

Delft University of Technology

QLBM – A quantum lattice Boltzmann software framework

Georgescu, Călin A.; Schalkers, Merel A.; Möller, Matthias

DOI
10.1016/j.cpc.2025.109699
Publication date
2025
Document Version
Final published version
Published in
Computer Physics Communications

Citation (APA)
Georgescu, C. A., Schalkers, M. A., & Möller, M. (2025). QLBM – A quantum lattice Boltzmann software
framework. Computer Physics Communications, 315, Article 109699.
https://doi.org/10.1016/j.cpc.2025.109699

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cpc.2025.109699
https://doi.org/10.1016/j.cpc.2025.109699

Computer Physics Communications 315 (2025) 109699

Available online 5 June 2025
0010-4655/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

qlbm – A quantum lattice Boltzmann software framework

Călin A. Georgescu ,∗, Merel A. Schalkers , Matthias Möller

Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, the Netherlands

A R T I C L E I N F O A B S T R A C T

The review of this paper was arranged by
Prof. Peter Vincent

We present qlbm, a Python software package designed to facilitate the development, simulation, and analysis
of Quantum Lattice Boltzmann Methods (QBMs). qlbm is a modular framework that introduces a quantum
component abstraction hierarchy tailored to the implementation of novel QBMs. The framework interfaces
with state-of-the-art quantum software infrastructure to enable efficient simulation and validation pipelines, and
leverages novel execution and pre-processing techniques that significantly reduce the computational resources
required to develop quantum circuits. We demonstrate the versatility of the software by showcasing multiple
QBMs in 2D and 3D with complex boundary conditions, integrated within automated benchmarking utilities.
Accompanying the source code are extensive test suites, thorough online documentation resources, analysis tools,
visualization methods, and demos that aim to increase the accessibility of QBMs while encouraging reproducibility
and collaboration.

Program summary

Program Title: qlbm

CPC Library link to program files: https://doi.org/10.17632/28hkvsg7p2.1

Developer’s repository link: https://github.com/QCFD-Lab/qlbm

Licensing provisions: MPL-2.0

Programming language: Python3

Supplementary material: The documentation of is available at https://qcfd-lab.github.io/qlbm/.

Nature of problem: The advent of quantum algorithms for computational fluid dynamics brings with it challenges
that are new to the established field of computational physics. These challenges include the lack of standardized
implementations of the still nascent quantum methods, the intense computational demands of developing and
simulating quantum algorithms on hardware available today, and the absence of tools that integrate novel
developments into established infrastructure. Because of these current limitations, physicists and mathematicians
expend superfluous resources on tasks that more mature computational physics branches have surmounted long
ago.

Solution method: QLBM is a software package that provides an end-to-end development environment for quantum
lattice Boltzmann methods. The modular design and flexible quantum circuit library provide a base for extending
and generalizing quantum algorithms. Performance enhancements exploit the paradigm of quantum computing
simulations to accelerate the speed at which researchers can verify the validity of their methods. Its integration
with state-of-the-art quantum computing software and visualization tools increases the algorithms’ accessibility.
These features allow QLBM to effectively generate, simulate, and analyze quantum circuits for 2D and 3D
computational fluid dynamics problems.

1. Introduction

The field of Quantum Computing (QC) [50] has received a staggering
amount of attention in recent decades from researchers and practition-

ers alike. Ever since the formulation of the first quantum algorithms in

* Corresponding author.

E-mail address: C.A.Georgescu@tudelft.nl (C.A. Georgescu).

the early 1990s, quantum computing captured the interest and attention
of scientists attempting to accelerate solvers for high impact, real-life
problems. It was algorithms like those of Deutsch and Jozsa [23], Bern-

stein and Vazirani [9], Grover [30], and Shor [69] that initiated a wave
of research aiming to understand how QC can revolutionize the status

https://doi.org/10.1016/j.cpc.2025.109699

Received 3 December 2024; Received in revised form 21 May 2025; Accepted 28 May 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0002-8102-6389
http://orcid.org/0000-0001-7751-9060
http://orcid.org/0000-0003-0802-945X
https://doi.org/10.17632/28hkvsg7p2.1
https://github.com/QCFD-Lab/qlbm
https://qcfd-lab.github.io/qlbm/
mailto:C.A.Georgescu@tudelft.nl
https://doi.org/10.1016/j.cpc.2025.109699
https://doi.org/10.1016/j.cpc.2025.109699
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109699&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 315 (2025) 109699

2

C.A. Georgescu, M.A. Schalkers and M. Möller

quo. Two properties make the quantum computing paradigm especially
attractive for the increasingly demanding large-scale computational de-
mands of today – exponential information compression and quantum
parallelism. The former is a core property of the basic unit of quantum
information: the quantum bit or qubit. Unlike classical bits, 𝑛 qubits en-
code a superposition that can be represented through a 2𝑛-dimensional
vector belonging to a complex Hilbert space. The latter, quantum paral-
lelism, refers to the ability of quantum computers to simultaneously en-
code and update multiple results in a single computational step. Thanks
to these two properties, QC carries the potential to augment the current
computational landscape with a drastically different yet complementary
archetype.

The drive to accelerate classical solvers by means of quantum com-
puting has led to novel quantum algorithms that target nearly every
branch of computational science. From quantum chemistry [53,34,16]
to deep learning [67,38], data mining [59,46], and finance [52], quan-
tum algorithms promise to augment or improve upon classical methods.
One field where quantum computing advantages are particularly ap-
pealing is that of computational fluid dynamics (CFD). State-of-the-art
CFD simulations are extremely memory- and compute-intensive appli-
cations that require tremendous amounts of resources to tackle modern
engineering tasks. It is this computational capacity bottleneck, together
with growing concerns about Moore’s law’s [64] future viability that
have attracted many researchers’ attention towards the potentially dis-
ruptive effect that QC could have for CFD simulations [28].

In recent years, several quantum methods for CFD applications have
emerged. Here, we consider three standout directions for quantum CFD
(QCFD) research. The first two largely center around the Navier-Stokes
(NS) governing equations for large-scale, turbulence-minded applica-
tions. Techniques that attempt to directly (approximately) solve the NS
equations with quantum computers are typically aimed at solving gen-
eral linear systems of equations (LSE) under specific assumptions. In
particular, the Harrow–Hassidim–Lloyd (HHL) [33] algorithm and its
subsequent improvements [3,21,20] stand out, as they provide theoret-
ical speedups over classical counterparts. However, in addition to the
linearization of the NS equations, the viability of the HHL further hinges
on state preparation and amplitude approximation techniques [1] which
may not be practically feasible for CFD applications.

A second way in which quantum computers can solve LSEs consists
of so-called variational quantum algorithms. Variational Quantum Lin-
ear Solvers (VQLS) such as those put forward by Bravo-Prieto et al. [11]
and Patil et al. [55] attempt a task similar to that of HHL, but instead
rely on parameterized quantum circuits, the parameters of which are it-
eratively improved. Recently, research has shown that such techniques
could be used to solve Stokes flow [45] and the heat conduction equation
[44]. Kyriienko et al. [41] also introduce a framework of differentiable
quantum circuits and feature maps-based encodings and use it solve
the quasi-1D NS equations, while Paine et al. [54] extend the varia-
tional quantum algorithm (VQA) to support kernel methods, a technique
of embedding data into higher-dimensional spaces [66], and demon-
strate the ability to solve ordinary differential equations. An advantage
of VQAs is their relatively shallow circuits, which makes them suitable
candidates for the quantum hardware available today. However, they
too suffer from several important limitations. Optimizing the parame-
ters of VQAs is a computationally intensive task, that is delegated to
classical computers. This introduces significant overhead not only in
the classical optimization procedure of the parameters, but also in the
quantum-classical communication channel. Moreover, optimizing VQA
circuits might not be computationally feasible, due to the barren plateau
problem in quantum computing [48,42].

The third way in which QCFD problems can be approached is
through the quantum implementation of Lattice Boltzmann Methods
(LBMs). This avenue presents modelling opportunities for exploiting the
mathematical structure of the Boltzmann Equation and is entirely in-
dependent from classical optimization requirements. It is this direction
that we seek to advance through this work. In what follows, we describe

the current landscape of quantum LBM research before highlighting the
challenges currently facing this field and how this work seeks to address
them in Section 1.1. Section 1.2 describes the steps and the mathemati-

cal structure of the classical LBM.

Recently, quantum lattice Boltzmann methods (QBMs) have emerged
as promising candidates for the future direction of QCFD. While the
physics that QBMs target is entirely classical, the principal premise be-

hind QBMs is that quantum computing may enable simulation at scales
otherwise unattainable with classical hardware. The linearity of the
streaming step and the locality of collision are two of the reasons why
the LBM lends itself particularly well to native quantum implemen-

tations. Despite this, there are several inherent caveats that quantum
implementations must address to simulate physically correct behavior.
Most notably, these include the nonlinearity of the collision operator
and the nonlocality of the streaming operator. These challenges stem
from the fundamental properties of physical mesoscopic and macro-

scopic fluids, and are ubiquitous across many governing equations in
science and engineering. One additional benefit of the LBM is that un-

like in the Navier-Stokes equations, the nonlinearity and nonlocality are
not directly coupled, which provides promising modelling opportuni-

ties. Supplementary to equation-specific nuances, effectively encoding
information into and extracting it out of the quantum state are two uni-

versal hurdles of quantum algorithms. In an effort to overcome these
challenges, research surrounding QBMs has largely focused on the de-

velopment of quantum primitives that implement (parts of) the LBM
time-marching loop. These initiatives have given rise to several tech-

niques that accommodate specific subroutines of the LBM, imposing
trade-offs between scalability and versatility. One way to categorize
existing QBMs is by how they address the inherent nonlinearity of col-

lision.

The initial wave of research into QCFD occurred between 2001 and
2003 and largely focused on extending the lattice-gas model to dis-

tributed quantum devices [81,83,82,56]. This work tailors quantum
lattice-gas solvers to a decentralized system of quantum computers with
limited number of qubits per device, linked together through classical
communication channels. Though this approach enables the balancing
of the computational workload through horizontal scaling, it requires a
number of qubits that grows linearly with the number of grid points of
the lattice.

Todorova and Steijl [76] and Schalkers and Möller [61] propose
collisionless methods that include primitives for particle streaming and
boundary conditions, but omit the collision operator entirely. Steijl [72]

and Moawad et al. [49] alternatively propose a method in which quan-

tum primitives that implement floating point arithmetic can compute
nonlinear terms, but require a reversible conversion between the encod-

ing of the quantum state used to perform streaming and the encoding
that enables the computation of the nonlinear velocity terms at each
time step. Itani and Succi [36] and Sanavio and Succi [60] adopt an ap-

proach based on truncated Carleman linearization, that approximates
the non-linear LBE by a finite-dimensional linear system of equations
that can be expressed in terms of (unitary) quantum operators. How-

ever, these approaches require a large number of additional variables
that detract from scalability and which do not naturally decompose
into quantum circuits. Budinski [13,14] further developed an approach
that enables both streaming and collision but that incurs a probabil-

ity of measuring an orthogonal (irrelevant) quantum state after each
time-step. Dinesh Kumar and Frankel [25] propose a similar approach,
which, similar to Budinski’s methods, requires the costly decomposition
of unitary matrices into quantum gates for compatiblity with quantum
hardware. More recently, Wawrzyniak et al. [79] introduced a novel
method based on the same linear combination of unitaries (LCU) [19]
approach tailored to the advection-diffusion equation, but which also re-

quires full state measurement and reinitialization after each time step.
Finally, Schalkers and Möller [62] extended a previously developed en-

coding and equipped it with a collision operator inspired by lattice gas

Computer Physics Communications 315 (2025) 109699

3

C.A. Georgescu, M.A. Schalkers and M. Möller

automata at the cost of requiring a number of qubits that scales with the
number of simulated time steps up to grid size.

The current state of QBMs is fragmented between several approaches
that each present different strengths and weaknesses. This poses several
challenges for researchers seeking to advance the field. In what follows,
we highlight three significant challenges that face the development of
QBMs, draw parallels to their classical counterparts, and explain how
software can help mitigate these issues.

1.1. Software and QBM research

To advance the theory of QBMs researchers require infrastructure
that enables the implementation and experimentation of their algo-
rithms. We address these concerns by drawing parallels to the more
mature classical LBM field, and the methods that have emerged to facil-
itate its practical success. We then discuss the absence of such methods
from the QBM field, and the drawbacks that researchers face because of
this. Finally, we address how the current work seeks to mitigate these
shortcomings.

Classical LBMs owe their popularity to several factors. From a the-
oretical standpoint, LBMs allow for the computation of macroscopic
quantities such as mass and momentum density [40], and can be used as
(approximate) solvers for Navier-Stokes applications, among other tar-
get equations [17,78,18]. From a practical standpoint, the LBM lends
itself well to massively parallel computing paradigms [73,40]. Over
the years, several parallel software implementations of the LBM have
emerged, including HemeLB [47] openLB [39], Palabos [43], waL-
Berla [5], lbmpy [6], and pylbm [58], which are able to carry out
distributed simulations on hundreds of heterogeneous compute nodes.
In addition to practical applications, open-source LBM software imple-
mentations have another significant merit – they facilitate the develop-
ment of further research by establishing a foundation for both theory
and infrastructure [39].

Such foundations are almost entirely absent in the realm of QBMs.
Because of this, the field faces three distinct hurdles. First, the many
nuances of present QBM techniques make the comparison of the perfor-
mance and scalability difficult. From various quantum state encodings
[62] to the decomposition of exponentially sized matrices into quantum
gates, QBMs build on top of extensive knowledge and technology stacks
that make implementation a daunting challenge. Second, the fractured
nature of the field poses challenges for techniques that augment exist-
ing work, such as the effective extraction of quantities of interest from
the quantum state [63]. Third, due to the scarce availability of QBM
implementations, researchers face the additional obstacle of verifying
and comparing methods from the literature. This significantly detracts
from the reproducibility of the field. Before addressing how software
can help ameliorate these three challenges, we first introduce the cur-
rent state of quantum software and its relation to present day quantum
computer hardware.

The current state of QC hardware has been undergoing rapid devel-
opment and is currently in the so-called Noisy Intermediate-Scale Quan-

tum phase [57]. While quantum computers available today showcase
some of the core advantages that theoretical physics promises, they are
limited in both the number of qubits available and the time span that
qubits can retain coherent states. These constraints greatly impede on
the applications that quantum computers can presently carry out. To
facilitate the research of quantum algorithms in an era without Fault-

Tolerant Quantum Computers, scientists have turned to simulation meth-
ods instead. Recently, an increasing number software frameworks have
emerged to bridge the gap between theoretical advances in algorithmics
and hardware availability. These range from general purpose simula-
tion tools [37,75,70] to specialized packages aimed at machine learning
[8,12] and material simulation [4]. The current state of quantum soft-

ware intersects QC theory and available hardware, such that researchers
can leverage classical hardware to verify large-scale algorithmic proto-
types while quantum counterparts edge closer to fault-tolerance.

In this work, we seek to address the three challenges facing QBM
research by introducing the qlbm software framework. With qlbm,
we aim to bring the same advantages that classical LBM software has
proven to offer to researchers and practitioners alike. We design the
qlbm software around the current paradigm of simulation, with the
goal of accelerating QCFD research in the absence of fault-tolerant quan-

tum computers. Achieving this requires addressing several challenges,
including integration with available software and hardware infrastruc-

ture, establishing suitable data structures and design patterns for the
development of QBMs, and providing this functionality in a package
that is flexible enough to conduct research, yet accessible enough for
new users. To the best of our knowledge, qlbm is only the second ef-

fort to generalize the software development process of QBMs. Recently,
Shinde et al. [68] introduced a software tool aimed at developing and
simulating QBMs using the Intel Quantum SDK and quantum hardware.
However, their work focuses on hybrid quantum-classical QBM algo-

rithms such as [13] and [14] and is specifically targeted towards a single
vendor, and not openly available. By contrast, qlbm focuses on fully
quantum approaches, provides a more flexible set of tools from multi-

ple vendors, is readily available on GitHub under a permissive license,
and pursues the broader goal of providing an end-to-end development
environment. We describe the internal design of qlbm and the simu-

lations it enables in Section 2. Section 3 provides results that showcase
the capabilities of qlbm, both in terms of the QBMs that it can simulate,
as well as the performance improvements it provides.

