalizability, model interpretability is lacking [18]. 

Moreover, the model developed takes data in the form of time series, which differs from 

the characteristics of the NL-LAB datasets. 

 

Physics-Informed Neural Networks (PINNs) are a sub category of Physics-Informed Loss 

Function [13]. Researchers mostly use PINNs when the physical model or relationship to 

infuse is in the form of partial differential equations (PDEs) and partial differential 

inequalities (PDIs) [25]. Considering the example of Equation 2-1, PINNs can incorporate 
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physical components in the loss function relating to the residuals of physical equations, 

boundary conditions, and initial conditions [13]. PINNs can also include a data-driven 

component in the loss function when observations are available [13]. 

 

PINNs work by leveraging automatic differentiation, a computational method to 

differentiate the outputs of a neural network with respect to its inputs [13]. Through 

automatic differentiation, PINNs can solve forward and inverse problems involving PDEs 

[27]. In forward problems, PINNs can be used to compute solutions to PDEs [27]. 

Whereas, in an inverse problem, PINNs are used to discover unknown PDE parameters 

using observational data [27]. 

 

Despite various promising developments using PINNs, they entail several limitations. 

First, they can be affected by vanishing and exploding gradients, as with any deep learning 

task [26]. Also, neural networks tend to learn lower frequency solutions first and be biased 

towards smooth functions, which is known as spectral bias [28]. Notably, PINNs need to 

be retrained for every instance of a problem, for example, with a change in initial or 

boundary conditions. 

 

To the best of the researcher’s knowledge, PINN applications have been developed in 

engineering fields related to pavement engineering. In structural engineering, Kapoor et 

al. [29] investigated PINN applications for forward and inverse problems in complex 

beam systems. The author used three physics-driven components in the loss function for 

the forward problem, accounting for residuals of the governing PDE, boundary conditions, 

and initial conditions [29]. Moreover, a data-driven component was incorporated when 

solving the inverse problem [29]. The author demonstrated that PINNs can solve 

nondimensionalized Euler-Bernoulli and Timoshenko complex beam systems [29]. 

Although the application developed showed promising results, the NL-LAB dataset does 

not contain spatial or temporal series. Therefore, the relevance of the findings towards 

predicting pavement performance is limited. 

 

Another PINN application was developed by Kapoor et al. [30] for moving load problems 

in beams. The author found that PINNs can solve forward and inverse problems 

considering Euler-Bernoulli beam theory [30]. Additionally, the author found that 

modelling a point load as a Gaussian function instead of a Dirac delta function prevents 

instability when training vanilla PINNs [30]. This work provides interesting insights into 

PINN applications for structural engineering. However, the characteristics of the NL-LAB 

datasets are not compatible with problems involving temporal or spatial discretization. 
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By incorporating a physics-informed loss function, physics is approximated without 

changing the model architecture. However, it is possible to modify such architecture to 

meet physical constraints, as detailed in the next subsection. 

 

2.1.2. Physics-Informed Architecture 

 

Model architecture is a term is used to describe the arrangement of layers, connections, 

and components that condition data flow through an AI model [31]. Model architecture 

choice often depends on the characteristics of the task at hand [26]. Thus,  it is possible to 

encode physical or empirical dependencies in the core architecture of a model [13] [14].  

 

Conventional neural networks [32] propagate information only in the  forward direction, 

from inputs to targets, lacking mechanisms to learn dependencies among targets [33]. 

Previous knowledge about target dependencies can be infused in neural networks as 

inductive biases [26]. For example, Convolutional Neural Networks (CNNs) are designed 

to handle data on regular grids, assuming nearby data in space is highly correlated [26]. 

Likewise, Recurrent Neural Networks (RNNs) are tailored to process sequential and/or 

dynamic data, assuming high correlation between two inputs close in time [32]. Similarly, 

Graph Neural Networks (GNN) are suited to represent data in irregular graphs. 

 

Despite its efficiency, a physics-informed architecture method has several limitations 

[24]. Task with relatively simple and well-defined physics tend to perform better than 

tasks with more complex physics [24]. Besides, this method requires careful elaboration 

and implementation, especially regarding the appropriate selection of an inductive bias 

[24]. Finally, implementation scaling or extension to more complex tasks is challenging, 

as the underlying physics is not well understood or is hard to encode in the network [24]. 

 

Kapoor et al. [33] introduced a novel framework to enhance generalization in physics-

informed models by combining PINNs and neural oscillators. A neural oscillator is a 

specific network type that involves building RNN architectures based on Ordinary 

Differential Equations (ODEs) [33]. The author demonstrated that their proposed 

framework enables an AI model to learn the long-time dynamics of solutions to the 

governing PDEs [33]. The findings are promising for enhancing generalization 

performance in Physics-Informed AI models. However, the results are based on numerical 

experiments and not on an existing dataset. Moreover, none of the PDEs solved by the 

author correlates to a performance indicator modelled in this research.   
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Another plausible method for infusing physics in AI models involves training a data-

driven model with physics-compliant inputs and targets. The following subsection 

discusses this method and its applications to real-world data. 

 

2.1.3. Physics-Informed Pre-Training 

 

With Physics-Informed Pre-Training, a data-driven model is initialized using physically 

consistent inputs and targets [13]. In a later stage, the model can be fine-tuned with 

observational or real-world data [25]. Although the initialization procedure may speed up 

model convergence to consistent solutions [14], physics is weakly infused in the prediction 

model [24]. 

 

Despite its effectiveness, a Physics-Informed Pre-Training framework brings several 

limitations. Pre-training often requires a large amount of data which can be 

computationally expensive to collect and process [24].  Moreover, the generated models 

are purely data-driven and thus are prone to learn the trend and noise in the pre-training 

set rather than the underlying physics [13]. Consequently, model generalizability beyond 

the pre-training set is challenging, and there is no guarantee of satisfying initial and 

boundary conditions [13]. 

 

PIAI applications using Physics-Informed Pre-Training have been developed in pavement 

engineering. Kargah-Ostadi et al. [16] developed a Physics-Informed Pre-Training 

framework for predicting the International Roughness Index (IRI). The author pre-

trained a neural network using theoretical solutions of the Quarter-Car model from LTPP 

[34]  road profile measurements and vehicle suspension properties, speed and 

acceleration response [16]. Then, the author fine-tuned the model to predict the IRI 

measurements contained in the LTPP database [34]. The final model showed good 

accuracy, precision, and generalization potential for smooth road profiles. Yet, the author 

acknowledged that sparse training samples from rougher road profiles in the LTPP 

database [34] limit model generalizability [16]. The framework developed highlights the 

potential of Physics-Informed Pre-Training for diverse pavement engineering problems. 

However, input features must be consistent between the pre-trained and fine-tuned 

models [16]. For the NL-LAB datasets, this consistency means that a physical or empirical 

model considering all features should exist, which is seldom the case. 

 

The methods discussed for physics infusion in AI are not mutually exclusive [25]. Hence, 

they can be combined in a single PIAI framework, as detailed in the following subsection. 

 



 

11 
 

2.1.4. Hybrid Methods 

 

Hybrid methods for physics infusion refer to combining different infusion methods in a 

single pipeline, aiming to enhance model generalizability [24]. To the best of the 

researcher’s knowledge, hybrid physics-infusion methods have been developed for 

engineering domains other than pavement engineering.  

 

Kapoor et al. [35] developed a hybrid modelling framework between transfer learning and 

causality-respecting PINNs for Euler-Bernoulli and Timoshenko beams on a Wrinkler 

foundation. The author first trained a causality-respecting model and then used the 

trained parameters as initialization for similar problems [35]. This framework 

outperformed other PINN implementation frameworks in predicting displacement and 

rotations in Wrinkler beams [35]. Moreover, the author concludes that this framework 

addresses the need to re-train a model when the initial conditions or computational 

domain change [35]. The hybrid modelling framework developed enhances AI 

generalization capabilities for extended temporal and spatial domains. However, the 

characteristics of the NL-LAB datasets do not match with the spatial and temporal 

domains in the work by Kapoor et al. [35]. 

 

Daw et al. [36], developed a hybrid modelling framework combining Physics-Informed 

Pre-Training and a Physics-Informed Loss Function to predict lake temperature profiles. 

The author first trained a surrogate model [37] to predict the output of the General Lake 

Model for a given set of input drivers [36]. The author added a Physics-Informed Loss 

Function to the surrogate model to enforce consistency between the predicted 

temperature, water density, and lake depth [36]. The model loss function had one physical 

component that penalized temperature predictions inconsistent with a monotonic 

increase in water density with depth [36]. The author concluded that the obtained model 

showed better generalizability and produced physically meaningful results compared to 

conventional data-driven models [36]. Although the model developed is distant from 

pavement engineering, a similar approach can be leveraged to enforce monotonical 

relationships in predictions based on the NL-LAB datasets. 

 

This section presented four different methods for infusing physics in prediction models 

according to the relevant literature. The application examples enable understanding 

possible relationships between the physics-infusion method, the available data and the 

physical model to infuse. Hence, the following section introduces the NL-LAB program, 

and the characteristics of the datasets generated for stiffness and fatigue prediction in 

asphalt mixtures. 
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2.2. The NL-LAB program 

 

The NL-LAB [6] program started in 2012 aiming for a better understanding of the 

relationships between functional properties and field performance of Dutch asphalts [38]. 

Under the NL-LAB [6] program, samples were collected from six road construction 

projects in the Netherlands [39]. These samples correspond to intermediate and base 

asphalt layers with recycled asphalt pavement (RAP) [40].  Data collection in the NL-LAB 

[6] program occurred in phases. Each phase indicates a distinct combination of asphalt 

mix and compaction setups, as shown in Table 2-1. It is noted that phase 3 includes 

samples collected at various time intervals, incorporating aging as an additional variable. 

 

Table 2-1. NL-LAB phase overview ([41]). 

Phase Mixing Compaction Time Interval Component Assessed 

1 Lab 
Lab 

After construction Asphalt and Bitumen 2 Plant 

3 

Field Field 

3a 6 months 
Bitumen 

3b 1 year 

3c 2 years 
Asphalt and Bitumen 

3d 6 years 

 

Table 2-2 details the tests standards used the NL-LAB program to assess pavement 

functional properties. The testing results, along with mix design and sample identification 

information, comprise the NL-LAB datasets [6]. The program generated datasets for four 

functional properties: resistance to fatigue, stiffness, resistance to rutting, and water 

sensitivity. In line with the scope of this research, Appendix A shows an overview of the 

raw (unprocessed) features contained in the NL-LAB fatigue and stiffness datasets.  

 

Table 2-2. Testing standards for pavement functional properties. 

Material Test Name Standard Temperature Frequency 

Bitumen 

Needle penetration NEN-EN 1426 [42] 25°C N/A 

Softening point via the ring 

and ball method 
NEN-EN 1427 [43] N/A N/A 

Complex shear modulus 

and phase angle using the 

Dynamic Shear Rheometer 

(DSR) 

NEN-EN 14770 [44] 20°C 10 rad/s 

Asphalt Mix 
Bulk density of bituminous 

specimens 
NEN-EN 12697-6 [45] N/A N/A 
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Material Test Name Standard Temperature Frequency 

Stiffness 
NEN-EN 12697-26 [7] 

Method B 
20°C 8 Hz 

Resistance to fatigue 
NEN-EN 12697-24 [8] 

Method D 
20°C 8 Hz 

Cyclic compression test 
NEN-EN 12697-25 [46] 

Method B 
40°C 1 Hz 

Water sensitivity 
NEN-EN 12697-12 [47] 

Method A 
15°C N/A 

 

Identifying possible physical models for infusion requires a prior understanding of the 

testing conditions under which the pavement functional properties were obtained. The 

following section details these conditions, along with possible physical models developed 

for stiffness and fatigue prediction in asphalt mixtures.  

 

2.3. Pavement functional properties 

 

Testing in pavement engineering is essential to quantify functional properties of bitumen 

and asphalt mix impact pavement performance [48]. Since bitumen is crucial for resisting 

tensile stresses within an asphalt mix, bitumen functional properties focus on assessing 

its capacity to withstand tensile strain without failure [48]. Moreover, testing in asphalt 

mixtures tests aim to assess the material quality and the suitability of the mixture 

components [48]. The following subsection elaborates on the tests performed on bitumen 

samples. 

 

2.3.1. Bitumen Testing 

  

Under the NL-LAB program, tests on bitumen samples included: i). Penetration, ii). 

Softening point, and iii). Dynamic shear rheometer. This subsection provides an 

explanation of the corresponding test procedures. 

 

The penetration test measures the distance a standard needle penetrates vertically into a 

bitumen sample after 5 seconds of loading [42]. The usual measurement units in this test 

are tenths of a millimetre (1/10 mm) [42]. Higher penetration values indicate a softer 

bitumen, while lower penetration values are associated with a stiffer bitumen [49]. 

Although penetration grading was the first standardized bitumen grading system [48], the 

test approximates bitumen consistency empirically and does not measure any 

fundamental bitumen property [50]. 



 

14 
 

The softening point of bitumen is determined by the Ring and Ball test [43]. In this test, 

two 3.5-gram steel balls are placed on bitumen discs in a water bath and heated steadily 

until they fall 25.0 ± 0.4 mm [43]. The temperature at which this fall occurs is recorded 

as the bitumen softening point [43].  The bitumen Penetration Index (PI) [51] integrates 

the results of the penetration test and softening point test [51]. When calculating the PI, it 

is assumed that bitumen penetration at the softening point is 800 1/10 mm [51]. Lower PI 

values indicate high-temperature susceptibility, whereas higher PI values indicate low-

temperature susceptibility [49]. Since the PI performs bitumen characterization over a 

small temperature range [49], the understanding of bitumen rheological properties is 

limited. 

 

The Dynamic Shear Rheometer (DSR) is used to characterize bitumen rheological 

properties [49]. In the DSR test, an oscillatory shear stress is applied to a bitumen sample 

sandwiched between two parallel plates [49]. The resulting shear deformation is also 

oscillatory, with the same frequency as the applied shear stress and a phase lag, as shown 

in Figure 2-1. The complex shear modulus norm (|G*|) is the ratio between the maximum 

applied shear stress and the maximum shear strain [49]. The phase angle (δ) is the 

measured lag between the shear stress and strain plots [49]. The phase angle enables 

decomposing the complex modulus into the storage (G’) and loss modulus (G’’), as shown 

in Figure 2-2. 

 

  

Figure 2-1. Components of the complex modulus 
([49]). 

Figure 2-2. Complex modulus 
decomposition ([48]). 

 

In every load cycle in the DSR test, a hysteresis loop forms in the strain-stress domain 

[52]. The area enclosed under this hysteresis loop indicates the amount of dissipated 

energy and is calculated via Equation 2-2 [52]. 
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0 0 sinW   =  Equation 2-2 

where: 

 

W : dissipated energy 

0 : shear stress amplitude 

0 : shear strain amplitude 

 

 

A bitumen sample is subjected to strain-controlled sinusoidal loading in fatigue testing 

[52]. Assuming all the strain energy dissipates to control fatigue cracking, Equation 2-2 

can be rewritten as Equation 2-3. From Equation 2-3, it is noted that a lower value of 

|G*|sinδ reduces the dissipated energy. This observation led to the introduction |G*|sinδ 

as a parameter to minimize for controlling fatigue cracking in the Superpave design 

method [52]. 

