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ABSTRACT ARTICLE HISTORY
The effects of Zr/Ti ratio on the dielectric and piezoelectric properties Accepted 6 July 2016
of the sintered Pb(Zr,Ti_x)099Nbo 0103 piezoelectric ceramics across
the .entire range gf phase diagram .of the PZT solid solution was PZT: morphotropic phase
studied _ system_atlcally._ The materials were prepared by the boundary; dielectric
conventional mixed oxide process. The phase purity and crystal properties; piezoelectric
structure of the calcined powders and sintered ceramics was analysed properties

using X-ray diffraction. The microstructure of the sintered ceramics has

been investigated using scanning electron microscopy. It is seen that

even though there is a significant increase in dielectric constant (g,)

and piezoelectric charge coefficient (ds3) at the PZT-52 (MPB)

composition, the voltage sensitivity (gs3) of the PZT-0 (lead titanate)

ceramics are higher than that of MPB.

KEYWORDS

1. Introduction

Lead zirconium titanate, PZT, ceramics based on solid solutions of lead zirconate and lead
titanate (PZT) are well known piezoelectric materials with widespread technological applica-
tions [1]. The compositional dependence of the perovskite structure and the electrical prop-
erties of PZT ceramics have been investigated extensively [1-3]. In this system
rhombohedral and tetragonal phases coexist in a region known as the morphotropic bound-
ary or MPB, which is a strong function of composition, Pb(Zr, 5,Tig 45)O3, and a weak func-
tion of temperature [1, 4]. In 1999, Noheda et al. [5] discovered a monoclinic phase,
sandwiched between rhombohedral and tetragonal phases near the MPB in PZT ceramics
and this monoclinic symmetry allows the polarization direction to continuously rotate in a
plane and contributes to enhanced piezoelectric and dielectric properties at the MPB and
nearby MPB region [1, 4]. Such PZT ceramics with compositions at MPB or near this region
are much easier to pole and exhibit improved piezoelectric and dielectric properties com-
pared to their rhombohedral and tetragonal counterparts. MPB based PZT ceramics and its
compositionally modified variants with soft and hard dopants have been exploited in many
sensor and transducer applications for their high electromechanical properties [6, 7]. Jaffe
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et al., showed the dielectric and piezoelectric properties of PZT ceramics for Zr/Ti ratios
ranging from 0.48 to 0.60 [1]. However, the piezoelectric and dielectric properties for the
entire range of PZT compositions have not been methodically studied yet.

The present paper describes a study of the piezoelectric and dielectric properties for the
complete solid solution of PZT ceramic [Pb(Zr,Ti(;_y))0.99Nbg ;03] with x = 0 to 0.80. Due
to the antiferroelectric nature [8, 9], PZT compositions with x > 0.80 were not included in
this investigation. The piezoelectric properties of PZT ceramics are improved by the addition
of donor dopants, the popular one being Niobium (Nb) ions, resulting in the formation of
Nb-doped PZT (PNZT) ceramics. The Nb>" ions substitutes for the Zr**/Ti*" ions at B-site
and thereby promote domain wall motion in PZT ceramics [7]. Apart from providing supe-
rior piezoelectric and dielectric properties, Nb-oxide is also a good sintering aid for
PZT-based materials resulting in higher density and smaller grain size with 1 mol % doping
in the system [3]. Hence, 1 mol% Nb was added to the base system in order to make the
poling and sintering process easier.

2. Experimental

A conventional solid state reaction method was wused to synthesize the
Pb[Zr,Ti(1—x)]0.99Nbg 9103 ceramic powder with various Zr/Ti ratio with x varying from 0 to
0.80. The lead oxide (PbO), zirconia (ZrO,), titania (TiO,) and niobium pentoxide (Nb,Os),
all having 99.9% purity were used as raw materials. The raw materials were weighed accord-
ing to the stoichiometric proportions based on the desired ceramic composition. In order to
attain homogeneity, the raw materials were thoroughly ball milled with 5-mm zirconium
balls for 7 h in distilled water. The mixture was then dried in a hot air oven. The dried pow-
der was calcined in a furnace at 750°C for 2 h using a heating rate of 2°C/min in order to ini-
tiate the formation of the perovskite phase. Phase formation was investigated with X-ray
diffraction using a Bruker D8 diffractometer (Co Kal, 2 = 1.78901 A). The powder was
milled again as described above for 3 h. The dried powder was calcined again at 1150°C for
2 h at a heating rate of 2°C/min. The calcined powder was milled for 1 hr in order to obtain
a particle size within the range of 2 to 4 yum. The presence of the tetragonal phase (x < 0.5),
the rhombohedral phase (x > 0.6) and the coexistence of both phases at the morphotropic
phase boundary (x = 0.52) was deduced from the X-ray diffraction patterns.