1.2. Lattice Boltzmann methods

To provide additional background for QBMs, this section briefly
introduces the classical formulation of the Lattice Boltzmann Method
(LBM) and components. For a more wholistic overview of the LBM, we
refer the reader to the works of Succi et al. [74] and Krüger et al. [40].
The Boltzmann Equation (BE) describes the kinetic behavior of fluid at
the mesoscopic scale, nestled between microscopic Newtonian dynam-

ics and macroscopic Navier-Stokes continua. The BE models the state of
populations of fluid particles as a statistical distribution function over
physical space, velocity, and time. Equation (1) gives the form of the BE
we consider throughout this work, where the left hand-side terms model
the advection of particles over the phase space, and the Ω(𝑓) term rep-

resents the change in state as a result of particle collisions, often referred
to as the collision operator.

𝜕𝑓

𝜕𝑡
+ 𝐮𝜕𝑓

𝜕𝐱
=Ω(𝑓) (1)

Though several collision operators have been developed over the
decades, the Bhatnagar-Gross-Kook (BGK) formulation [10] remains one
of the more popular and widely implemented options thanks to its theo-

retical and computational simplicity and its ability to recover the same
bulk properties as Navier-Stokes simulations [40]. The BGK collision op-

erator is defined by Ω(𝑓) = − 1
𝜏
(𝑓 − 𝑓𝑒𝑞) and models the relaxation of

the particle distribution 𝑓 towards the equilibrium function 𝑓𝑒𝑞 , where
𝜏 is referred to as the relaxation time, and directly influences the compu-

tation of transport coefficients. The discretization of the BE along phase
space and time yields the Lattice Boltzmann Equation (LBE), which can
in turn be solved numerically by the Lattice Boltzmann Method. Equip-

ping the BE with the BGK collision operator and discretizing in terms
of physical space, velocity space, and time yields the most widely-used
form of the LBE [40], as described in Equation (2).

𝑓𝑖(𝐱 + 𝐯𝑖Δ𝑡, 𝑡+Δ𝑡) = 𝑓𝑖(𝐱, 𝑡) −
Δ𝑡
𝜏
(𝑓𝑖(𝐱, 𝑡) − 𝑓

𝑒𝑞

𝑖
(𝐱, 𝑡)) (2)

The subscript 𝑖 of the 𝑓𝑖 and 𝑣𝑖 variables stems from the velocity
space discretization, which spans a small set of discrete velocity chan-

nels that particles can travel across. Including the velocity variable in
the subscript rather than a parameter to the function is a notational con-

vention. The 𝑓𝑖 terms are terms referred to as particle populations, and

Computer Physics Communications 315 (2025) 109699

4

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 1. Overview of end-to-end qlbm workflow.

𝐯𝑖 terms model velocity coefficient vectors according to the discretiza-
tion scheme. Equation (3) gives typical choice of equilibrium function
for Navier-Stokes simulations of isothermal models, where 𝑐𝑠 = Δ𝑥∕Δ𝑡
is the lattice speed, 𝑤𝑖 are pre-determined weights, 𝜌 is the fluid density,
and 𝐮 corresponds to the flow velocity.

𝑓
𝑒𝑞

𝑖
(𝐱, 𝑡) =𝑤𝑖𝜌

(
1 +

𝐮 ⋅ 𝐯𝑖
𝑐2
𝑠

+
(𝐮 ⋅ 𝐯𝑖)2

2𝑐4
𝑠

− 𝐮 ⋅ 𝐮
2𝑐2

𝑠

)
(3)

The LBM describes a class of time step algorithms that iterate through
repeated steps. Each time step can be conceptually broken down into
three subroutines: streaming through physical space, reflection at the
boundaries of the fluid domain, and (non-linear) particle collision. First,
the particles stream (or propagate) through space in directions prescribed
by the discretized velocities to neighboring lattice points. Then, bound-
ary conditions are applied to ensure particles adhere to the fluid domain.
Finally, the populations undergo collision (or relaxation) before the
computation of macroscopic forces. In addition to Navier-Stokes appli-
cations, the different building blocks of the LBM lend themselves well
to a broad range of other use cases. Among others, researchers have
proposed LBM-based models for acoustics [15], electro-osmotic flows
[31], as well as the Poisson [17], shallower water [84], and advection-
diffusion [18] equations.

2. qlbm overview

This section introduces the cornerstone features of qlbm. Before ad-
dressing these features, however, we first highlight the end-to-end work-
flow we designed qlbm around. The primary goal of qlbm is to provide
an end-to-end environment for the development, simulation, and anal-
ysis of QBM algorithms. Fig. 1 provides a visualization of the workflow
that accommodates all of these steps. The process can be broadly broken
down into three sub-steps: quantum circuit generation, simulation, and
analysis. We design the qlbm workflow as a multi-step pipeline, where
the output of each step is seamlessly forwarded to the next, while re-
taining individual access points for user analysis and intervention. The
current implementation of the qlbm pipeline supports two algorithms:
the Quantum Transport Method (QTM) [61] and the Space-Time Quan-
tum Boltzmann Method (STQBM) [62].

The workflow begins with a user-friendly specification of the sys-
tem to simulate. The goal of this interface to increase the accessibility
of QBM algorithms for users with limited experience in the field, while
simultaneously enriching the experience of more mature practitioners.
User-specified data includes information about the lattice discretization,
as well as geometry and boundary conditions. qlbm parses this con-
figuration and extracts algorithm-specific information that is then used

to generate high-level quantum circuits. This method of deriving cir-
cuit properties from high-level specification bridges the gap between
the expectations of end-users who are looking to perform CFD simu-
lations and the complexity of specifying physically accurate quantum
algorithms. We address the internal design choices that facilitate this
process in more detail in Section 2.1.

Once the high-level quantum circuit has been assembled, users are
generally interested in simulating the algorithm to verify its correct-
ness and to analyze results. To make the best use of available resources,
software should exploit techniques that quantum simulators allow for
that would otherwise not be available on quantum hardware. To this
end, qlbm implements methods that lessen the computational burden
on both the algorithmic and the computational fronts. We describe such
techniques and how qlbm leverages them to exploit the time-marching
nature of LBMs in more detail in Section 2.2.

Finally, after simulations have concluded, researchers are typically
interested in the performance and scalability of the methods they are
developing. To accommodate this need, we integrate qlbm with a set
of tools that enable the analysis of quantum circuits and their perfor-
mance. These tools include means for visualizing QBM algorithms and
their building blocks, exporting simulation results to external visual-
ization engines, and scripts that give insight into the scalability of the
methods. We delve into more details on how qlbm integrates with sur-
rounding quantum software infrastructure in Section 2.3.

2.1. Internal architecture

The internal architecture of qlbm primarily targets two goals with
regard to quantum circuits. First, the quantum circuit components of
qlbm should be easy to extend and verify, as to facilitate the design of
novel QBM algorithms. Second, the internal composition of the frame-
work should be modular, as to enable testability on individual methods
through isolation. In addition to quantum circuit design, the architec-
ture of the software should minimize the effort required to integrate
with external quantum software libraries.

We address the two design directions of qlbm – quantum compo-
nents and overall system design – in Section 2.1.1 and Section 2.1.2
respectively, zooming out from individual quantum circuit abstractions
to a holistic overview of the framework.

2.1.1. Quantum component architecture

To realize a modular and extendable quantum circuit library, we
implement a system of circuit abstractions based around a complex-
ity hierarchy with respect to the steps of the LBM. Fig. 2 provides a
graphical depiction of this hierarchy. We organize components in three

Computer Physics Communications 315 (2025) 109699

5

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 2. Representation of internal quantum circuit abstraction hierarchy.

𝑎𝑣0 ∶ ∙ ∙ ∙ ∙ ∙ ∙
𝑎𝑣1 ∶ ∙ ∙ ∙ ∙ ∙ ∙
𝑎𝑜0 ∶
𝑎𝑜1 ∶
𝑎𝑐0 ∶
𝑎𝑐1 ∶
𝑔_𝑥0 ∶

QFT

0 ∙ ∙
IQFT_dg

0

𝑔_𝑥1 ∶ 1 ∙ ∙ 1

𝑔_𝑥2 ∶ 2 ∙ ∙ 2

𝑔_𝑦0 ∶
QFT

0 ∙ ∙
IQFT_dg

0

𝑔_𝑦1 ∶ 1 ∙ ∙ 1

𝑔_𝑦2 ∶ 2 ∙ ∙ 2

𝑣_𝑥 ∶
𝑣_𝑦 ∶

P (𝜋
4) P (𝜋

2) P (𝜋) P (−𝜋
4) P (−𝜋

2) P (−𝜋)
𝑣_𝑑𝑖𝑟_𝑥 ∶ ∙

P (𝜋
4)

∙
P (𝜋

2)
∙

P (𝜋)
X ∙

P (−𝜋
4)

∙
P (−𝜋

2)
∙

P (−𝜋)
X

𝑣_𝑑𝑖𝑟_𝑦 ∶ ∙ ∙ ∙ X ∙ ∙ ∙ X

(a) Standard controlled incrementer circuit.

𝑎𝑣0 ∶
𝑎𝑣1 ∶
𝑎𝑜0 ∶ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
𝑎𝑜1 ∶
𝑎𝑐0 ∶
𝑎𝑐1 ∶
𝑔_𝑥0 ∶

QFT

0 ∙ ∙
IQFT_dg

0

𝑔_𝑥1 ∶ 1 ∙ ∙ 1

𝑔_𝑥2 ∶ 2 ∙ ∙ 2

𝑔_𝑦0 ∶
QFT

0 ∙ ∙
IQFT_dg

0

𝑔_𝑦1 ∶ 1 ∙ ∙ 1

𝑔_𝑦2 ∶ 2 ∙ ∙ 2

𝑣_𝑥 ∶
𝑣_𝑦 ∶

P (𝜋
4) P (𝜋

2) P (𝜋) P (−𝜋
4) P (−𝜋

2) P (−𝜋)
𝑣_𝑑𝑖𝑟_𝑥 ∶ ∙ ∙ ∙ X ∙ ∙ ∙ X

P (𝜋
4) P (𝜋

2) P (𝜋) P (−𝜋
4) P (−𝜋

2) P (−𝜋)
𝑣_𝑑𝑖𝑟_𝑦 ∶ ∙ ∙ ∙ X ∙ ∙ ∙ X

(b) Bounceback reflection controlled incrementer.

Fig. 3. Comparison of qlbm primitive quantum circuits.

broad categories: primitives, operators, and algorithms. Primitives are
the least complex elements of the taxonomy, and they implement small-

scale, isolated blocks within QBM algorithms. Isolating parameterized
implementations of such circuits enables developers to verify their be-

havior in isolation and reuse them seamlessly. This in turn accelerates
the implementation of novel algorithms.

Fig. 3 contains an example of how programmatic quantum circuit
construction helps simplify the algorithmic development process. Both
circuits in the figure were constructed with simple calls to a Con-

trolledIncrementer primitive that is used repeatedly to move par-

ticles during the streaming and reflection steps of the QTM algorithm.
The circuits share the same structure: they begin by mapping the grid
qubits to the Fourier basis by performing a Quantum Fourier Trans-

form (QFT) and conclude by returning them to the computational basis.
Between the two QFT blocks is a series of controlled phase shifts that per-

forms the incrementation of the appropriate populations. In Fig. 3a, the
controls reside on the ancilla velocity qubits, which determine whether

particles move within one CFL substep. In Fig. 3b, the phase shift con-

trols are instead placed on the ancillary qubit that determine whether
particles have virtually streamed inside of an obstacle. This sole dis-

crepancy determines which populations are streamed and differentiates
two distinct phases of the algorithm. The qlbm implementation of this
primitive allows the same piece of code to construct both circuits with
a single parameter switch between reflection=None and reflec-
tion="bounceback".

A step above primitives are so-called operators. The goal of oper-

ators is to encompass quantum circuits that implement one specific
physical operation of the LBM – streaming, reflection, or collision. This
layer of abstractions seeks to address the fragmented formulations that
have emerged from recent QBM literature. For instance, circuits that
perform streaming in basis-state encodings are not directly applicable
to amplitude-based encodings, and vice-versa. Despite this fundamen-

tal incompatibility, a clear separation between operator-level circuits
in different encodings serves two purposes. First, operators enable tar-

Computer Physics Communications 315 (2025) 109699

6

C.A. Georgescu, M.A. Schalkers and M. Möller

1 c i r c u i t = Q u a n t u m C i r c u i t (* s e l f . l a t t i c e . r e g i s t e r s ,)
2
3 f o r v e l o c i t i e s _ t o _ i n c r e m e n t i n g e t _ t i m e _ s e r i e s (2 * * s e l f .

l a t t i c e . v e l o c i t i e s [0] . b i t _ l e n g t h ()) :
4 c i r c u i t . c o m p o s e (
5 C o l l i s i o n l e s s S t r e a m i n g O p e r a t o r (
6 s e l f . l a t t i c e ,
7 v e l o c i t i e s _ t o _ i n c r e m e n t ,
8) . c i r c u i t ,
9 i n p l a c e = T r u e ,

10)
11 c i r c u i t . c o m p o s e (
12 S p e c u l a r R e f l e c t i o n O p e r a t o r (
13 s e l f . l a t t i c e ,
14 s e l f . l a t t i c e . b l o c k s [" s p e c u l a r "] ,
15) . c i r c u i t ,
16 i n p l a c e = T r u e ,
17)
18 c i r c u i t . c o m p o s e (
19 B o u n c e B a c k R e f l e c t i o n O p e r a t o r (
20 s e l f . l a t t i c e ,
21 s e l f . l a t t i c e . b l o c k s [" b o u n c e b a c k "] ,
22) . c i r c u i t ,
23 i n p l a c e = T r u e ,
24)
25 f o r d i m i n r a n g e (s e l f . l a t t i c e . n u m _ d i m e n s i o n s) :
26 c i r c u i t . c o m p o s e (
27 S t r e a m i n g A n c i l l a P r e p a r a t i o n (
28 s e l f . l a t t i c e ,
29 v e l o c i t i e s _ t o _ i n c r e m e n t ,
30 d i m ,
31) . c i r c u i t ,
32 i n p l a c e = T r u e ,
33)

Fig. 4. Sample qlbm operator code.

geted experimentation with competing implementations such as differ-

ent boundary condition circuits within a single encoding. Second, this
design allows for a broader range of algorithmic combinations, which
may target different solvers or equations.

The highest level of abstraction within the component taxonomy is
the end-to-end QBM algorithm. These structures are crucial for tying
together lower level abstractions. Algorithm-level components follow
naturally from the chaining of operators in a way that resembles LBM
pseudocode. Fig. 4 depicts an example of how the QTM algorithm [61]
can be expressed as a series of four operator-level components. The Col-
lisionlessStreamingOperator first prepares the correct ancilla
qubit state based on the current state of a CFL counter, before per-

forming a controlled incrementation on populations of particles within
one substep (line 5). Following streaming, the SpecularReflection-
Operator (line 12) and BounceBackReflectionOperator (line
19) append the circuit with logic that detects whether particles have
streamed outside the fluid domain, before inverting the appropriate ve-

locities and placing the populations back in the fluid domain. Finally,
the StreamingAncillaPreparation operator (line 27) prepares the
quantum state for the next iteration of the CFL counter. A simple call to
the built-in class, i.e. CQLBM(lattice),1 is all that users need to do to
build end-to-end quantum circuits.