 

2 *

0 sinW G =  Equation 2-3 

 

Although bitumen functional properties are relevant to assess pavement performance, 

further testing in asphalt mixtures is fundamental for a comprehensive analysis [48]. The 

following subsection presents the test procedures for asphalt mix under the NL-LAB 

program. 

 

2.3.2. Asphalt Mix Testing 

 

Testing procedures on asphalt mix samples under the NL-LAB program included: i). 

Density and air voids, ii). Fatigue resistance, iii). Stiffness, iv). Rutting resistance, and v). 

Water sensitivity. Given the scope of this research, the testing procedures for rutting 

resistance and water sensitivity are not detailed in this section.  

 

2.3.2.1. Density and Air Voids 

 

The air voids content of an asphalt mix is the ratio between the volume of air voids in the 

mix and the bulk volume of the compacted mix [48]. The air voids content was determined 

using the bulk density of the compacted mix and the theoretical maximum mix density 

[53]. The bulk density of the compacted mix corresponds to a Saturated Surface Dry (SSD) 

condition [45], whereas the theoretical maximum mix density was obtained via the 

volumetric procedure specified in NEN-EN 12697 [54]. Data regarding density and air 
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voids content in the NL-LAB datasets was collected by the contractors involved in the 

program [6].  

 

Density and air voids content often correlate to pavement performance. Researchers [48] 

related low air voids content with higher rutting probability and high air voids content 

with premature cracking and ravelling in asphalt mixtures. The effects of premature 

cracking on pavement life were assessed by Linden et al. [55], finding that an increase of 

1% in air voids content reduced pavement service life by up to 10%. On the contrary, a 

lower air void content is linked to higher asphalt mix densities [48]. Mogawer et al. [56] 

found higher asphalt mix densities to increase the  mix dynamic modulus for different 

temperatures and frequencies [56]. 

 

2.3.2.2. Mix Stiffness 

 

Stiffness quantifies the ability of an asphalt mix to dissipate an applied load [49]. In a 

pavement structure, two material layers with the same thickness but different stiffness 

will transfer different load magnitudes to the underlying layer [49]. Notably, a stiffer 

asphalt layer will be more prone to fatigue cracking, whereas a layer with low stiffness 

tends to be more affected by rutting. Hence, stiffness is a key functional property for 

designing an adequate pavement structure for specific loading, environmental, and site 

conditions. 

 

An elementary definition of stiffness is given by the stress-strain ratio shown in Equation 

2-4 [7]. Since an asphalt mix is a viscoelastic material, its loading response is temperature 

and frequency-dependent [7]. Hence, for a linear visco-elastic material, stiffness is defined 

in terms of a complex modulus (E*) and a phase angle (δ), as shown in Equation 2-5. 

 

E



=  

 

where: 

 

E : stiffness modulus 

 : Maximum applied stress 

 : Maximum measured strain response 

Equation 2-4 

 

( ) ( )( )* * cos sinE E i =  +   
Equation 2-5 



 

17 
 

where: 

 

*E : Norm of the complex modulus, defined by the stress strain 

ratio. 

 : Phase angle. 

 

Under the NL-LAB program stiffness was determined using the 4PBB test [7], following 

the setup shown in Figure 2-3. This test applies periodic bending with constant amplitude 

(see Figure 2-4) to an asphalt sampled conditioned at a given temperature [7]. At the 

100th load cycle, the norm of the complex modulus is determined via Equation 2-4 [7]. 

The resulting value is the target of the NL-LAB stiffness dataset and corresponds to the 

mix stiffness at 20°C and 8 Hz [40]. 

 

 

 

where: 

 

F:   Applied load. 

L:   Distance between supports. 

l:    Distance between loading points. 

 

 

where: 

 

1. Peak load 

2. Pulse repetitions period 

3. Loading time 

4. Minimum Load 

X. Time 

Y. Force 

Figure 2-3. 4PBB test schematization. Source: 

[7]. 
Figure 2-4. Applied load in the 4PBB test. 

Source: [7]. 

 

Research on asphalt stiffness modulus prediction has been extensively carried out since 

the 1950s [57], with continuous development to the present day. A set of stiffness 

prediction models incorporates homogenization theory, where the effective stiffness of a 

composite material is determined based on the stiffness of its different phases [58]. 

Examples of this model family are the Christensen model [59], the modified Christensen 

model [60], and the model proposed by Zhang et al. [58]. Other relevant stiffness 
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prediction models include the developments by Shell [49], the University of Nottingham 

[61], the U.S. Asphalt Institute [62], and Witczak & Fonseca [63]. It is noted that none of 

the reviewed physical models include all features of the NL-LAB datasets.  

 

2.3.2.3. Fatigue Resistance 

 

Asphalt fatigue is a pavement distress characterized by a series of interconnected cracks 

[51]. Fatigue cracking initiates at the bottom of the asphalt layer, where the tensile strain 

is highest, and propagates upwards as one or more parallel longitudinal cracks [51]. 

Fatigue cracking indicates pavement structural deficiencies, especially in areas subjected 

to traffic loading [51].  

 

Under the NL-LAB program, fatigue resistance is quantified using the 4PBB test [40]. 

After determining the mix initial stiffness, the test applies periodic bending until reaching 

a failure condition [8]. This failure condition corresponds to a 50% reduction in the initial 

stiffness [8]. The fatigue life of a sample is the number of cycles needed to reach the failure 

condition (Nf50) [8]. After testing multiple samples, it is possible to plot a fatigue line 

relating the applied initial strain and the fatigue life of each sample in the logarithmic 

plane [8]. Fitting a linear regression to the fatigue line eases the computation of the initial 

strain corresponding to a fatigue life of 1x106 cycles. This initial strain is labelled as ε6 and 

is the target of the NL-LAB fatigue dataset. 

 

Different authors correlated fatigue resistance and other bitumen or mix properties. Bahia 

et al. [64] studied the relationship between the Superpave fatigue parameter (|G*|sinδ) 

and the fatigue life in mixtures with Polymer Modified Bitumen (PMB). The author found 

weak correlations considering different aggregate types and mix compositions, which they 

linked to measuring fatigue only in the linear viscoelastic range [64]. Ishaq & Giustozzi 

[65] developed a correlation between bitumen fatigue life and HMA fatigue life in the 

4PBB test, obtaining an R² value of 0.82. Shen & Carpenter [66] developed a model 

correlating the fatigue life with the Plateau Value (PV) from energy dissipation theory. The 

author also devised a model to correlate the PV with the HMA tensile strain, flexural 

stiffness, volumetric composition, and aggregate characteristics [66]. Similar to mix 

stiffness, physical models for fatigue resistance prediction do not incorporate all features 

in the NL-LAB datasets. 

 

This subsection concludes the review on the test protocols and physical models for 

stiffness and fatigue resistance in asphalt mixtures. It was found that the reviewed 

physical models do not include the entirety of the features in the stiffness and fatigue 

datasets. In the following section, the literature review is concluded by selecting a physics 
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infusion suitable to the characteristics of the NL-LAB datasets and the physical models 

reviewed.  

 

2.4. Conclusion 

 

Table 2-3 summarises the PIAI studies reviewed in this research. Literature suggests a 

relationship between framework for physics infusion, the data available, and the physical 

model to infuse. Using a Physics-Informed Loss function is possible when handling 

tabular inputs, as the effect of a subset of features on the model output can be constrained. 

However, PINNs are preferred when a model contains partial differential equations, as 

exemplified in [29], [30], [33] and [35]. Hence, to leverage PINNs, data instances should 

be correlated in time or space. Moreover, specifying a Physics-Informed Architecture is 

crucial to account for possible correlations between data instances. The example shown in 

[33] devises an architecture fitted to capture the temporal dynamics of the problem at 

hand. Physics-informed pre-training can handle tabular data, with or without temporal or 

spatial correlation between data instances. The application developed in [16] 

demonstrated that Physics-Informed Pre-Training is possible when the features for 

physics pre-training and data-driven fine tuning are the same. 

 

Table 2-3. Examples of PIAI applications. 

Author Framework Used 
Physical/Empirical 

Model Infused 
Features Targets 

Deng et 
al. [15] 

Physics-
Informed Loss 

Function 

Monotonic increasing 
constraint of rut depth 
predictions considering 

temperature and 
number of wheel passes. 

Tabular data containing 
bitumen and aggregate 

properties. No 
correlations in time or 

space identified. 

Rut depth 

Han et 
al. [18] 

Physics-
Informed Loss 

Function 

Visco-Elastic 
Continuum Dynamics. 

Historical data of fatigue 
C-S curve as a time 

series. Data instances are 
temporally related. 

Pseudo-
Stiffness (C). 

Kapoor 
et al. [29] 

Physics-
Informed Loss 

Function 
 

Specifically, 
PINN 

Euler-Bernoulli beam 
equation. 

 
Timoshenko beam 

equation. 

Numerically generated 
data points to verify 

compliance of governing 
PDE, boundary 

conditions and initial 
conditions. 

Beam 
displacements. 

Kapoor 
et al. 
[30] 

Physics-
Informed Loss 

Function 
 

Specifically, 
PINN 

Euler-Bernoulli beam 
equation. 

Numerically generated 
data points to verify 

compliance of governing 
PDE, boundary 

conditions and initial 
conditions. 

Beam 
displacements. 

Kapoor 
et al. 
[33] 

Physics-
Informed 

Architecture 

Viscous Burgers 
equation. 

 
Allen-Cahn equation. 

Numerically generated 
data points to verify 

compliance of governing 
PDE, boundary 

Unspecified. 
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Author Framework Used 
Physical/Empirical 

Model Infused 
Features Targets 

 
Nonlinear Schrödinger 

equation. 
 

Euler-Bernoulli beam 
equation. 

conditions and initial 
conditions. Also, 

numerically generated 
data to validate model 

generalization. 

Kargah-
Ostadi et 
al. [16] 

Physics-
Informed Pre-

Training 
Quarter-Car Model. 

Tabular data of vehicle 
properties, FHWA LTPP 

road profiles, and 
synthetic vertical 

acceleration responses. 
 

Input data is correlated 
in space and time. 

IRI values. 

Kapoor 
et al. 
[35] 

Hybrid Approach 
 

Physics-
Informed Pre-
Training and 

PINN 

Euler-Bernoulli beam 
equation. 

 
Timoshenko beam 

equation. 

Numerically generated 
data points to verify 

compliance of governing 
PDE, boundary 

conditions and initial 
conditions. 

Beam 
displacement. 

Daw et 
al. [36] 

Hybrid Approach 
 

Physics-
Informed Pre-
Training and 

Physics-
Informed Loss 

Function 

General Lake Model. 
 

Monotonic increasing 
relation of water density 

with respect to depth. 

Tabular inputs relating to 
environmental and time-
of-the -year conditions. 

Lake depth is also an 
input. Thus, instances 

are spatially correlated. 

Lake 
temperature 

profile. 

 

The characteristics of the NL-LAB datasets limit the applicability of some reviewed 

infusion methods. These datasets contain instances that are not correlated in time or 

space, which hinders the use of PINNs and a Physics-Informed Architecture. Moreover, 

models developed in pavement engineering for fatigue and stiffness predictions rarely 

contain all features present in the datasets, challenging a Physics-Informed Pre-Training. 

However, some fatigue and stiffness physical models contain a subset of features present 

in the datasets. Hence, by specifying the effect of a subset of features in AI model 

predictions, physics can be infused in AI model predictions. In consequence, a Physics-

Informed Loss Function is the selected physics-infusion method.  

 

The literature review concludes with the selection of a suitable physics-infusion method 

for the NL-LAB datasets’ characteristics. However, the development of a PIAI framework 

for stiffness and fatigue predictions necessitates further considerations regarding the 

desired physical model and PIAI model training. These considerations are detailed in the 

following chapter. 
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3. PIAI Framework for the NL-LAB 

datasets 

 

This chapter presents the developed PIAI framework for prediction models based on the 

NL-LAB datasets, corresponding with Stage 3 of the research methodology (see Figure 

1-1). Figure 3-1 shows the four stages for model development under the PIAI framework. 

These stages are explained across four distinct sections in this chapter. Section 3.1 

presents the developed criteria for selecting a physical model, answering the second 

research sub question. Section 3.2 introduces the different steps performed for data 

preparation. Then, Section 3.3 introduces the physics and data-driven feature selection 

method incorporated in the PIAI framework. Finally, Section 3.4 provides a detailed 

description of the procedures for model training and optimization under the development 

framework. 

 

Feature Selection

Model training and 
optimization for 
physics infusion

Data preparation

Data cleaning and aggregation

Encoding categorical variables

Data splitting

Correlation analysis

Physics-driven feature selection Data-driven feature selection

PIAI model data-driven training PIAI model physics-based training

10-fold cross-validation and 

hyperparameter optimization

Data Collection

Data scaling

Physical features compatibility 

Physical model 
selection

Selecting a physical model 

compatible with the dataset

 

Figure 3-1. Proposed PIAI model development framework for the NL-LAB datasets. 
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3.1. Selection of a Physical Model 

 

Datasets generated under the NL-LAB program consider a substantial number of features 

that aim to explain pavement performance (see Appendix A – Table A 1). To the best of 

the researcher’s knowledge, there is seldom a physical model in pavement engineering 

containing the same features and targets as the NL-LAB datasets. Hence, this research 

established the following compatibility criteria for selecting a physical model: 

 

• The dependent and independent variables of the physical model must be among the 

dataset features. Otherwise, it must be possible to calculate the physical model 

variables from the dataset features. 

 

• The physical model must include the target variable of the dataset. Preferably, the 

dataset target should be included explicitly as a variable in the physical model. 

However, physics infusion is also possible using a physical model considering a 

variable calculated from the dataset target. 

 

• The testing conditions of the physical model should closely match the testing 

conditions of the dataset. If not, it should be possible to implement a correction. 

Examples of corrections include using master curves to account for different 

temperature and loading conditions. Failure to meet this requirement does not prevent 

physics infusion in AI models but can lead to inconsistencies. 

 

• The physical model should be a validated development in the pavement engineering 

domain. Like in the previous requirement, failing to meet this requirement does not 

prevent physics infusion in AI models. However, it poses a risk of infusing an 

inadequate physical behaviour. 

 

These compatibility criteria are further explained through an example. Consider a dataset 

with 5 features (X1,…, X5) and a target (Y) as shown in Table 3-1. Each feature and the 

target contain k entries (X11,..., X1k). Consider also the candidate physical model presented 

in Equation 3-1. The independent variable of the candidate physical model corresponds to 

the target of the toy dataset. Additionally, the toy candidate physical model calculates the 

independent variable as a linear combination of functions of a subset of the features in the 

dataset (X1, X2). Under the assumption that the features X1, and X2 are independent and 

uncorrelated, it is possible to infuse the toy candidate model in an AI prediction model. 
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Table 3-1. Example dataset for explaining physical model compatibility. 

