

Delft University of Technology

Pair Programming With Generative AI

Spinellis, Diomidis

DOI
10.1109/MS.2024.3363848
Publication date
2024
Document Version
Final published version
Published in
IEEE Software

Citation (APA)
Spinellis, D. (2024). Pair Programming With Generative AI. IEEE Software, 41(3), 16-18.
https://doi.org/10.1109/MS.2024.3363848

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MS.2024.3363848
https://doi.org/10.1109/MS.2024.3363848

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

16 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 2 4 © 2 0 2 4 I E E E

Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

ADVENTURES CODEADVENTURES IN CODE Editor: Diomidis Spinellis
dds@aueb.gr

LARGE-LANGUAGE MODELS ARE
transforming the way we work as soft-
ware developers. Three key avenues
are IDE assistants, such as GitHub
Copilot, which can generate code for
us; powerful cloud-based APIs (ap-
plication programming interfaces) that
we can use for summarizing, inferring,
expanding, or transforming text; and
interactive chatbots, such as ChatGPT,
which can offer coding help and sug-
gestions. A comprehensive overview of
these technologies and their applica-
tions appeared in a recently published
IEEE Software column.1 Here, based
on my experience from about 10,000
generative AI prompts covering both
simple and advanced programming
tasks, I provide an overview of how
we can most effectively use genera-
tive AI to increase our productivity.
While AI cannot fully assume the role
of a pair programming2 colleague,
with appropriate prompting and care,
it can provide extraordinary help on
many fronts.

The Good
The power of generative AI in aid-
ing development tasks comes from
its vast training corpora and speed.

It can thus suggest code in areas we
don’t know well or generate code
faster than we can type.

The most useful application of gen-
erative AI in programming is in navi-
gating APIs. After decades of effort,
large-scale software reuse has now
become a reality through open source
software libraries and package man-
agers that can easily install them.3
Now, a remaining problem is to know
which API to use and how to employ
it. Here, AI, prompted with the ac-
tion we want to perform, will swiftly
generate the appropriate code. For ex-
ample, consider the prompt: “Write
Python command-line argument pars-
ing code for two required string argu-
ments: input-file and output-file.”

Generative AI also works well in
translating code from one program-
ming language to another. This need
arises when modernizing code from
a legacy code base (say C to Rust)
or when wanting to employ a useful
code fragment written in a language
different from that of our code base
(for example, Python to JavaScript).
In both cases, pasting the original
code and prompting for its transla-
tion into the required language typi-
cally work wonders.

Related to this application is also
AI’s ability to transform data in ways
that make them suitable for inserting
into a program. For example, it can
swiftly convert a comma-separated
list of key-value pairs into code for

Pair Programming
With Generative AI
Diomidis Spinellis

Digital Object Identifier 10.1109/MS.2024.3363848
Date of current version: 11 April 2024

©SHUTTERSTOCK.COM/KROT_STUDIO

mailto:dds@aueb.gr
https://orcid.org/0000-0003-4231-1897
http://www.SHUTTERSTOCK.COM

ADVENTURES IN CODE

 MAY/JUNE 2024 | IEEE SOFTWARE 17

initializing a JavaScript Map. AI can
even often generate data or trans-
form between data representations.
In one particularly notable example,
it quickly created for me a dictionary
mapping document metadata ISO (In-
ternational Organization for Standard-
ization) language codes (for example,
“en”) into the corresponding Python’s
nltk library language names (“eng-
lish”), simply by prompting “Give me
as a Python map the ISO code of each
of the following languages mapped to
its name: arabic chinese french,…”
In another case, ChatGPT generated
for me a map from LaTeX composite
characters to the corresponding Uni-
code characters.

AI works well when generating
code that is mostly boilerplate, such as
configuration files for vanilla GitHub
continuous integration, Docker build,
or Sphinx documentation. These are
tasks most of us perform only rarely
and are therefore unlikely to be at our
fingertips. Yet the corresponding code
is straightforward and consequently
well within the capabilities of genera-
tive AI.