This internal architecture of quantum components enables the devel-

opment of new QBM circuits in two ways. First, the quantum circuits al-

ready implemented within qlbm are trivially reusable for new methods,

1 In the software, we denote algorithms by their interpretation of the LBM.
For this reason, the QTM algorithm [61] is available as CQLBM, short for Colli-

sionless Quantum LBM, as it models Ω(𝑓) = 0. The STQBM [62] is available as
SpaceTimeQLBM.

provided that encodings are compatible. Second, this hierarchy facili-
tates the development of entirely novel algorithms by additionally sep-
arating quantum circuit logic and quantum register setup. We achieve
this by isolating the quantum register logic within implementations of
the Lattice class, which are algorithm- and implementation-specific.
Consider again the chaining of operators depicted in Fig. 4. The only in-
formation required to construct the quantum operators already resides
in the lattice attribute of the CQLBM object, which gets propagated
down the abstraction chain. To increase the accessibility of this archi-
tecture, we additionally provide each Lattice class with methods that
allow for human-readable indexing operations by assigning each reg-
ister an intuitive naming scheme, and automatically adjusting its size.
This alleviates the burden of manually indexing individual qubits and
addressing multiple logically connected indices. In addition to the QTM
algorithm, qlbm also fully supports the STQBM [62], which uses a dif-
ferent, extended computational basis state encoding, which highlights
the versatility of this design.

Fig. 5 depicts the entire architecture of the quantum components of
qlbm. At the top, three base classes that adhere to the primitive, oper-
ator, QBM model provide interfaces that ease the development of novel
circuits by providing appropriate interfaces through inheritance. On the
vertical axis, classes become increasingly specific and complex from top
to bottom. Within one “branch” of the inheritance hierarchy, component
reuse is still possible, i.e. by utilizing simpler primitives to build more
complex ones. On the horizontal axis, components again range from sim-
ple to complex with respect with the task they fulfill within the QBM.
That is, incrementers and comparators serve as the building blocks for
streaming and reflection operators, which then assemble the end-to-end
QBM. Researchers can develop novel QBMs along this axis, in parallel
to existing implementations. In practice, this leads to a system in which
previous contributions are available for novel developments, but do not
hinder them. The following subsection describes how quantum compo-
nent module fits within the broader scope of the framework.

2.1.2. System architecture

Integrating QBM circuits into broader quantum software stacks is
crucial for increasing the accessibility of QBMs, as well as for expedit-
ing novel research in the NISQ era. We design the architecture of the
qlbm framework around facilitating the use of the quantum compo-
nents described in the previous subsection. Fig. 6 gives an overview of
the three main components of qlbm, as well as how they come together
to enable seamless user interaction.

At the bottom of the figure, the quantum components of the QBM
are mostly isolated from the remainder of the framework. To further
decouple the quantum circuit logic from the surrounding utilities, we
introduce a Lattice component which handles specification parsing
and preprocessing. This module is depicted on the right hand-side of
Fig. 6 and is tasked with the conversion of high-level specification into
information that can parameterize the construction of quantum circuits.
This includes parsing geometry specification in the Block class for
the application of boundary condition and determining the appropri-
ate (minimal) register setup for simulating the system in the Lattice
class. Quantum components use this information to construct appropri-
ate circuits on a per-algorithm basis.

External infrastructure is again handled in isolation to encourage
modularity and extendibility. The Infrastructure component con-
tains both Compiler and Runner classes that wrap the circuit tran-
spilation utilities available in Qiskit [37] and Tket [70]. These utilities
enable resource estimation experiments for different hardware specifi-
cations, including variable gate sets and qubit connectivities. Uniform
interfaces make it easy for the user to access those services without re-
quiring low-level tuning of the underlying libraries.

Finally, the detached components are brought together in an inter-
face called a SimulationConfig. This class ties together the algorith-
mic components that make up a QBM, as well as additional simulation
options the user can configure. Such items include the preferred com-

Computer Physics Communications 315 (2025) 109699

7

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 5. Class diagram representation of the qlbm quantum component architecture.

Fig. 6. Representation of the system-wide qlbm architecture.

Computer Physics Communications 315 (2025) 109699

8

C.A. Georgescu, M.A. Schalkers and M. Möller

piler and simulator, as well as their specific parameters. The appeal of
this highly coupled interface is that it automates the process of prepar-
ing the high-level quantum circuits generated in the component module
for execution on a specific quantum or classical hardware platform. This
allows the entire bundle of quantum circuits simulation parameters to
be forwarded to the Runner in one go. Section 2.3 provides an exam-
ple of how the entire end-to-end simulation workflow can be performed
in just a few lines of code.

To complement modularity and isolation, the architecture of qlbm
promotes a high standard of code quality and reproducibility. In addi-
tion to the open-source access, qlbm contains an extensive suite of over
200 unit, integration, and end-to-end tests, which target both low-level
implementation details (such as geometry parsing), as well as high-level
features such as compatibility with several Qiskit simulators. Supple-
mentary to unit tests, qlbm hosts a comprehensive documentation web-
site with dozens of examples, thousands of lines of in-code comments,
and additional tutorials that delve into advanced applications of the soft-
ware aimed at developing novel algorithms.

2.2. Performance enhancements

In an era without fault-tolerant quantum hardware, classical hard-
ware plays a crucial role in accelerating quantum algorithm research. To
do this effectively, we require simulation software that enables classical
hardware to emulate quantum computers in the first place. In this sec-
tion, we highlight two directions that can enhance the performance of
QBM algorithms in an environment dominated by quantum simulation.
The first direction is algorithmic. This includes any improvements that
can be made to quantum circuit design, as well as any computations that
can be delegated to classical information processing instead of relying
on the exponentially more expensive computation of a quantum state.
The second direction is computational. This direction consists of exploits
that classical hardware allows, which would otherwise be physically im-
possible on quantum computers. Efficient statevector manipulations are
an example of such an optimization. In quantum computing, the no-
cloning theorem prohibits exact copies of statevectors and measurement
often requires exponentially many shots of a circuit. Such limitations
can be circumvented in simulations. Effective implementations of such
techniques are crucial for accelerating research into QBMs, as they save
researchers invaluable time and computational resources. We first de-
scribe examples of algorithmic improvements in Section 2.2.1 before
addressing their computational counterparts in Section 2.2.2.

2.2.1. Algorithmic improvements

Algorithmic improvements concern techniques that reduce the com-
plexity of quantum circuits in either depth, number of qubits, or total
number of gates. Here, we refer again to the QTM algorithm devel-
oped by Schalkers and Möller [61] as an example, and highlight two
techniques that help reduce circuit complexity, while focusing on how
qlbm facilitates such improvements.

Ancilla qubit reuse. Effectively leveraging the state of ancilla qubits
can help reduce both the number of gates and qubits required to per-
form certain computations. Here, we give two examples that curtail gate
and qubit requirements, respectively. We first consider the depth of
QTM algotrihm’s streaming operator. The algorithm leverages an an-
cilla system that determines whether populations of particles stream in
a given timestep subdivision, as computed by a CFL counter. Discrete
velocities that should stream in a substep are identified in the quan-
tum state through ancilla qubits 𝑎𝑣,𝑖 that pertain to whether particles
with a specific discrete velocity 𝑣 are streamed in dimension 𝑖. A naive
implementation would first perform the streaming operation, reset the
state of the ancilla qubits, and then compute the boundary condition op-
erator on the resulting state. However, since populations that have not
streamed in the CFL substep are not affected by boundary conditions, the
same ancilla state can be re-used to control which velocity directional

qubits are inverted by boundary conditions. Fig. 4 exemplifies this op-
timization, where the StreamingAncillaPreparation operator is
only used at the end of the CFL iteration, and not between each stream-
ing and boundary condition routine. The indexing methods of qlbm’s
Lattice classes allow for the seamless utilization of qubits without
manually performing the tedious indexing operations that change with
each system and lattice discretization.

Ancilla qubits can also be effectively reused to reduce the memory re-
quirements of heterogeneous boundary conditions. Consider again Fig. 4
and the application of both specular and bounceback boundary condi-
tions. Specular reflection entails the reversal of the velocity normal to
the reflection surface, whereas bounceback reflection requires that all
directions are inverted, irrespective of the contact surface. To practi-
cally realize specular reflection, we use 𝑑 ancilla qubits to determine
which dimensions a population has reached an object in, which enables
the computation of the velocity components to invert. For bounceback
reflection, a single ancilla qubit suffices to determine whether particles
have exited the fluid domain, which triggers the reversal of all direc-
tional velocity qubits [63].

A straightforward implementation of a system that supports geom-
etry with heterogeneous boundary conditions would therefore utilize
𝑑+1 ancilla qubits. In the qlbm implementation of the QTM algorithm,
we only require the 𝑑 ancilla qubits that specular reflection necessitates.
This is made possible by imposing the restriction that the domains of
specular reflection and bounceback objects are separated by at least two
grid points. If this constraint is satisfied, multiple obstacles with either
reflection method can leverage the same qubits without causing any
interference within the quantum state. Though marginal for ideal fault-
tolerant computers, such improvements prove significant for classical
emulation. The Lattice class registers again make such optimizations
trivial to implement by allowing shared access to all qubit registers from
inside primitives and operators. Moreover, the straightforward chaining
of operators makes it easy to compose circuits based on intermediate
states, and each Lattice class can incorporate specification parsers
that warn users if constraints are violated.

Adaptable register setup. To further exploit the properties of specific
QBM setups, qlbm allows for a flexible register setup that minimizes
resource requirements. The same observation that allows ancilla qubits
to be reused also leads to the simulation requiring fewer qubits for the
simulation of the end-to-end QTM algorithm. As the Lattice object
parses the input specification, it tracks the different kinds of boundary
conditions present in the system. If the system only contains bounce-
back boundaries, the register is automatically shrunk to only require one
ancilla qubit that suffices to perform reflection. The relative indices of
the remainder qubits are automatically adjusted such that the user does
not need to manually adjust the circuits not affected by this change. If,
however, the system contains mixed boundary conditions, the register
is widened to accommodate the 𝑑 ancillae that specular reflection uti-
lizes, and the mechanism described previously commences to effectively
reuse the available qubits for both boundary conditions.

Classical logic computation. We again use the same specular reflection
operator of the QTM to highlight how the delegation of logic to classical
preprocessing can effectively speed up simulation. We give two exam-
ples of preprocessing techniques that simplify both the quantum circuits
and their simulation.

First, we consider specular reflection against a wall in the nominal
case, where particles do not encounter a corner of the object. To reflect
particles in a way that is physically correct, the quantum circuits needs
to determine which of the velocity directions to invert. While this is sim-
ple to do in classical LBMs, the quantum circuit additionally requires the
information to persist within the state after particles have been removed
from the non-fluid domain, as to reset the state of any ancilla qubits that
would otherwise later interfere with the computation. There are multi-
ple ways to implement this logic. Detecting and reseting such states can

Computer Physics Communications 315 (2025) 109699

9

C.A. Georgescu, M.A. Schalkers and M. Möller

be achieved both in the quantum circuit by means of extra ancilla qubits,
as well classically by manually defining which velocity directions each
wall surface affects. However, the former requires significant quantum
resources and expensive additional logic, while the latter is error-prone
and difficult to debug.

In qlbm, we provide an alternative implementation that performs
this computation in terms of automated boolean logic operations in a
step that precedes the assembly of the quantum circuit. Specifically, we
take advantage of the encoding of velocities in the QTM algorithm. We
leverage this encoding by formulating a boolean function over spacial
properties of the object’s edges, that provides the information required
to invert and reset the appropriate velocity qubits. To achieve this,
we define near-corner points as 2𝑑-dimensional boolean vectors in the
cartesian product space described by Equation (4).

𝐩𝐨𝐢𝐧𝐭 = 𝐛𝐨𝐮𝐧𝐝 × 𝐨𝐮𝐭𝐬𝐢𝐝𝐞 (4)

Here, 𝐛𝐨𝐮𝐧𝐝,𝐨𝐮𝐭𝐬𝐢𝐝𝐞 ∈ {⊤,⊥}𝑑 are 𝑑-bit structures that encode the
position of near-corner points per dimension. The 𝐛𝐨𝐮𝐧𝐝 property en-
codes whether the point belongs to a surface that is a lower (⊥) or an
upper (⊤) bound of the object. The 𝐨𝐮𝐭𝐬𝐢𝐝𝐞 values denote whether the
point is outside (⊤) or inside (⊥) the object bounds. Since both vari-
ables are dimension- and position-agnostic, their cross product produces
a data structure that encodes the position of each near-corner point of
any cuboid-shaped object. To determine whether an ancillary qubit is
to be inverted after performing the reflection step, qlbm simply queries
a single boolean value per dimension. This value is computed as given
in Equation (5).

𝐢𝐧𝐯𝐞𝐫𝐬𝐢𝐨𝐧 = 𝐛𝐨𝐮𝐧𝐝⊗ 𝐨𝐮𝐭𝐬𝐢𝐝𝐞 (5)

Where ⊗ corresponds to the point-wise XOR function. That is, each
ancillary qubit state is reset controlled on (1) the position of the grid-
point within the lattice and (2) the inversion boolean value associated
with its relative position with respect to the object. This technique is
powerful for two reasons. First, it saves 𝑑 qubits that would be required
to implement a quantum counterpart to this computation without alter-
ing the other components of the quantum state. Second, since all clas-
sical computations required for this purpose are trivial object-agnostic
boolean operations, the cost associated with this method is negligeable
with respect to the rest of the algorithm. qlbm enables such computa-
tions to be carried out entirely independently from the quantum circuit
generation details, and implements them in a separate Block class,
which interfaces with the Lattice counterpart. In practice, this means
users can choose to tune the reliance of their methods on classical com-
putation without necessitating any change to previously implemented
circuits. We note that qlbm uses the same mechanism to generate the
reflection circuits for both 2D and 3D reflection circuits, including all
edge cases around cuboid objects. The cartesian product of Equation
(4) generalizes to both points and edges (in 3D), and while the specific
function used to assign inversion boolean values differs per case, its im-
plementation remains straight-forward and efficient.

2.2.2. Computational improvements

Computational improvements involve techniques that leverage cur-
rent classical hardware to simulate QBM circuits efficiently. In this
section, we outline three kinds of techniques tailored to exploit the struc-
ture of QBM algorithms.

Statevector snapshots. Lattice Boltzmann Methods are inherently time-
dependent algorithms. In both classical and quantum LBMs, compu-
tations occur in a temporal loop that consists of repeated steps. This
means that the circuits that implement QBMs may be similar or even
identical for each individual time step. On real quantum hardware, this
observation is of lesser importance. While circuits can be reused, the
statevector produced by a QBM circuit after one step cannot be cloned
as input for the next. However, quantum simulators available today do

offer this option. In this subsection, we show how taking advantage of
the availability of the entire statevector can drastically decrease the time
required to simulate QBMs.