Input Features (XD) Target 

X1 X2 X3 X4 X5 Y 

X11 

X12 

X13 
. 
. 
. 

X1k 

X21 
X22 
X23 

. 

. 

. 

X2k 

X31 
X32 
X33 

. 

. 

. 

X3k 

X41 
X42 
X43 

. 

. 

. 

X4k 

X51 
X52 
X53 

. 

. 

. 

X5k 

Y1 
Y2 
Y3 

. 

. 

. 

Yk 

 

 

1 1 2 2 3( ) ( )Y C f X C g X C=  +  +  Equation 3-1 

where: 

 

Y: Independent variable of the dataset. 

f(X1): Function of feature X1. 

g(X2): Function of feature X2. 

C1, C2, C3: Model constants. 

 

Selecting a physical model conforming to the abovementioned compatibility criteria is 

fundamental for enhancing pavement performance predictions. In the following 

subsections, the selected physical models to infuse in the PIAI prediction models for 

stiffness and fatigue are presented. 

 

3.1.1. Physical model for stiffness prediction based on micromechanics 

 

The selected physical model to infuse in the PIAI stiffness prediction model was proposed 

by Zhang et al. [58] for Open Graded Mixes (OGMs). This model belongs to a family of 

models based on homogenization theory [58]. In homogenization theory, the effective 

micromechanical properties of a composite material are determined based on the 

properties of its different phases [58]. In an asphalt mix three phases can be identified 

[59]: bitumen, aggregates, and air voids. Figure 3-2 shows three phase arrangements used 

by researchers ([58], [59], [60]) in homogenization models. 
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where: 

 

f:  Phase. 

p: Parallel component. 

s: Series component. 

 

 

a: Aggregate. 

b: Bitumen. 

v: Air voids. 

Figure 3-2. Arrangement of the Christensen model for asphalt mixes. From [58]. 

a). Original arrangement [59], b). Simplified arrangement [60], c). Proposed modified 

arrangement [58]. 

 

Christesen et al. [59] developed the first homogenization theory application in pavement 

engineering, devising the phase arrangement shown in Figure 3-2(a) for improved 

accuracy in mix stiffness predictions. Later, Christensen & Bonaquist [60] found the series 

component of this initial arrangement to be futile for mix stiffness prediction, and 

proposed the parallel arrangement shown in Figure 3-2(b).  

 

Zhang et al. [58] proposed a revised parallel arrangement to better account for aggregate 

contact interaction. This revised arrangement considers the total volume of bitumen, 

aggregates, and air voids, as shown in Figure 3-2(c). Moreover, the author introduced the 

Aggregates Organization Factor (Pa) to describe the frequency and temperature-

dependent contribution of the aggregate phase in mix stiffness prediction. The resulting 

model for mix stiffness prediction is shown in Equation 3-2. 

 

( ) ( ) ( )* *3a a a bmix b
f f fE P f E f G= +  Equation 3-2 

 

where: 

 

|E*|mix(f): Mix stiffness, frequency dependent. 

Pa(f): Aggregate organization factor, frequency dependent. 

fa: Volume fraction of the aggregate phase. 
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Ea: Aggregate Young’s modulus. 

fb: Volume fraction of the bitumen phase. 

|G*|b(f):  Dynamic shear modulus of the bitumen phase, frequency dependent. 

 

Zhang et al. [58] validated the proposed model by developing master curves for mix 

stiffness and bitumen shear modulus. Through this validation, the author demonstrated 

that Pa is frequency dependent, approximating a sigmoidal function when frequency 

increases [58]. Thus, the author proposed the regression model shown in Equation 3-3. 

  

( )
( ) ( ) ( )( )
( ) ( ) ( )( )

*

*

exp ln /
1

1 exp ln /

b b v b vb

a

b b v b vb

b c f f f G d f f
P a a

b c f f f G d f f

+ +  + +
= + − 

+ + +  + +
 Equation 3-3 

 

where: 

 

fv: Volume fraction of the air voids phase. 

a, b, c, d: Regression coefficients.  a = 0.0017, b = 0.62, c = 0.72, d = -0.17 

|G*|b, and fb are described in Equation 3-2. 

 

The model developed by Zhang et al. [58] satisfied the compatibility criteria for physical 

model selection. The target of the NL-LAB stiffness dataset is incorporated in Zhang et al 

[58]’s model as independent variable. The model variables fa, fb and |G*|b correspond to 

the features “VA”, “Volume_Target_Bitumen” and “bit2_Gstar” of the NL-LAB stiffness 

dataset. Furthermore, This research assumed 53000 MPa as the Young’s modulus of the 

aggregate phase (Ea) [58]. Finally, the volume fraction of the aggregate phase was 

calculated using Equation 3-4, and stored in a new feature named 

“Volume_Agg_Fraction”. 

 

1a b vf f f= − −  Equation 3-4 

 

fa, fb, and fv are described in Equation 3-2 and Equation 3-3. 

 

After performing the abovementioned calculations, Pa was obtained via Equation 3-3 and 

stored in a new feature named “Pa”. With Pa, the expected mix stiffness was calculated via 

Equation 3-2. The PIAI stiffness model was trained to approximate this expected mix 

stiffness in the physics component. 
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The selection of Zhang et al.’s [58] model as the physical model to infuse in stiffness 

predictions entailed three limitations for this research. The first limitation was related to 

the stiffness test procedure. While Zhang et al. [58] used the Cyclic uniaxial compression 

test [67] to obtain mix stiffness, the stiffness values reported in the NL-LAB dataset 

correspond to the 4PBB test [7]. Therefore, it was assumed that the stiffness values 

obtained through both testing procedures are comparable. The second limitation was 

brought by the regression model introduced by Zhang et al. [58] (see Equation 3-3) being 

applicable only to OGMs. Hence, to bridge this limitation it was assumed that the samples 

contained in the NL-LAB stiffness dataset correspond to OGMs. The third and last 

limitation was related to the calculation of fa, as it was implicitly assumed that no bitumen 

was absorbed by the aggregates.  

 

3.1.2. Physical model for fatigue prediction based on energy dissipation 

theory 

 

The selected physical model to infuse in the PIAI fatigue model was developed by Shen & 

Carpenter [66]. Using energy dissipation theory, the authors proposed a prediction model 

relating the Plateau Value (PV) to the initial flexural stiffness, and parameters referring to 

mix volumetrics and aggregate gradation [66]. 

 

Energy dissipation theory states that the area under the stress-strain curve represents the 

energy applied to a material under loading conditions [66]. This applied energy fully 

recovers when the unloading curve follows the same path as the loading curve [66]. When 

the loading and unloading paths differ, a hysteresis loop is formed. In viscoelastic 

materials, the as the area of this hysteresis loop corresponds to the dissipated energy (see 

Equation 3-5). 

 

( )sini i i iW    =     Equation 3-5 

where: 

 

Wi: Energy dissipated in cycle i. 

σi: Stress level in cycle i. 

εi: Strain level in cycle i. 

ϕi: Phase angle in cycle i. 

 

Material damage is related to changes in dissipated energy [66]. Two different hysteresis 

loops in successive load cycles indicate material damage occurred [66]. Only the relative 
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amount of energy dissipation created by each additional load cycle will produce further 

material damage [66]. In consequence, the relative change of dissipated energy has a 

direct relationship with damage accumulation [66]. Hence, the Ratio of Dissipated Energy 

Change (RDEC) (see Equation 3-6) is often used as a testing parameter to assess HMA 

fatigue damage [66]. 

1i i

i

DE DE
RDEC

DE

+ −
=  Equation 3-6 

where: 

 

RDEC: Ratio of Dissipated Energy Change. 

DEi: Energy dissipated in cycle i. 

 

A curve with three distinct zones (see Figure 3-3) is obtained when plotting the RDEC and 

the number of loading cycles [68]. The Plateau Value (PV) corresponds to the constant 

RDEC value shown in zone II. The PV is often determined as the RDEC value 

corresponding to the load cycle in which the initial stiffness is reduced by 50% [66]. 

 

 

Figure 3-3. RDEC vs Load Cycles. From [68]. 

 

Shen & Carpenter [66] proposed a PV prediction model using 19 mixtures from the Illinois 

Department of Transportation [66]. These mixtures presented various air void contents, 

different gradations, and both neat and polymer-modified bitumen [66]. Mixtures were 

compacted using a rolling wheel compactor and tested via a four-point bending beam 

fatigue test according to AASHTO T321-03 [66]. This test applies a constant strain 

amplitude to the mix at a frequency of 10 Hz and a temperature of 20°C [66]. Equation 

3-7 shows the developed PV prediction model. 
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5.140 2.993 1.850 0.406344.422PV S VP GP −=  Equation 3-7 

 

where: 

 

PV: Plateau Value. 

ε: Tensile strain. 

S: HMA initial flexural stiffness (20°C, 10Hz) [MPa]. 

VP: Volumetric parameter, described in Equation 3-8. 

GP: Aggregate gradation parameter, described in Equation 3-9. 

 

b

AV
VP

AV V
=

+
 Equation 3-8 

where: 

 

VP: Volumetric parameter. 

AV: Mix air voids. 

Vb: Bitumen content by volume. 

 

200

NMS PCSP P
GP

P

−
=

 

Equation 3-9 

where: 

 

GP: Aggregate gradation parameter 

PNMS: Percentage of aggregate passing the nominal maximum sieve size. 

PPCS: Percentage of aggregate passing the primary control sieve (PCS = 0.22∙NMS). 

P200: Percentage of aggregate passing the No. 200 (75μm) sieve size. 

 

Shen & Carpenter [66] also proposed a relationship between the PV and the number of 

load cycles to failure, shown in Equation 3-10. The authors verified this relationship to be 

unique for different mixtures, loading modes, and testing conditions at normal damage 

levels [66]. Moreover, the authors employed the same failure condition used in the NL-

LAB fatigue dataset [66].  

 

0.90070.4801Nf PV −=   Equation 3-10 
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where: 

 

Nf: Fatigue life, i.e. number of cycles for a 50% stiffness reduction. 

PV: Plateau value. 

 

The model developed by Shen & Carpenter [66] satisfied the compatibility criteria for 

physical model selection. The target of the NL-LAB fatigue dataset is one of the dependent 

variables of the selected physical model. Moreover, the initial stiffness was retrieved from 

the NL-LAB stiffness dataset. Additionally, mix stiffness was obtained by. The volumetric 

parameter (see Equation 3-8) was calculated using “VA” and “Volume_Target_Bitumen”. 

The calculated value for this parameter was stored in a new feature named “VP”. Finally, 

the aggregate gradation parameter (see Equation 3-9) was obtained by constructing 

aggregate gradation curves from the target composition values (see Appendix B). The 

calculated value for this parameter was stored in a new feature named “GP”. 

 

Since the target of the NL-LAB fatigue dataset is ε6, the number of cycles to failure is Nf = 

1x106. With the number of cycles to failure, the PV was calculated via Equation 3-10. 

Furthermore, Equation 3-7  was reworked to isolate ε from the calculated PV. Hence, the 

PIAI model for fatigue prediction was trained to approximate this expected stiffness in the 

physics component. 

 

This research incurred in two limitations when selecting Shen & Carpenter’s [66] model 

as the physical model to infuse in fatigue predictions. The first limitation is related to the 

testing procedure. Although the 4PBB test was used in both the physical model and the 

NL-LAB dataset, the reference cycle for obtaining the initial stiffness differs. In the NL-

LAB dataset, initial stiffness was determined at the 100th load cycle [7]. However, Shen & 

Carpenter’s model uses an initial stiffness value obtained at the 50th load cycle [69]. 

Therefore, it is assumed that mix stiffness values determined via the 4PBB test at the 50th 

and 100th load cycle are comparable. The second limitation is related to the determination 

the Nominal Maximum Aggregate Sieve Size (NMAS). This research found no information 

about the NMAS of the mixtures tested in the NL-LAB program. Therefore, a NMAS of 

16mm was assumed based on the aggregate target composition, as illustrated in Appendix 

B. 

 

This subsection introduced the selected physical models for infusion in the PIAI stiffness 

and fatigue models. Although selecting a physical model is fundamental for PIAI model 

development, raw data needs to be prepared for use in predictive models. The following 

section presents the data preparation procedures performed in this research. 
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3.2. Data Preparation 

 

Data preparation is a fundamental step prior to model training as raw data is rarely 

suitable for direct use in AI predictive models [70]. This research introduced different data 

preparation procedures to ensure that input data was usable for PIAI model training. Data 

preparation comprised data cleaning and aggregation, encoding categorical features, and 

data splitting.  

  

Data cleaning involved removing informational features (see Appendix A - Table A 1) and 

instances containing missing entries from the datasets. The categorical features “work” 

and “phase” were removed as each “work” and “phase” combination can be represented 

by a “mix_setup” and “comp_setup” combination, as seen in Appendix C. 

 

Furthermore, data aggregation included the generation of gradation curves from the 

target aggregate mass composition values in the datasets. With the gradation curves, the 

volume percentages of gravel (retained in 4.75 mm sieve [71]), and sand (passing the 4.75 

mm sieve but retained in the 0.075 mm sieve [71]) were determined. These percentages 

were included in the datasets as “Volume_Target_Gravel” and “Volume_Target_Sand”, 

in lieu of the target aggregate composition values per sieve size. 

 

Encoding categorical features is another crucial data preparation step. Categorical 

features contain class values instead of numerical values [70]. These class values are often 

text or numerical inputs referring to categories [70]. Encoding a categorical feature strives 

to assign numerical values to represent each category contained in the feature [70]. 

Methods for encoding a categorical feature include one-hot encoding, ordinal encoding, 

feature hashing, and target encoding or bin counting [70], [72]. After consideration of the 

drawbacks and benefits of each encoding method, this research used one-hot encoding for 

handling categorical variables. Although one-hot encoding generates additional binary 

features for each possible category, it provides better interpretability over the effects of 

each category in model predictions. Figure 3-4 illustrates an example of one-hot encoding. 

In the example, “Mix Type” is a categorical feature with 3 (k = 3) possible categories. One-

hot encoding creates k binary features, corresponding to k possible categories. However, 

one-hot encoding creates a linear dependency between the binary features, as knowing 

the values of k-1 features enables deducing the value of the kth feature [72]. Therefore, it 

is necessary to remove one feature which serves as a benchmark or reference category. In 

the example, the category “HMA Dense” is the benchmark for the “Mix Type” feature. 
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Figure 3-4. Example of One-Hot Encoding. 

 

Data cleaning, data aggregation, and encoding categorical variables involved the creation 

and removal of features in the NL-LAB datasets. Table 3-2 summarizes the changes in the 

dataset features and a brief explanation of the justification behind these changes. It is 

noted that the data preparation procedures resulted in a net addition of 2 features to the 

dimensionality of the NL-LAB datasets. Moreover, Appendix A (Table A 2) provides a list 

of the obtained features after data preparation, along with relevant descriptive statistics. 

 

Table 3-2. Added and removed features from each dataset. 