AI can also help in troubleshooting.
Prompted with code and a compiler
error message, it will often give us the
required fix. On occasion, it can also
deal with bugs, though this mostly
works with (in retrospect) obvious
ones, such as forgotten brackets,
misused APIs, or misplaced tokens.
For this, the prompt is, again, the
code and a description of the unde-
sired behavior.

I have even seen AI suggest op-
timizations for improving the code
performance (“Make the following
code faster”), though this happens
mainly when our understanding of
the underlying costs is shaky to be-
gin with. In the case where I wit-
nessed it, the code involved misuse
of Python’s NumPy library.

AI can be a programming lan-
guage assistant and tutor. Most mod-
ern languages are extraordinarily
complex, and for many, it is almost
impossible to know all their features
and corresponding syntax. Prompting
for the required functionality (“Pass
Java method XYZ as a functor”)
will reliably generate the appropriate
incantation. Conversely, AI can aid
the comprehension of code idioms.
Prompted with a short snippet, it can
explain its code. In the same realm,
AI can help us understand the ratio-
nale and functionality of specific con-
structs (“What are the advantages of
Python’s raise from exception”), spar-
ing us the need to read a language’s
documentation end to end.

The Bad
For the uninitiated, generative AI
can appear deceptively brilliant. Yet
its answers can easily be stupidly
wrong (ChatGPT has apologized to
me for errors 162 times), while its
use also carries other risks.

A common case is the so-called
hallucinations, where the AI comes
up with nonexistent facts. I’ve often
been suggested nonexistent API func-
tion names, parameters, and pro-
gram options. Typically, we can easily
catch these as compilation, runtime, or
program invocation errors. Because the
code and the names look disconcert-
ingly plausible, the way to reliably verify
the error is a quick search in the cor-
responding reference documentation.

Another issue is erroneous code.
If we are lucky, the code will fail to
compile or run. In one case, I per-
sistently got suggestions to use a Py-
thon’s cryptography.x509 library function
rather than the asn1crypto.x509 function
with the same name. This function
then generated data that triggered
errors deep within the pyHanko
PDF signature library in which they

were used. With some luck, such er-
rors may be fixed with revised AI
prompts. In my case, these didn’t
work. (A sign that we have reached
AI’s limits is when a subsequent an-
swer repeats what was already estab-
lished to be wrong.) This happened
to me; debugging the problem re-
quired a deep dive into pyHanko’s
source code and careful reading of
the two cryptography libraries’ ref-
erence documentation.

Outdated results are a further risk.
Collecting data and training a large-
language model on them currently
require many months. It takes even
longer for facts associated with new
developments to appear in training
data, such as suitably licensed open
source software or Q&A forum dis-
cussions. Due to this time lag, AI may
present us with out-of-date advice. For
example, it may recommend depre-
cated APIs or fail to recommend the
most modern approach to a challenge.

More troubling is erroneous code
that runs but produces wrong results.
Confusingly, sometimes the incor-
rect code may even be accompanied
by correct output supposedly created
from it. One cause of erroneous code
is that currently, generative AI is woe-
fully inadequate for anything that re-
quires reasoning steps—that is, code
that will implement some algorithmic
thinking and not just a well-known
algorithm. In one case, I persistently
got completely bogus suggestions for
a recursive SQL query, a syntax I ad-
mittedly have trouble internalizing.
In the end, I had to craft the query
from scratch on my own, which
showed me the limits of generative
AI, even for some simple tasks. Oth-
ers have also documented AI generat-
ing code with security vulnerabilities,
which are also often difficult to catch
without being deeply familiar with
the corresponding risks.

ADVENTURES IN CODE

18 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Finally, it is worth keeping in
mind that when interacting with AI,
our code or prompts leave our or-
ganization and get processed by the
service’s cloud infrastructure. In some
domains, the potential leaks of per-
sonal data or intellectual property
may be organizational, regulatory,
or legal concerns.