To showcase this improvement, we consider a scenario in which the
goal of the simulation is to perform 𝑛 time steps of the QTM algorithm,
and visualize the entire flow field encoded in the quantum state after
each step. This is a common method that helps researchers verify whether
the implementation of the circuit produces physically consistent behav-

ior. Fig. 7a depicts what an implementation of this workflow might look
like on quantum hardware. Each time step requires a different quantum
circuit, that is made up of 𝑘 repetitions of the same circuit nestled be-

tween state preparation and post-processing primitives. Following each
execution, measurements collapse the quantum state onto basis states
that can reconstruct the flow field. In total, the QTM single-time step
quantum circuit is executed (𝑛2) times, not accounting for the multi-

ple shots required for each step. This scaling emerges as a consequence
of the fact that to simulate and approximate the flowfield over 𝑛 time
steps, all 1 ≤ 𝑘 ≤ 𝑛 time steps require a separate simulation of 𝑘 con-

catenated single-step circuits each. Therefore, the single-step circuit is
executed 𝑛(𝑛 + 1)∕2 times, not accounting for the number of shots at
each step. This is a general requirement of the task, rather than a con-

sequence of the specific algorithmic implementation.

Fortunately, quantum simulators afford the extraction of additional
information from their representation of quantum states without requir-

ing multiple shots. Fig. 7b depicts an efficient implementation of the
same workflow on quantum simulators. Though the same structure is
preserved, the transfer of information from one time step to another
is fundamentally different in qlbm’s implementation. While iterating
through the (identical) time-step circuits, each statevector ψ𝑘 produced
by the circuit undergoes the following process. If post-processing is re-

quired, qlbm first creates a copy of the statevector, which it then passes
on to a sampling subroutine. Otherwise, a single instance of the data
suffices. Afterwards, qlbm produces samples of this statevector without
changing it. This enables the extraction of information required for visu-

alization while maintaining the statevector intact. After the information
has been extracted, the same statevector is fed back into the same time
step circuit, which updates it with one more iteration.

The core difference between the two approaches is that the latter
effectively takes snapshots of the statevector as the 𝑛 timestep circuits
iteratively evolve it. This enables a drastic increase in performance, as
only (𝑛) simulations of the single step algorithm are required. In qlbm,
we additionally increase the efficiency of this method by only construct-

ing and transpiling the time step circuit once and re-using it for each
iteration. In practice, using this method to simulate novel developments
of circuits massively decreases the time researchers spend verifying their
implementations.

Statevector sampling. Quantum simulation is an area of active research
that continuously improves the performance of quantum emulation
through new methods and software. Emerging methods all have differ-

ent strengths and weaknesses, which depend on the underlying hard-

ware and the simulated quantum circuits. To take advantage of the
plethora of simulation paradigms, we split the simulation procedure into
two distinct phases, as illustrated in Fig. 7b.

The first phase consists of the simulation of the quantum circuit up
to but not including the post-processing step. To enable the snapshot-

driven execution that reduces the complexity order, the simulator that
performs this routine must be able to retrieve the entire statevector
at the end of each time step. The second phase of the procedure in-

volves postprocessing and measurement. Unlike the time step circuit(s),
post-processing and measurement circuits are generally shallow and
simple. In addition to this, the state that emerges as a result of the
post-processing circuit is not of any importance to the next iteration
of the algorithm, and instead serves visualization and verification pur-

poses. Because the two phases are constrained by significantly different

Computer Physics Communications 315 (2025) 109699

10

C.A. Georgescu, M.A. Schalkers and M. Möller

1
 St

e
p

Initial

𝑞0 ∶ H
𝑞1 ∶ H
𝑞2 ∶ H

ψI

Step 1

𝑞0 ∶ × ∙
𝑞1 ∶ × X H
𝑞2 ∶ H

ψ1

Postprocess

𝑞0 ∶ X
𝑞1 ∶ H
𝑞2 ∶ X

ψP

Measure

𝑞0 ∶
?
?
?
?
?

??

𝑞1 ∶ ??

𝑞2 ∶ ??

2
 St

e
p

s

𝑞0 ∶ H
𝑞1 ∶ H
𝑞2 ∶ H

ψI 𝑞0 ∶ × ∙
𝑞1 ∶ × X H
𝑞2 ∶ H

ψ1 𝑞0 ∶ × ∙
𝑞1 ∶ × X H
𝑞2 ∶ H

ψ2 𝑞0 ∶ X
𝑞1 ∶ H
𝑞2 ∶ X

ψP
𝑞0 ∶

?
?
?
?
?

??

𝑞1 ∶ ??

𝑞2 ∶ ??

𝐧
S
te

p
s

𝑞0 ∶ H
𝑞1 ∶ H
𝑞2 ∶ H

ψI 𝑞0 ∶ × ∙
𝑞1 ∶ × X H
𝑞2 ∶ H

ψ1 . . . ψn−1 𝑞0 ∶ × ∙
𝑞1 ∶ × X H
𝑞2 ∶ H

ψn 𝑞0 ∶ X
𝑞1 ∶ H
𝑞2 ∶ X

ψP
𝑞0 ∶

?
?
?
?
?

??

𝑞1 ∶ ??

𝑞2 ∶ ??

(a) Standard simulation of an 𝑛-step QBM algorithm.

Initial

𝑞0 ∶ H
𝑞1 ∶ H
𝑞2 ∶ H

ψI

Step

𝑞0 ∶ × ∙
𝑞1 ∶ × X H
𝑞2 ∶ H

ψ𝑘 →ψ𝑘+1

ψ𝑘

Process

𝑞0 ∶ X
𝑞1 ∶ H
𝑞2 ∶ X

ψPk

Measure

𝑞0 ∶
?
?
?
?
?

??

𝑞1 ∶ ??

𝑞2 ∶ ??

Statevector Simulator Sampling Simulator

(b) Snapshot simulation of an 𝑛-step QBM algorithm.

Fig. 7. Comparison of simulation strategies for multistep QBM algorithms.

requirements, qlbm allows for the specification of different simulators
for each phase.

The goal of this distinction is to take advantage of simulation tech-

nology that favors the simulation of shallow circuits in the latter stages
of each time step. In the general case, this requires two copies of the
statevector to be kept in memory at the same time – one that serves as
input to the following time step iteration, and one that serves as input
to the post-processing and measurement stage. Fortunately, in the nom-

inal scenario where researchers are interested in visualizing the entire
flow field evolved by the circuits, post-processing is circumvented. In
practice, this means that the quantum state computed by the time step
circuit can effectively be sampled by a different, more suitable simulator
with no additional copy required.

Reinitialization. Simulating QBM algorithms on classical hardware
comes with inherent limitations. Clearly, the exponential memory ad-

vantage that quantum computing promises is not achievable through
classical emulation. With this fundamental limitation come several prac-

tical challenges. One such challenge facing the snapshot and sampling
techniques stems from the transition between time steps. For algorithms
like QTM, the time step transition on quantum simulator consists of a
single straightforward transfer of the statevector from one circuit to the
next. However, this is not the case for most QBM algorithms.

We consider the STQBM algorithm [62] as an example. To circum-

vent the non-unitarity of streaming in the computational basis state
encoding, the STQBM algorithm uses velocity information from neigh-

boring gridpoints. In the general case, this utilizes (𝑁𝑑
𝑡
) additional

qubits to propagate spacial information in time, with 𝑁𝑡 the number

of time steps to simulate and 𝑑 the number of dimensions of the prob-

lem. Due to memory limitations, the direct simulation of more than a
few time steps of this algorithm is infeasible for most classical hardware
available today. To circumvent this constraint, an effective reinitializa-

tion mechanism is required. Such a mechanism converts information
encoded in the quantum state at the end of a simulation into a quan-

tum circuit that prepares the state for following time step(s).

We emphasize that this use of reinitialization is not exclusive to the
STQMB. Though the underlying reasons differ, other approaches may
require similar mechanisms. We consider the LCU-based paradigm [13,
14] as an additional example. Due to how LCU-based methods perform
collision, the quantum state contains an additional component, which
is orthogonal to the component encoding the state of the flow field. In
practice, this makes many measurements obtained from the quantum
state produced by LCU time step circuits irrelevant for the flow field
computation. This makes reinitialization techniques valuable, as they
segregate the algorithm into smaller restart-driven blocks that prevent
the orthogonal state component from propagating.

To facilitate the development of all three kinds of QBMs, we equip
qlbm with a uniform reinitialization interface. Fig. 8 depicts how reini-

tialization integrates into the efficient QBM simulation loop. After a
circuit implementing one or more time steps has been assembled (upper,
left-hand quadrant), simulation can commence. A simulator backend of
the user’s choice, such as Qiskit or Qulacs then evolves the quantum
state by the full time step circuit from |0⟩⊗𝑛 into ψ𝑘 (upper right-hand
quadrant). The nominal qlbm flow then directs the quantum state to-

wards the sampling backend. At this stage, information is extracted from
the state in the form of counts, which include the measured basis states

Computer Physics Communications 315 (2025) 109699

11

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 8. qlbm reinitialization loop.

and their relative frequency with respect to a pre-determined number
of shots. It is this information that enables qlbm’s integration with ex-

ternal visualization techniques.

After extracting the samples from the quantum state, the statevec-

tor and the counts are fed to an instance of the Reinitializer class.
This class provides restart methods that are tailored to the algorithm
being simulated. The Reinitializer object performs the appropri-

ate processing of the input data to obtain the initial conditions of the
next time step circuit. For the QTM algorithm, this only involves wrap-

ping the statevector in an appropriate interface – counts are disregarded.
For STQBM, the process involves parsing the counts information and
constructing a new quantum circuit that propagates the velocity in-

formation to neighboring grid points. In this case, the statevector ob-

ject is discarded. Following the reinitialization step, the novel initial
conditions circuit is automatically compiled to the appropriate target
platform. To enable seamless interaction between the reinitializer and
the rest of the simulation infrastructure, qlbm’s base Reinitializer
provides a stable and uniform interface that requires no modification
for the implementation of novel algorithms. Together with the flexible
component interface described in Section 2.1, this enables the on-the-

fly composition of the newly derived circuit with the unchanged time
step circuit from the previous iteration. We note that next to develop-

ing the quantum circuits, implementing (or reusing) a Reinitializer
class and adjacent Result class (for parsing and visualizing samples)
are the only other step researchers need to take to fully implement
a QBM algorithm in qlbm, while retaining all performance enhance-

ments.

2.3. Interfacing and integration

Providing intuitive interfaces is crucial for making software acces-
sible to both researchers and practitioners. In this section, we describe
how users can interact with qlbm as a QBM simulation tool, before ad-
dressing qlbm’s integration with external software.

2.3.1. Interfacing

One of the advantages of qlbm’s internal component representation
is that it enables automatic circuit construction. This shifts the burden
of realizing system-specific circuits from the user to the logic inside
the software. In turn, this means users should have access to a seam-
less way of specifying complex quantum circuits. To address this need,
qlbm provides the option for users to specify system properties in an
implementation-agnostic way through a JSON interface.

Fig. 9 contains an example of such a specification. When parsing this
specification, qlbm uses the lattice properties to determine the appro-
priate qubit register setup, as well as the structure, position, and order
of quantum components that compose the algorithm. Next to discretiza-
tion details such as the number of gridpoints in each dimension (lines
3-6) and number of discrete velocities (lines 7-10), users can addition-
ally specify properties of the geometry within the system (lines 12-23).
Each geometric object is composed of a lower and an upper bound in
each dimension (lines 14, 15), together with the object’s boundary con-
ditions (line 16). In the current version of qlbm, only cuboid-shaped
geometries are supported for the QTM algorithm, with either specular
or bounce-back boundary conditions. To accommodate the development
of novel algorithms, qlbm parses the exact same specification file to
derive multiple QBMs. Internally, the Lattice class provides a base

Computer Physics Communications 315 (2025) 109699

12

C.A. Georgescu, M.A. Schalkers and M. Möller

1 {
2 " l a t t i c e " : {
3 " d i m " : {
4 " x " : 1 6 ,
5 " y " : 1 6
6 } ,
7 " v e l o c i t i e s " : {
8 " x " : 4 ,
9 " y " : 4

10 }
11 } ,
12 " g e o m e t r y " : [
13 {
14 " x " : [9 , 1 2] ,
15 " y " : [3 , 6] ,
16 " b o u n d a r y " : " s p e c u l a r "
17 } ,
18 {
19 " x " : [9 , 1 2] ,
20 " y " : [9 , 1 2] ,
21 " b o u n d a r y " : " b o u n c e b a c k "
22 }
23]
24 }

Fig. 9. Sample qlbm lattice configuration.

that includes a parser, which specialized implementations can leverage.
In practice, this means utilities that warn users of ill-formed specifica-
tions can be shared between algorithms, and excessive information (i.e.,
boundary conditions that are not yet supported by some QBMs) can be
discarded.

qlbm offers several alternatives that bridge the gap between the
high-level JSON specification and nuanced details of the simulation.
Fig. 10 depicts the most user-friendly interface available in qlbm, based
around the SimulationConfig wrapper. First, users choose a lattice
file to simulate, written in the same format as Fig. 9 (line 12). Next, the
SimulationConfig class (lines 13-23) defines a convenient container
that bundles together all required simulation data. This includes the spe-
cific components that make up the quantum algorithm (lines 14-17), the
platforms that run and compile the quantum circuits (lines 18-20), and
explicit simulator choices (lines 21-23). The components and simulator
choices correspond exactly to the workflow described in Section 2.2.2
and Fig. 7. At this stage, no additional user configuration is required,
as qlbm infers all quantum registers and circuits based on the parsed
lattice data alone.

Following configuration, a single call to the prepare_for_simu-
lation() method of the configuration object determines whether the
user-supplied configuration is valid and compiles all circuits to the ap-
propriate simulator format. Next, users need only make a call to the
run() method of a Runner object, specifying the number of time steps
to simulate, the number of shots to sample from the statevector, and
whether to use the snapshot mechanism. We note that the distinction be-
tween where the sampling and snapshot mechanisms are specified stems
from the fact that sampling requires a different compilation pipeline if
enabled, and as such needs to be specified at circuit assembly time. We
discuss the different available options for both compilers and runners in
the following subsection.

2.3.2. Infrastructure and integration

The field of quantum software is rapidly evolving. The quality, scope,
and variety of available software are continuously increasing as re-
searchers develop new methods to bridge the gap between the current-
day hardware and fault tolerance. Such improvements are evident at
multiple stages of the quantum software pipeline, and taking advantage
of them is crucial for increasing the pace and quality of related re-
search. In this section, we elaborate how advances in quantum software

1 f r o m q i s k i t _ a e r i m p o r t A e r S i m u l a t o r
2
3 f r o m q l b m . c o m p o n e n t s i m p o r t (
4 C Q L B M ,
5 C o l l i s i o n l e s s I n i t i a l C o n d i t i o n s ,
6 E m p t y P r i m i t i v e ,
7 G r i d M e a s u r e m e n t ,
8)
9 f r o m q l b m . i n f r a i m p o r t Q i s k i t R u n n e r , S i m u l a t i o n C o n f i g

10 f r o m q l b m . l a t t i c e i m p o r t C o l l i s i o n l e s s L a t t i c e
11
12 l a t t i c e = C o l l i s i o n l e s s L a t t i c e (" l a t t i c e . j s o n ")
13 c f g = S i m u l a t i o n C o n f i g (
14 i n i t i a l _ c o n d i t i o n s = C o l l i s i o n l e s s I n i t i a l C o n d i t i o n s (

l a t t i c e) ,
15 a l g o r i t h m = C Q L B M (l a t t i c e) ,
16 p o s t p r o c e s s i n g = E m p t y P r i m i t i v e (l a t t i c e) ,
17 m e a s u r e m e n t = G r i d M e a s u r e m e n t (l a t t i c e) ,
18 t a r g e t _ p l a t f o r m = " Q I S K I T " ,
19 c o m p i l e r _ p l a t f o r m = " Q I S K I T " ,
20 o p t i m i z a t i o n _ l e v e l = 0 ,
21 s t a t e v e c t o r _ s a m p l i n g = T r u e ,
22 e x e c u t i o n _ b a c k e n d = A e r S i m u l a t o r (m e t h o d = " s t a t e v e c t o r ") ,
23 s a m p l i n g _ b a c k e n d = A e r S i m u l a t o r (m e t h o d = " s t a t e v e c t o r ") ,
24)
25
26 c f g . p r e p a r e _ f o r _ s i m u l a t i o n ()
27 r u n n e r = Q i s k i t R u n n e r (c f g , l a t t i c e)
28 r u n n e r . r u n (
29 2 0 , # N u m b e r o f t i m e s t e p s
30 4 0 9 6 , # N u m b e r o f s h o t s p e r t i m e s t e p
31 " q l b m -o u t p u t " , # O u t p u t d i r e c t o r y
32 s t a t e v e c t o r _ s n a p s h o t s = T r u e ,
33)

Fig. 10. Sample qlbm usage.

technology affect qlbm, and how its integration with external software
infrastructure can accelerate QCFD research. We begin by addressing
how qlbm assembles quantum circuits before focusing on simulation,
compilation, and visualization, respectively.