Dataset Features 
Added / 

Removed 
Justification 

Stiffness 
“Volume_Aggregate_Fraction”, 

“Pa” 
Added 

Needed for the stiffness physical 

model  

Fatigue 
“VP”, 

“GP”, 
Added Needed for the fatigue physical model 

Both 
“Volume_Target_Gravel”, 

“Volume_Target_Sand” 
Added Aggregated gradation features. 

Both 

“Volume_Target_C22_4”, 

“Volume_Target_C16”, 

“Volume_Target_C11_2”, 

“Volume_Target_C08”, 

“Volume_Target_C05_6”, 

“Volume_Target_C002mm”, 

“Volume_Target_C00063mu” 

Removed 
Contained in the aggregated 

gradation features. 

Both 
“work”, 

“phase” 
Removed 

Reflected by specific “mix_setup” and 

“comp_setup” combinations 

Both “mix_setup” Removed Categorical feature 

Both 
“Forced action mixer”, 

“Planetory mixer” 
Added 

Categories of the “mix_setup” 

feature. Benchmark category: 

“Asphalt plant” 

Both “comp_setup” Removed Categorical feature 
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Dataset Features 
Added / 

Removed 
Justification 

Both 

“Hand roller”, 

“Mini roller”, 

“Segment compactor”, 

“Shear box” 

Added 

Categories of the “comp _setup” 

feature. Benchmark category: “Field 

roller” 

Both “PMB” Added 

Since work 6 included and the “work” 

feature was removed, this binary 

indicator accounts for PMB presence 

in the asphalt mix. 

 

Data splitting is the final step of the data preparation stage. Training an AI model using 

all available data may lead to overfitting and undermine model performance [70]. Hence, 

splitting data into training, validation, and test sets can prevent overfitting. This research 

utilized a ratio of 80%-10%-10%, as shown in Figure 3-5. The training, validation, and test 

subsets play different roles in AI model development. The training set helps obtain the 

optimal model parameters [73]. The validation set allows finding the optimal model 

architecture through hyperparameter tuning [73]. The test set enables the acquisition of 

unbiased performance metrics [73]. 

 

 

Figure 3-5. Training-validation-test split. 

 

Through data preparation, raw features in the NL-LAB datasets were transformed to 

facilitate incorporation in PIAI prediction models. Data preparation resulted in 22 and 23 

features for the NL-LAB stiffness and fatigue datasets respectively. Since the datasets 

contain 425 instances, it was decided to reduce the number of input features to prevent 

overfitting in the PIAI models. This research reduced the number of input features with a 

feature selection procedure, as explained in the following section. 

 

3.3. Feature Selection 

 

Figure 3-6 illustrates the principle of the feature selection method performed in this 

research. The outcome of the feature selection analysis is the set of important features. 

The important feature set is a subset of the feature space and is formed by the union of the 

sets of important features from a physics and a data-driven perspective. 

 

Training 
80% 

Val. 
10% 

Test 
10% 
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Figure 3-6. Illustration of the feature importance analysis. 

 

This research introduced a feature selection method comprising physics and data-driven 

components. While the physics component aims to preserve all features needed to 

compute the outputs of the physical model, the data component aims to preserve features 

with strong statistical relationships to the target [70]. A feature required to compute the 

output of a physical model must not be removed irrespective of the results of the data 

component. The following section provides a description of the selected method for 

feature selection in the data-driven component. 

 

3.3.1. Data-driven feature selection through BorutaShap 

 

This research used BorutaShap [74] as the data-driven feature selection method. 

BorutaShap is a wrapper [70] method that brings together the Boruta [75] feature 

selection algorithm with SHAP [76] values. Boruta is an iterative selection method that 

compares the importance score [70] of the features in a dataset with the maximum 

importance score achievable by pure randomness [77]. The importance score in 

BorutaShap is obtained with SHAP [76] values. SHAP values leverage a sound 

mathematical foundation on cooperative game theory to quantify the contribution of each 

feature in model predictions (see Appendix D) [78]. 

 

By incorporating statistical testing to determine feature importance, BorutaShap 

eliminates the need for presetting thresholds related to minimum model performance or 

a desired number of features [74]. Such thresholds are typically required in other wrapper 

methods, including Forward Selection [79] and Recursive Feature Elimination (RFE) [79]. 

The principles underlying BorutaShap, as well as its relevance to this research, are best 

illustrated through an example. 

 

Important 

Features 

(Physics) 

Important 

Features 

(Data) 

Feature Space 

Selected Features 
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Consider a dataset with 5 features (X1, …, X5), 1 target (Y) and 5 instances, as shown in 

Table 3-3. After fitting a tree-based regressor to this dataset, feature importance scores 

are calculated using the mean SHAP value across all predictions [80], as shown in Figure 

3-7. These importance scores can be integrated into different feature selection methods. 

In Forward selection, a prediction model is constructed using the most important feature 

(X1) and the target (Y) [79]. If this model fails to meet the preset performance criteria, the 

next most important feature (X2) is added, and the model is retrained [79]. Conversely, 

RFE removes the least important feature (X5) first and retrains the models [79]. With 

RFE, the least important feature is successively removed until the model reaches the 

desired performance threshold or until the feature number is reduced to the preset 

minimum [79]. 

 

Table 3-3. Example dataset for BorutaShap illustration. 

Dataset Features (XD) Target 

X1 X2 X3 X4 X5 Y 

X11 

X12 

X13 
. 
. 
. 

X1k 

X21 
X22 
X23 

. 

. 

. 

X2k 

X31 
X32 
X33 

. 

. 

. 

X3k 

X41 
X42 
X43 

. 

. 

. 

X4k 

X51 
X52 
X53 

. 

. 

. 

X5k 

Y1 
Y2 
Y3 

. 

. 

. 

Yk 

 

 

Figure 3-7. Example SHAP values for BorutaShap illustration ([81]). 

 

BorutaShap differs from Forward Selection and RFE by identifying as important only 

those features that have been statistically proven to enhance model performance [74]. 

BorutaShap extends the original feature space by creating one shadow feature per original 

feature using random permutation [82], as shown in Table 3-4. A tree-based regressor is 

then fitted to this extended feature set and the target variable [74]. This trained regressor 

is used to compute importance scores for both the original and shadow features using 

SHAP values [76], as shown in Table 3-5. An original feature is considered to have scored 
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a “hit” if its importance score is higher than the maximum importance score of all shadow 

features [82]. In the given example, X1, X2 and X3 scored a “hit”.  

 

Table 3-4. Example dataset extended with shadow features. 

Extended Features Target 

X1 X2 X3 
Shad. 

X1 
Shad. 

X2 
Shad. 

X3 
Y 

X11 

X12 

X13 
X14 

X15 

X21 

X22 

X23 
X24 

X25 

X31 

X32 

X33 
X34 

X35 

X12 

X14 

X15 
X11 
X13 

X21 

X25 

X24 
X23 
X22 

X32 

X31 

X35 
X33 
X34 

Y1 
Y2 
Y3 
Y4 
Y5 

 

Table 3-5. Example of SHAP importance scores and hits per feature. 

Feature X1 X2 X3 Shad. X1 Shad. X2 Shad. X3 

SHAP Importance 

Score 
0.37 0.13 0.17 0.12 

0.16 

(max) 
0.05 

Hit 

(This iteration) 
1 0 1 N/A N/A N/A 

 

This procedure is repeated across several iterations to account for different random 

permutations in the shadow features [82]. After n iterations, the experiment is modelled 

with a binomial distribution with p = 0.5 [74]. BorutaShap then performs a two-sided 

equality test based on this distribution to determine a feature’s importance from the 

number of hits it accumulated [74]. This iterative process enhances the robustness of the 

feature selection method by ensuring that only the features consistently deemed 

important across multiple iterations are retained. 

 

By default, BorutaShap uses a Random Forest as the base regression model from which 

the importance scores are calculated. However, extending the feature space through 

shadow features may incorporate noise and result in overfitting during feature selection 

[83]. Since overfit models exhibit little bias and high variance [26], minor data changes 

may result in different important features [83]. Hence, a regressor exhibiting low variance 

is desired for enhanced robustness in feature selection. 

 

As mentioned in previous paragraphs, the default base regression model in BorutaShap is 

a Random Forest [84]. However, BorutaShap enables the setting of different base 

regression models. This research compared different base regression models such as XGB 
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[85], CatBoost [86] and Extra-Trees [87] to find the model with the lowest variance in the 

selected features. The hyperparameters of each base regression model were not tuned in 

this analysis. Each base regression model was run considering different seed values [22] 

as the importance score is calculated on the test set, which results from a split made at 

random [74]. As seen in Table 3-6 and Table 3-7, for each seed, the number of important 

features identified by each model can differ. Additionally, the number of iterations 

required to achieve convergence varies with different seeds. 

 

To enhance the robustness of feature selection, a stopping criterion was established in the 

BorutaShap analysis. This criterion required that the set of accepted features must not be 

zero. Additionally, it required that the number of accepted features must either remain 

the same in the last two runs or that the number of tentative features be zero, whichever 

occurred first. 

 

BorutaShap was run multiple times for each base regression model and seed combination. 

Each run had a different number of iterations, starting with “200” iterations for the first 

run. For successive runs, the number of iterations was doubled if the stopping criterion 

was not met. This iterative approach aimed to determine the number of iterations needed 

to stabilize the number of accepted features. Therefore, the number of iterations reported 

in Table 3-6 and Table 3-7 corresponds to the final run, where the number of accepted 

features remained constant over the last two runs. 

 

To evaluate the variance of different base regression models, this research introduced the 

average Common Important Feature Ratio (CIFR), as shown in Equation 3-11. The CIFR 

of each base model assesses variance by measuring the proportion of accepted features 

preserved over different random seeds. The CIFR ranges between 0 (no features 

preserved) and 1 (all features preserved), with higher values indicating reduced variance. 

Table 3-6 and Table 3-7 presents the results of the BorutaShap sensitivity analysis on the 

stiffness and fatigue dataset. This research selected Extra Trees [87] as BorutaShap base 

regression model, as it indicated lower variance through a higher CIFR and better 

accuracy through a higher mean R² on the test set. Similarly, this research selected 

Random Forest [84] as the base regression model for the BorutaShap analysis on the 

fatigue dataset. 

 

1 ,

# Common Important Features1
CIFR  = 

# Important features

n
i

i

j i jn =

  Equation 3-11 

where: 
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CIFRi = Common Important Feature Ratio of base model i. 

n: Number of seeds per base model. 

# Common Important Features: Number of common important features over all seeds 

for base model i. 

# Important features: Number of important features of base model i considering seed j 

 

Table 3-6. Results of the BorutaShap sensitivity analysis for the stiffness dataset. 

Base Model Seed Iterations 

R² 
Test 
set 

Important 
Features 

Common 
Important Features 

Mean 
R² 

Test 
set 

CIFR 

Random  
Forest [84]  

0 1600 0.77 12 

9 0.80 0.70 
7 6400 0.80 15 

31 1600 0.84 12 

42 1600 0.77 13 

XGB  
Regressor [85] 

0 200 0.77 7 

6 0.77 0.76 
7 400 0.68 8 

31 400 0.86 8 

42 400 0.76 9 

CatBoost  
Regressor [86] 

0 1600 0.77 18 

15 0.83 0.88 
7 400 0.88 17 

31 400 0.84 16 

42 1600 0.83 17 

Extra-Trees  
Regressor [87] 

0 1600 0.82 21 

21 0.85 0.98 
7 1600 0.86 21 

31 1600 0.88 21 

42 400 0.83 23 

 

Table 3-7. Results of the BorutaShap sensitivity analysis for the fatigue dataset. 

Base Model Seed Iterations 

R² 
Test 
set 

Important 
Features 

Common 
Important Features 

Mean 
R² 

Test 
set 

CIFR 

Random  
Forest [84]  

0 1600 0.77 11 

10 0.68 0.89 
7 6400 0.56 12 

31 1600 0.70 11 

42 1600 0.68 11 

XGB  
Regressor [85] 

0 200 0.59 5 

4 0.60 0.73 
7 400 0.45 8 

31 400 0.72 5 

42 400 0.63 5 

CatBoost  0 1600 0.72 8 7 0.62 0.79 
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Base Model Seed Iterations 

R² 
Test 
set 

Important 
Features 

Common 
Important Features 

Mean 
R² 

Test 
set 

CIFR 

Regressor [86] 7 400 0.47 11 

31 400 0.73 9 

42 1600 0.58 8 

Extra-Trees  
Regressor [87] 

0 1600 0.75 11 

8 0.66 0.72 
7 1600 0.49 13 

31 1600 0.70 10 

42 400 0.73 11 

 

The introduced data and physics driven feature selection method enabled reducing the 

number of input features by filtering out unimportant features for model performance or 

physical model computation. However, this method does not account for the correlation 

between the selected features. By analysing the correlation between features, the number 

of input features can be further reduced. The following section introduces the correlation 

analysis method leveraged by this research. 

 

3.3.2. Correlation Analysis   

 

This research used Spearman's correlation rank (see Equation 3-12) to assess correlation 

between the remaining features after the physics and data-driven feature selection. This 

analysis aims to further reduce the feature space and preserve the assumptions required 

for infusing a physical model (see Section 3.1).  

 

2

2

6
1

( 1)

id

n n



= −

 −


 

 

where: 

 

 : Spearman correlation coefficient. 

i i id x y=   

ix , iy : Observation i of variables x and y 

n : Total number of observations 

Equation 3-12 

 

The Spearman correlation rank measures the strength of a monotonic relationship 

between two variables. A positive Spearman correlation coefficient indicates that variable 
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y tends to increase as variable x increases [88]. A negative value indicates that variable y 

tends to decrease when variable x increases [88]. A correlation coefficient of zero indicates 

no tendency for y when x changes [88]. The Spearman correlation rank was selected 

because the NL-LAB datasets include continuous and categorical features, and 

relationships between variables are non-linear [39], [40]. It is noted that no feature 

required for computing the output of a physical model was removed after correlation 

analysis. 

 

The correlation analysis is the last step in the feature selection process. The outcome of 

this process is a reduced set of input features to be used in PIAI model training. The 

following section presents the considerations for PIAI model training and optimization 

under the framework developed. 

 

3.4. Model Training and Optimization 

 

PIAI Model training in this research serves a twofold purpose. The PIAI model must 

generate appropriate mappings between the selected features and targets and 

approximate the behaviour dictated by the chosen physical model. Deng et al. [15] 

suggests that neural networks can be leveraged to infuse physics in prediction models for 

tabular data in pavement engineering. Hence, the PIAI framework developed in this 

research uses neural networks as the base model architecture.  

 

Since neural networks fit targets using a weighted sum of input variables, they require 

prior scaling of features and targets [70]. Scaling brings robustness and stability to model 

training by accounting for differences between measurement units of features [70]. 

Scaling is possible through normalization and standardization [70]. This research used 

normalization as the scaling method. Normalization rescales the data so that all values 

range between 0 and 1 [70] as shown in Equation 3-13. Normalization was preferred over 

standardization as it preserves the binary features obtained through one-hot encoding. 

 

min

max min

i
s

x x
x

x x

−
=

−
 Equation 3-13 

where: 

 

xs: Scaled feature value. 

xi: Original feature value. 

xmax: Maximum feature value. 