The calcined powders were then pressed into cylindrical pellets of 7 mm diameter. The
compacts were sintered at 1250°C for 2 h in a bed of PZT powder in order to minimize the
lead loss during the sintering process. The sintered ceramic discs were ground to a thickness
of about 1 mm and its density was measured using Archimedes principle. Gold electrodes
were applied on the ground faces by sputtering and the electroded ceramics were poled at
4 kV/mm at 100°C in silicon oil bath for 1 hr. The samples were then cooled to 30°C in the
presence of the poling field and were allowed to age for 24 h before measuring the dielectric
and piezoelectric properties. The dielectric constants of the ceramic disks were measured by
means of the parallel plate capacitor method using an Agilent 4263B LCR meter at 1 V and
1 kHz. The piezoelectric charge constant (ds;) of the composites was measured using a high
precision PM300 PiezoMeter System from Piezotest. The measurements were carried out at a
static force of 10 N, a frequency of 110 Hz and a dynamic force of 0.25 N. The polarization
measurements were performed at room temperature using the Precision Multiferroic Test Sys-
tem from Radiant Technologies for an applied field ranging from 1 kV/cm to 600 kV/cm and
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at a frequency of 10 Hz. The strain hysteresis loop measurements were performed using a MTI
photonic sensor (MTI-2100) in combination with the Precision Multiferroic Test System.

3. Results and discussion
3.1 Crystallographic phase analysis and microstructure characterization

XRD analysis

The room temperature X-ray diffraction patterns of the calcined Pb[Zr,Ti; _x)]0.990Nbg 0103
ceramics as a function of the Zr-fraction are shown in Fig. 1. The sharp and well-defined sin-
gle phase diffraction peaks confirm the formation of the perovskite structure for all PZT
powder compositions. The phases were identified by the analysis of the diffraction patterns
within the two theta (20) range of 20° to 60°. For x > 0.52 the rhombohedral phase is
observed. The splitting of (002) into (002) and (200) peaks at PZT-52 (MPB ie. x = 0.52)
indicates the morphotropic phase boundary (MPB) region, at which the co-existence of the
tetragonal and rhombohedral phases is observed. The reason behind this splitting of reflec-
tions at MPB region can be attributed to the compositional fluctuations, leading to the coex-
istence of the rhombohedral and tetragonal phases [10-12]. It can also be seen that when
Zr/Ti < 52/48, the diffraction patterns exhibit distinct (101) and (110) peaks at 20 = 36
degree, which denotes the tetragonal structure of the ceramic powder.
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Figure 1. X-ray diffraction pattern of calcined Pb[Zr,Ti;_]o.0sNbo0103 ceramic powder.
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Figure 2. Lattice parameters and ¢/a ratio of calcined Pb[Zr,Ti;; _4lo.9sNbo 0103 ceramic powder.

Unit cell parameter

Figure 2 shows the variation of the lattice parameters ‘@’ and ‘c’ and ¢/a ratio as a function of
the Zr mol. % of the ceramic powder. The ¢/a ratio for MPB composition of PZT (i.e. PZT-
52) was found to be 1.025 whereas that of PZT-0 (i.e. lead titanate) was 1.062. Even though
the lattice constant ‘c’ remains almost constant, an increase in lattice constant ‘a’ is observed,
leading to a reduction in the ¢/a ratio with increasing Zr content. This reduction in c/a ratio
indicates that the tetragonality of PZT ceramics decreases with increase in Zr content. The
values of the lattice parameters for a Zr/Ti ratio from 0.48 to 0.60 were found to be close to
ones reported previously [13].

Particle size and morphology

Figure 3(a—c) shows the SEM micrographs of the calcined ceramic powder for Zr mol.% = 0
(tetragonal), 0.52 (MPB) and 0.80 (rhombohedral) respectively. The particle size of the cal-
cined powder increases with the Zr content, which is in line with the results from particle
size analysis. The calcined PZT-0 ceramic powder appears to have a spherical morphology
whereas the other compositions possess polyhedral morphology.

