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LARGE-LANGUAGE MODELS ARE 
transforming the way we work as soft-
ware developers. Three key avenues 
are IDE assistants, such as GitHub 
Copilot, which can generate code for 
us; powerful cloud-based APIs (ap-
plication programming interfaces) that 
we can use for summarizing, inferring, 
expanding, or transforming text; and 
interactive chatbots, such as ChatGPT, 
which can offer coding help and sug-
gestions. A comprehensive overview of 
these technologies and their applica-
tions appeared in a recently published 
IEEE Software column.1 Here, based 
on my experience from about 10,000 
generative AI prompts covering both 
simple and advanced programming 
tasks, I provide an overview of how 
we can most effectively use genera-
tive AI to increase our productivity. 
While AI cannot fully assume the role 
of a pair programming2 colleague, 
with appropriate prompting and care, 
it can provide extraordinary help on 
many fronts.

The Good
The power of generative AI in aid-
ing development tasks comes from 
its vast training corpora and speed. 

It can thus suggest code in areas we 
don’t know well or generate code 
faster than we can type.

The most useful application of gen-
erative AI in programming is in navi-
gating APIs. After decades of effort, 
large-scale software reuse has now 
become a reality through open source 
software libraries and package man-
agers that can easily install them.3 
Now, a remaining problem is to know 
which API to use and how to employ 
it. Here, AI, prompted with the ac-
tion we want to perform, will swiftly 
generate the appropriate code. For ex-
ample, consider the prompt: “Write 
Python command-line argument pars-
ing code for two required string argu-
ments: input-file and output-file.”

Generative AI also works well in 
translating code from one program-
ming language to another. This need 
arises when modernizing code from 
a legacy code base (say C to Rust) 
or when wanting to employ a useful 
code fragment written in a language 
different from that of our code base 
(for example, Python to JavaScript). 
In both cases, pasting the original 
code and prompting for its transla-
tion into the required language typi-
cally work wonders.

Related to this application is also 
AI’s ability to transform data in ways 
that make them suitable for inserting 
into a program. For example, it can 
swiftly convert a comma-separated 
list of key-value pairs into code for 
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initializing a JavaScript Map. AI can 
even often generate data or trans-
form between data representations. 
In one particularly notable example, 
it quickly created for me a dictionary 
mapping document metadata ISO (In-
ternational Organization for Standard-
ization) language codes (for example, 
“en”) into the corresponding Python’s 
nltk library language names (“eng-
lish”), simply by prompting “Give me 
as a Python map the ISO code of each 
of the following languages mapped to 
its name: arabic chinese french,…” 
In another case, ChatGPT generated 
for me a map from LaTeX composite 
characters to the corresponding Uni-
code characters.

AI works well when generating 
code that is mostly boilerplate, such as 
configuration files for vanilla GitHub 
continuous integration, Docker build, 
or Sphinx documentation. These are 
tasks most of us perform only rarely 
and are therefore unlikely to be at our 
fingertips. Yet the corresponding code 
is straightforward and consequently 
well within the capabilities of genera-
tive AI.

AI can also help in troubleshooting. 
Prompted with code and a compiler 
error message, it will often give us the 
required fix. On occasion, it can also 
deal with bugs, though this mostly 
works with (in retrospect) obvious 
ones, such as forgotten brackets, 
misused APIs, or misplaced tokens. 
For this, the prompt is, again, the 
code and a description of the unde-
sired behavior.

I have even seen AI suggest op-
timizations for improving the code 
performance (“Make the following 
code faster”), though this happens 
mainly when our understanding of 
the underlying costs is shaky to be-
gin with. In the case where I wit-
nessed it, the code involved misuse 
of Python’s NumPy library.

AI can be a programming lan-
guage assistant and tutor. Most mod-
ern languages are extraordinarily 
complex, and for many, it is almost 
impossible to know all their features 
and corresponding syntax. Prompting 
for the required functionality (“Pass 
Java method XYZ as a functor”) 
will reliably generate the appropriate 
incantation. Conversely, AI can aid 
the comprehension of code idioms. 
Prompted with a short snippet, it can 
explain its code. In the same realm, 
AI can help us understand the ratio-
nale and functionality of specific con-
structs (“What are the advantages of 
Python’s raise from exception”), spar-
ing us the need to read a language’s 
documentation end to end.

The Bad
For the uninitiated, generative AI 
can appear deceptively brilliant. Yet 
its answers can easily be stupidly 
wrong (ChatGPT has apologized to 
me for errors 162 times), while its 
use also carries other risks.

A common case is the so-called 
hallucinations, where the AI comes 
up with nonexistent facts. I’ve often 
been suggested nonexistent API func-
tion names, parameters, and pro-
gram options. Typically, we can easily 
catch these as compilation, runtime, or 
program invocation errors. Because the 
code and the names look disconcert-
ingly plausible, the way to reliably verify 
the error is a quick search in the cor-
responding reference documentation.