 



 

40 
 

xmin: Minimum feature value. 

 

Figure 3-8 illustrates the developed PIAI framework, which contains a data component 

and a physics component. The data component aims to generate predictions (ŷD) that 

closely match the targets (yD), as with conventional AI applications. The physics 

component strives to enhance the predictions by infusing physical knowledge from 

pavement engineering. This physical knowledge is infused within the PIAI framework 

through a physical model, from which the physics targets (yP) are calculated. 

Subsequently, the physics component of the PIAI framework model is trained to generate 

predictions (ŷP) closely matching the physics targets. 

 

 

Figure 3-8. Developed PIAI framework.  

 

The PIAI framework utilizes two feature sets: the Input Features (XD) and the Physical 

Model Features (XP). XD and XP have identical dimensions to ensure compatibility during 

PIAI model training [15]. Although XP is derived from XD, it is specifically tailored to 

enable training in the physics component. XP preserves only the features needed to 

compute the physical model output and averages the remaining features [15]. While XD 

leverages an extensive set of relevant features to enhance PIAI model accuracy, XP 

facilitates the infusion of physical knowledge for enhanced PIAI model consistency and 

interpretability. Figure 3-9 illustrates an example of XP generation using a toy dataset of 5 
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features. The example assumes that X1 and X2 are required to compute the output of a 

selected physical model. Consequently, X1 and X2 are preserved in XP in the same order 

they had in XD, while X3, X4, and X5 are averaged. 

 

  

Figure 3-9. Example of Physical model features definition 

 

In the framework illustration shown in Figure 3-8, a model loss is introduced. This loss is 

described by Equation 3-14. Three elements compose the model loss: a data loss (LD), a 

physics loss (LP), and a physics tuning hyperparameter (λ). The physics tuning 

hyperparameter controls how much importance is given in the training process to the 

physics loss. A significantly low value of λ will result in a model with low physics 

compliance in its predictions, while a high value of λ will result in physics-compliant 

predictions that diverge from the observations (yD). Furthermore, the researcher selected 

the mean square error (MSE) loss to calculate the data and physics losses. By selecting 

MSE, the implicit assumption is that the conditional distribution of the targets for a given 

input value is Gaussian  [89]. Hence, the MSE loss is minimized when the model predicts 

the mean of the conditional target distribution  regression problems [89]. 

 

 = D PL L L+   Equation 3-14 

where: 

 

LD: Data loss. 

LP: Physics loss. 

λ: Physics tuning hyperparameter. 

 

 

( )
2

1

1
ˆMSE = 

N
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N =

 −  

Equation 3-15 
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where: 

 

iy : Target. 

ˆ
iy : Prediction. 

N : Number of instances. 

 

Training the PIAI model consists in minimizing the model loss (see Equation 3-14). This 

research used the PyTorch [90] library for model training. Figure 3-10 shows a flow 

diagram of the training loop devised in this research. Defining a model class in PyTorch 

[90] involves determining the layer type, activation function, and neural network 

parameter initialization method. This research used Xavier’s Uniform [91] initialization, 

which has been successfully leveraged in other PIAI applications [35]. Then, a model 

instance was created by specifying hyperparameters as the number of hidden layers, the 

number of nodes per hidden layer, and the dropout rate. After creating a model instance, 

an instance of the Adam [92] optimizer was also initialized. The optimizer finds a 

minimum loss after iterations through multiple epochs. An epoch refers to a single pass 

through the entire training dataset [26]. Each epoch involved making predictions, 

calculating the data and physics loss, computing loss gradients, performing 

backpropagation [26], and updating model parameters. Within the training loop, the 

researcher implemented an early stopping strategy to prevent overfitting. This strategy 

consisted in monitoring the decrease in the validation loss with every epoch. Hence, 

training was halted when the validation loss had not decreased for a given number of 

epochs [89]. Then, the model parameters yielding the lowest validation loss were kept as 

the optimal model parameters [89]. 
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Figure 3-10. Training loop flow diagram. 

 

The training process previously described does not allow for finding the optimal set of 

model parameters for different train-test-validation splits.  To account for different train-

validation-test splits during training, this research performed 10-fold cross-validation as 

shown in Figure 3-11. Cross-validation enables model training using a larger proportion of 

the data, aiming to reduce variance [26]. This method partitions the training and 

validation sets into k (k = 10) disjoint subsets or folds. For each fold, the model is trained 

with k-1 subsets and validated with the remaining subset [26]. The cross-validation error 
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is the average validation error over all folds [20]. The researcher selected k=10 as it has 

been empirically demonstrated to yield test error estimates without excessively high 

variance or high bias [20]. 

 

 

Figure 3-11. 10-fold cross validation. 

 

Since model hyperparameters are fixed while executing 10-fold cross-validation, it is not 

possible to determine an optimal model architecture. This research leveraged 

hyperparameter optimization [93] to obtain the optimal model architecture. With 

hyperparameter optimization, it is possible to identify the set of hyperparameters that 

minimize the cross-validation loss [93]. The evaluated hyperparameters include the 

number of hidden layers and neurons per layer, the dropout rate, the learning rate [26] 

and the physics tuning hyperparameter (λ). Methods for hyperparameter optimization 

include Manual Search, Grid Search, Random Search, Gradient-based optimization, and 

Bayesian Optimization [93]. This research selected Bayesian Optimization as the 

hyperparameter tuning method. Bayesian Optimization leverages information from 

previous runs to hasten convergence to a local minimum, improving algorithm 

performance with respect to other hyperparameter tuning methods [93]. This research 

Training Val. Test 
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used the Optuna [94] package to perform Bayesian Optimization, for which Appendix E 

provides further details.  

 

Table 3-8 presents the predefined range of variation for the model hyperparameters used 

in Bayesian Optimization. The ranges for the number of hidden layers, neurons per layer, 

dropout rate, and learning rate were selected based on common practice observed in the 

reviewed PIAI applications (see Table 2-3). The limits for the physics tuning 

hyperparameter (λ) vary by model and are based on the results from preliminary trials 

and subsequent graphical assessments of performance related to both data and physical 

constraints. The results from these trial runs are provided in Appendix F. 

 

Table 3-8. Range of variation of model hyperparameters in Bayesian Optimization. 

Hyperparameter Model Lower Limit Upper Limit Progression 

No. of hidden 

layers 
Both 2 4 In steps of 1 

No. of neurons 

per layer 
Both 4 128 

By a factor of 2 

(e.g., 4, 8, 16, …) 

Dropout rate Both 0 0.5 In steps of 0.1 

Learning rate Both 1x10-7 1x10-1 Logarithmic 

Physics tuning 

hyperparameter 

(λ) 

Stiffness 1x10-12 1x10-6 Logarithmic 

Fatigue 1x10-7 1x10-1 Logarithmic 

 

This section concludes the chapter concerning the development of PIAI models for the 

NL-LAB stiffness and fatigue datasets. Through 10-fold cross-validation and Bayesian 

Optimization, the optimal set of model hyperparameters was found for each model. This 

optimal set included the value of the physics tuning hyperparameter that resulted in the 

lowest cross-validation loss. The following chapter presents and discusses the prediction 

results of the final PIAI fatigue and stiffness models. 
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4. Results and Discussion 

 

This chapter presents the obtained PIAI models for stiffness and fatigue predictions based 

on the NL-LAB datasets. The results are presented in two sections corresponding with the 

last two stages of PIAI model development (see Figure 3-1). Section 4.1 introduces the 

results from the physics and data-driven feature selection analysis and the final features 

used for PIAI model training. Then, Section 4.2 introduces the results from model training 

and optimization for physics infusion. The multi-criteria assessment of these results 

provides an answer to the third research sub-question. 

 

4.1. Feature Selection 

 

The feature selection method introduced in this research comprises both physics and data-

driven components. As delineated in Section 3.3, the physics component of feature 

selection automatically identified as important those features necessary for the 

computation of the physical model’s output.  Conversely, the important features from a 

data-driven perspective were those found to have a statistically significant impact in the 

model predictions. The data-driven component employed BorutaShap [74] as the feature 

importance analysis tool. The results of the BorutaShap feature importance analysis are 

presented through the normalized importance score (or Z-score) [74], obtained with 

SHAP values (see Appendix D). For each feature, a boxplot illustrates the median 

importance score, as well as the 25th percentile, the 75th percentile, and any outliers 

identified. 

 

The importance score of each feature was compared with the maximum importance score 

of all shadow features to obtain the number of hits [74]. As mentioned in Section 3.3.1, an 

important feature is likely to have a higher number of hits than an unimportant feature. 

BorutaShap uses statistical testing with a binomial distribution to determine whether a 

feature is ‘important’, ‘unimportant’ or ‘tentative’ [74]. Important features have a 

statistically significant high number of hits [74]. Unimportant features scored 

significantly low hits and should not be included in predictive models [74].  Features 

labelled as ‘tentative’ are those for which a two-sided equality test yielded unconclusive 

results [74]. In BorutaShap boxplots, features are coloured in green, red, and blue. 

Features in green indicate features deemed as ‘important’, features in red were deemed as 

‘unimportant’, and features in blue represent the importance score of the shadow features.  

 

Figure 4-1 shows the importance scores obtained for the stiffness dataset. BorutaShap 

deemed 17 features as important and 5 features as unimportant. It is noted that two 
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accepted features (“Volume_Target_Sand” and “Segment compactor”) reported similar 

median importance scores as four rejected features (“Volume_Target_Gravel”, “PMB”, 

“Shear box”, and “Field roller”). However, it is believed that the higher variability on the 

importance scores of the two accepted features yielded a higher number of hits that 

resulted in the acceptance verdict. Moreover, the important features from the physics 

component are also important features from a data-driven perspective (“Pa”, 

“Volume_Agg_Fraction”, “Volume_Target_bitumen”, “bit2_Gstar”).  

 

The accepted features of the stiffness dataset were subjected to a correlation analysis using 

Spearman’s correlation rank. As shown in Figure 4-2, 7 features reported high (|ρ| > 0.8) 

correlation ranks. The features “Pa”, “Volume_Agg_Fraction”, and “bit2_Gstar” could not 

be removed due to their relevance to the physical model. Hence, the features “VA” and 

“densities” were removed as they were highly (|ρ| > 0.8) correlated with the features 

“Volume_Agg_Fraction”. Finally, the feature “bit2_TRenK” was removed as it showed 

high (|ρ| = 0.94) correlation with the feature “bit2_pen”. Appendix G presents further 

details on the results of the correlation analysis for the stiffness dataset. 

 

 

Figure 4-1. Data-driven feature importance results for the stiffness model. 
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Figure 4-2. Correlation analysis for the stiffness model. 

 

Figure 4-3 depicts the importance score for the fatigue dataset. BorutaShap deemed 12 

features as important and 11 features as unimportant. Similar to the case of the stiffness 

model, two accepted features (“bit2_delta” and “percentage_PR”) have similar median 

importance scores as two rejected features (“Planetory mixer” and “densities”). It is noted 

that two necessary features for computing the physical model output (“GP and “VP”) were 

included in the set of accepted features. Although the feature “stiffness” was deemed as 

unimportant by BorutaShap, it was preserved given its importance for the physics 

component.  

 

The accepted features of the fatigue dataset were subjected to a correlation analysis using 

Spearman’s correlation rank. As shown in Figure 4-4, 2 features reported perfect 

monotonic increasing relationship (|ρ| = 1.00). Since the feature “VP” is relevant for 

computing the physical model output, the feature “VA” was removed from the dataset.  

Appendix G presents further details on the results of the correlation analysis for the 

fatigue dataset. 
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Figure 4-3. Data-driven feature importance results for the fatigue model. 

 

 

Figure 4-4. Correlation analysis for the fatigue model. 
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Table 4-1 outlines the final features incorporated into the PIAI stiffness and fatigue 

models. The inclusion of these features follows the results of the physics and data-driven 

components of feature selection.  The PIAI stiffness model includes 14 features, of which 

10 were identified as important by the data-driven component, and 4 were recognized as 

important by both the physics-based and data-driven components. Similarly, the PIAI 

fatigue model comprises 13 features, with 10 of them selected based on their importance 

for the data-driven component. Notably, 1 feature was deemed important exclusively by 

the physics component, while 2 features were considered important by both components. 

 

Table 4-1. Relation of final features per model. 

Model Selected Features 

Stiffness 

Data component: “bit2_pen”, “bit2_delta”, “target_density”, 

“percentage_PR”, “Volume_Target_filler”, “Volume_Target_Sand”, “year”, 

“Forced action mixer”, “Mini roller”, “Segment compactor”. 

Data and physics component: “bit2_Gstar”, “Volume_Target_bitumen”, 

“Volume_Agg_Fraction”, “Pa”. 

Fatigue 

 Data component: “bit2_TRenK”, “bit2_Gstar”, “bit2_delta”, 

“target_density”, “percentage_PR”, “Volume_Target_filler”, 

“Volume_Target_bitumen”, “year”, “PMB”. 

Physics component: “stiffness”. 

Data and physics component: “GP”, “VP”. 

 

The final set of features was employed for the training and optimization of the PIAI 

stiffness and fatigue models. As outlined in Section 3.4, the optimal PIAI model 

architectures were determined through Bayesian Optimization. These optimized 

architectures were subsequently used to train the final PIAI stiffness and fatigue models. 

The following section presents the final PIAI stiffness and fatigue models along with a 

multi-criteria performance evaluation. 

 

4.2. PIAI models for fatigue and stiffness predictions 

 

This section presents the results obtained from applying the PIAI framework developed 

to generate prediction models for the NL-LAB fatigue and stiffness datasets. This research 

aimed to unveil the effects of physics infusion on PIAI model performance. The selected 

performance criteria were accuracy, interpretability, and consistency. The definitions and 

metrics used for each criterion are explained below. 

 

Accuracy refers to the extent to which the PIAI model predictions (ŷD) align with the 

dataset targets (yD) [20]. This research selected three accuracy metrics: the R² value, Root 
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Mean Square Error (RMSE), and Mean Average Percentage Error (MAPE). The R² value 

(see Equation 4-1) quantifies the proportion of the target variance explained by the model 

features [95]. It ranges between -∞ and +1, with the upper limit indicating a perfect fit 

between predictions and targets [95]. Negative R² values suggest the model performs 

worse than a baseline model represented by a horizontal line at the target mean (ȳ) [95]. 

 

The RMSE (see Equation 4-2) indicates the average distance between model predictions 

and targets [95]. An RMSE value of 0 indicates a perfect fit, while increasingly higher 

values indicate an increasing discrepancy between predictions and targets [95]. The 

MAPE (see Equation 4-3) also measures the distance between predictions and targets, but 

it does so in relative terms [95]. Like the RMSE, a MAPE of 0 indicates a perfect fit while 

higher values indicate a worse model fit [95]. Given that R² is generally more informative 

for evaluating the quality of a regression model [95], this research adopts the 

interpretation scale shown in  

Table 4-2 [39]. It is also noted that the accuracy metrics were calculated by comparing 

PIAI model predictions (ŷD) with the targets (yD) in the data-driven component (see Figure 

3-8). 
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where: 

 

ŷi: Prediction of instance i. 

yi: Target of instance i. 

