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We present qlbm, a Python software package designed to facilitate the development, simulation, and analysis 
of Quantum Lattice Boltzmann Methods (QBMs). qlbm is a modular framework that introduces a quantum 
component abstraction hierarchy tailored to the implementation of novel QBMs. The framework interfaces 
with state-of-the-art quantum software infrastructure to enable efficient simulation and validation pipelines, and 
leverages novel execution and pre-processing techniques that significantly reduce the computational resources 
required to develop quantum circuits. We demonstrate the versatility of the software by showcasing multiple 
QBMs in 2D and 3D with complex boundary conditions, integrated within automated benchmarking utilities. 
Accompanying the source code are extensive test suites, thorough online documentation resources, analysis tools, 
visualization methods, and demos that aim to increase the accessibility of QBMs while encouraging reproducibility 
and collaboration.

Program summary

Program Title: qlbm

CPC Library link to program files: https://doi.org/10.17632/28hkvsg7p2.1

Developer’s repository link: https://github.com/QCFD-Lab/qlbm

Licensing provisions: MPL-2.0

Programming language: Python3

Supplementary material: The documentation of is available at https://qcfd-lab.github.io/qlbm/.

Nature of problem: The advent of quantum algorithms for computational fluid dynamics brings with it challenges 
that are new to the established field of computational physics. These challenges include the lack of standardized 
implementations of the still nascent quantum methods, the intense computational demands of developing and 
simulating quantum algorithms on hardware available today, and the absence of tools that integrate novel 
developments into established infrastructure. Because of these current limitations, physicists and mathematicians 
expend superfluous resources on tasks that more mature computational physics branches have surmounted long 
ago.

Solution method: QLBM is a software package that provides an end-to-end development environment for quantum 
lattice Boltzmann methods. The modular design and flexible quantum circuit library provide a base for extending 
and generalizing quantum algorithms. Performance enhancements exploit the paradigm of quantum computing 
simulations to accelerate the speed at which researchers can verify the validity of their methods. Its integration 
with state-of-the-art quantum computing software and visualization tools increases the algorithms’ accessibility. 
These features allow QLBM to effectively generate, simulate, and analyze quantum circuits for 2D and 3D 
computational fluid dynamics problems. 

1. Introduction

The field of Quantum Computing (QC) [50] has received a staggering 
amount of attention in recent decades from researchers and practition-

ers alike. Ever since the formulation of the first quantum algorithms in 
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the early 1990s, quantum computing captured the interest and attention 
of scientists attempting to accelerate solvers for high impact, real-life 
problems. It was algorithms like those of Deutsch and Jozsa [23], Bern-

stein and Vazirani [9], Grover [30], and Shor [69] that initiated a wave 
of research aiming to understand how QC can revolutionize the status 
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quo. Two properties make the quantum computing paradigm especially 
attractive for the increasingly demanding large-scale computational de-
mands of today – exponential information compression and quantum 
parallelism. The former is a core property of the basic unit of quantum 
information: the quantum bit or qubit. Unlike classical bits, 𝑛 qubits en-
code a superposition that can be represented through a 2𝑛-dimensional 
vector belonging to a complex Hilbert space. The latter, quantum paral-
lelism, refers to the ability of quantum computers to simultaneously en-
code and update multiple results in a single computational step. Thanks 
to these two properties, QC carries the potential to augment the current 
computational landscape with a drastically different yet complementary 
archetype.

The drive to accelerate classical solvers by means of quantum com-
puting has led to novel quantum algorithms that target nearly every 
branch of computational science. From quantum chemistry [53,34,16] 
to deep learning [67,38], data mining [59,46], and finance [52], quan-
tum algorithms promise to augment or improve upon classical methods. 
One field where quantum computing advantages are particularly ap-
pealing is that of computational fluid dynamics (CFD). State-of-the-art 
CFD simulations are extremely memory- and compute-intensive appli-
cations that require tremendous amounts of resources to tackle modern 
engineering tasks. It is this computational capacity bottleneck, together 
with growing concerns about Moore’s law’s [64] future viability that 
have attracted many researchers’ attention towards the potentially dis-
ruptive effect that QC could have for CFD simulations [28].

In recent years, several quantum methods for CFD applications have 
emerged. Here, we consider three standout directions for quantum CFD 
(QCFD) research. The first two largely center around the Navier-Stokes 
(NS) governing equations for large-scale, turbulence-minded applica-
tions. Techniques that attempt to directly (approximately) solve the NS 
equations with quantum computers are typically aimed at solving gen-
eral linear systems of equations (LSE) under specific assumptions. In 
particular, the Harrow–Hassidim–Lloyd (HHL) [33] algorithm and its 
subsequent improvements [3,21,20] stand out, as they provide theoret-
ical speedups over classical counterparts. However, in addition to the 
linearization of the NS equations, the viability of the HHL further hinges 
on state preparation and amplitude approximation techniques [1] which 
may not be practically feasible for CFD applications.

A second way in which quantum computers can solve LSEs consists 
of so-called variational quantum algorithms. Variational Quantum Lin-
ear Solvers (VQLS) such as those put forward by Bravo-Prieto et al. [11]
and Patil et al. [55] attempt a task similar to that of HHL, but instead 
rely on parameterized quantum circuits, the parameters of which are it-
eratively improved. Recently, research has shown that such techniques 
could be used to solve Stokes flow [45] and the heat conduction equation 
[44]. Kyriienko et al. [41] also introduce a framework of differentiable 
quantum circuits and feature maps-based encodings and use it solve 
the quasi-1D NS equations, while Paine et al. [54] extend the varia-
tional quantum algorithm (VQA) to support kernel methods, a technique 
of embedding data into higher-dimensional spaces [66], and demon-
strate the ability to solve ordinary differential equations. An advantage 
of VQAs is their relatively shallow circuits, which makes them suitable 
candidates for the quantum hardware available today. However, they 
too suffer from several important limitations. Optimizing the parame-
ters of VQAs is a computationally intensive task, that is delegated to 
classical computers. This introduces significant overhead not only in 
the classical optimization procedure of the parameters, but also in the 
quantum-classical communication channel. Moreover, optimizing VQA 
circuits might not be computationally feasible, due to the barren plateau 
problem in quantum computing [48,42].

The third way in which QCFD problems can be approached is 
through the quantum implementation of Lattice Boltzmann Methods 
(LBMs). This avenue presents modelling opportunities for exploiting the 
mathematical structure of the Boltzmann Equation and is entirely in-
dependent from classical optimization requirements. It is this direction 
that we seek to advance through this work. In what follows, we describe 

the current landscape of quantum LBM research before highlighting the 
challenges currently facing this field and how this work seeks to address 
them in Section 1.1. Section 1.2 describes the steps and the mathemati-

cal structure of the classical LBM.