Microstructure of sintered ceramics

Figure 4 (a) and (b) shows the SEM micrographs of sintered ceramics at 1250°C for Zr
mol. % corresponding to 0 (PZT-0) and 0.52 (MPB) respectively. It can be seen that
the MPB composition has a dense microstructure whereas PZT-0 with a high lead con-
tent cracked during sintering (see Fig. 4(c)). This cracking is the result of the large
spontaneous strains and thermal expansion anisotropy associated with lead titanate
ceramics upon cooling from sintering temperature through the cubic to the tetragonal
phase transition at 490°C [14-16]. In addition, the formation of pyrochlore phase was
not observed in case of both compositions as the presence of the non-ferroelectric
pyrochlore phase will have a detrimental effect on the piezoelectric properties of the
ceramics and hence formation of this phase is to be avoided [17]. The pyrochlore phase
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Figure 3. Microstructure of calcined ceramic powder for compositions corresponding to (a) PZT-0, (b) PZT-52
and (c) PZT-80 (i.e. x = 0.80)
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(c)

Figure 4. Microstructure of ceramic disks sintered at 1250°C for compositions corresponding to (a) PZT-0
(x = 0), (b) PZT-52 (x = 0.52) and (c) crack on surface of PZT-0 ceramics after sintering process.
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Table 1. Density of the sintered Pb(Zr,Ti(.99-4)Nbg.0:03 ceramics for x ranging from 0 to 0.80.

Composition Density (g/cm®)
PZT-0 (PT) 7.2
PZT-10 7.18
PZT-20 7.20
PZT-30 7.25
PZT-40 7.30
PZT-45 7.35
PZT-50 741
PZT-52 (MPB) 7.49
PZT-60 7.41
PZT-70 741
PZT-80 7.39

was not observed in case of our calcined ceramic powders due to the two-stage calcina-
tion process followed [18, 19].

Table 1 shows the densities of the sintered Pb(Zr,Ti;_x))0.99Nbg 01035 ceramics
measured using the Archimedes method. The densities of the sintered ceramics are in
the range of 7.12 g/cm3 to 7.49 g/cm3 (90-93% of theoretical density) and are depen-
dent on the Zr fraction. The relatively high density values indicate that the ceramic
specimens prepared are eligible for electrical characterization.

3.2 Polarization measurements

Figure 5 shows the electric-field induced polarization hysteresis loop of
Pb(Zr,Ti(1—x))0.99Nbg 0103 ceramics, for x = 0, 0.52 (MPB) and 0.80, measured at room tem-
perature at an applied field ranging from 4.5 to 7.5 kV/mm. The P-E hysteresis loop clearly
shows that irrespective of the composition, polarization attains its saturation level at differ-
ent electric fields. Furthermore, the P-E hysteresis displays significantly higher remnant

Electric Displacement (uC/cm?)

-8 -6 -4 -2 0 2 4 6 8
Electric Field (kV/mm)

Figure 5. P-E Hysteresis loop for Pb(Zr,Ti;;_x)00sNbo0103 ceramics for x = 0 (PT), 0.40, 0.52 (MPB) and 0.80.
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Figure 6. The electric-field induced strain curves of Pb(Zr,Ti; _x)o.99Nbo0103 ceramics for x = 0 (PZT-0),
0.40, 0.52 (MPB) and 0.80.

polarization (P,) for MPB ceramics with lower electric fields than that of its tetragonal and
rhombohedral counter parts. The remanent polarization increases from lead titanate (PZT-
0) with increasing Zr content till the MPB composition (PZT-52) and then decreases for Zr-
rich compositions. The presence of 14 possible polarization states contributes to the highest
remanent polarization at lower electric fields for the PZT ceramics at MPB.

Figure 6 shows the electric-field induced strain curves of Pb(Zr,Ti;_x))099Nbg 0103
ceramics, for x = 0, 0.52 (MPB) and 0.80, measured at a frequency of 10 Hz at room temper-
ature. It can be seen that each composition exhibits the classical butterfly strain loops irre-
spective of their Zr/Ti ratio. The well-defined strain loop of PZT-0 and MPB ceramics
suggests that these ceramics possess excellent actuation properties compared to that of the
rhombohedral PZT ceramics. In general, the electric-field-induced strain in ceramics is
caused by the domain switching, number of polarization states, electrostriction and the
applied electric field. As a result, the MPB composition displays a maximum strain when
rhombohedral and tetragonal phases coexist at the MPB, which in turn leads to enhanced
polarization and piezoelectric properties [20]. Table 2 shows the remnant polarization (P,),
saturation polarization (Py), coercive field (E.) and piezoelectric charge coefficient (ds;) cal-
culated from the hysteresis loops. The ds; coefficients were calculated from the slope of the
linear portion of the strain hysteresis loop.