Another issue is erroneous code. 
If we are lucky, the code will fail to 
compile or run. In one case, I per-
sistently got suggestions to use a Py-
thon’s cryptography.x509 library function 
rather than the asn1crypto.x509 function 
with the same name. This function 
then generated data that triggered 
errors deep within the pyHanko 
PDF signature library in which they 

were used. With some luck, such er-
rors may be fixed with revised AI 
prompts. In my case, these didn’t 
work. (A sign that we have reached 
AI’s limits is when a subsequent an-
swer repeats what was already estab-
lished to be wrong.) This happened 
to me; debugging the problem re-
quired a deep dive into pyHanko’s 
source code and careful reading of 
the two cryptography libraries’ ref-
erence documentation.

Outdated results are a further risk. 
Collecting data and training a large-
language model on them currently 
require many months. It takes even 
longer for facts associated with new 
developments to appear in training 
data, such as suitably licensed open 
source software or Q&A forum dis-
cussions. Due to this time lag, AI may 
present us with out-of-date advice. For 
example, it may recommend depre-
cated APIs or fail to recommend the 
most modern approach to a challenge.

More troubling is erroneous code 
that runs but produces wrong results. 
Confusingly, sometimes the incor-
rect code may even be accompanied 
by correct output supposedly created 
from it. One cause of erroneous code 
is that currently, generative AI is woe-
fully inadequate for anything that re-
quires reasoning steps—that is, code 
that will implement some algorithmic 
thinking and not just a well-known 
algorithm. In one case, I persistently 
got completely bogus suggestions for 
a recursive SQL query, a syntax I ad-
mittedly have trouble internalizing. 
In the end, I had to craft the query 
from scratch on my own, which 
showed me the limits of generative 
AI, even for some simple tasks. Oth-
ers have also documented AI generat-
ing code with security vulnerabilities, 
which are also often difficult to catch 
without being deeply familiar with 
the corresponding risks.



ADVENTURES IN CODE

18 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

Finally, it is worth keeping in 
mind that when interacting with AI, 
our code or prompts leave our or-
ganization and get processed by the 
service’s cloud infrastructure. In some 
domains, the potential leaks of per-
sonal data or intellectual property 
may be organizational, regulatory, 
or legal concerns.

And Avoiding the Ugly
Half a century ago, an MIT professor, 
Joseph Weizenbaum, was shocked to 
observe that ELIZA, a very primitive 
conversation program he had devel-
oped, drew people to become emotion-
ally attached to it to the extent that 
some psychologists seriously suggested 
it could be used to automate psycho-
therapy.4 The reason for this is that we 
humans tend to anthropomorphize the 
world around us as a shortcut for un-
derstanding it. This sets a dangerous 
trap when dealing with generative AI 
because we can easily forget that it will 
output only plausible-looking rather 
than correct or appropriate answers. 
Consequently, it is important for us 
developers to employ guardrails that 
reduce the risks of our AI interactions.

Our first lines of defense are our 
knowledge and ability to reason about 
the generated code. Lacking these 
skills and therefore treating the gen-
erated code as a black box is irre-
sponsible and ethically wrong. We 
should read the provided code and 

understand what it is doing, or for ele-
ments that are not clear or obvious, be 
able to reach that understanding after 
reading the corresponding language 
or API reference documentation. Con-
sequently, even when programming 
with generative AI, we need a solid 
knowledge of all applicable concepts 
appearing in the code, such as con-
trol and data structures, operators, 
functions, types, parameter passing 
methods, classes, interfaces, parame-
terized types, dynamic dispatch, excep-
tions, anonymous functions, closures, 
concurrency, and protocols. This 
knowledge is required both for com-
prehending generated code and for 
dealing with cases, such as those I dis-
cussed in the previous section, where 
the AI reaches a dead end.

Our next two lines of defense 
involve setting up our projects to fol-
low established code hygiene prac-
tices: static analysis and automated 
tests. These are always important—
but even more so when AI-generated 
code ends up in our software.

Start with static analysis tools. 
Does the proposed code pass through 
a linter? This is crucial in languages 
with dynamic typing, such as Python 
and JavaScript, where the interpreter 
cannot employ type checking to de-
tect errors that are likely to cause 
runtime failures.

Continue with tests. These can be 
unit tests that exercise the provided 

code, demonstrating its functional-
ity according to our expectations, or 
integration tests that demonstrate an 
emerging property we want to main-
tain, such as a given throughput. Even 
when we use generative AI to create 
the test code, the different prompts 
used for generating the main code 
from the prompts used for the tests 
and (hopefully) our verification that 
the tests actually check the code’s in-
tended properties and edge cases help 
ensure that plausible but incorrect 
code will not slip through.

H aving described the benefits 
and risks and our defenses 
for generative AI in program-

ming, it is easy now to also address the 
elephant in the room: the effect that AI 
can have on developers’ jobs. Without 
even going into the realms of software 
requirements, architecture, product, 
and process management, which call 
for an, unattainable for AI, deep un-
derstanding of organizations, context, 
and intents, it is clear that even for 
coding tasks, generative AI is a pow-
erful productivity booster for knowl-
edgeable programmers rather than 
their replacement. 
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