Recently, quantum lattice Boltzmann methods (QBMs) have emerged 
as promising candidates for the future direction of QCFD. While the 
physics that QBMs target is entirely classical, the principal premise be-

hind QBMs is that quantum computing may enable simulation at scales 
otherwise unattainable with classical hardware. The linearity of the 
streaming step and the locality of collision are two of the reasons why 
the LBM lends itself particularly well to native quantum implemen-

tations. Despite this, there are several inherent caveats that quantum 
implementations must address to simulate physically correct behavior. 
Most notably, these include the nonlinearity of the collision operator 
and the nonlocality of the streaming operator. These challenges stem 
from the fundamental properties of physical mesoscopic and macro-

scopic fluids, and are ubiquitous across many governing equations in 
science and engineering. One additional benefit of the LBM is that un-

like in the Navier-Stokes equations, the nonlinearity and nonlocality are 
not directly coupled, which provides promising modelling opportuni-

ties. Supplementary to equation-specific nuances, effectively encoding 
information into and extracting it out of the quantum state are two uni-

versal hurdles of quantum algorithms. In an effort to overcome these 
challenges, research surrounding QBMs has largely focused on the de-

velopment of quantum primitives that implement (parts of) the LBM 
time-marching loop. These initiatives have given rise to several tech-

niques that accommodate specific subroutines of the LBM, imposing 
trade-offs between scalability and versatility. One way to categorize 
existing QBMs is by how they address the inherent nonlinearity of col-

lision.

The initial wave of research into QCFD occurred between 2001 and 
2003 and largely focused on extending the lattice-gas model to dis-

tributed quantum devices [81,83,82,56]. This work tailors quantum 
lattice-gas solvers to a decentralized system of quantum computers with 
limited number of qubits per device, linked together through classical 
communication channels. Though this approach enables the balancing 
of the computational workload through horizontal scaling, it requires a 
number of qubits that grows linearly with the number of grid points of 
the lattice.

Todorova and Steijl [76] and Schalkers and Möller [61] propose 
collisionless methods that include primitives for particle streaming and 
boundary conditions, but omit the collision operator entirely. Steijl [72]

and Moawad et al. [49] alternatively propose a method in which quan-

tum primitives that implement floating point arithmetic can compute 
nonlinear terms, but require a reversible conversion between the encod-

ing of the quantum state used to perform streaming and the encoding 
that enables the computation of the nonlinear velocity terms at each 
time step. Itani and Succi [36] and Sanavio and Succi [60] adopt an ap-

proach based on truncated Carleman linearization, that approximates 
the non-linear LBE by a finite-dimensional linear system of equations 
that can be expressed in terms of (unitary) quantum operators. How-

ever, these approaches require a large number of additional variables 
that detract from scalability and which do not naturally decompose 
into quantum circuits. Budinski [13,14] further developed an approach 
that enables both streaming and collision but that incurs a probabil-

ity of measuring an orthogonal (irrelevant) quantum state after each 
time-step. Dinesh Kumar and Frankel [25] propose a similar approach, 
which, similar to Budinski’s methods, requires the costly decomposition 
of unitary matrices into quantum gates for compatiblity with quantum 
hardware. More recently, Wawrzyniak et al. [79] introduced a novel 
method based on the same linear combination of unitaries (LCU) [19] 
approach tailored to the advection-diffusion equation, but which also re-

quires full state measurement and reinitialization after each time step. 
Finally, Schalkers and Möller [62] extended a previously developed en-

coding and equipped it with a collision operator inspired by lattice gas 
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automata at the cost of requiring a number of qubits that scales with the 
number of simulated time steps up to grid size.

The current state of QBMs is fragmented between several approaches 
that each present different strengths and weaknesses. This poses several 
challenges for researchers seeking to advance the field. In what follows, 
we highlight three significant challenges that face the development of 
QBMs, draw parallels to their classical counterparts, and explain how 
software can help mitigate these issues.

1.1. Software and QBM research

To advance the theory of QBMs researchers require infrastructure 
that enables the implementation and experimentation of their algo-
rithms. We address these concerns by drawing parallels to the more 
mature classical LBM field, and the methods that have emerged to facil-
itate its practical success. We then discuss the absence of such methods 
from the QBM field, and the drawbacks that researchers face because of 
this. Finally, we address how the current work seeks to mitigate these 
shortcomings.

Classical LBMs owe their popularity to several factors. From a the-
oretical standpoint, LBMs allow for the computation of macroscopic 
quantities such as mass and momentum density [40], and can be used as 
(approximate) solvers for Navier-Stokes applications, among other tar-
get equations [17,78,18]. From a practical standpoint, the LBM lends 
itself well to massively parallel computing paradigms [73,40]. Over 
the years, several parallel software implementations of the LBM have 
emerged, including HemeLB [47] openLB [39], Palabos [43], waL-
Berla [5], lbmpy [6], and pylbm [58], which are able to carry out 
distributed simulations on hundreds of heterogeneous compute nodes. 
In addition to practical applications, open-source LBM software imple-
mentations have another significant merit – they facilitate the develop-
ment of further research by establishing a foundation for both theory 
and infrastructure [39].

Such foundations are almost entirely absent in the realm of QBMs. 
Because of this, the field faces three distinct hurdles. First, the many 
nuances of present QBM techniques make the comparison of the perfor-
mance and scalability difficult. From various quantum state encodings 
[62] to the decomposition of exponentially sized matrices into quantum 
gates, QBMs build on top of extensive knowledge and technology stacks 
that make implementation a daunting challenge. Second, the fractured 
nature of the field poses challenges for techniques that augment exist-
ing work, such as the effective extraction of quantities of interest from 
the quantum state [63]. Third, due to the scarce availability of QBM 
implementations, researchers face the additional obstacle of verifying 
and comparing methods from the literature. This significantly detracts 
from the reproducibility of the field. Before addressing how software 
can help ameliorate these three challenges, we first introduce the cur-
rent state of quantum software and its relation to present day quantum 
computer hardware.

The current state of QC hardware has been undergoing rapid devel-
opment and is currently in the so-called Noisy Intermediate-Scale Quan-

tum phase [57]. While quantum computers available today showcase 
some of the core advantages that theoretical physics promises, they are 
limited in both the number of qubits available and the time span that 
qubits can retain coherent states. These constraints greatly impede on 
the applications that quantum computers can presently carry out. To 
facilitate the research of quantum algorithms in an era without Fault-

Tolerant Quantum Computers, scientists have turned to simulation meth-
ods instead. Recently, an increasing number software frameworks have 
emerged to bridge the gap between theoretical advances in algorithmics 
and hardware availability. These range from general purpose simula-
tion tools [37,75,70] to specialized packages aimed at machine learning 
[8,12] and material simulation [4]. The current state of quantum soft-

ware intersects QC theory and available hardware, such that researchers 
can leverage classical hardware to verify large-scale algorithmic proto-
types while quantum counterparts edge closer to fault-tolerance.