And Avoiding the Ugly
Half a century ago, an MIT professor,
Joseph Weizenbaum, was shocked to
observe that ELIZA, a very primitive
conversation program he had devel-
oped, drew people to become emotion-
ally attached to it to the extent that
some psychologists seriously suggested
it could be used to automate psycho-
therapy.4 The reason for this is that we
humans tend to anthropomorphize the
world around us as a shortcut for un-
derstanding it. This sets a dangerous
trap when dealing with generative AI
because we can easily forget that it will
output only plausible-looking rather
than correct or appropriate answers.
Consequently, it is important for us
developers to employ guardrails that
reduce the risks of our AI interactions.

Our first lines of defense are our
knowledge and ability to reason about
the generated code. Lacking these
skills and therefore treating the gen-
erated code as a black box is irre-
sponsible and ethically wrong. We
should read the provided code and

understand what it is doing, or for ele-
ments that are not clear or obvious, be
able to reach that understanding after
reading the corresponding language
or API reference documentation. Con-
sequently, even when programming
with generative AI, we need a solid
knowledge of all applicable concepts
appearing in the code, such as con-
trol and data structures, operators,
functions, types, parameter passing
methods, classes, interfaces, parame-
terized types, dynamic dispatch, excep-
tions, anonymous functions, closures,
concurrency, and protocols. This
knowledge is required both for com-
prehending generated code and for
dealing with cases, such as those I dis-
cussed in the previous section, where
the AI reaches a dead end.

Our next two lines of defense
involve setting up our projects to fol-
low established code hygiene prac-
tices: static analysis and automated
tests. These are always important—
but even more so when AI-generated
code ends up in our software.

Start with static analysis tools.
Does the proposed code pass through
a linter? This is crucial in languages
with dynamic typing, such as Python
and JavaScript, where the interpreter
cannot employ type checking to de-
tect errors that are likely to cause
runtime failures.

Continue with tests. These can be
unit tests that exercise the provided

code, demonstrating its functional-
ity according to our expectations, or
integration tests that demonstrate an
emerging property we want to main-
tain, such as a given throughput. Even
when we use generative AI to create
the test code, the different prompts
used for generating the main code
from the prompts used for the tests
and (hopefully) our verification that
the tests actually check the code’s in-
tended properties and edge cases help
ensure that plausible but incorrect
code will not slip through.

H aving described the benefits
and risks and our defenses
for generative AI in program-

ming, it is easy now to also address the
elephant in the room: the effect that AI
can have on developers’ jobs. Without
even going into the realms of software
requirements, architecture, product,
and process management, which call
for an, unattainable for AI, deep un-
derstanding of organizations, context,
and intents, it is clear that even for
coding tasks, generative AI is a pow-
erful productivity booster for knowl-
edgeable programmers rather than
their replacement.

References
 1. C. Ebert and P. Louridas, “Generative AI

for software practitioners,” IEEE Softw.,

vol. 40, no. 4, pp. 30–38, Jul./Aug.

2023, doi: 10.1109/MS.2023.3265877.

 2. K. Beck, and C. Andres, Extreme

Programming Explained: Embrace

Change, 2nd ed. Reading, MA, USA:

Addison-Wesley, 2003.

 3. D. Spinellis, “Cracking software

reuse,” IEEE Softw., vol. 24, no. 1,

pp. 12–13, Jan./Feb. 2007, doi:

10.1109/MS.2007.9.

 4. J. Weizenbaum, Computer Power and

Human Reason. New Orleans, LA,

USA: Pelican Books, 1984, pp. 5–7.

ABOUT THE AUTHOR

DIOMIDIS SPINELLIS is a professor in the Department of Management

Science and Technology at the Athens University of Economics and Busi-

ness, Athens 104 34, Greece, and a professor of software analytics in the

Department of Software Technology at the Delft University of Technology,

2600 AA Delft, The Netherlands. He is a Senior Member of IEEE. Contact

him at dds@aueb.gr.

mailto:dds@aueb.gr

	016_41ms03-adventurescode-3363848