Circuit specification. Over the years, many quantum programming
frameworks and languages have emerged for various platforms and spec-
ifications. Popular general-purpose quantum programming frameworks
include the Open Quantum Assembly Language (OpenQASM) [22] Quip-
per [29], ProjectQ [71], Cirq [24], and Qiskit [37]. qlbm builds its
internal representation of quantum circuits on top of Qiskit’s Quan-
tumCircuit class. Specifically, each qlbm primitive, operator, and
algorithm holds an internal Qiskit quantum circuit that is built from
either a small set of parameters or from a Lattice specification. We
select Qiskit for three main reasons. First, its large ecosystem encom-
passes many useful pieces of adjacent infrastructure, including analysis
and visualization tools. Second, Qiskit’s popularity increase the acces-
sibility and reach of qlbm with a broader user base. Finally, its rich
toolkit of circuits makes the specification of elaborate quantum circuits
seamless. It is especially this feature that enables qlbm’s modular com-
ponent architecture and circuit composition capabilities.

Simulation. Using classical hardware to simulate the exponentially
large space that logical qubits reside in is an inherently limiting task.
In the case of arbitrary random circuits, the amount of classical mem-
ory required to simulate a quantum algorithm doubles with every qubit.
In spite of this fundamental limitation, researchers and engineers have
been developing tools that can significantly accelerate quantum simu-
lation and increase the domain of algorithms that classical hardware
can meaningfully emulate. When considering the advancements that
quantum simulation technology has undergone in recent years, one can

Computer Physics Communications 315 (2025) 109699

13

C.A. Georgescu, M.A. Schalkers and M. Möller

distinguish between two main directions. The first direction concerns
the simulation method. Quantum states can be represented directly
as numerical instances of statevectors and density matrices, but also
symbolically through graphs [77], tensor networks [51], and decision
diagrams [80]. Though none of these methods fully overcome the ex-
ponential disadvantage that classical hardware faces, each of them may
provide practically meaningful advantages for particular classes of prob-
lems. Second, improvements in simulation performance can also come
from how the simulation method integrates with hardware. To this end,
engineers have developed simulators for different platforms, including
general purpose CPUs, as well as ARM-based clusters [35] and GPUs
[32,26].

Selecting suitable simulation methods for the hardware at hand is
pivotal for speeding up the simulation and development of QBM algo-
rithms. To reduce the friction between the zoo of available simulator
implementations and the researchers looking to exploit them, qlbm pro-
vides several built-in presets. The simulation modules of qlbm rely on
two external libraries: Qiskit [37] and Qulacs [75]. Qiskit provides a
plethora of simulator options through its qiskit-aer package, which
include nine different simulation techniques for heterogeneous com-
puter hardware. Qulacs provides a competing implementation of a stat-
evector simulator that has been shown to outperform Qiskit in several
benchmarks [75]. Both Qiskit and Qulacs provide CPU and GPU imple-
mentations of their methods under similar interfaces, which qlbm in-
herits and provides different installations for. A third option natively
supported in qlbm is MPIQulacs [35], a multi-node alternative of Qulacs
designed for ARM-based compute clusters, that enables the distributed
simulation of quantum algorithms.

The implementations that link qlbm to each simulator reside un-
der specialized implementations of a base Runner class. Any of the
three implementations can be swapped into the same workflow that
Fig. 10 shows (i.e. by swapping the QiskitRunner instruction in line
27). Moreover, users can decide which of the three (CPU, GPU, or
MPIQulacs) options they want to use at install time by specifying a
single installation parameter. To further boost the reproducibility of re-
search carried out with qlbm, we provide versioned installation options
for python environments, as well as Docker containers. For the latter,
we bundle qlbm with custom container images that build on top of
lightweight Python images and the NVIDIA cuQuantum Appliance for
GPU simulation.

Circuit compilation. Much like classical software, high-level descrip-
tions of quantum circuits undergo a compilation process that translates
the circuits to an instruction set that is compatible with a specific piece
of hardware or simulator. To complement the modularity of qlbm’s
circuit specification and simulation options, a similarly versatile com-
pilation system is required. Compilers with configurable platforms are
called retargetable. We integrate qlbm with two such retargetable com-
pilers: Qiskit [37] and Tket [70]. Both frameworks offer a broad range
of compilation targets and optimization techniques that can target both
quantum simulators, as well as quantum hardware. Providing both op-
tions by default inside qlbm allows researchers to experiment with
competing compilation options that may be favorable for different sce-
narios. For this purpose, we additionally build logging and analysis tools
within qlbm, that allow users to automate the exploration and bench-
marking of available options.

From an implementation standpoint, qlbm simplifies the interaction
between the framework and available compilers by providing a sin-
gle entry point through a CircuitCompiler class. Through a single
call to the object constructor, users can specify the compiler platform
(Qiskit or Tket) and its target (Qiskit or Qulacs) without any additional
complications (i.e. CircuitCompiler("TKET", "QISKIT")). Addi-
tional options are available through the single .compile() method
that allows users to select different backends and optimization levels.
Currently, qlbm makes all cross-combinations of compiler platforms
and targets available. This includes all extensions of Qiskit and Tket

Backends, both simulator and hardware-specific emulators, as well
as the Qulacs and MPIQulacs. To further simplify the interaction be-

tween the qlbm users and the vast number of viable combinations,
we implement compilers in such a way that qlbm components can
be directly input into the compiler, without requiring any processing
or decomposition of the circuit (i.e. CircuitCompiler("QISKIT",
"QULACS").compile(CQLBM(lattice), ...)).

Visualization. Visualization serves two main purposes in qlbm. The
first is to convert the information extracted from the quantum state
at the end of the computation into a visual interpretation of the flow
field. Developers can use this feature to verify the correctness of an
implementation and the evolution of the flow field over time. For debug-

ging purposes, we additionally allow users to save the statevector and
counts to disk alongside the flow field visualization. The second goal of
qlbm visualization tools is to provide a means for quickly assessing the
difference in the performance and scaling of QBM algorithms and their
adjacent infrastructure. To achieve this, qlbm provides scripts that au-

tomate both the parsing of log information into common data formats
and the conversion of the extracted data into plots.

Implementation-wise, flow field visualization relies on the Visual
Toolkit (VTK) [65] software package to efficiently encode flow field
count data into standard formats. For geometry data, qlbm converts the
cuboid bounds into triangulated surfaces in the commonplace stl for-

mat. Both flow field and geometry visualization conversions take place
into specialized implementations of the base QLBMResult class that is
specific to each QBM and integrates with the rest of the infrastracture.
We select these formats specifically such that each artifact generated by
qlbm can be visualized in Paraview [2] without any additional user in-

tervention. Finally, performance logs are parsed by scripts bundled in
Jupyter Notebooks for easy editing and plotting within the qlbm envi-

ronment.

3. Results

This section demonstrates the experimental capabilities of qlbm. We
highlight the computational and analysis tools of qlbm in order of the
workflow depicted in Fig. 1. Section 3.1 showcases how the properties
of quantum circuits can be analyzed by parameterizing the high-level
JSON configuration files. In Section 3.2, we address the next step in
the qlbm workflow – compilation. We specifically analyze the perfor-

mance of different compilers and the trade-offs they present. Section 3.3

covers simulation performance in detail. We begin by comparing the
performance of different simulation platforms, before considering GPU
compatibility. We also highlight how the computational improvements
of concerning statevector processing significantly speed up simulation.
Finally, Section 3.4 displays the visualization options that qlbm sup-

ports. All experiments were performed on a machine equipped with an
AMD Ryzen 7 5800H CPU, 16 GB of RAM, and an NVIDIA 3050Ti GPU
with 4GB of VRAM.

3.1. Algorithmic scalability

We begin analyzing the scalability of the QTM algorithm [61] ex-

pressed as the high-level circuit that qlbm generates as a platform-

agnostic quantum circuit. The simple specifications through which users
configure qlbm makes it such that many different parameters can be iso-

lated and analyzed independently. For the purposes of this experiment,
we select the number of objects within the fluid domain and the number
of grid points in each dimension as the subjects of the analysis, because
of their impact on the structure and depth of the quantum circuit. We
consider the depth of the circuit and the time it takes qlbm to assem-

ble it. To mitigate the effects of noise, we execute each experiment 5
times. The aim of this analysis is to highlight how qlbm facilitates the
experimental analysis of quantum circuit implementation.

Computer Physics Communications 315 (2025) 109699

14

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 11. Comparison of QTM algorithm properties for uniform lattices between 16× 16 and 512 × 512 × 512 grid points and between 0 and 6 obstacles with bounce-

back boundary conditions.

We note that the QTM algorithm requires
∑

𝑗⌈log2𝑁𝑔𝑗
⌉ positional

qubits,
∑

𝑗⌈log2𝑁𝑣𝑗
⌉ velocity qubits, and 4𝑑−2 ancilla qubits, where 𝑑

is the number of spatial dimensions of the system, 𝑁𝑔𝑗
is the number of

gridpoints the lattice spans across dimension 𝑗, and 𝑁𝑣𝑗
is the number

of discrete velocities in that dimension. Throughout our experiments,
we select algorithms with either 2 or 3 dimensions and between 16×16
and 512×512×512 gridpoints, which require between 18 and 43 qubits,
which may be reduced by either 1 or 2 by the adaptive register setup
mechanism. For an in-depth analysis of the qubit register setup and of
the complexity of the algorithm, we point the reader to Sections 3 and
7 of [61], respectively. Fig. 11 displays the experimental results.

Fig. 11a and Fig. 11b show how dimensionality, grid refinement, and
geometry affect the time it takes for qlbm to assemble the quantum
circuits. Dimensionality and grid refinement both affect the number of
qubits required to simulate the system, and as such they introduce addi-

tional linear complexity in the circuit. The number of (cuboid) obstacles
has a similarly significant and linear on the assembly duration. This
behavior is expected, as the implementation of QTM algorithm reuses
structurally identical comparator operators to determine which popula-

tions to stream, for each edge and surface of an object. Of note is that
the majority of the complexity of the QTM algorithm stems from reflec-

tion. Increasing the number of obstacles from 1 (median assembly time
5.35s) to 5 (median assembly time 34.8s) causes a similar proportional
increase in assembly time (6.50) as increasing the dimensionality of the
system from 2D (median assembly time 5.38) to 3D (median assembly
time 37.4) while keeping the number of obstacles fixed (proportional
increase 6.96). The assembly duration increases are consistent with the
number of gates of the algorithm shown in Fig. 11c and Fig. 11d. Both
geometry complexity and grid refinement affect the scaling of the num-

ber of gates linearly.

The increase in both gate count and assembly time originates from
two sources. First, operations on individual lattice locations require con-

trolled operations based on the entire grid register. These operations
primarily occur around the corner points of objects, and they make the
distinction between which populations are subject to boundary condi-

tion treatment. As the size of grid register scales with the refinement
of the underpinning lattice, so does the number of gates required to set
and reset the quantum state for each point. The second reason for the

grid point-driven scaling has to do with the controlled incrementation
operation that both streaming and reflection utilize. These circuits rely
on a QFT operation followed by a controlled phase shift that increments
the position of particles in physical space by one grid point. Each of
these operations too scale with the size of the grid register, as incre-
mentation has to take place uniformly. Geometry-based scaling stems
from the fact that the qlbm implementation of QTM boundary condi-
tions iterates through each surface of each obstacle in the lattice, which
adds a number of gates that scales linearly with the number of obstacles.
Finally, we emphasize that qlbm enables the analysis of such algorith-
mic properties for all quantum components (i.e. primitives, operators,
algorithms), which in turn facilitates resource estimation for different
implementations. In Section 3.2, we extend this analysis to low-level
circuits targeted towards specific gate sets.

3.2. Compiler comparison

We shift focus towards analyzing the QBM circuits after transpiling
them to lower-level gate sets. Here, we consider the performance of the
Qiskit and Tket compilers and their trade-offs. We again use the end-
to-end QTM algorithm [61] as a benchmark, and analyze three metrics
for each compiler – compilation time, circuit depth, and gate count.
Together, these three metrics give an indication of the trade-offs that
users face when choosing between transpilation times and performance.
For the compiler platform, we select the Qulacs gate set available both
in Qiskit and Tket through the qiskit-qulacs and pytket-qulacs
packages, respectively. Qulacs has a significantly more restricted gate
set than the one that qlbm uses to construct quantum circuits, which
makes it a suitable candidate for such a benchmark because of its
likeness to real quantum hardware constraints. We select a 17 qubit
quantum circuit simulating one time step of a 16 × 16 grid with 4 dis-
crete velocities in each dimensions and between 0 and 6 obstacles with
bounce-back boundary conditions placed at different positions on the
grid. We specifically select the number of obstacles as the parameter to
be varied as it only influences the depth and number of gates of the cir-
cuit, rather than the number of qubits. This factor also has the largest
impact on algorithm complexity, after dimensionality.

Fig. 12 displays the results. When assessing compiler performance in
terms of the conciseness of the generated circuit, Fig. 12a and Fig. 12b

Computer Physics Communications 315 (2025) 109699

15

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 12. Compiler comparison for 2D QTM algorithm for a 16 × 16 grid with 4 discrete velocities per dimension and between 0 and 6 obstacles in the domain.

show that the Tket and Qiskit compilers have different strengths. While
Qiskit generates circuits that contain up to 50.000 fewer gates than their
Tket counterparts, the Tket circuits have a depth that is up to 20.000
gates shallower. For both compilers, the depth and the gate count scale
linearly with the number of obstacles in the grid, which is in line with
the scalability analysis. A third natural consideration when assessing
compilers is computation time. While the scaling is again linear for
both candidates, Tket is significantly faster than Qiskit, and is able to
transpile the most complex circuit in under one sixth of the time that
Qiskit requires. The qlbm analysis and benchmark suite makes such
experiments easy to execute and replicate, which in turn helps practi-
tioners make informed decisions that can significantly accelerate their
workflows. We next extend this analysis to the performance of different
simulators under nominal use cases on different hardware platforms.

3.3. Performance comparison

Selecting the appropriate simulation technology for the hardware
available at hand is a necessity for optimizing the development process
of novel QBMs. Performance is sensitive to many factors, including the
simulation paradigm, its compatibility with available hardware, and its
suitability for the structure of the circuits being simulated. Constructing
QBM implementations that are versatile enough to allow for experi-
mentation with all of these parameters is a time-consuming ordeal that
qlbm seeks to relieve researchers of. In this subsection, we demonstrate
automated experiments that users of qlbm can easily carry out to as-
sess the performance of simulation software for their specific needs. We
begin with assessing different simulators with out-of-the-box settings
before assessing the statevector snapshot technique described in Sec-
tion 2.2.2 and showing its integration with GPUs.