In this work, we seek to address the three challenges facing QBM 
research by introducing the qlbm software framework. With qlbm, 
we aim to bring the same advantages that classical LBM software has 
proven to offer to researchers and practitioners alike. We design the 
qlbm software around the current paradigm of simulation, with the 
goal of accelerating QCFD research in the absence of fault-tolerant quan-

tum computers. Achieving this requires addressing several challenges, 
including integration with available software and hardware infrastruc-

ture, establishing suitable data structures and design patterns for the 
development of QBMs, and providing this functionality in a package 
that is flexible enough to conduct research, yet accessible enough for 
new users. To the best of our knowledge, qlbm is only the second ef-

fort to generalize the software development process of QBMs. Recently, 
Shinde et al. [68] introduced a software tool aimed at developing and 
simulating QBMs using the Intel Quantum SDK and quantum hardware. 
However, their work focuses on hybrid quantum-classical QBM algo-

rithms such as [13] and [14] and is specifically targeted towards a single 
vendor, and not openly available. By contrast, qlbm focuses on fully 
quantum approaches, provides a more flexible set of tools from multi-

ple vendors, is readily available on GitHub under a permissive license, 
and pursues the broader goal of providing an end-to-end development 
environment. We describe the internal design of qlbm and the simu-

lations it enables in Section 2. Section 3 provides results that showcase 
the capabilities of qlbm, both in terms of the QBMs that it can simulate, 
as well as the performance improvements it provides.

1.2. Lattice Boltzmann methods

To provide additional background for QBMs, this section briefly 
introduces the classical formulation of the Lattice Boltzmann Method 
(LBM) and components. For a more wholistic overview of the LBM, we 
refer the reader to the works of Succi et al. [74] and Krüger et al. [40]. 
The Boltzmann Equation (BE) describes the kinetic behavior of fluid at 
the mesoscopic scale, nestled between microscopic Newtonian dynam-

ics and macroscopic Navier-Stokes continua. The BE models the state of 
populations of fluid particles as a statistical distribution function over 
physical space, velocity, and time. Equation (1) gives the form of the BE 
we consider throughout this work, where the left hand-side terms model 
the advection of particles over the phase space, and the Ω(𝑓 ) term rep-

resents the change in state as a result of particle collisions, often referred 
to as the collision operator.

𝜕𝑓

𝜕𝑡 
+ 𝐮𝜕𝑓

𝜕𝐱 
=Ω(𝑓 ) (1)

Though several collision operators have been developed over the 
decades, the Bhatnagar-Gross-Kook (BGK) formulation [10] remains one 
of the more popular and widely implemented options thanks to its theo-

retical and computational simplicity and its ability to recover the same 
bulk properties as Navier-Stokes simulations [40]. The BGK collision op-

erator is defined by Ω(𝑓 ) = − 1 
𝜏
(𝑓 − 𝑓𝑒𝑞) and models the relaxation of 

the particle distribution 𝑓 towards the equilibrium function 𝑓𝑒𝑞 , where 
𝜏 is referred to as the relaxation time, and directly influences the compu-

tation of transport coefficients. The discretization of the BE along phase 
space and time yields the Lattice Boltzmann Equation (LBE), which can 
in turn be solved numerically by the Lattice Boltzmann Method. Equip-

ping the BE with the BGK collision operator and discretizing in terms 
of physical space, velocity space, and time yields the most widely-used 
form of the LBE [40], as described in Equation (2).

𝑓𝑖(𝐱 + 𝐯𝑖Δ𝑡, 𝑡+Δ𝑡) = 𝑓𝑖(𝐱, 𝑡) −
Δ𝑡
𝜏
(𝑓𝑖(𝐱, 𝑡) − 𝑓

𝑒𝑞

𝑖
(𝐱, 𝑡)) (2)

The subscript 𝑖 of the 𝑓𝑖 and 𝑣𝑖 variables stems from the velocity 
space discretization, which spans a small set of discrete velocity chan-

nels that particles can travel across. Including the velocity variable in 
the subscript rather than a parameter to the function is a notational con-

vention. The 𝑓𝑖 terms are terms referred to as particle populations, and 
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Fig. 1. Overview of end-to-end qlbm workflow. 

𝐯𝑖 terms model velocity coefficient vectors according to the discretiza-
tion scheme. Equation (3) gives typical choice of equilibrium function 
for Navier-Stokes simulations of isothermal models, where 𝑐𝑠 = Δ𝑥∕Δ𝑡
is the lattice speed, 𝑤𝑖 are pre-determined weights, 𝜌 is the fluid density, 
and 𝐮 corresponds to the flow velocity.

𝑓
𝑒𝑞

𝑖
(𝐱, 𝑡) =𝑤𝑖𝜌

(
1 +

𝐮 ⋅ 𝐯𝑖
𝑐2
𝑠

+
(𝐮 ⋅ 𝐯𝑖)2

2𝑐4
𝑠

− 𝐮 ⋅ 𝐮
2𝑐2

𝑠

)
(3)

The LBM describes a class of time step algorithms that iterate through 
repeated steps. Each time step can be conceptually broken down into 
three subroutines: streaming through physical space, reflection at the 
boundaries of the fluid domain, and (non-linear) particle collision. First, 
the particles stream (or propagate) through space in directions prescribed 
by the discretized velocities to neighboring lattice points. Then, bound-
ary conditions are applied to ensure particles adhere to the fluid domain. 
Finally, the populations undergo collision (or relaxation) before the 
computation of macroscopic forces. In addition to Navier-Stokes appli-
cations, the different building blocks of the LBM lend themselves well 
to a broad range of other use cases. Among others, researchers have 
proposed LBM-based models for acoustics [15], electro-osmotic flows 
[31], as well as the Poisson [17], shallower water [84], and advection-
diffusion [18] equations.

2. qlbm overview

This section introduces the cornerstone features of qlbm. Before ad-
dressing these features, however, we first highlight the end-to-end work-
flow we designed qlbm around. The primary goal of qlbm is to provide 
an end-to-end environment for the development, simulation, and anal-
ysis of QBM algorithms. Fig. 1 provides a visualization of the workflow 
that accommodates all of these steps. The process can be broadly broken 
down into three sub-steps: quantum circuit generation, simulation, and 
analysis. We design the qlbm workflow as a multi-step pipeline, where 
the output of each step is seamlessly forwarded to the next, while re-
taining individual access points for user analysis and intervention. The 
current implementation of the qlbm pipeline supports two algorithms: 
the Quantum Transport Method (QTM) [61] and the Space-Time Quan-
tum Boltzmann Method (STQBM) [62].

The workflow begins with a user-friendly specification of the sys-
tem to simulate. The goal of this interface to increase the accessibility 
of QBM algorithms for users with limited experience in the field, while 
simultaneously enriching the experience of more mature practitioners. 
User-specified data includes information about the lattice discretization, 
as well as geometry and boundary conditions. qlbm parses this con-
figuration and extracts algorithm-specific information that is then used 

to generate high-level quantum circuits. This method of deriving cir-
cuit properties from high-level specification bridges the gap between 
the expectations of end-users who are looking to perform CFD simu-
lations and the complexity of specifying physically accurate quantum 
algorithms. We address the internal design choices that facilitate this 
process in more detail in Section 2.1.