ȳ: Target mean over all instances 

n: Number of instances 
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ŷi, yi, and n were explained in Equation 4-1.  

 

Table 4-2. Proposed interpretation scale for model accuracy and interpretability ( [39]). 

Accuracy interpretation Lower R² value Upper R² value 

Poor -∞ 0.65 

Moderate 0.65 0.75 

Good 0.75 0.85 

High 0.85 0.95 

Very High 0.95 1.00 

 

While accuracy metrics provide insights on the predictive power of a developed AI model, 

an additional analysis is required to assess interpretability. An interpretable AI model 

should follow a set of physical constraints to improve the understanding on the 

predictions generated [21]. The physical model infused in the PIAI models can be 

understood as a constraint on the effect of a subset of features in model predictions. 

Hence, a user familiar with the physical model infused can make better informed decisions 

on whether to trust the PIAI model predictions [21]. This research assessed 

interpretability as the extent to which model predictions (ŷP) in the physics component 

satisfy the soft constraint imposed by the physical model (yP). It was opted to assess 

interpretability by comparing yP and ŷP graphically and without incorporating any metrics. 

Although the abovementioned accuracy metrics could also quantify interpretability, they 

were purposefully omitted to maintain clarity on the conceptual difference between 

accuracy and interpretability. 

 

The accuracy criterion was extended to account for different model initializations with the 

consistency assessment. Since model parameters are initialized randomly using Xavier’s 

Uniform distribution [91], the final parameters are expected to vary with different random 

seeds [22] after training.  This research assessed consistency as the extent to which the 

average prediction over m (m = 10) different random seeds approximate the infused 

physical model. The effect of physics infusion on the variability among different 

predictions in the physics component was also assessed using the average coefficient of 

variation (see Equation 4-4). A lower average coefficient of variation is indicative of higher 

consistency on the predictions in the physics component [15]. Hence, the consistency 

assessment was performed with and without considering physics infusion in the model. 
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where: 

CVavg: Average coefficient of variation. 

σi: Standard deviation of the prediction vector of seed i. 

μi: Mean of the prediction vectors corresponding to seed i. 

m: Number of random seeds evaluated. 

 

 

This section provided detailed definitions, metrics and scales for three selected 

performance criteria: accuracy, interpretability, and consistency. The following 

subsections present the results from applying the PIAI framework to generate prediction 

models for the NL-LAB stiffness and fatigue datasets. The upcoming subsection bases on 

the preset criteria to assess the performance of the PIAI stiffness model.  

 

4.2.1. PIAI model for stiffness prediction infused with micromechanics 

 

Table 4-3 shows the architecture of the PIAI model for stiffness prediction infused with 

micromechanics. This architecture was obtained via Bayesian optimization by minimizing 

the cross-validation loss. As mentioned before (see Equation 3-14), the model loss is the 

sum of the data loss, and the physics loss weighted by the physics tuning hyperparameter 

(λ). The optimal λ value for the PIAI stiffness model was determined to be 3.80x10-10. 

However, the hyperparameter importance analysis performed in Optuna [94] deemed λ 

to be the least influent hyperparameter on the cross-validation loss, as shown in Figure 

4-5. Therefore, it was decided to further analyse the effects of λ in prediction accuracy. 

 

Table 4-3. Model architecture – PIAI stiffness model. 

Hidden 

Layers 

Nodes per 

Layer 

Activation 

Function 

Dropout 

rate 

Physics tuning 

parameter (λ) 

Learning 

rate 

3 32 

ReLU 

(linear activation in 

outer layer) 

0 3.80x10-10 1.93x10-5 
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Figure 4-5. Hyperparameter Importances – PIAI stiffness model. 

 

To further explore the low importance score of λ, this research conducted a sensitivity 

analysis. This analysis aimed to further understand the influence of λ in the model loss by 

training multiple models with a fixed optimal architecture and different λ values. For each 

model, the data and physics components of the model loss were calculated for the training, 

validation, and test sets. Although the losses of the data and physics component were 

calculated using the MSE, the RMSE was preferred for this analysis due to its consistency 

with the model target units. Figure 4-6 shows the variation of the RMSE with respect to λ 

for the data and physics components of the PIAI stiffness model. This figure unveiled the 

existence of a physics infusion region between λ = 1x10-11 and λ = 1x10-8, encompassing 

the optimal λ value. In this region, the losses of the data and physics component are 

balanced. When λ is lower than 1x10-11 a low model loss is achieved in the data component 

at the expense of a physics agnostic model. Similarly, when λ is higher than 1x10-8, the 

PIAI model adheres to the underlying physical model but fails to predict the model targets. 

Notably, within the physics infusion region, small changes in λ have a small effect on the 

model loss. Hence, the low λ influence is likely related to its low importance score, which 

may be attributed to an early narrowing of the search space in Bayesian Optimization. 
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Figure 4-6.  λ vs RMSE sensitivity analysis – PIAI stiffness model. 

 

Table 4-4 and Figure 4-7 present the accuracy metrics and visualize the data fit of the PIAI 

stiffness model across different datasets. The model demonstrates a very high 

performance on the training set with an R² of 0.96 and a low RMSE of 418.18 MPa, 

effectively capturing the variance present in the target. These findings are further 

supported by the results on the validation set. The model maintains a high performance 

with an R² of 0.94 and an RMSE of 432.60 MPa, showcasing the model ability to fit unseen 

data during the validation phase. The model continues to exhibit good performance on the 

test set. In this set, the model reported an R² of 0.82 and a RMSE of 672.30 MPa. While 

there is some increase in the error metrics, the model captures more than 80% of the 

target variance with completely unseen data. Moreover, the MAPE exhibits a consistent 

pattern across the datasets, ranging from 3.21% to 5.17%. These results reflect the model 

stable predictive power, highlighting its reliability for stiffness prediction in asphalt mixes. 

 

Table 4-4. Accuracy metrics of the PIAI stiffness model. 

Set R² RMSE [MPa] MSE MAPE [%] 

Training 0.96 418.18 174,873.16 3.21 

Validation 0.94 432.60 187,144.06 3.78 

Test 0.82 672.30 451,987.75 5.17 

 

Interpretability of the PIAI stiffness model was assessed by the extent to which the model 

adhered to the physical constraint imposed by Zhang et al.’s [58] model. Figure 4-8 

compares the predictions of the physics component (ŷP) with the targets given by the 

physical model (yP). A visual assessment of this figure showcases the ability of the PIAI 

stiffness model to adhere to the infused physical model. The physical model is 
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approximated in an impressive way for the training and test set, and to a slightly lower but 

still good extent for the validation set. These results validate the developed PIAI 

framework as a promising approach to infuse physics in AI predictive models for asphalt 

mix stiffness.    

 

  

Figure 4-7. Predictions vs. Targets – PIAI 

stiffness model (Data component). 
Figure 4-8. Predictions vs. Targets – PIAI 

stiffness model (Physics component). 

 

Figure 4-9 and Figure 4-10 illustrate the results of the consistency assessment for the PIAI 

stiffness model. Figure 4-9 shows the mean and 95% confidence band of the predictions 

in the physics component (ŷP) when physics infusion is not considered in the PIAI model. 

As shown, the mean prediction in the physics component situates between 7,500 MPa and 

12,500 MPa, without approximating the infused physical model. Moreover, the average 

coefficient of variation between predictions in the physics component was 6.49%. Figure 

4-10 shows the results obtained when infusing physics in the PIAI model. The mean 

prediction closely approximates the infused physics for values lower than 25,000 MPa. 

Although model predictions over 25,000 MPa slightly underestimate the physical model 

targets, the physics approximation is also remarkable in this region. Moreover, the 

average coefficient of variation was reduced by an impressive 56% when physics was 

infused in the prediction model. 
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Figure 4-9. Consistency assessment – PIAI 

stiffness model (without physics). 

Figure 4-10. Consistency assessment – PIAI 

stiffness model (with physics). 

 

The results obtained for the PIAI stiffness prediction model were satisfactory and 

promising regarding accuracy, interpretability and consistency. These results validate the 

effectiveness of the PIAI framework to infuse Zhang et al.’s [58] model in AI predictive 

models for asphalt mix stiffness. The following subsection introduces the results obtained 

after applying this framework to generate a PIAI model for asphalt fatigue prediction 

infused with energy dissipation theory. 

 

4.2.2. PIAI model for fatigue prediction infused with energy dissipation 

theory 

 

Table 4-5 shows the hyperparameters of the PIAI fatigue prediction model infused with 

energy dissipation theory. The hyperparameters correspond to the model architecture that 

achieved the lowest cross-validation loss in Bayesian Optimization. The optimal λ value 

for the PIAI fatigue model is 8.50x10-6. Like in the PIAI stiffness model, λ was found by 

Optuna [94] to be the least influent hyperparameter on the cross-validation loss, as shown 

in Figure 4-11. 

 

Table 4-5. Model architecture – PIAI fatigue model. 

Hidden 

Layers 

Nodes per 

Layer 

Activation 

Function 

Dropout 

rate 

Physics tuning 

parameter (λ) 

Learning 

rate 

3 128 

ReLU 

(linear activation in 

outer layer) 

0 8.50x10-6 1.21x10-5 
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Figure 4-11. Hyperparameter Importances – PIAI fatigue model. 

 

Given the low importance score of λ, a sensitivity analysis was conducted to further 

investigate its impact on the PIAI fatigue model's loss. The sensitivity analysis followed 

the same procedure described for the PIAI stiffness model. The results of the sensitivity 

analysis for the fatigue model are shown in Figure 4-12. The variation in the RMSE with 

respect to λ for the data and physics components unveiled a physics infusion region for 

the PIAI fatigue model. This region lies between λ = 1x10-6 and λ = 1x10-3 and comprises 

the optimal λ value. Within this range, both the data and physics component losses remain 

low. When λ is lower than 1x10-6, the data component loss is small, but the model does not 

approximate the infused physics. Similarly, when λ is higher than 1x10-3, the PIAI model 

adheres to the underlying physical model sacrificing prediction accuracy. Within the 

physics infusion region, small changes in λ led to minimal changes in the model data and 

physical losses. Hence, as concluded for the PIAI stiffness model, the low importance 

score of λ is likely related to an early narrowing of the search space in Bayesian 

Optimization. 

 

 

Figure 4-12.  λ vs RMSE sensitivity analysis – PIAI fatigue model. 
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Table 4-6 and Figure 4-13 present a detailed overview of the accuracy metrics and visualize 

the data fit of the PIAI fatigue model across different datasets. The model demonstrated 

good performance on the training set, with an R² of 0.81 and an RMSE of 10.06 με, 

capturing a significant amount of the variance present in the target. These findings are 

further supported by the model performance on the validation set. On this set, the model 

exhibited an enhanced prediction accuracy with a reported R² of 0.82 and an RMSE of 

9.53 με. However, when tested in unseen data, the prediction accuracy of the PIAI fatigue 

model decreases with an R² of 0.44 and an RMSE of 15.53 με. It is believed that this 

accuracy decrease may be related to the limited number of data instances and to the model 

architecture. The employed architecture is a neural network, which is simpler and more 

prone to overfitting compared to other alternatives like ensemble methods [96].  

 

Table 4-6. Accuracy metrics of the PIAI fatigue model. 

Set R² RMSE [με] MSE MAPE [%] 

Training 0.81 10.06 101.22 6.26 

Validation 0.82 9.53 90.82 7.53 

Test 0.44 15.53 241.33 10.56 

 

The interpretability of the PIAI fatigue model was assessed by the extent to which the 

model adhered to the physical constraint imposed by Shen & Carpenter’s [66] model. 

Figure 4-14 compares the predictions of the physics component (ŷP) with the targets given 

by the physical model (yP). A visual assessment of this figure showcases the ability of the 

PIAI fatigue model to adhere to the infused physical model. Despite the differences in 

performance reported for the data component, the physical model is approximated to a 

very good extent in all subsets. These findings reinforce the effectiveness of the developed 

PIAI framework in infusing physics in prediction models. The framework offers the 

potential to incorporate interpretability prediction models, even when an inferior 

accuracy is reported. 
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Figure 4-13. Predictions vs. Targets – PIAI 

fatigue model (Data component). 
Figure 4-14. Predictions vs. Targets – PIAI 

fatigue model (Physics component). 

 

Figure 4-15 and Figure 4-16 illustrate the results of the consistency assessment for the 

PIAI fatigue model. Figure 4-15 shows the mean and 95% confidence band of the 

predictions in the physics component (ŷP) when physics infusion is not considered in the 

PIAI model. The figure shows that the mean of the predictions in the physics component 

does not approximate the physical model in any region. Additionally, the average 

coefficient of variation between predictions in the physics component was 29.94%, with 

higher predictions exhibiting wider confidence bands. Figure 4-16 shows the results 

obtained when infusing physics in the PIAI model. The mean prediction closely 

approximates the infused physics for all the considered values. Moreover, the average 

coefficient of variation was reduced by a remarkable 88%, demonstrating the substantial 

impact of physics infusion in model consistency. 

 

  

Figure 4-15. Consistency assessment – PIAI 

fatigue model (without physics). 

Figure 4-16. Consistency assessment – PIAI 

fatigue model (with physics). 
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The results obtained for the PIAI fatigue prediction model were satisfactory and promising 

regarding interpretability and consistency. These results validate the effectiveness and the 

PIAI framework to infuse Shen & Carpenter’s [66] model in AI asphalt fatigue predictions. 

However, future research is needed to improve the accuracy of the PIAI fatigue model 

[66].  

 

This Chapter concludes with the presentation and discussion of the prediction results of 

PIAI models developed for the NL-LAB fatigue and stiffness datasets. Based on the 

outcomes obtained, and the insights gained during framework development, the following 

Chapter presents the conclusions, answers to research questions, and recommendations 

for future research. 
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5. Conclusions and future 

recommendations 

 

This Chapter provides the conclusions of this research and recommendations for future 

research work in three distinct sections. Section 5.1 provides general conclusions and 

introduce the main findings and societal relevance of this research. Then, Section 5.2 

presents the answers to the research questions posed in Section 1.3. Finally, Section 5.3 

provides future recommendations regarding data collection, testing, and PIAI model 

development. 

 

5.1. General Conclusions 

 

This research successfully developed a Physics-Informed Artificial Intelligence (PIAI) 

framework to infuse physical models in AI predictive models for pavement engineering. 

The PIAI framework offers a systematic approach to enhancing AI prediction models with 

physics for pavement performance predictions. Two prediction models were developed for 

the NL-LAB [6] fatigue and stiffness datasets. The PIAI fatigue model infused energy 

dissipation theory through Shen & Carpenter's [66] model. Similarly, the PIAI stiffness 

model infused micromechanics and homogenization theory through Zhang et al.'s [58] 

model. 