Simulator comparison. Perhaps the most important choice when it
comes to assessing simulation performance is choosing the appropriate
software library. This poses a challenge for developers, as differences
in library APIs, software dependencies, and circuit assumptions can all
hamper the simulation of QBMs. To alleviate these burdens, qlbm pro-
vides two features. First, the modular design of the Runner module
allows for easy extendibility to novel simulators. Second, the built-in
SimulationConfig class automatically parses all components that
make up the QBM into the appropriate format for simulation, for any

provided simulator. We demonstrate such experiments by comparing
the baseline Qiskit AerSimulator with two alternatives: Qulacs [75]
and DDSIM. 2 Though tensor networks [51] provide promising alter-

natives to statevector- and decision diagram-based simulators, we steer
away from the former in this empirical analysis due to high degree of
entanglement between the grid, velocity, and ancilla qubits, which is
a known weakness of tensor networks. To ensure fairness, we compare
each simulator against the baseline in independent Python virtual en-

vironments because of dependency discrepancies. Statevector snapshots
and sampling are both turned off in this experiment.

Fig. 13 displays the results. Fig. 13a indicates that Qiskit and Qulacs
perform similarly well for all 7 instances. For lattices with up to 3 obsta-
cles, the performance of the two simulators is almost indistinguishable.
For the instance with 4 obstacles, Qulacs slightly outperforms Qiskit,
while the instances 3, 5, and 6 obstacles slightly favor Qiskit. Fig. 13b
shows the comparison between the same Qiskit simulator and DDSIM.
Here, all instances show a significant difference between the simulators,
in favor of Qiskit. As the circuits grow more complex (i.e. more obsta-
cles), the difference becomes practically more relevant. While this in no
way implies the general superiority of the Qiskit simulator, it hints at the
fact that the circuits that implement the QTM algorithm in qlbm may
be structurally a poor fit for the decision diagram decomposition that
DDSIM relies on. This kind of analysis can point researchers towards
the simulator that best fits the kind of algorithm they are working on
extending or implementing. In what follows, we analyze how the stat-

evector snapshot technique can significantly increase the performance
of any simulator capable of capturing entire statevectors.

Statevector snapshots. Fig. 14 shows the scalability of the statevector
snapshot and sampling techniques described in Section 2.2.2. Dashed
lines indicate configurations that were simulated with both techniques
enabled, whereas solid lines indicate regular simulations. Both sets of ex-

periments were repeated 5 times, and the figures illustrate the mean and
standard deviation of the simulation time, respectively. For consistency,
we consider the same benchmark example as in the previous experi-

ments. Both the generation of the circuits, as well as the compilation
(through Qiskit) were handled through the standard qlbm workflow.

2 DDSIM is available at https://github.com/cda-tum/mqt-ddsim.

https://github.com/cda-tum/mqt-ddsim

Computer Physics Communications 315 (2025) 109699

16

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 13. Simulator comparison for 2D QTM algorithm for a 16 × 16 grid with 4 discrete velocities per dimension and between 0 and 6 obstacles in the domain, for
up to 20 time steps.

Fig. 14. Comparison of statevector snapshot performance for a 16 × 16 grid with 4 discrete velocities per dimension and between 0 and 6 obstacles in the domain,
for up to 20 time steps.

All simulations were carried out on Qiskit’s AerSimulator with the
statevector method, which has shown the best performance in pre-

vious instances.

The results confirm the complexity analysis provided in Section
2.2.2. Focusing on Fig. 14a, the results show how when combined, the
snapshot and sampling techniques can decrease the time required to
perform a 20-step simulation by up to a factor of 6. The deviation in per-

formance is increasingly visible as the complexity of the circuit scales
with the number of obstacles in the fluid domain. Concretely, simula-

tions that use both of our computational improvement techniques scale
linearly in the number of steps simulated, while the standard simula-

tion method scales quadratically. In the practical development cycle,
this drastically accelerates the pace at which researchers can verify and
debug their implementations. Since the difference between statevector
snapshots and regular simulations scales linearly with the complexity of
a single time step circuit, the number of time steps that snapshots save
is always higher for more complex systems. This is a valuable improve-

ment in practice, as more complex systems generally require more runs
to verify and debug.

We also note that the transfer of statevectors between simulators,
despite not requiring a deep copy, still introduces overhead that is mean-

ingful in some instances. This is especially visible for shorter circuits,
where statevector transfer between simulators takes up a higher percent-

age of the computational time. For simpler circuits, such as the instances
with 1 and 2 objects, the scaling advantage only overtakes this overhead
after 4 and 3 steps, respectively. As the complexity of the simulated cir-

cuits increases however, the number of steps required for the statevector
snapshots to become advantageous decreases. For the instance with 3
obstacles, the overhead is only unfavorable for the first time step, fol-

lowing which the scaling factor becomes dominant. To better highlight
this downside of snapshots, we zoom in Fig. 14b. Averaging over all lat-

tice configurations, it takes 3 time steps to gain a practical advantage
from the snapshot mechanism, which also proved advantageous for all

runs after 5 time steps (or more). As researchers are typically interested
in simulating tens or hundreds of time steps for algorithmic verifica-
tion purposes, this overhead is rarely a downside in practice. In the next
paragraphs, we show the versatility of the snapshot mechanism by per-
forming simulations on a GPU.

GPU integration. All qlbm performance improvements can leverage
multiple compute architectures, including GPUs and ARM-based CPUs.
We demonstrate this by showing the applicability of the statevector
snapshot mechanism when applied to GPU simulation. We use the same
benchmark as in the previous two example and compare the Qiskit
AerSimulator running CPU and GPU devices with both snapshots
and sampling optimizations enabled. The GPU simulator leverages the
cuQuantum SDK [7] and runs in a modified Docker container, based on
the NVIDIA cuQuantum Appliance. As with all examples used through-
out this manuscript, we make the container used in this benchmark
available with the rest of code base.

Fig. 15 shows the results. Both the CPU and GPU simulator display
the same linear scaling as Fig. 14. The CPU version slightly edges its
GPU counterpart in 4 of 7 instances, but no significant difference occurs
between the two. As in the Qulacs and DDSIM example, these experi-
ments are meant to highlight the ease with which practitioners can test
different simulator options that pertain to heterogeneous hardware plat-
forms, within the qlbm workflow. Furthermore, the results demonstrate
the versatility of the snapshot and sampling techniques, which nets users
significant improvements when compared to naive implementations. In
what follows, we feature how qlbm makes use of these effective simula-
tion techniques to create detailed and useful visualizations of the system
under simulation, concluding the workflow.

3.4. Visualization integration

Visualization serves two important purposes in the qlbm pipeline.
First, it allows researchers to verify the correctness of their implemen-

Computer Physics Communications 315 (2025) 109699

17

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 15. CPU and GPU performance comparison using statevector snapshots for
a 16 × 16 grid with 4 discrete velocities per dimension and between 0 and 6
obstacles in the domain, for up to 20 time steps.

tation. This is especially important when addressing end-to-end algo-

rithms. Complete circuits may be hundreds of thousands of gates deep
and simultaneously address dozens of boundary condition edge cases,
and visualization provides a means of assuring that end-to-end integra-

tion of the quantum components is sound in relation to the physical
system being simulated. The second grounds for visualization is accessi-

bility. For users familiar with classical CFD workflows, integration with
established visualization software bridges the gap between the novelty
of the quantum methods and standard practices. In this subsection, we
demonstrate the built-in Paraview [2] integration of qlbm for both
the QTM [61] and STQBM [62] algorithms.

Fig. 16 depicts the evolution of a 2D system with 64 grid points in
each dimension and seven obstacles placed in close proximity to one
another. Each dimension has 4 discrete velocities, and the entire circuit
is comprised of only 22 qubits. Obstacles depicted in grey are imposed
bounce-back boundary conditions, while black objects implement spec-

ular reflection. The edges of the domain implement periodic boundary
conditions. Fig. 16a shows the initial conditions of the system, with
particles distributed uniformly throughout the left half of the domain.
Darker shades of red indicate the presence of a higher concentration of

particles. Any irregularities in the density stem from the stochasticity
of the counts extracted from the quantum state at the end of each time
step. While inexact, this is the same process that one would follow on
actual quantum hardware. The initial conditions are set up with native
quantum gates, and are such that all particles in the systems have ve-

locities pointing in the positive directions in both the 𝑥 and the 𝑦 axes.
Intuitively, particles are moving towards the upper right-hand corner
of the domain. Fig. 16b, Fig. 16c, and Fig. 16d show the evolution of
the system after 16, 32, and 64 steps. Higher particle densities emerge
naturally at the boundaries of objects, as well as in areas where parti-

cles meet as a result of the change in direction caused by the different
boundary conditions of the objects. Fig. 16c showcases the difference
between the two types of boundary conditions: the particles interacting
with the obstacles in the upper half of the domain get reflected along
their previous trajectory, while their conterparts in the lower half of the
domain interact differently with the obstacle walls.

Fig. 17 highlights an example of a 3D flow in a 16 × 16 × 16 system
with 2 bounce-back boundary conditioned obstacles of different shapes.
As in the previous example, each dimension has 4 discrete velocities.
With qlbm’s adaptive register setup, the entire quantum circuit only re-

quires 28 qubits. Each discrete grid point is represented by a sphere, the
color of which denotes the relative density of particles at that physical
location. As in the 2D example, darker shades of red indicate higher den-

sities, and dark blue spheres indicate the absence of particles. Fig. 17a
again shows the initial conditions, which are the 3D equivalent of the
previous example. We choose this specific visualization integration as
it allows for the examination of individual grid locations that corre-

spond to specific edge cases in the underlying quantum algorithm, which
makes verification significantly less tedious than otherwise parsing in-

formation from the computed quantum state. We also highlight the fact
that in the qlbm implementation of the QTM algorithm, there are no
additional constraints on 3D systems: the same boundary conditions,
simulation techniques, and visualization media are supported.

Fig. 18 illustrates the evolution of a 8 × 8 system simulated with
the STQBM algorithm. In addition to streaming, the STQBM also per-

forms collision at the cost of including neighboring velocity informa-

Fig. 16. Simulation of the QTM algorithm [61] on a 64 × 64 grid for with 7 solid obstacles for 64 time steps. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

Computer Physics Communications 315 (2025) 109699

18

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 17. Simulation of the QTM algorithm [61] on a 16 × 16 × 16 grid for with 2 solid obstacles for 9 time steps.

tion for each grid point. In practice this limits the size of systems that
classical hardware can emulate for practical development and research
purposes. For the 5 steps in Fig. 18, 1024 qubits would have been re-

quired to simulate the end-to-end system, which is infeasible for any
classical hardware available today. The simulation was instead per-

formed using qlbm’s automated reinitialization mechanism described
in Section 2.2.2, which can function with circuits as small as one time
step. While this does inherently introduce inaccuracies in the quantum
computation, the space-time encoding is less susceptible to this than
amplitude-based methods, and the performance advantage gained from
reinitialization is substantial – the entire simulation, including parsing
the results into the visualization format takes seconds on commodity
hardware. The only precision lost through reinitialization is in the rela-

tive density of particles at specific grid locations – basic constraint such
as conservation of mass are not violated. We again stress that reinitial-

ization is a feature of qlbm and not a requirement of the underlying
algorithms, which can be executed entirely on quantum hardware, pro-

vided a sufficient number qubits.

Fig. 18a shows the initial state of the system, where 4 particles are
concentrated in one grid point, under the 𝐷2𝑄4 lattice discretization.
The 4 particles are each travelling along one of each of the 4 discrete
velocity channels. Following one time step, particles stream to neighbor-

ing grid points (Fig. 18b). Since collision only affects instances where
particles reach the same grid point and have a velocity profile that can
be mapped onto an equivalence class, the 3 following time steps are un-

affected by it and only practically consist of streaming, with the added
complexity of periodicity. In Fig. 18e, two particles reach the same grid
point in two different instances, both with velocity profiles that colli-

sion affects. As a result, collision redistributes the particles such that
mass and momentum are conserved, as described in [62]. This simula-

tion was carried out using a circuit that only performs the computation
of one time step, shown in Fig. 19. Reinitialization automatically com-

putes the initial conditions that allow the transition between steps be
carried between time steps. This is assumed to prepare the state of grid
qubits prior to simulation.

4. Conclusion

We introduced qlbm, a Python software framework that aims to ac-

celerate the development, simulation, and analysis of Quantum Lattice
Boltzmann Methods. We designed qlbm as an end-to-end development
environment that caters to every step of the research process, from
assembling proof-of-concept quantum circuits to analyzing their perfor-

mance within different simulation platforms. The modular architecture
of qlbm decouples the hierarchically arranged quantum component
module from external infrastructure, which promotes testability through
isolation. Additional modules interface with state-of-the-art quantum
simulators and compilers, which allows users to seamlessly tune their
setup according to their goals and resources.

To increase the accessibility of QBMs to researchers and practitioners
with various backgrounds, we implemented convenient interfaces that
bridge the gap between the delicate quantum circuit assembly process
and the high-level interfaces that users have come to expect from more
mature classical software frameworks. We introduced novel simulation
techniques in the form of statevector snapshots, statevector sampling,
and reinitialization, which massively increase the performance of simu-

lations and in turn hasten future research. Finally, we demonstrated the
versatility of these techniques by incorporating them within 2D and 3D
simulations on CPUs and GPUs and showed the practical benefit of built-

in experimentation pipelines and visualization techniques. To encourage
collaboration and reproducibility in the field of quantum computational
fluid dynamics, we make both the source code of qlbm and a replication
package of this study available at https://github.com/QCFD-Lab/qlbm

and [27], respectively.

https://github.com/QCFD-Lab/qlbm

Computer Physics Communications 315 (2025) 109699

19

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 18. Simulation of the STQBM algorithm [62] on a 16 × 16 × 16 grid for with 2 solid obstacles for 64 time steps.

We envisage two future directions for qlbm. Primarily, the purpose
of this framework is to be of service the broader QCFD research commu-

nity and assist in QBM development. This includes both the implemen-

tation of novel algorithms in the future, as well as the generalization of
past and present techniques from the literature. Secondarily, qlbm will
remain up-to-date with the rapid developments occurring in the quan-

tum software field. Novel simulation and transpiler technologies, and ac-

cess to increasingly robust quantum hardware are developments which
we aim to continue to integrate within qlbm, while retaining its high
code quality and reproducibility standards.

CRediT authorship contribution statement

Călin A. Georgescu: Writing – review & editing, Writing – original
draft, Validation, Software, Methodology, Investigation, Data curation,
Conceptualization. Merel A. Schalkers: Writing – review & editing, Val-

idation, Software, Methodology, Investigation, Data curation, Concep-

tualization, Visualization. Matthias Möller: Writing – review & editing,

Supervision, Funding acquisition, Conceptualization, Methodology, Vi-

sualization, Data curation, Investigation.

Declaration of competing interest

The authors declare that they received funding to conduct their re-

search under the joint research program Quantum Computational Fluid
Dynamics from Fujitsu Limited and Delft University of Technology co-

funded by the Netherlands Enterprise Agency under project number
PPS23-3-03596728.

Acknowledgements

We gratefully acknowledge support from the joint research program
Quantum Computational Fluid Dynamics by Fujitsu Limited and Delft Uni-

versity of Technology, co-funded by the Netherlands Enterprise Agency
under project number PPS23-3-03596728.

Computer Physics Communications 315 (2025) 109699

20

C.A. Georgescu, M.A. Schalkers and M. Möller

Fig. 19. One time step STQBM [62] circuit.

Data availability

The code and data are openly available in the linked GitHub reposi-
tory and replication package, respectively.

References

[1] Scott Aaronson, Read the fine print, Nat. Phys. 11 (4) (2015) 291–293.

[2] James Ahrens, Berk Geveci, Charles Law, C. Hansen, C. Johnson, 36-paraview: an
end-user tool for large-data visualization, Vis. Handb. 717 (2005) 50038–1.