Once the high-level quantum circuit has been assembled, users are 
generally interested in simulating the algorithm to verify its correct-
ness and to analyze results. To make the best use of available resources, 
software should exploit techniques that quantum simulators allow for 
that would otherwise not be available on quantum hardware. To this 
end, qlbm implements methods that lessen the computational burden 
on both the algorithmic and the computational fronts. We describe such 
techniques and how qlbm leverages them to exploit the time-marching 
nature of LBMs in more detail in Section 2.2.

Finally, after simulations have concluded, researchers are typically 
interested in the performance and scalability of the methods they are 
developing. To accommodate this need, we integrate qlbm with a set 
of tools that enable the analysis of quantum circuits and their perfor-
mance. These tools include means for visualizing QBM algorithms and 
their building blocks, exporting simulation results to external visual-
ization engines, and scripts that give insight into the scalability of the 
methods. We delve into more details on how qlbm integrates with sur-
rounding quantum software infrastructure in Section 2.3.

2.1. Internal architecture

The internal architecture of qlbm primarily targets two goals with 
regard to quantum circuits. First, the quantum circuit components of 
qlbm should be easy to extend and verify, as to facilitate the design of 
novel QBM algorithms. Second, the internal composition of the frame-
work should be modular, as to enable testability on individual methods 
through isolation. In addition to quantum circuit design, the architec-
ture of the software should minimize the effort required to integrate 
with external quantum software libraries.

We address the two design directions of qlbm – quantum compo-
nents and overall system design – in Section 2.1.1 and Section 2.1.2
respectively, zooming out from individual quantum circuit abstractions 
to a holistic overview of the framework.

2.1.1. Quantum component architecture

To realize a modular and extendable quantum circuit library, we 
implement a system of circuit abstractions based around a complex-
ity hierarchy with respect to the steps of the LBM. Fig. 2 provides a 
graphical depiction of this hierarchy. We organize components in three 
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Fig. 2. Representation of internal quantum circuit abstraction hierarchy. 

𝑎𝑣0 ∶ ∙ ∙ ∙ ∙ ∙ ∙
𝑎𝑣1 ∶ ∙ ∙ ∙ ∙ ∙ ∙
𝑎𝑜0 ∶
𝑎𝑜1 ∶
𝑎𝑐0 ∶
𝑎𝑐1 ∶
𝑔_𝑥0 ∶

QFT

0 ∙ ∙
IQFT_dg

0

𝑔_𝑥1 ∶ 1 ∙ ∙ 1

𝑔_𝑥2 ∶ 2 ∙ ∙ 2

𝑔_𝑦0 ∶
QFT

0 ∙ ∙
IQFT_dg

0

𝑔_𝑦1 ∶ 1 ∙ ∙ 1

𝑔_𝑦2 ∶ 2 ∙ ∙ 2

𝑣_𝑥 ∶
𝑣_𝑦 ∶

P ( 𝜋
4 ) P ( 𝜋

2 ) P (𝜋) P ( −𝜋
4 ) P ( −𝜋

2 ) P (−𝜋)
𝑣_𝑑𝑖𝑟_𝑥 ∶ ∙

P ( 𝜋
4 )

∙
P ( 𝜋

2 )
∙

P (𝜋)
X ∙

P ( −𝜋
4 )

∙
P ( −𝜋

2 )
∙

P (−𝜋)
X

𝑣_𝑑𝑖𝑟_𝑦 ∶ ∙ ∙ ∙ X ∙ ∙ ∙ X

(a) Standard controlled incrementer circuit.

𝑎𝑣0 ∶
𝑎𝑣1 ∶
𝑎𝑜0 ∶ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
𝑎𝑜1 ∶
𝑎𝑐0 ∶
𝑎𝑐1 ∶
𝑔_𝑥0 ∶

QFT

0 ∙ ∙
IQFT_dg

0

𝑔_𝑥1 ∶ 1 ∙ ∙ 1

𝑔_𝑥2 ∶ 2 ∙ ∙ 2

𝑔_𝑦0 ∶
QFT

0 ∙ ∙
IQFT_dg

0

𝑔_𝑦1 ∶ 1 ∙ ∙ 1

𝑔_𝑦2 ∶ 2 ∙ ∙ 2

𝑣_𝑥 ∶
𝑣_𝑦 ∶

P ( 𝜋
4 ) P ( 𝜋

2 ) P (𝜋) P ( −𝜋
4 ) P ( −𝜋

2 ) P (−𝜋)
𝑣_𝑑𝑖𝑟_𝑥 ∶ ∙ ∙ ∙ X ∙ ∙ ∙ X

P ( 𝜋
4 ) P ( 𝜋

2 ) P (𝜋) P ( −𝜋
4 ) P ( −𝜋

2 ) P (−𝜋)
𝑣_𝑑𝑖𝑟_𝑦 ∶ ∙ ∙ ∙ X ∙ ∙ ∙ X

(b) Bounceback reflection controlled incrementer.

Fig. 3. Comparison of qlbm primitive quantum circuits. 

broad categories: primitives, operators, and algorithms. Primitives are 
the least complex elements of the taxonomy, and they implement small-

scale, isolated blocks within QBM algorithms. Isolating parameterized 
implementations of such circuits enables developers to verify their be-

havior in isolation and reuse them seamlessly. This in turn accelerates 
the implementation of novel algorithms.

Fig. 3 contains an example of how programmatic quantum circuit 
construction helps simplify the algorithmic development process. Both 
circuits in the figure were constructed with simple calls to a Con-

trolledIncrementer primitive that is used repeatedly to move par-

ticles during the streaming and reflection steps of the QTM algorithm. 
The circuits share the same structure: they begin by mapping the grid 
qubits to the Fourier basis by performing a Quantum Fourier Trans-

form (QFT) and conclude by returning them to the computational basis. 
Between the two QFT blocks is a series of controlled phase shifts that per-

forms the incrementation of the appropriate populations. In Fig. 3a, the 
controls reside on the ancilla velocity qubits, which determine whether 

particles move within one CFL substep. In Fig. 3b, the phase shift con-

trols are instead placed on the ancillary qubit that determine whether 
particles have virtually streamed inside of an obstacle. This sole dis-

crepancy determines which populations are streamed and differentiates 
two distinct phases of the algorithm. The qlbm implementation of this 
primitive allows the same piece of code to construct both circuits with 
a single parameter switch between reflection=None and reflec-
tion="bounceback".