Table 2. Piezoelectric properties of Pb(Zr,Ti(;1_x)0.99Nbo 0103 ceramics for x = 0, 0.40, 0.52 (MPB) and 0.80.

Ceramics P(uC/cm?) Py(1.C/cm?) E.(kV/mm) ds3*(pC/N) ds3*(pC/N)
PZT-0 (PT) 22 26 2.7 83 53
PZT - 40 275 32 29 100 89
PZT-52 (MPB) 30 36 23 233 185
PZT - 80 38 5 42 20 14

*ds3 measured from the butterfly loop; “ds; after polarization measurement (relaxation time = 24 h).
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Figure 7. Variation of room temperature (a) dielectric constant (¢,) and (b) piezoelectric charge constant
(d33) of Pb[Zr,Ti; _xlo.99Nbo 0105 as a function of Zr mol.%.

Fig. 7(a) and 7(b) show the variation of dielectric constant and piezoelectric charge con-
stant as a function of Zr mol.% respectively. Due to its large lattice anisotropy, a very high
electric field and high temperature is required for poling the PZT-0 ceramics. However, it
was impossible to pole PZT-0 ceramics at such severe poling conditions due to its low resis-
tivity [14, 16].

As for the dielectric constant, the maximum value of the piezoelectric charge constant is
also observed at MPB composition. The reason for this sharp increase in the dielectric and
piezoelectric properties is attributed to the presence of 14 polarization states, originating
from the co-existence of tetragonal and rhombohedral phases at MPB, which have nearly
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Figure 8. Variation of room temperature piezoelectric voltage coefficient (gs3) of Pb[Zr,Ti;1 _x]o.99Nbg.0103
ceramics.

equivalent free energy. This provides a high polarization for MPB, which in turn favours
strong dielectric and piezoelectric effects [21-23]. As mentioned previously, when x > 0.52,
the ceramics contain only the rhombohedral phase whereas when x < 0.52, the ceramics
contain the tetragonal phase. In either case, the number of domain variants is less than that
of MPB composition, which in turn decreases the piezoelectric response of the ceramics. In
addition, the porous nature of tetragonal ceramics also contributes to the decrease in piezo-
electric charge constant since the porosity reduces the polarization per unit volume, which
in turn reduces ds; [21, 24].

The piezoelectric voltage coefficient (g33) of PZT ceramics as a function of the Zr content
is shown in Fig. 8. It can be seen that the highest gs; is exhibited by PbTiO; (PZT-0)
ceramics, in spite of its lower ds; than that of MPB ceramics. The significantly low dielectric
constant of PZT-0 (¢, = 194) compared to that of MPB (PZT-52) ceramics (¢, = 1085) is
responsible for this difference in the voltage coefficient. It is noteworthy that the piezoelec-
tric voltage coefficients (g;3) increases towards the tetragonal field while it remains almost
constant in the rhombohedral field until the antiferroelectric nature of the rhombohedral
phase gains over the ferroelectric properties, after which the g3 drops down significantly.

4, Conclusions

The current work explored the piezoelectric and dielectric properties of
Pb(Zr, Ti(1 —x))0.99Nbp 0105 piezoelectric ceramics for the range x = 0 to x = 0.80 cover-
ing the range from pure tetragonal (x = 0) to rhombohedral (x = 0.80) ceramics and
including the MPB at x = 0.52. The highest dielectric and piezoelectric charge con-
stants were obtained at the MPB composition. On the other hand, the piezoelectric
voltage coefficient of PZT-0 (lead titanate) ceramics were significantly higher than that
of MPB based ceramics but the poor sinterability and poling difficulties associated with
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the lead titanate ceramics restrict its application in piezo devices. The higher piezoelec-
tric voltage coefficient of PZT-0 ceramics can be used to develop highly voltage sensi-
tive 0-3 ceramic-polymer composites as the ceramic granulates used in these
composites are not sintered but calcined, thereby overcoming the sinterability and pol-
ing difficulties associated with its bulk ceramics.
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