[3] Andris Ambainis, Variable time amplitude amplification and a faster quantum al-

gorithm for solving systems of linear equations, arXiv preprint, arXiv:1010.4458,
2010.

[4] Lindsay Bassman Oftelie, Connor Powers, Wibe A. De Jong, Arqtic: a full-stack soft-

ware package for simulating materials on quantum computers, ACM Trans. Quantum
Comput. 3 (3) (2022) 1–17.

[5] Martin Bauer, Sebastian Eibl, Christian Godenschwager, Nils Kohl, Michael
Kuron, Christoph Rettinger, Florian Schornbaum, Christoph Schwarzmeier, Do-

minik Thönnes, Harald Köstler, et al., walberla: a block-structured high-performance
framework for multiphysics simulations, Comput. Math. Appl. 81 (2021) 478–501.

[6] Martin Bauer, Harald Köstler, Ulrich Rüde, lbmpy: automatic code generation for
efficient parallel lattice Boltzmann methods, J. Comput. Sci. 49 (2021) 101269.

[7] Harun Bayraktar, Ali Charara, David Clark, Saul Cohen, Timothy Costa, Yao-Lung
L. Fang, Yang Gao, Jack Guan, John Gunnels, Azzam Haidar, et al., cuquantum sdk:
a high-performance library for accelerating quantum science, in: 2023 IEEE Inter-

national Conference on Quantum Computing and Engineering (QCE), vol. 1, IEEE,
2023, pp. 1050–1061.

[8] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed,
Vishnu Ajith, M. Sohaib Alam, Guillermo Alonso-Linaje, B. AkashNarayanan, Ali
Asadi, et al., Pennylane: automatic differentiation of hybrid quantum-classical com-

putations, arXiv preprint, arXiv:1811.04968, 2018.

[9] Ethan Bernstein, Umesh Vazirani, Quantum complexity theory, in: Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing, 1993, pp. 11–20.

[10] Prabhu Lal Bhatnagar, Eugene P. Gross, Max Krook, A model for collision processes in
gases. i. Small amplitude processes in charged and neutral one-component systems,
Phys. Rev. 94 (3) (1954) 511.

[11] Carlos Bravo-Prieto, Ryan LaRose, Marco Cerezo, Yigit Subasi, Lukasz Cincio, Patrick
J. Coles, Variational quantum linear solver, Quantum 7 (2023) 1188.

[12] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J. Martinez, Jae
Hyeon Yoo, Sergei V. Isakov, Philip Massey, Ramin Halavati, Murphy Yuezhen Niu,

http://refhub.elsevier.com/S0010-4655(25)00201-2/bib771944DDBE37E9EA9E122D5BF6D7EDCBs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibFACDE99E319122BB00F959F46BBC7B06s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibFACDE99E319122BB00F959F46BBC7B06s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib6CA0DF86EAFAB3ACEE55232EDBAFE0B0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib6CA0DF86EAFAB3ACEE55232EDBAFE0B0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib6CA0DF86EAFAB3ACEE55232EDBAFE0B0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF1E2AE76F4E954646B628D6016C33758s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF1E2AE76F4E954646B628D6016C33758s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF1E2AE76F4E954646B628D6016C33758s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib08EB3F11106B1A2D7C555EA31E7E10B3s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib08EB3F11106B1A2D7C555EA31E7E10B3s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib08EB3F11106B1A2D7C555EA31E7E10B3s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib08EB3F11106B1A2D7C555EA31E7E10B3s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib969EF191B8D963711C40E7DF7679AB33s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib969EF191B8D963711C40E7DF7679AB33s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1FE7C1F43A6697B262DDD736A7C61D7Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1FE7C1F43A6697B262DDD736A7C61D7Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1FE7C1F43A6697B262DDD736A7C61D7Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1FE7C1F43A6697B262DDD736A7C61D7Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1FE7C1F43A6697B262DDD736A7C61D7Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib44997331A0480951313825A59DE725C7s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib44997331A0480951313825A59DE725C7s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib44997331A0480951313825A59DE725C7s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib44997331A0480951313825A59DE725C7s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib88843CC87DE1B97F402747B638A50FDFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib88843CC87DE1B97F402747B638A50FDFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib534521E2C33D70310023096B3EE27E3Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib534521E2C33D70310023096B3EE27E3Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib534521E2C33D70310023096B3EE27E3Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibAF4D5A4A824F3D7BC995BDF49D1945DEs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibAF4D5A4A824F3D7BC995BDF49D1945DEs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib51D4063146D43F45D7EEC73989743EB5s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib51D4063146D43F45D7EEC73989743EB5s1

Computer Physics Communications 315 (2025) 109699

21

C.A. Georgescu, M.A. Schalkers and M. Möller

Alexander Zlokapa, et al., Tensorflow quantum: a software framework for quantum
machine learning, arXiv preprint, arXiv:2003.02989, 2020.

[13] Ljubomir Budinski, Quantum algorithm for the advection–diffusion equation simu-

lated with the lattice Boltzmann method, Quantum Inf. Process. 20 (2) (2021) 57.

[14] Ljubomir Budinski, Quantum algorithm for the Navier–Stokes equations by using
the streamfunction-vorticity formulation and the lattice Boltzmann method, Int. J.
Quantum Inf. 20 (02) (2022) 2150039.

[15] J.M. Buick, C.A. Greated, D.M. Campbell, Lattice bgk simulation of sound waves,
Europhys. Lett. 43 (3) (1998) 235.

[16] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas
P.D. Sawaya, et al., Quantum chemistry in the age of quantum computing, Chem.
Rev. 119 (19) (2019) 10856–10915.

[17] Zhenhua Chai, Baochang Shi, A novel lattice Boltzmann model for the Poisson equa-

tion, Appl. Math. Model. 32 (10) (2008) 2050–2058.

[18] Zhenhua Chai, T.S. Zhao, Lattice Boltzmann model for the convection-diffusion equa-

tion, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 87 (6) (2013) 063309.

[19] Andrew M. Childs, Nathan Wiebe, Hamiltonian simulation using linear combinations
of unitary operations, arXiv preprint, arXiv:1202.5822, 2012.

[20] Andrew M. Childs, Robin Kothari, Rolando D. Somma, Quantum algorithm for sys-

tems of linear equations with exponentially improved dependence on precision,
SIAM J. Comput. 46 (6) (2017) 1920–1950.

[21] B. David Clader, Bryan C. Jacobs, Chad R. Sprouse, Preconditioned quantum linear
system algorithm, Phys. Rev. Lett. 110 (25) (2013) 250504.

[22] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S.
Bishop, Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M. Gam-

betta, et al., Openqasm 3: a broader and deeper quantum assembly language, ACM
Trans. Quantum Comput. 3 (3) (2022) 1–50.

[23] David Deutsch, Richard Jozsa, Rapid solution of problems by quantum computation,
Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 439 (1907) (1992) 553–558.

[24] Cirq Developers, Cirq, Zenodo (May 2024), https://doi.org/10.5281/zenodo.

11398048.

[25] E. Dinesh Kumar, Steven H. Frankel, Quantum circuit model for lattice Boltzmann
fluid flow simulations, arXiv preprint, arXiv:2405.08669, 2024.

[26] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas,
Diego García-Martín, Artur Garcia-Saez, José Ignacio Latorre, Stefano Carrazza,
Qibo: a framework for quantum simulation with hardware acceleration, Quantum
Sci. Technol. 7 (1) (2021) 015018.

[27] Calin Georgescu, Merel Annelise Schalkers, Matthias Möller, Replication package
for QLBM – a quantum lattice Boltzmann software framework, Zenodo (November
2024), https://doi.org/10.5281/zenodo.14231193.

[28] Peyman Givi, Andrew J. Daley, Dimitri Mavriplis, Mujeeb Malik, Quantum speedup
for aeroscience and engineering, AIAA J. 58 (8) (2020) 3715–3727.

[29] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, Benoît
Valiron, Quipper: a scalable quantum programming language, in: Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, 2013, pp. 333–342.

[30] Lov K. Grover, A fast quantum mechanical algorithm for database search, in: Pro-

ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
1996, pp. 212–219.

[31] Zhaoli Guo, T.S. Zhao, Yong Shi, A lattice Boltzmann algorithm for electro-osmotic
flows in microfluidic devices, J. Chem. Phys. 122 (14) (2005).

[32] Eladio Gutierrez, Sergio Romero, Maria A. Trenas, Emilio L. Zapata, Simulation of
quantum gates on a novel gpu architecture, in: International Conference on Systems
Theory and Scientific Computation, 2007.

[33] Aram W. Harrow, Avinatan Hassidim, Seth Lloyd, Quantum algorithm for linear
systems of equations, Phys. Rev. Lett. 103 (15) (2009) 150502.

[34] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas
Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, et al.,
Quantum chemistry calculations on a trapped-ion quantum simulator, Phys. Rev. X
8 (3) (2018) 031022.

[35] Satoshi Imamura, Masafumi Yamazaki, Takumi Honda, Akihiko Kasagi, Akihiro
Tabuchi, Hiroshi Nakao, Naoto Fukumoto, Kohta Nakashima, mpiqulacs: a dis-

tributed quantum computer simulator for a64fx-based cluster systems, arXiv
preprint, arXiv:2203.16044, 2022.

[36] Wael Itani, Sauro Succi, Analysis of Carleman linearization of lattice Boltzmann,
Fluids 7 (1) (2022) 24.

[37] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake
Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W.
Cross, Blake R. Johnson, Jay M. Gambetta, Quantum Computing with Qiskit, 2024.

[38] S.K. Jeswal, S. Chakraverty, Recent developments and applications in quantum neu-

ral network: a review, Arch. Comput. Methods Eng. 26 (4) (2019) 793–807.

[39] Mathias J. Krause, Adrian Kummerländer, Samuel J. Avis, Halim Kusumaatmaja,
Davide Dapelo, Fabian Klemens, Maximilian Gaedtke, Nicolas Hafen, Albert Mink,
Robin Trunk, et al., Openlb—open source lattice Boltzmann code, Comput. Math.
Appl. 81 (2021) 258–288.

[40] Timm Krüger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva,
Erlend Magnus Viggen, The lattice Boltzmann method, Springer Int. Publ. 10 (978-3)
(2017) 4–15.

[41] Oleksandr Kyriienko, Annie E. Paine, Vincent E. Elfving, Solving nonlinear differ-

ential equations with differentiable quantum circuits, Phys. Rev. A 103 (5) (2021)
052416.

[42] Martin Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte,
Patrick J. Coles, Lukasz Cincio, Jarrod R. McClean, Zoë Holmes, M. Cerezo, A review
of barren plateaus in variational quantum computing, arXiv preprint, arXiv:2405.

00781, 2024.
[43] Jonas Latt, Orestis Malaspinas, Dimitrios Kontaxakis, Andrea Parmigiani, Daniel

Lagrava, Federico Brogi, Mohamed Ben Belgacem, Yann Thorimbert, Sébastien
Leclaire, Sha Li, et al., Palabos: parallel lattice Boltzmann solver, Comput. Math.
Appl. 81 (2021) 334–350.

[44] Y.Y. Liu, Zhen Chen, Chang Shu, Siou Chye Chew, Boo Cheong Khoo, Xiang Zhao,
Y.D. Cui, Application of a variational hybrid quantum-classical algorithm to heat
conduction equation and analysis of time complexity, Phys. Fluids 34 (11) (2022).

[45] Y.Y. Liu, Zhen Chen, Chang Shu, Patrick Rebentrost, Y.G. Liu, S.C. Chew, B.C. Khoo,
Y.D. Cui, A variational quantum algorithm-based numerical method for solving po-

tential and Stokes flows, Ocean Eng. 292 (2024) 116494.
[46] Seth Lloyd, Masoud Mohseni, Patrick Rebentrost, Quantum principal component

analysis, Nat. Phys. 10 (9) (2014) 631–633.

[47] Marco D. Mazzeo, Peter V. Coveney, Hemelb: a high performance parallel lattice-

Boltzmann code for large scale fluid flow in complex geometries, Comput. Phys.
Commun. 178 (12) (2008) 894–914.

[48] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, Hartmut
Neven, Barren plateaus in quantum neural network training landscapes, Nat. Com-

mun. 9 (1) (2018) 4812.
[49] Youssef Moawad, Wim Vanderbauwhede, René Steijl, Investigating hardware accel-

eration for simulation of cfd quantum circuits, Front. Mech. Eng. 8 (2022) 925637.
[50] Michael A. Nielsen, Isaac L. Chuang, Quantum Computation and Quantum Informa-

tion, Cambridge University Press, 2010.
[51] Román Orús, Tensor networks for complex quantum systems, Nat. Rev. Phys. 1 (9)

(2019) 538–550.
[52] Román Orús, Samuel Mugel, Enrique Lizaso, Quantum computing for finance:

overview and prospects, Rev. Phys. 4 (2019) 100028.

[53] Peter J.J. O’Malley, Ryan Babbush, Ian D. Kivlichan, Jonathan Romero, Jarrod R.
McClean, Rami Barends, Julian Kelly, Pedram Roushan, Andrew Tranter, Nan Ding,
et al., Scalable quantum simulation of molecular energies, Phys. Rev. X 6 (3) (2016)
031007.

[54] Annie E. Paine, Vincent E. Elfving, Oleksandr Kyriienko, Quantum kernel methods
for solving regression problems and differential equations, Phys. Rev. A 107 (3)
(2023) 032428.

[55] Hrushikesh Patil, Yulun Wang, Predrag S. Krstić, Variational quantum linear solver
with a dynamic ansatz, Phys. Rev. A 105 (1) (2022) 012423.

[56] Marco A. Pravia, Zhiying Chen, Jeffrey Yepez, David G. Cory, Experimental demon-

stration of quantum lattice gas computation, Quantum Inf. Process. 2 (2003)
97–116.

[57] John Preskill, Quantum computing in the nisq era and beyond, Quantum 2 (2018)
79.

[58] Pylbm contributors, Pylbm: an all-in-one package for numerical simulations using
lattice Boltzmann solvers, https://github.com/pylbm/pylbm, 2023.

[59] Patrick Rebentrost, Masoud Mohseni, Seth Lloyd, Quantum support vector machine
for big data classification, Phys. Rev. Lett. 113 (13) (2014) 130503.

[60] Claudio Sanavio, Sauro Succi, Lattice Boltzmann–Carleman quantum algorithm and
circuit for fluid flows at moderate Reynolds number, AVS Quantum Sci. 6 (2)
(2024).

[61] Merel A. Schalkers, Matthias Möller, Efficient and fail-safe quantum algorithm for
the transport equation, J. Comput. Phys. 502 (2024) 112816.

[62] Merel A. Schalkers, Matthias Möller, On the importance of data encoding in quantum
Boltzmann methods, Quantum Inf. Process. 23 (1) (2024) 20.

[63] Merel A. Schalkers, Matthias Möller, Momentum exchange method for quantum
Boltzmann methods, arXiv preprint, arXiv:2404.17618, 2024.

[64] Robert R. Schaller, Moore’s law: past, present and future, IEEE Spectr. 34 (6) (1997)
52–59.

[65] William J. Schroeder, Lisa Sobierajski Avila, William Hoffman, Visualizing with vtk:
a tutorial, IEEE Comput. Graph. Appl. 20 (5) (2000) 20–27.

[66] Maria Schuld, Nathan Killoran, Quantum machine learning in feature Hilbert spaces,
Phys. Rev. Lett. 122 (4) (2019) 040504.

[67] Maria Schuld, Ilya Sinayskiy, Francesco Petruccione, The quest for a quantum neural
network, Quantum Inf. Process. 13 (2014) 2567–2586.