 

An important finding of this research is that physical models seldom encompass all 

features and targets of the NL-LAB datasets. This challenge was addressed in the proposed 

PIAI framework with the implementation of several alignment controls. This research 

introduced, based on the dataset characteristics, a set of compatibility requirements for a 

candidate physical model to infuse (see Section 3.1). Additionally, the physics component 

introduced during feature selection (see Section 3.3) ensured preserving the necessary 

features for computing the physical model regardless of the data-driven component 

output. Furthermore, to ensure adequate physics infusion during PIAI model training, the 

features required to evaluate the physical models were isolated while preserving model 

dimensionality (see Section 3.4). 

 

The developed PIAI framework effectively integrates physics into tabular data without 

spatial or temporal correlations, infusing physical models based on linear combinations 

of functions of features in the datasets. Hence, the application scope is limited to 

predictive tasks matching these conditions. When data has spatial or temporal 

correlations, it is recommended to modify the model architecture and loss function 
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accordingly. Moreover, when the physical model to infuse is in differential form, it is 

recommended to modify the model loss to match that of a PINN (see Section 2.1.1). 

 

The societal relevance of this research is underscored by its potential to foster greater 

acceptance and trust in AI within the pavement engineering community. By infusing well-

researched physical models, PIAI can help demystify AI's "black box" perception while 

exploiting its ability to infuse new models. Moreover, PIAI can potentially make pavement 

performance assessments more expedite by reducing the need for extensive material 

testing. Remarkably, the PIAI framework can infuse new developments in pavement 

engineering concerning recycled and biobased materials, driving sustainability and 

innovation in the field. 

 

5.2. Answers to Research Questions 

 

This section provides an answer to the research questions posed in Section 1.3. The main 

research question is answered as follows: 

 

Q: Can physics be infused to enhance AI prediction models for stiffness and 

fatigue of asphalt mixtures? 

 

A:  Yes, physics was successfully infused into AI models for stiffness and fatigue prediction 

in asphalt mixtures. The developed PIAI models satisfactorily approximate the infused 

physical model to enhance interpretability and consistency without compromising 

prediction accuracy. An analysis on the effects of physics infusion on prediction accuracy 

revealed the existence of a “physics infusion region”. In this region the model losses of the 

data and physics component are both low, with small changes in the physics tuning 

hyperparameter (λ) resulting in small changes on both losses. For the PIAI stiffness model 

the physics infusion region lies between λ = 1x10-11 and λ = 1x10-8 (see Figure 4-6.  λ vs 

RMSE sensitivity analysis – PIAI stiffness model.) whereas in the PIAI fatigue model this 

region lies between λ = 1x10-6 and λ = 1x10-3 (see Figure 4-12). Notably, the optimal value 

of the physics tuning hyperparameter was found in the physics infusion region in both 

models. 

 

Q: Which method for infusing physics in AI models better suits the 

characteristics of the NL-LAB fatigue and stiffness datasets? 

 

A:  The selected method for physics infusion in prediction models for the NL-LAB fatigue 

and stiffness datasets was a Physics-Informed Loss Function. The main reason behind this 



 

64 
 

selection is twofold. Candidate models to infuse often contain a subset of all features in 

the datasets. Hence, physics infusion aimed to constrain the effect of this subset of 

features without removing the impacts of additional features in the predictions. Previous 

PIAI applications [15] in PIAI pavement engineering successfully constrained the effects 

of a subset of features via a Physics-Informed Loss Function. Furthermore, instances in 

NL-LAB datasets were uncorrelated in time or space, limiting the applicability of a 

Physics-Informed Neural Network or a Physics-Informed Architecture. 

 

Q: What conditions are required to infuse a physical model into a PIAI 

prediction model for the NL-LAB fatigue and stiffness datasets? 

 

A:  This research established criteria to ensure the infusion of a given physical model in 

AI predictive models. A physical model can only be infused in AI predictive models if its 

dependent and independent variables are part of the dataset features or were calculated 

from them. Besides, the dataset target must be included in the physical model, either 

explicitly or through a traceable calculation. Moreover, the testing conditions of the 

dataset features should match those used to obtain the physical model. It is possible to 

infuse physics without meeting this requirement. However, doing so without accounting 

for differences in testing conditions can lead to inconsistencies. Finally, the researcher 

recommends incorporating previously validated developments as physical models to 

minimize the risk of infusing flawed physical behaviour. 

 

Q: How does infusing physics impact model accuracy, interpretability, and 

consistency? 

 

A:  Table 5-1 presents the accuracy metrics obtained by the PIAI models developed in this 

research compared to previous research in the same datasets [40], [39].  It is noted that 

Martini [39] did not develop a predictive model for fatigue prediction. The developed PIAI 

fatigue and stiffness models underperformed compared to previous research efforts. The 

researcher believes that the PIAI model architecture explains the lower accuracy of the 

obtained model. Prior research used gradient-boosting decision trees, which leverage a 

more efficient strategy for overfitting than the train-validation split [86]. In addition, this 

research used 10% of the data for testing, which may have been insufficient to ensure 

similar distributions in the training, validation, and test sets. 

 

Table 5-1. Comparison of model accuracy with previous research. 

Dataset Author R² - Test set 

Fatigue 
Mota Lontra [40] 0.80 

This research 0.44 
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Dataset Author R² - Test set 

Stiffness 

Martini [39] 0.96 

Mota Lontra [40] 0.95 

This research 0.82 

 

This research produced novel insights into the interpretability and consistency of 

predictive models on the NL-LAB fatigue and stiffness datasets. Interpretability was 

assessed as the extent to which model predictions in the physics component satisfy the 

soft constraint imposed by the physical model. The results obtained suggest that the 

developed PIAI stiffness and fatigue models have an enhanced interpretability, as both 

models approximated remarkably the infused physical behaviour (see Figure 4-8 and 

Figure 4-14). Prediction consistency was assessed considering the predictions in the 

physics component of 10 different model initializations. The average prediction over all 

initializations approximated the infused physical behaviour in a remarkable way for both 

PIAI models (see Figure 4-10 and Figure 4-16). Moreover, physics infusion allowed for a 

reduction in the coefficient of variation in the physics component by 56% and 88% for the 

PIAI stiffness and fatigue models respectively. These results highlight the PIAI 

framework's capability to produce predictive models that reliably approximate the infused 

physical model across various initializations. 

 

5.3. Future recommendations 

 

Building upon the findings and insights gained from this research, a series of 

recommendations are proposed to guide future work in both data collection and PIAI 

model development. The recommendations presented in Section 5.3.1 focus on data 

collection and material testing within the NL-LAB project, whereas the recommendations 

presented in Section 5.3.2 address important considerations for advancing PIAI model 

development. 

 

5.3.1. Recommendations on data collection and material testing 

 

During the development of the PIAI framework, it became apparent that the NL-LAB 

datasets exhibit limited variability in feature values, with some features having fewer than 

10 unique values among 371 entries.  To address this issue, it is recommended to expand 

the NL-LAB datasets with additional data instances encompassing a broader range of mix 

compositions, sample ages, and bitumen functional properties. This increased variability 

is expected to uncover more intricate relationships between features and targets, thus 

potentially increasing accuracy in PIAI models. 
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The need for expanding the datasets is also relevant for addressing the differences in the 

test frequencies in the DSR test for bitumen shear modulus and the 4PBB test for asphalt 

mix stiffness. Considering these discrepancies is fundamental when developing future 

prediction models. Hence, the NL-LAB datasets should be expanded with master curve 

coefficients for the shear modulus/mix stiffness and the phase angle of bitumen and mix 

samples. Master curves incorporate the time-temperature superposition principle to 

enable calculations of visco-elastic material properties at different temperatures and 

frequency ranges. By accounting for the differences between test frequencies, stronger 

relationships between bitumen and asphalt mix functional properties could be obtained. 

 

A related challenge lies in the generation of the NL-LAB fatigue dataset targets via 

extrapolation based on a single fatigue line spanning multiple samples. It is recommended 

to modify the target of the NL-LAB fatigue dataset to the number of cycles to failure (Nf50). 

Since Nf50 was measured for each sample, a prediction model can potentially find 

enhanced relationships with this new target variable. Moreover, by incorporating the 

Ratio of Dissipated Energy Change (RDEC) per load cycle, it is feasible to directly calculate 

the plateau value (PV). This direct PV calculation could provide a basis for the infusion of 

new physical models in PIAI fatigue prediction. 

 

5.3.2. Recommendations on advancing PIAI model development  

 

To advance the PIAI framework developed in this research, several improvements are 

recommended. First, the robustness of data-driven component of feature selection 

method should be enhanced. Although this research performed a detailed analysis to 

select an adequate base regression model in BorutaShap [74], this analysis did not include 

hyperparameter tuning. Thus, it is recommended that future research incorporates 

hyperparameter tuning in the feature selection procedure to enhance the alignment 

between the selected features and their effect on model performance. 

 

Beyond feature selection, the exploration of different model architectures can enhance the 

PIAI models accuracy, interpretability and consistency. The current PIAI framework relies 

on a neural network to infuse physics in model predictions. It is recommended to explore 

the feasibility and effectiveness of physics infusion considering other model architectures, 

such as tree-based learners or support vector machines. Infusing physics in different 

model architectures can provide new insights into the effects of physics infusion in AI 

models. 

 

It is also recommended to assess the PIAI models interpretability and consistency on 

different datasets. Expanding these assessments to a broader range of data can provide a 
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further understanding on the adaptability of the framework and the validity of the infused 

physical model in different scenarios. 

 

The final recommendation of this research is related to exploring infusion of multiple 

physical models into a single PIAI framework. Incorporating a wider range of physical 

constraints can potentially enhance the understanding of the predictions generated. This 

incorporation can also provide new insights on the interaction of different research areas 

in pavement engineering, broadening the scope of the PIAI models. 
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Appendix A. Features in the NL-LAB Datasets 

 

This appendix details the features contained the NL-LAB datasets during different stages 

of PIAI model development. Table A 1 shows an overview of the raw features contained in 

the dataset, prior to the data preparation stage. Table A 2 provides and overview of the 

resulting features in the datasets after implementing the data preparation procedures 

discussed in Section 3.2. Finally, Table A 3 shows the final features included in the PIAI 

models for stiffness and fatigue prediction. These features were deemed important after 

applying the physics and data-driven feature selection method outlined in Section 3.3. 

 

Table A 1. Raw features from the NL-LAB datasets. 

Feature Description Category Dataset 

filename Filename Informational All 

phase_tot Abbreviation Work-Phase-Lab-Year Informational All 

work Work Categorical All 

phase Phase Categorical All 

lab Laboratory Informational All 

year Measurement year Mix property All 

monsternames Sample name Informational All 

densities Specimen (bulk) density Mix property All 

VA Air voids Mix property All 

bit2_TRenK Softening point of recovered binder [°C] Bitumen property All 

bit2_pen 
Penetration of recovered binder [0.1 

mm] 
Bitumen property All 

bit2_Gstar 
Complex modulus [G*] of recovered 

binder [Pa] @ 10 rad/s, 20°C 
Bitumen property All 

bit2_delta 
Phase angle [δ] of recovered binder [°] 

@ 10 rad/s, 20°C 
Bitumen property All 

target_density Target density [kg/m³] Mix property All 

percentage_PR 
Percentage of Reclaimed Asphalt in the 

mix 
Mix property All 

percentage_bit Percentage of bitumen in the mix Mix property All 

Volume_Target_C22_4 
Target volume fraction of C22/4 

aggregate 
Mix property All 

Volume_Target_C16 Target volume fraction of C16 aggregate Mix property All 

Volume_Target_C11_2 
Target volume fraction of C11/2 

aggregate 
Mix property All 

Volume_Target_C08 Target volume fraction of C08 aggregate Mix property All 

Volume_Target_C05_6 
Target volume fraction of C05/6 

aggregate 
Mix property All 
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Feature Description Category Dataset 

Volume_Target_C002m

m 

Target volume fraction of C002mm 

aggregate 
Mix property All 

Volume_Target_C00063

mu 

Target volume fraction of C00063mu 

aggregate 
Mix property All 

Volume_Target_filler Target volume fraction of filler Mix property All 

Volume_Target_bitumen Target volume fraction of bitumen Mix property All 

Mass_Target_C22_4 Target mass fraction of C22/4 aggregate Mix property All 

Mass_Target_C16 Target mass fraction of C16 aggregate Mix property All 

Mass_Target_C11_2 Target mass fraction of C11/2 aggregate Mix property All 

Mass_Target_C08 Target mass fraction of C08 aggregate Mix property All 

Mass_Target_C05_6 Target mass fraction of C05/6 aggregate Mix property All 

Mass_Target_C002mm 
Target mass fraction of C002mm 

aggregate 
Mix property All 

Mass_Target_C00063m

u 

Target mass fraction of C00063mu 

aggregate 
Mix property All 

Mass_Target_filler Target mass fraction of filler Mix property All 

Mass_Target_bitumen Target mass fraction of bitumen Mix property All 

mix_setup Type of mixer Categorical All 

comp_setup Type of compactor Categorical All 

stiffness Stiffness [MPa] @ 8 Hz, 20°C Target Stiffness 

EPS6_individual 
Individual calculated strain at 10^6 load 

cycles [με] 
Target Fatigue 

 

Table A 2. Features of the NL-LAB datasets after data preparation. 

Feature Description Type 
Unique 
Values 

Min. 
Value 

Max. 
Value 

Mean 
Standard 
deviation 

Specimen (bulk) 
density [kg/m³] 

Continuous 371 2,307.81 2,453.60 2,391.09 31.71 

Air voids [-] (fa) Continuous 371 0.01 0.07 0.04 0.02 

Softening point of 
recovered binder 

[°C] 
Continuous 22 55.80 82.60 63.32 8.02 

Penetration of 
recovered binder 

[0.1 mm] 
Continuous 16 11.00 53.00 25.54 10.55 

Complex modulus 
[G*] of recovered 
binder [Pa] @ 10 

rad/s, 20°C 

Continuous 23 
194,139.

51 
6,632,724.

39 
1,140,421.

61 
1,650,702.