A step above primitives are so-called operators. The goal of oper-

ators is to encompass quantum circuits that implement one specific 
physical operation of the LBM – streaming, reflection, or collision. This 
layer of abstractions seeks to address the fragmented formulations that 
have emerged from recent QBM literature. For instance, circuits that 
perform streaming in basis-state encodings are not directly applicable 
to amplitude-based encodings, and vice-versa. Despite this fundamen-

tal incompatibility, a clear separation between operator-level circuits 
in different encodings serves two purposes. First, operators enable tar-
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1 c i r c u i t = Q u a n t u m C i r c u i t ( * s e l f . l a t t i c e . r e g i s t e r s , ) 
2 
3 f o r v e l o c i t i e s _ t o _ i n c r e m e n t i n g e t _ t i m e _ s e r i e s ( 2 * * s e l f . 

l a t t i c e . v e l o c i t i e s [ 0 ] . b i t _ l e n g t h ( ) ) : 
4 c i r c u i t . c o m p o s e ( 
5 C o l l i s i o n l e s s S t r e a m i n g O p e r a t o r ( 
6 s e l f . l a t t i c e , 
7 v e l o c i t i e s _ t o _ i n c r e m e n t , 
8 ) . c i r c u i t , 
9 i n p l a c e = T r u e , 

10 ) 
11 c i r c u i t . c o m p o s e ( 
12 S p e c u l a r R e f l e c t i o n O p e r a t o r ( 
13 s e l f . l a t t i c e , 
14 s e l f . l a t t i c e . b l o c k s [ " s p e c u l a r " ] , 
15 ) . c i r c u i t , 
16 i n p l a c e = T r u e , 
17 ) 
18 c i r c u i t . c o m p o s e ( 
19 B o u n c e B a c k R e f l e c t i o n O p e r a t o r ( 
20 s e l f . l a t t i c e , 
21 s e l f . l a t t i c e . b l o c k s [ " b o u n c e b a c k " ] , 
22 ) . c i r c u i t , 
23 i n p l a c e = T r u e , 
24 ) 
25 f o r d i m i n r a n g e ( s e l f . l a t t i c e . n u m _ d i m e n s i o n s ) : 
26 c i r c u i t . c o m p o s e ( 
27 S t r e a m i n g A n c i l l a P r e p a r a t i o n ( 
28 s e l f . l a t t i c e , 
29 v e l o c i t i e s _ t o _ i n c r e m e n t , 
30 d i m , 
31 ) . c i r c u i t , 
32 i n p l a c e = T r u e , 
33 ) 

Fig. 4. Sample qlbm operator code. 

geted experimentation with competing implementations such as differ-

ent boundary condition circuits within a single encoding. Second, this 
design allows for a broader range of algorithmic combinations, which 
may target different solvers or equations.

The highest level of abstraction within the component taxonomy is 
the end-to-end QBM algorithm. These structures are crucial for tying 
together lower level abstractions. Algorithm-level components follow 
naturally from the chaining of operators in a way that resembles LBM 
pseudocode. Fig. 4 depicts an example of how the QTM algorithm [61] 
can be expressed as a series of four operator-level components. The Col-
lisionlessStreamingOperator first prepares the correct ancilla 
qubit state based on the current state of a CFL counter, before per-

forming a controlled incrementation on populations of particles within 
one substep (line 5). Following streaming, the SpecularReflection-
Operator (line 12) and BounceBackReflectionOperator (line 
19) append the circuit with logic that detects whether particles have 
streamed outside the fluid domain, before inverting the appropriate ve-

locities and placing the populations back in the fluid domain. Finally, 
the StreamingAncillaPreparation operator (line 27) prepares the 
quantum state for the next iteration of the CFL counter. A simple call to 
the built-in class, i.e. CQLBM(lattice),1 is all that users need to do to 
build end-to-end quantum circuits.

This internal architecture of quantum components enables the devel-

opment of new QBM circuits in two ways. First, the quantum circuits al-

ready implemented within qlbm are trivially reusable for new methods, 

1 In the software, we denote algorithms by their interpretation of the LBM. 
For this reason, the QTM algorithm [61] is available as CQLBM, short for Colli-

sionless Quantum LBM, as it models Ω(𝑓 ) = 0. The STQBM [62] is available as 
SpaceTimeQLBM.

provided that encodings are compatible. Second, this hierarchy facili-
tates the development of entirely novel algorithms by additionally sep-
arating quantum circuit logic and quantum register setup. We achieve 
this by isolating the quantum register logic within implementations of 
the Lattice class, which are algorithm- and implementation-specific. 
Consider again the chaining of operators depicted in Fig. 4. The only in-
formation required to construct the quantum operators already resides 
in the lattice attribute of the CQLBM object, which gets propagated 
down the abstraction chain. To increase the accessibility of this archi-
tecture, we additionally provide each Lattice class with methods that 
allow for human-readable indexing operations by assigning each reg-
ister an intuitive naming scheme, and automatically adjusting its size. 
This alleviates the burden of manually indexing individual qubits and 
addressing multiple logically connected indices. In addition to the QTM 
algorithm, qlbm also fully supports the STQBM [62], which uses a dif-
ferent, extended computational basis state encoding, which highlights 
the versatility of this design.

Fig. 5 depicts the entire architecture of the quantum components of 
qlbm. At the top, three base classes that adhere to the primitive, oper-
ator, QBM model provide interfaces that ease the development of novel 
circuits by providing appropriate interfaces through inheritance. On the 
vertical axis, classes become increasingly specific and complex from top 
to bottom. Within one “branch” of the inheritance hierarchy, component 
reuse is still possible, i.e. by utilizing simpler primitives to build more 
complex ones. On the horizontal axis, components again range from sim-
ple to complex with respect with the task they fulfill within the QBM. 
That is, incrementers and comparators serve as the building blocks for 
streaming and reflection operators, which then assemble the end-to-end 
QBM. Researchers can develop novel QBMs along this axis, in parallel 
to existing implementations. In practice, this leads to a system in which 
previous contributions are available for novel developments, but do not 
hinder them. The following subsection describes how quantum compo-
nent module fits within the broader scope of the framework.

2.1.2. System architecture

Integrating QBM circuits into broader quantum software stacks is 
crucial for increasing the accessibility of QBMs, as well as for expedit-
ing novel research in the NISQ era. We design the architecture of the 
qlbm framework around facilitating the use of the quantum compo-
nents described in the previous subsection. Fig. 6 gives an overview of 
the three main components of qlbm, as well as how they come together 
to enable seamless user interaction.

At the bottom of the figure, the quantum components of the QBM 
are mostly isolated from the remainder of the framework. To further 
decouple the quantum circuit logic from the surrounding utilities, we 
introduce a Lattice component which handles specification parsing 
and preprocessing. This module is depicted on the right hand-side of 
Fig. 6 and is tasked with the conversion of high-level specification into 
information that can parameterize the construction of quantum circuits. 
This includes parsing geometry specification in the Block class for 
the application of boundary condition and determining the appropri-
ate (minimal) register setup for simulating the system in the Lattice 
class. Quantum components use this information to construct appropri-
ate circuits on a per-algorithm basis.