[68] Tejas Shinde, Ljubomir Budinski, Ossi Niemimäki, Valtteri Lahtinen, Helena Liebelt,
Rui Li, Utilizing classical programming principles in the intel quantum sdk: imple-

mentation of quantum lattice Boltzmann method, ACM Trans. Quantum Comput.
(2024).

[69] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer, SIAM Rev. 41 (2) (1999) 303–332.
[70] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,

Ross Duncan, tket: a retargetable compiler for nisq devices, Quantum Sci. Technol.
6 (1) (2020) 014003.

[71] Damian S. Steiger, Thomas Häner, Matthias Troyer, Projectq: an open source soft-

ware framework for quantum computing, Quantum 2 (2018) 49.
[72] Rene Steijl, Quantum algorithms for nonlinear equations in fluid mechanics, in:

Quantum Computing and Communications, 2020.

http://refhub.elsevier.com/S0010-4655(25)00201-2/bib51D4063146D43F45D7EEC73989743EB5s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib51D4063146D43F45D7EEC73989743EB5s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC5CC182DD7CF143549511FADDFA97222s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC5CC182DD7CF143549511FADDFA97222s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibA3D859F0984BCFB4FBDB5A9B4CA505C3s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibA3D859F0984BCFB4FBDB5A9B4CA505C3s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibA3D859F0984BCFB4FBDB5A9B4CA505C3s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibFB2384DE95D8D0A2CFB145C34CC5EAB1s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibFB2384DE95D8D0A2CFB145C34CC5EAB1s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDA8F6F7CB678A7AF69078D53E048C45Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDA8F6F7CB678A7AF69078D53E048C45Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDA8F6F7CB678A7AF69078D53E048C45Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDA8F6F7CB678A7AF69078D53E048C45Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib9E3CE391310C39D072DBF0A6E26E497Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib9E3CE391310C39D072DBF0A6E26E497Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibCA3FCDDCA2FDE05A9B91E92F54D77E9As1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibCA3FCDDCA2FDE05A9B91E92F54D77E9As1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF66C72F8FA1B93463A16344C558EF070s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF66C72F8FA1B93463A16344C558EF070s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib40A206D76B7B4433A868FF293BF01ED7s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib40A206D76B7B4433A868FF293BF01ED7s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib40A206D76B7B4433A868FF293BF01ED7s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibEFC31F66DEAB4F9A44E013B5FB9A4F16s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibEFC31F66DEAB4F9A44E013B5FB9A4F16s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDCD8E5EABC674AC69609DE19D00FBD76s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDCD8E5EABC674AC69609DE19D00FBD76s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDCD8E5EABC674AC69609DE19D00FBD76s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDCD8E5EABC674AC69609DE19D00FBD76s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib56BBB1175CED3EFED6E3D608178AF82Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib56BBB1175CED3EFED6E3D608178AF82Fs1
https://doi.org/10.5281/zenodo.11398048
https://doi.org/10.5281/zenodo.11398048
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib70717C23D17D8E505E4DE7FED3C788D6s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib70717C23D17D8E505E4DE7FED3C788D6s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF2E1154835BCB57E65145DDB11233459s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF2E1154835BCB57E65145DDB11233459s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF2E1154835BCB57E65145DDB11233459s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF2E1154835BCB57E65145DDB11233459s1
https://doi.org/10.5281/zenodo.14231193
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2DD9CF7D6541F6F1ABC9B0DF07C5153Bs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2DD9CF7D6541F6F1ABC9B0DF07C5153Bs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib0E141D105008B8173D12BDDE135B6920s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib0E141D105008B8173D12BDDE135B6920s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib0E141D105008B8173D12BDDE135B6920s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib0E141D105008B8173D12BDDE135B6920s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC3552B5B73D22C0E222D325609313338s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC3552B5B73D22C0E222D325609313338s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC3552B5B73D22C0E222D325609313338s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibB1AE1132A7A4D9150E27DEBC4950BC0Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibB1AE1132A7A4D9150E27DEBC4950BC0Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib5E7F94B0A8971AADEA7215293606D9C4s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib5E7F94B0A8971AADEA7215293606D9C4s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib5E7F94B0A8971AADEA7215293606D9C4s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibBE0503FAA117B08B4E436AFD2591E031s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibBE0503FAA117B08B4E436AFD2591E031s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2CDF61E0C40847996D6DC4D91531E84As1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2CDF61E0C40847996D6DC4D91531E84As1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2CDF61E0C40847996D6DC4D91531E84As1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2CDF61E0C40847996D6DC4D91531E84As1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib18FCAB957B8CAF4798BCCEE52C465501s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib18FCAB957B8CAF4798BCCEE52C465501s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib18FCAB957B8CAF4798BCCEE52C465501s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib18FCAB957B8CAF4798BCCEE52C465501s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib99A1C5FD2C954A99D0C8EFEBF6DF0245s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib99A1C5FD2C954A99D0C8EFEBF6DF0245s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibE8A2F6CD2632CDD5D26129805C150293s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibE8A2F6CD2632CDD5D26129805C150293s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibE8A2F6CD2632CDD5D26129805C150293s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibFF8F0B2ECD74CDA07D8561B4CE376ECDs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibFF8F0B2ECD74CDA07D8561B4CE376ECDs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib7E845CD96346B56FA18E0423A7EB6FB6s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib7E845CD96346B56FA18E0423A7EB6FB6s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib7E845CD96346B56FA18E0423A7EB6FB6s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib7E845CD96346B56FA18E0423A7EB6FB6s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib17CD60B87AC1E1A04579AB34E9CC1715s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib17CD60B87AC1E1A04579AB34E9CC1715s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib17CD60B87AC1E1A04579AB34E9CC1715s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib5D2B0E0F2BF20BF7546550D27B034A1Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib5D2B0E0F2BF20BF7546550D27B034A1Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib5D2B0E0F2BF20BF7546550D27B034A1Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib72965FF00ACD74778FEC0659FA7929BFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib72965FF00ACD74778FEC0659FA7929BFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib72965FF00ACD74778FEC0659FA7929BFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib72965FF00ACD74778FEC0659FA7929BFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib042EEE145A9FB4B9074308B73167504Bs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib042EEE145A9FB4B9074308B73167504Bs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib042EEE145A9FB4B9074308B73167504Bs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib042EEE145A9FB4B9074308B73167504Bs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib4020480B6C37D88FA9E49EE8264DA792s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib4020480B6C37D88FA9E49EE8264DA792s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib4020480B6C37D88FA9E49EE8264DA792s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibE053D571BA4DE49FC655E550EDBDA8ACs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibE053D571BA4DE49FC655E550EDBDA8ACs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibE053D571BA4DE49FC655E550EDBDA8ACs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib6E87292AE050EF2137B9AFCBDCBC175Ds1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib6E87292AE050EF2137B9AFCBDCBC175Ds1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibD2907EFD8DB8431B3FE828DA3B248431s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibD2907EFD8DB8431B3FE828DA3B248431s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibD2907EFD8DB8431B3FE828DA3B248431s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib7089C179F83DFBC657C40BD1E00327D5s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib7089C179F83DFBC657C40BD1E00327D5s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib7089C179F83DFBC657C40BD1E00327D5s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibCD3778DA162DA1BE8AC64ADFBBC68BC0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibCD3778DA162DA1BE8AC64ADFBBC68BC0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib15DC8E959D4C4CE717AF4F4E5A3C54F5s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib15DC8E959D4C4CE717AF4F4E5A3C54F5s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib0CD85E30024081D737514662FF4D2F9As1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib0CD85E30024081D737514662FF4D2F9As1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib681038B6E084A19ED75A0F0505373CE9s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib681038B6E084A19ED75A0F0505373CE9s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibD1645AE420DABB07DF33D99DF758DDDAs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibD1645AE420DABB07DF33D99DF758DDDAs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibD1645AE420DABB07DF33D99DF758DDDAs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibD1645AE420DABB07DF33D99DF758DDDAs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2915DAA908F59014F19B4A8774C8844Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2915DAA908F59014F19B4A8774C8844Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2915DAA908F59014F19B4A8774C8844Fs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibED4585DB2B9A49DC3D02453601D1FA31s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibED4585DB2B9A49DC3D02453601D1FA31s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2EADB7CC7AD9E29A561A0E2D228134C2s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2EADB7CC7AD9E29A561A0E2D228134C2s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2EADB7CC7AD9E29A561A0E2D228134C2s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib479AD4865A902D490280E9C4EAAE3CB6s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib479AD4865A902D490280E9C4EAAE3CB6s1
https://github.com/pylbm/pylbm
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibBE0BD1E613F9627A641A48AB3A09125Cs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibBE0BD1E613F9627A641A48AB3A09125Cs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibE0A2FF2C5477C3F0BD86F43F7D5E6803s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibE0A2FF2C5477C3F0BD86F43F7D5E6803s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibE0A2FF2C5477C3F0BD86F43F7D5E6803s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC99698675124406C87E78D44AC80D421s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC99698675124406C87E78D44AC80D421s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib40C70E823E07E5A123182F4BDB0F65ABs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib40C70E823E07E5A123182F4BDB0F65ABs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib5C919E22487756B831C2E746D76C1019s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib5C919E22487756B831C2E746D76C1019s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1685753A4DF4CC29D5855EBB658413E0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1685753A4DF4CC29D5855EBB658413E0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib4E8E94B22972A15814C41B3057B7F0A8s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib4E8E94B22972A15814C41B3057B7F0A8s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib08B06D53169DD2C0FE2EB9763B69A525s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib08B06D53169DD2C0FE2EB9763B69A525s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib601368AB13BBA50087DF488BCCACAEA6s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib601368AB13BBA50087DF488BCCACAEA6s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib83CE9845CE8518079512B4A2CA4627EFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib83CE9845CE8518079512B4A2CA4627EFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib83CE9845CE8518079512B4A2CA4627EFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib83CE9845CE8518079512B4A2CA4627EFs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDC3EA187994E88D6C44B62FB5029BE30s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibDC3EA187994E88D6C44B62FB5029BE30s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1076DA3F837CAE2FD5EE2A156F4C733Ds1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1076DA3F837CAE2FD5EE2A156F4C733Ds1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1076DA3F837CAE2FD5EE2A156F4C733Ds1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibEA3DDFFDA1E6C107A3341A55A2888B3Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibEA3DDFFDA1E6C107A3341A55A2888B3Es1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib97C554A7305A40F7DA42467BB126EF69s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib97C554A7305A40F7DA42467BB126EF69s1

Computer Physics Communications 315 (2025) 109699

22

C.A. Georgescu, M.A. Schalkers and M. Möller

[73] Sauro Succi, The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond, Ox-

ford University Press, 2001.
[74] Sauro Succi, Mauro Sbragaglia, Stefano Ubertini, Lattice Boltzmann method, Schol-

arpedia 5 (5) (2010) 9507.
[75] Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro

Nakadai, Jiabao Chen, Ken M. Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro
Tamiya, et al., Qulacs: a fast and versatile quantum circuit simulator for research
purpose, Quantum 5 (2021) 559.

[76] Blaga N. Todorova, René Steijl, Quantum algorithm for the collisionless Boltzmann
equation, J. Comput. Phys. 409 (2020) 109347.

[77] George F. Viamontes, Igor L. Markov, John P. Hayes, Graph-based simulation of
quantum computation in the density matrix representation, Quantum Inf. Comput.
5 (2) (2005) 113–130.

[78] Huimin Wang, Guangwu Yan, Bo Yan, Lattice Boltzmann model based on the
rebuilding-divergency method for the Laplace equation and the Poisson equation,
J. Sci. Comput. 46 (3) (2011) 470–484.

[79] David Wawrzyniak, Josef Winter, Steffen Schmidt, Thomas Indinger, Christian F.
Janßen, Uwe Schramm, Nikolaus A. Adams, A quantum algorithm for the lattice-

Boltzmann method advection-diffusion equation, Comput. Phys. Commun. (2024)
109373.

[80] Dave Wecker, Krysta M. Svore, Liqui|>: a software design architecture and domain-

specific language for quantum computing, arXiv preprint, arXiv:1402.4467, 2014.

[81] Jeffrey Yepez, Quantum lattice-gas model for computational fluid dynamics, Phys.
Rev. E 63 (4) (2001) 046702.

[82] Jeffrey Yepez, Quantum lattice-gas model for the Burgers equation, J. Stat. Phys.
107 (2002) 203–224.

[83] Jeffrey Yepez, Bruce Boghosian, An efficient and accurate quantum lattice-gas model
for the many-body Schrödinger wave equation, Comput. Phys. Commun. 146 (3)
(2002) 280–294.

[84] Jian Guo Zhou, Lattice Boltzmann Methods for Shallow Water Flows, vol. 4, Springer,
2004.

http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF864D00A35B24D17EC86C3846A811AB4s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF864D00A35B24D17EC86C3846A811AB4s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC78FDE890DBEC6A9F6B01359E088AF47s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC78FDE890DBEC6A9F6B01359E088AF47s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib11FA70B404AD87D1F60E27C8F53113C0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib11FA70B404AD87D1F60E27C8F53113C0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib11FA70B404AD87D1F60E27C8F53113C0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib11FA70B404AD87D1F60E27C8F53113C0s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibB0EDF806C94FEE7EC5DEC30771D4B03Bs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibB0EDF806C94FEE7EC5DEC30771D4B03Bs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF50800EF440F816F4333F3A64D27E0FBs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF50800EF440F816F4333F3A64D27E0FBs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibF50800EF440F816F4333F3A64D27E0FBs1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib61572CEB565EAF00F4519328C3E70793s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib61572CEB565EAF00F4519328C3E70793s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib61572CEB565EAF00F4519328C3E70793s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib77A173F76D13C6919ED8644DB73ABEF8s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib77A173F76D13C6919ED8644DB73ABEF8s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib77A173F76D13C6919ED8644DB73ABEF8s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib77A173F76D13C6919ED8644DB73ABEF8s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib69D7731F8E9F72F7431EFD2DBBBDA321s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib69D7731F8E9F72F7431EFD2DBBBDA321s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibA64194E4A8CE85E5C3C6CDB1CF0998B1s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibA64194E4A8CE85E5C3C6CDB1CF0998B1s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1C0145DB258DDD987A4B7EE254F27576s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib1C0145DB258DDD987A4B7EE254F27576s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC30BC8E76FA39A746744CEEB4A636280s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC30BC8E76FA39A746744CEEB4A636280s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bibC30BC8E76FA39A746744CEEB4A636280s1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2778FE7F1BC3A525C84060412C856B6As1
http://refhub.elsevier.com/S0010-4655(25)00201-2/bib2778FE7F1BC3A525C84060412C856B6As1

	qlbm -- A quantum lattice Boltzmann software framework
	1 Introduction
	1.1 Software and QBM research
	1.2 Lattice Boltzmann methods

	2 qlbm overview
	2.1 Internal architecture
	2.1.1 Quantum component architecture
	2.1.2 System architecture

	2.2 Performance enhancements
	2.2.1 Algorithmic improvements
	Ancilla qubit reuse.
	Adaptable register setup.
	Classical logic computation.

	2.2.2 Computational improvements
	Statevector snapshots.
	Statevector sampling.
	Reinitialization.

	2.3 Interfacing and integration
	2.3.1 Interfacing
	2.3.2 Infrastructure and integration
	Circuit specification.
	Simulation.
	Circuit compilation.
	Visualization.

	3 Results
	3.1 Algorithmic scalability
	3.2 Compiler comparison
	3.3 Performance comparison
	3.4 Visualization integration

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