97 

Phase angle [δ] of 
recovered binder [°] 

@ 10 rad/s, 20°C 
Continuous 23 39.96 66.57 58.35 8.16 
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Feature Description Type 
Unique 
Values 

Min. 
Value 

Max. 
Value 

Mean 
Standard 
deviation 

Target density 
[kg/m³] 

Continuous 6 2,360.00 2,399.00 2,380.85 10.71 

Percentage of 
Reclaimed Asphalt 

in the mix [%] 
Continuous 4 50.00 65.00 58.28 6.19 

Target volume 
fraction of filler [%] 

Continuous 6 5.76 7.65 6.30 0.60 

Target volume 
fraction of bitumen 

[%] (fb) 
Continuous 6 0.10 0.13 0.11 0.01 

Target volume 
fraction of Gravel 

Continuous 6 36.42 42.48 39.54 2.10 

Target volume 
fraction of Sand 

Continuous 6 38.94 46.63 43.24 2.19 

Measurement year Continuous 4 0.00 6.00 0.54 1.23 

Binary indicator of 
Polymer Modified 

Bitumen 

Categorical 
(binary) 

2 0.00 1.00 N/A N/A 

Binary indicator of 
Forced action mixer 

Categorical 
(binary) 

2 0.00 1.00 N/A N/A 

Binary indicator of 
Planetory mixer 

Categorical 
(binary) 

2 0.00 1.00 N/A N/A 

Binary indicator of 
Field roller 
compactor 

Categorical 
(binary) 

2 0.00 1.00 N/A N/A 

Binary indicator of 
Mini roller 
compactor 

Categorical 
(binary) 

2 0.00 1.00 N/A N/A 

Binary indicator of 
Segment compactor 

Categorical 
(binary) 

2 0.00 1.00 N/A N/A 

Binary indicator of 
Shear box 
compactor 

Categorical 
(binary) 

2 0.00 1.00 N/A N/A 

Volume fraction of 
Aggregates [-] (fa) 

Continuous 371 0.82 0.89 0.85 0.01 

Aggregate 
organization factor 

[-] 
Continuous 371 0.29 0.87 0.51 0.16 

Aggregate Gradation 
Parameter [-] 

Continuous 6 0.39 0.50 0.45 0.04 

Volumetric 
Parameter [-] 

Continuous 244 0.05 0.40 0.24 0.09 

Stiffness [MPa] Continuous 371 6,144.00 17,866.47 9,737.44 2,095.35 
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Feature Description Type 
Unique 
Values 

Min. 
Value 

Max. 
Value 

Mean 
Standard 
deviation 

Initial strain 
yielding a fatigue 
life of 10^6 cycles 

[με] 

Continuous 371 37.14 177.48 112.78 22.70 

 

Table A 3. Final features included in the PIAI stiffness and fatigue prediction models. 

Feature Feature Description Model 
Component that  

deemed important  

“bit2_pen” 
Penetration of recovered 

binder [0.1 mm] 
Stiffness Data 

“bit2_Gstar” 
Complex modulus [G*] of 

recovered binder [Pa] @ 10 
rad/s, 20°C' 

Both 

Data and Physics  
(Stiffness model) 

 
Data (Fatigue model) 

“bit2_delta” 
Phase angle [δ] of recovered 
binder [°] @ 10 rad/s, 20°C 

Both Data 

“target_density” Target density [kg/m³] Both Data 

“percentage_PR” 
Percentage of Reclaimed 

Asphalt in the mix [%] 
Both Data 

“Volume_Target_filler” 
Target volume fraction of 

filler [%] 
Both Data 

“Volume_Target_bitumen” 
Target volume fraction of 

bitumen [%] (fb) 
Both 

Data and Physics 
(Stiffness model) 

 
Data (Fatigue model) 

“Volume_Target_Sand” 
Target volume fraction of 

Sand 
Stiffness Data 

“year” Measurement year Both Data 

“PMB” 
Binary indicator of Polymer 

Modified Bitumen 
Fatigue Data 

“Forced action mixer” 
Binary indicator of Forced 

action mixer 
Stiffness Data 

“Mini roller” 
Binary indicator of Mini 

roller compactor 
Stiffness Data 

“Segment compactor” 
Binary indicator of Segment 

compactor 
Stiffness Data 

“Volume_Agg_Fraction” 
Volume fraction of 
Aggregates [-] (fa) 

Stiffness Data and Physics 
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Feature Feature Description Model 
Component that  

deemed important  

“Pa” 
Aggregate organization 

factor [-] 
Stiffness Data and Physics 

“GP” 
Aggregate Gradation 

Parameter [-] 
Fatigue Data and Physics 

“VP” Volumetric Parameter [-] Fatigue Data and Physics 

“stiffness” Stiffness [MPa] Fatigue Physics 
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Appendix B. Gradation Curves 

 

Figure B 1 illustrates the gradation curves of the NL-LAB stiffness and fatigue datasets. As 

both datasets utilize the same set of raw features, the gradation curves are identical. These 

curves depict the sieve sizes associated with features corresponding to gravel and sand 

content. Additionally, the plots highlight the passing percentages for the assumed 

Nominal Maximum Aggregate Size (NMAS) and Primary Control Sieve (PCS), as 

discussed in Section 3.1.2. 

 

 

Figure B 1. Gradation curves for the stiffness dataset. 
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Appendix C. Mix and compaction setups on the NL-LAB datasets 

 

This appendix provides further background behind the decision to remove the “work” and 

“phase” features from the datasets during the data preparation stage. Table C 1 presents 

the relationship between “work” and “phase” combinations and “mix setup” and “comp. 

setup” combinations. Since every possible “work-phase” combination is reflected in a “mix 

setup – comp setup” combination, the features “work” and “phase” could be removed from 

the dataset. Moreover, the “work” feature refers to the project number where each sample 

originates [6], which by itself is not expected to influence pavement performance 

predictions. However, since it is known that work 6 contains Polymer Modified Bitumen 

(PMB) [6], an additional feature was created to distinguish samples with PMB. 

 

 

Table C 1. Phase-Work and Mix-Compaction setup relationship in the NL-LAB datasets. 

Phase 1 2 3 

Work 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

Mix 
Setup 

Comp. 
Setup 

Number of entries 

Asphalt 
plant 

Field roller - - - - - - - - - - - - 54 18 29 54 36 18 

Hand roller - - - - - - - 6 - - - - - - - - - - 

Mini roller - - - - - - 9 - - 18 - - - - - - - - 

Segment 
compactor 

- - - - - - 9 18 - - 18 18 - - - - - - 

Shear box - - - - - - - - 10 - - - - - - - - - 

Forced 
action 
mixer 

Hand roller - 12 - - - - - - - - - - - - - - - - 

Mini roller - - - 18 - - - - - - - - - - - - - - 

Segment 
compactor 

8 18 - - 18 18 - - - - - - - - - - - - 

Shear box - - 9 - - - - - - - - - - - - - - - 

Planetory 
mixer Mini roller 9 - - - - - - - - - - - - - - - - - 
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Appendix D. Supplementary Material on SHAP Values 

 

SHAP values are used in BorutaShap as the feature importance score, as mentioned in 

Section 3.3. SHAP stands for Shapley Additive Explanation [76] values. SHAP values serve 

the purpose of explaining a prediction of an instance x by computing the contribution of 

each feature to the prediction [78]. For doing so, a mathematical foundation on 

cooperative game theory is used, in which the features (players) form coalitions to make 

predictions (game) [78]. Lloyd Shapley introduced the Shapley value [97] as a method to 

understand the contribution of a specific member of a coalition in the value generation 

task [40].  

 

Consider a model f(x) that is explained by an explanation model g(z’) as shown in Equation 

D 1. Figure D 1 illustrates how the Shap values ϕj explain how to get from the model output 

when no features are known (E[f(z)]), to the current output f(x) are known [76]. 

 

0

1

( )́ ´
M

j j

j

g z z 
=

= +   

 

Where: 

 ´ 0,1
M

z : Coalition vector. 

M : Maximum coalition size. 

0 : Null output of the explanation model. 

j : Feature attribution (Shapley value) for a feature j. 

Equation D 1 

 

Figure D 1. SHAP values illustration ([76]). 

 

It is worth noting that the order in which the coalition is formed is important, and 

therefore, the SHAP values for a feature j on a single prediction are calculated as the mean 

value of ϕj across all possible coalitions [76]. Furthermore, the global SHAP value is the 

one used in BorutaShap [74]. This is calculated by averaging the absolute Shapley values 

per features across the data [78], as shown in Equation D 2. 
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( )

1

1 n
i

j j

i

I
n


=

=   

 

Where: 

jI : Global SHAP importance value for feature j. 

( )i

j : SHAP importance value for feature j, in data instance i. 

n: Number of instances (rows) in the data. 

Equation D 2 
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Appendix E. Supplementary Material on Bayesian Optimization 

 

Different approaches can be followed to find an optimal set of hyperparameters, such as 

Manual Search, Grid Search, Random Search, Gradient-based optimization, and Bayesian 

Optimization [93]. Among these methods, Bayesian Optimization offers faster 

computational efficiency by leveraging previous results to decide whether narrowing 

down or expanding the search space [93]. Yang & Shami [93] provided an overview of the 

Bayesian Optimization procedure, as follows: 

 

1. Generating a probabilistic surrogate model of the objective function. In this research 

the objective function is the cross-validation loss (see Section 3.4). The surrogate 

model is represented by the probability of a model performance score y given the 

hyperparameters x p(y|x) [40]. 

 

2. Determining the optimal hyperparameters on the surrogate model. 

 

3. Evaluating the original objective function with the newly obtained hyperparameters. 

 

4. Updating the surrogate model with the results obtained. 

 

5. Repeating steps 2-4 for a given number of iterations. 

 

This research employed the Optuna [94] package for Bayesian Optimization. Optuna uses 

a Tree-structured Parzen Estimator (TPE) [98] as probabilistic surrogate model [94]. 

Using a TPE is advantageous as it enables optimization for combinations of continuous 

and discrete hyperparameters [26]. With TPE, the probabilistic surrogate model is 

constructed by modelling p(x|y) and p(y) and using Bayes’ theorem to get the posterior 

probability, as shown in Equation E 1 [98].  

 

( | ) ( )
( | )

( )

p x y p y
p y x

p x


=  

 

where: 

 

x: Model hyperparameters. 

y: Model performance score. 

Equation E 1 

 

 

TPE approximates the likelihood function p(x|y) using two non-parametric density 

functions l(x) and g(x), as shown in Equation E 2 [98]. 
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( )
( )

( )

*

*

 if 
|

 if 

l x y y
p x y

g x y y

 
= 



 
Equation E 2 

 

where: 

 

l(x): Density formed by using the observations x(i) such that the loss f(x(i)) was less than 

y*. 

g(x): Density formed by using the remaining observations. 

y*: Threshold of the objective function.  

 

Furthermore, TPE uses the Expected Improvement (EI) [98] criterion to find the optimal 

set of model hyperparameters (x*).  Equation E 3 illustrates the EI calculation procedure. 

The EI is maximized by values of x that have high probability under l(x) and low 

probability under g(x) [98]. Finally, in every iteration, TPE will return the candidate value 

x* with the highest EI [98].  

 

( ) ( )

* 1

* ( )
|   (1 )

( )

y
g x

EI y y p y x dy
l x

 

−

−

 
= −  + − 

 
  

Equation E 3 

 

where: 

 

EI: Expected Improvement. 

y: Objective function value. 

y*: Threshold of the objective function. 

γ: Quantile of the observed values so that p(y<y*) = γ 

 

Through Optina, it is also possible to obtain hyperparameter importances [94]. Optuna 

uses using the f-ANOVA [99] hyperparameter importance evaluation algorithm [94]. This 

algorithm fits a Random Forest Regressor that predicts the objective function value 

obtained in every trial from the set of hyperparameters used in said trial [94].   

 

 

 

 

 

 



 

85 
 

Appendix F. Results of trial model runs 

 

This appendix presents the results of the trial runs of the PIAI models to determine the 

range of λ values to include in Bayesian Optimization, as mentioned in Section 3.4. The 

lower λ value is that in in which PIAI model predictions approximate the model targets 

but do not infuse the physical model. Conversely, the upper value of the range is a λ value 

that guarantees physics infusion at the expense of a decreased prediction accuracy.  

 

To preliminarily evaluate the effects of λ on prediction accuracy and physics component 

of PIAI models, the architecture shown in Table F 1 was used for model training. This 

preliminary architecture was used for both PIAI stiffness and fatigue models and 

corresponds to common practice in AI predictive modelling [26]. It should be noted that 

the final model architecture differs per model and was obtained via Bayesian Optimization 

in a later stage. 

 

Table F 1. Model architecture – PIAI stiffness model. 

Hidden 

Layers 

Nodes per 

Layer 
Activation Function 

Dropout 

rate 
Learning rate 

3 64 

ReLU 

(linear activation in outer 

layer) 

0 1x10-4 

 

For the preliminary PIAI stiffness model, the evaluation range for λ varies between λ = 

1x10-12 and λ = 1x10-6. Figure F 1 and Figure F 2 show the results on the data and physics 

component of the lower value of λ (1x10-12). The results obtained show an adequate model 

accuracy in the data-driven component but a limited capability of physics infusion. 

Conversely, Figure F 3 and Figure F 4 show the effects of the upper value of λ (1x10-6) on 

the data and physics components of the preliminary model. These results show that the 

upper λ value approximates physics but sacrifices prediction accuracy. It is expected that 

the optimal λ value for the PIAI stiffness model lies between λ = 1x10-12 and λ = 1x10-6. 
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Figure F 1. Predictions vs. Targets – PIAI 
stiffness model (Data component). Trial with 

λ = 1x10-12 

Figure F 2. Predictions vs. Targets – PIAI 
stiffness model (Physics component). Trial 

with λ = 1x10-12 

 

  

Figure F 3. Predictions vs. Targets – PIAI 
stiffness model (Data component). Trial with 

λ = 1x10-6 

Figure F 4. Predictions vs. Targets – PIAI 
stiffness model (Physics component). Trial 

with λ = 1x10-6 

 

In the preliminary PIAI fatigue model, the selected evaluation range for λ varies between 

λ = 1x10-7 and λ = 1x10-1. Figure F 5 and Figure F 6 show the results on the data and physics 

component of the lower value of λ (1x10-7). The results obtained show an adequate model 

accuracy in the data-driven and no physics infusion in model predictions. Conversely, 

Figure F 7 and Figure F 8 show the effects of the upper value of λ (1x10-1) on the data and 

physics components of the preliminary model. These results show that the upper λ value 

approximates physics at the expense of a reduce prediction sacrifices prediction accuracy. 

Hence is expected that the optimal λ value for the PIAI stiffness model lies between λ = 

1x10-7 and λ = 1x10-1. 
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Figure F 5. Predictions vs. Targets – PIAI 
fatigue model (Data component). Trial with λ 

= 1x10-7 

Figure F 6. Predictions vs. Targets – PIAI 
fatigue model (Physics component). Trial with 

λ = 1x10-7 

 

  

Figure F 7. Predictions vs. Targets – PIAI 
fatigue model (Data component). Trial with λ 

= 1x10-1 

Figure F 8. Predictions vs. Targets – PIAI 
fatigue model (Physics component). Trial with 

λ = 1x10-1 
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Appendix G. Correlation results 

 

This appendix presents an extended version of the correlation analyses performed after 

feature selection in the stiffness and fatigue datasets. Three figures are presented for each 

dataset. The first figure corresponds to the correlation matrix comprising the entire set of 

accepted features. The second figure corresponds to the reduced correlation matrix with 

only the elements reporting a high (|ρ| > 0.8) Spearman correlation rank. The third figure 

presents the correlation matrix after removal of the highly correlated features in each 

dataset (see Section 4.1). 

 

 

Figure G 1. Correlation analysis for the stiffness dataset considering all important features. 
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Figure G 2. Features of the stiffness dataset reporting high (|ρ| > 0.8) correlation. 

 

 

 

Figure G 3. Correlation analysis for the stiffness dataset after removing correlated features. 
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Figure G 4. Correlation analysis for the fatigue dataset considering all important features. 
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Figure G 5. Features of the fatigue dataset reporting high (|ρ| > 0.8) correlation. 

 

 

Figure G 6. Correlation analysis for the fatigue dataset after removing correlated features. 