External infrastructure is again handled in isolation to encourage 
modularity and extendibility. The Infrastructure component con-
tains both Compiler and Runner classes that wrap the circuit tran-
spilation utilities available in Qiskit [37] and Tket [70]. These utilities 
enable resource estimation experiments for different hardware specifi-
cations, including variable gate sets and qubit connectivities. Uniform 
interfaces make it easy for the user to access those services without re-
quiring low-level tuning of the underlying libraries.

Finally, the detached components are brought together in an inter-
face called a SimulationConfig. This class ties together the algorith-
mic components that make up a QBM, as well as additional simulation 
options the user can configure. Such items include the preferred com-
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Fig. 5. Class diagram representation of the qlbm quantum component architecture. 

Fig. 6. Representation of the system-wide qlbm architecture. 
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piler and simulator, as well as their specific parameters. The appeal of 
this highly coupled interface is that it automates the process of prepar-
ing the high-level quantum circuits generated in the component module 
for execution on a specific quantum or classical hardware platform. This 
allows the entire bundle of quantum circuits simulation parameters to 
be forwarded to the Runner in one go. Section 2.3 provides an exam-
ple of how the entire end-to-end simulation workflow can be performed 
in just a few lines of code.

To complement modularity and isolation, the architecture of qlbm 
promotes a high standard of code quality and reproducibility. In addi-
tion to the open-source access, qlbm contains an extensive suite of over 
200 unit, integration, and end-to-end tests, which target both low-level 
implementation details (such as geometry parsing), as well as high-level 
features such as compatibility with several Qiskit simulators. Supple-
mentary to unit tests, qlbm hosts a comprehensive documentation web-
site with dozens of examples, thousands of lines of in-code comments, 
and additional tutorials that delve into advanced applications of the soft-
ware aimed at developing novel algorithms.

2.2. Performance enhancements

In an era without fault-tolerant quantum hardware, classical hard-
ware plays a crucial role in accelerating quantum algorithm research. To 
do this effectively, we require simulation software that enables classical 
hardware to emulate quantum computers in the first place. In this sec-
tion, we highlight two directions that can enhance the performance of 
QBM algorithms in an environment dominated by quantum simulation. 
The first direction is algorithmic. This includes any improvements that 
can be made to quantum circuit design, as well as any computations that 
can be delegated to classical information processing instead of relying 
on the exponentially more expensive computation of a quantum state. 
The second direction is computational. This direction consists of exploits 
that classical hardware allows, which would otherwise be physically im-
possible on quantum computers. Efficient statevector manipulations are 
an example of such an optimization. In quantum computing, the no-
cloning theorem prohibits exact copies of statevectors and measurement 
often requires exponentially many shots of a circuit. Such limitations 
can be circumvented in simulations. Effective implementations of such 
techniques are crucial for accelerating research into QBMs, as they save 
researchers invaluable time and computational resources. We first de-
scribe examples of algorithmic improvements in Section 2.2.1 before 
addressing their computational counterparts in Section 2.2.2.

2.2.1. Algorithmic improvements

Algorithmic improvements concern techniques that reduce the com-
plexity of quantum circuits in either depth, number of qubits, or total 
number of gates. Here, we refer again to the QTM algorithm devel-
oped by Schalkers and Möller [61] as an example, and highlight two 
techniques that help reduce circuit complexity, while focusing on how 
qlbm facilitates such improvements.

Ancilla qubit reuse. Effectively leveraging the state of ancilla qubits 
can help reduce both the number of gates and qubits required to per-
form certain computations. Here, we give two examples that curtail gate 
and qubit requirements, respectively. We first consider the depth of 
QTM algotrihm’s streaming operator. The algorithm leverages an an-
cilla system that determines whether populations of particles stream in 
a given timestep subdivision, as computed by a CFL counter. Discrete 
velocities that should stream in a substep are identified in the quan-
tum state through ancilla qubits 𝑎𝑣,𝑖 that pertain to whether particles 
with a specific discrete velocity 𝑣 are streamed in dimension 𝑖. A naive 
implementation would first perform the streaming operation, reset the 
state of the ancilla qubits, and then compute the boundary condition op-
erator on the resulting state. However, since populations that have not 
streamed in the CFL substep are not affected by boundary conditions, the 
same ancilla state can be re-used to control which velocity directional 

qubits are inverted by boundary conditions. Fig. 4 exemplifies this op-
timization, where the StreamingAncillaPreparation operator is 
only used at the end of the CFL iteration, and not between each stream-
ing and boundary condition routine. The indexing methods of qlbm’s 
Lattice classes allow for the seamless utilization of qubits without 
manually performing the tedious indexing operations that change with 
each system and lattice discretization.

Ancilla qubits can also be effectively reused to reduce the memory re-
quirements of heterogeneous boundary conditions. Consider again Fig. 4
and the application of both specular and bounceback boundary condi-
tions. Specular reflection entails the reversal of the velocity normal to 
the reflection surface, whereas bounceback reflection requires that all 
directions are inverted, irrespective of the contact surface. To practi-
cally realize specular reflection, we use 𝑑 ancilla qubits to determine 
which dimensions a population has reached an object in, which enables 
the computation of the velocity components to invert. For bounceback 
reflection, a single ancilla qubit suffices to determine whether particles 
have exited the fluid domain, which triggers the reversal of all direc-
tional velocity qubits [63].

A straightforward implementation of a system that supports geom-
etry with heterogeneous boundary conditions would therefore utilize 
𝑑+1 ancilla qubits. In the qlbm implementation of the QTM algorithm, 
we only require the 𝑑 ancilla qubits that specular reflection necessitates. 
This is made possible by imposing the restriction that the domains of 
specular reflection and bounceback objects are separated by at least two 
grid points. If this constraint is satisfied, multiple obstacles with either 
reflection method can leverage the same qubits without causing any 
interference within the quantum state. Though marginal for ideal fault-
tolerant computers, such improvements prove significant for classical 
emulation. The Lattice class registers again make such optimizations 
trivial to implement by allowing shared access to all qubit registers from 
inside primitives and operators. Moreover, the straightforward chaining 
of operators makes it easy to compose circuits based on intermediate 
states, and each Lattice class can incorporate specification parsers 
that warn users if constraints are violated.

Adaptable register setup. To further exploit the properties of specific 
QBM setups, qlbm allows for a flexible register setup that minimizes 
resource requirements. The same observation that allows ancilla qubits 
to be reused also leads to the simulation requiring fewer qubits for the 
simulation of the end-to-end QTM algorithm. As the Lattice object 
parses the input specification, it tracks the different kinds of boundary 
conditions present in the system. If the system only contains bounce-
back boundaries, the register is automatically shrunk to only require one 
ancilla qubit that suffices to perform reflection. The relative indices of 
the remainder qubits are automatically adjusted such that the user does 
not need to manually adjust the circuits not affected by this change. If, 
however, the system contains mixed boundary conditions, the register 
is widened to accommodate the 𝑑 ancillae that specular reflection uti-
lizes, and the mechanism described previously commences to effectively 
reuse the available qubits for both boundary conditions.

Classical logic computation. We again use the same specular reflection 
operator of the QTM to highlight how the delegation of logic to classical 
preprocessing can effectively speed up simulation. We give two exam-
ples of preprocessing techniques that simplify both the quantum circuits 
and their simulation.

First, we consider specular reflection against a wall in the nominal 
case, where particles do not encounter a corner of the object. To reflect 
particles in a way that is physically correct, the quantum circuits needs 
to determine which of the velocity directions to invert. While this is sim-
ple to do in classical LBMs, the quantum circuit additionally requires the 
information to persist within the state after particles have been removed 
from the non-fluid domain, as to reset the state of any ancilla qubits that 
would otherwise later interfere with the computation. There are multi-
ple ways to implement this logic. Detecting and reseting such states can 
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be achieved both in the quantum circuit by means of extra ancilla qubits, 
as well classically by manually defining which velocity directions each 
wall surface affects. However, the former requires significant quantum 
resources and expensive additional logic, while the latter is error-prone 
and difficult to debug.

In qlbm, we provide an alternative implementation that performs 
this computation in terms of automated boolean logic operations in a 
step that precedes the assembly of the quantum circuit. Specifically, we 
take advantage of the encoding of velocities in the QTM algorithm. We 
leverage this encoding by formulating a boolean function over spacial 
properties of the object’s edges, that provides the information required 
to invert and reset the appropriate velocity qubits. To achieve this, 
we define near-corner points as 2𝑑-dimensional boolean vectors in the 
cartesian product space described by Equation (4).

𝐩𝐨𝐢𝐧𝐭 = 𝐛𝐨𝐮𝐧𝐝 × 𝐨𝐮𝐭𝐬𝐢𝐝𝐞 (4)

Here, 𝐛𝐨𝐮𝐧𝐝,𝐨𝐮𝐭𝐬𝐢𝐝𝐞 ∈ {⊤,⊥}𝑑 are 𝑑-bit structures that encode the 
position of near-corner points per dimension. The 𝐛𝐨𝐮𝐧𝐝 property en-
codes whether the point belongs to a surface that is a lower (⊥) or an 
upper (⊤) bound of the object. The 𝐨𝐮𝐭𝐬𝐢𝐝𝐞 values denote whether the 
point is outside (⊤) or inside (⊥) the object bounds. Since both vari-
ables are dimension- and position-agnostic, their cross product produces 
a data structure that encodes the position of each near-corner point of 
any cuboid-shaped object. To determine whether an ancillary qubit is 
to be inverted after performing the reflection step, qlbm simply queries 
a single boolean value per dimension. This value is computed as given 
in Equation (5).

𝐢𝐧𝐯𝐞𝐫𝐬𝐢𝐨𝐧 = 𝐛𝐨𝐮𝐧𝐝⊗ 𝐨𝐮𝐭𝐬𝐢𝐝𝐞 (5)

Where ⊗ corresponds to the point-wise XOR function. That is, each 
ancillary qubit state is reset controlled on (1) the position of the grid-
point within the lattice and (2) the inversion boolean value associated 
with its relative position with respect to the object. This technique is 
powerful for two reasons. First, it saves 𝑑 qubits that would be required 
to implement a quantum counterpart to this computation without alter-
ing the other components of the quantum state. Second, since all clas-
sical computations required for this purpose are trivial object-agnostic 
boolean operations, the cost associated with this method is negligeable 
with respect to the rest of the algorithm. qlbm enables such computa-
tions to be carried out entirely independently from the quantum circuit 
generation details, and implements them in a separate Block class, 
which interfaces with the Lattice counterpart. In practice, this means 
users can choose to tune the reliance of their methods on classical com-
putation without necessitating any change to previously implemented 
circuits. We note that qlbm uses the same mechanism to generate the 
reflection circuits for both 2D and 3D reflection circuits, including all 
edge cases around cuboid objects. The cartesian product of Equation 
(4) generalizes to both points and edges (in 3D), and while the specific 
function used to assign inversion boolean values differs per case, its im-
plementation remains straight-forward and efficient.

2.2.2. Computational improvements

Computational improvements involve techniques that leverage cur-
rent classical hardware to simulate QBM circuits efficiently. In this 
section, we outline three kinds of techniques tailored to exploit the struc-
ture of QBM algorithms.

Statevector snapshots. Lattice Boltzmann Methods are inherently time-
dependent algorithms. In both classical and quantum LBMs, compu-
tations occur in a temporal loop that consists of repeated steps. This 
means that the circuits that implement QBMs may be similar or even 
identical for each individual time step. On real quantum hardware, this 
observation is of lesser importance. While circuits can be reused, the 
statevector produced by a QBM circuit after one step cannot be cloned 
as input for the next. However, quantum simulators available today do 

offer this option. In this subsection, we show how taking advantage of 
the availability of the entire statevector can drastically decrease the time 
required to simulate QBMs.

To showcase this improvement, we consider a scenario in which the 
goal of the simulation is to perform 𝑛 time steps of the QTM algorithm, 
and visualize the entire flow field encoded in the quantum state after 
each step. This is a common method that helps researchers verify whether 
the implementation of the circuit produces physically consistent behav-

ior. Fig. 7a depicts what an implementation of this workflow might look 
like on quantum hardware. Each time step requires a different quantum 
circuit, that is made up of 𝑘 repetitions of the same circuit nestled be-

tween state preparation and post-processing primitives. Following each 
execution, measurements collapse the quantum state onto basis states 
that can reconstruct the flow field. In total, the QTM single-time step 
quantum circuit is executed (𝑛2) times, not accounting for the multi-

ple shots required for each step. This scaling emerges as a consequence 
of the fact that to simulate and approximate the flowfield over 𝑛 time 
steps, all 1 ≤ 𝑘 ≤ 𝑛 time steps require a separate simulation of 𝑘 con-

catenated single-step circuits each. Therefore, the single-step circuit is 
executed 𝑛(𝑛 + 1)∕2 times, not accounting for the number of shots at 
each step. This is a general requirement of the task, rather than a con-

sequence of the specific algorithmic implementation.

Fortunately, quantum simulators afford the extraction of additional 
information from their representation of quantum states without requir-

ing multiple shots. Fig. 7b depicts an efficient implementation of the 
same workflow on quantum simulators. Though the same structure is 
preserved, the transfer of information from one time step to another 
is fundamentally different in qlbm’s implementation. While iterating 
through the (identical) time-step circuits, each statevector ψ𝑘 produced 
by the circuit undergoes the following process. If post-processing is re-

quired, qlbm first creates a copy of the statevector, which it then passes 
on to a sampling subroutine. Otherwise, a single instance of the data 
suffices. Afterwards, qlbm produces samples of this statevector without 
changing it. This enables the extraction of information required for visu-

alization while maintaining the statevector intact. After the information 
has been extracted, the same statevector is fed back into the same time 
step circuit, which updates it with one more iteration.

The core difference between the two approaches is that the latter 
effectively takes snapshots of the statevector as the 𝑛 timestep circuits 
iteratively evolve it. This enables a drastic increase in performance, as 
only (𝑛) simulations of the single step algorithm are required. In qlbm, 
we additionally increase the efficiency of this method by only construct-

ing and transpiling the time step circuit once and re-using it for each 
iteration. In practice, using this method to simulate novel developments 
of circuits massively decreases the time researchers spend verifying their 
implementations.

Statevector sampling. Quantum simulation is an area of active research 
that continuously improves the performance of quantum emulation 
through new methods and software. Emerging methods all have differ-

ent strengths and weaknesses, which depend on the underlying hard-

ware and the simulated quantum circuits. To take advantage of the 
plethora of simulation paradigms, we split the simulation procedure into 
two distinct phases, as illustrated in Fig. 7b.

The first phase consists of the simulation of the quantum circuit up 
to but not including the post-processing step. To enable the snapshot-

driven execution that reduces the complexity order, the simulator that 
performs this routine must be able to retrieve the entire statevector 
at the end of each time step. The second phase of the procedure in-

volves postprocessing and measurement. Unlike the time step circuit(s), 
post-processing and measurement circuits are generally shallow and 
simple. In addition to this, the state that emerges as a result of the 
post-processing circuit is not of any importance to the next iteration 
of the algorithm, and instead serves visualization and verification pur-

poses. Because the two phases are constrained by significantly different 
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(a) Standard simulation of an 𝑛-step QBM algorithm.
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(b) Snapshot simulation of an 𝑛-step QBM algorithm.

Fig. 7. Comparison of simulation strategies for multistep QBM algorithms. 

requirements, qlbm allows for the specification of different simulators 
for each phase.

The goal of this distinction is to take advantage of simulation tech-

nology that favors the simulation of shallow circuits in the latter stages 
of each time step. In the general case, this requires two copies of the 
statevector to be kept in memory at the same time – one that serves as 
input to the following time step iteration, and one that serves as input 
to the post-processing and measurement stage. Fortunately, in the nom-

inal scenario where researchers are interested in visualizing the entire 
flow field evolved by the circuits, post-processing is circumvented. In 
practice, this means that the quantum state computed by the time step 
circuit can effectively be sampled by a different, more suitable simulator 
with no additional copy required.

Reinitialization. Simulating QBM algorithms on classical hardware 
comes with inherent limitations. Clearly, the exponential memory ad-

vantage that quantum computing promises is not achievable through 
classical emulation. With this fundamental limitation come several prac-

tical challenges. One such challenge facing the snapshot and sampling 
techniques stems from the transition between time steps. For algorithms 
like QTM, the time step transition on quantum simulator consists of a 
single straightforward transfer of the statevector from one circuit to the 
next. However, this is not the case for most QBM algorithms.

We consider the STQBM algorithm [62] as an example. To circum-

vent the non-unitarity of streaming in the computational basis state 
encoding, the STQBM algorithm uses velocity information from neigh-

boring gridpoints. In the general case, this utilizes (𝑁𝑑
𝑡
) additional 

qubits to propagate spacial information in time, with 𝑁𝑡 the number 

of time steps to simulate and 𝑑 the number of dimensions of the prob-

lem. Due to memory limitations, the direct simulation of more than a 
few time steps of this algorithm is infeasible for most classical hardware 
available today. To circumvent this constraint, an effective reinitializa-

tion mechanism is required. Such a mechanism converts information 
encoded in the quantum state at the end of a simulation into a quan-

tum circuit that prepares the state for following time step(s).

We emphasize that this use of reinitialization is not exclusive to the 
STQMB. Though the underlying reasons differ, other approaches may 
require similar mechanisms. We consider the LCU-based paradigm [13, 
14] as an additional example. Due to how LCU-based methods perform 
collision, the quantum state contains an additional component, which 
is orthogonal to the component encoding the state of the flow field. In 
practice, this makes many measurements obtained from the quantum 
state produced by LCU time step circuits irrelevant for the flow field 
computation. This makes reinitialization techniques valuable, as they 
segregate the algorithm into smaller restart-driven blocks that prevent 
the orthogonal state component from propagating.

To facilitate the development of all three kinds of QBMs, we equip 
qlbm with a uniform reinitialization interface. Fig. 8 depicts how reini-

tialization integrates into the efficient QBM simulation loop. After a 
circuit implementing one or more time steps has been assembled (upper, 
left-hand quadrant), simulation can commence. A simulator backend of 
the user’s choice, such as Qiskit or Qulacs then evolves the quantum 
state by the full time step circuit from |0⟩⊗𝑛 into ψ𝑘 (upper right-hand 
quadrant). The nominal qlbm flow then directs the quantum state to-

wards the sampling backend. At this stage, information is extracted from 
the state in the form of counts, which include the measured basis states 
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Fig. 8. qlbm reinitialization loop. 

and their relative frequency with respect to a pre-determined number 
of shots. It is this information that enables qlbm’s integration with ex-

ternal visualization techniques.

After extracting the samples from the quantum state, the statevec-

tor and the counts are fed to an instance of the Reinitializer class. 
This class provides restart methods that are tailored to the algorithm 
being simulated. The Reinitializer object performs the appropri-

ate processing of the input data to obtain the initial conditions of the 
next time step circuit. For the QTM algorithm, this only involves wrap-

ping the statevector in an appropriate interface – counts are disregarded. 
For STQBM, the process involves parsing the counts information and 
constructing a new quantum circuit that propagates the velocity in-

formation to neighboring grid points. In this case, the statevector ob-

ject is discarded. Following the reinitialization step, the novel initial 
conditions circuit is automatically compiled to the appropriate target 
platform. To enable seamless interaction between the reinitializer and 
the rest of the simulation infrastructure, qlbm’s base Reinitializer 
provides a stable and uniform interface that requires no modification 
for the implementation of novel algorithms. Together with the flexible 
component interface described in Section 2.1, this enables the on-the-

fly composition of the newly derived circuit with the unchanged time 
step circuit from the previous iteration. We note that next to develop-

ing the quantum circuits, implementing (or reusing) a Reinitializer 
class and adjacent Result class (for parsing and visualizing samples) 
are the only other step researchers need to take to fully implement 
a QBM algorithm in qlbm, while retaining all performance enhance-

ments.

2.3. Interfacing and integration

Providing intuitive interfaces is crucial for making software acces-
sible to both researchers and practitioners. In this section, we describe 
how users can interact with qlbm as a QBM simulation tool, before ad-
dressing qlbm’s integration with external software.

2.3.1. Interfacing

One of the advantages of qlbm’s internal component representation 
is that it enables automatic circuit construction. This shifts the burden 
of realizing system-specific circuits from the user to the logic inside 
the software. In turn, this means users should have access to a seam-
less way of specifying complex quantum circuits. To address this need, 
qlbm provides the option for users to specify system properties in an 
implementation-agnostic way through a JSON interface.

Fig. 9 contains an example of such a specification. When parsing this 
specification, qlbm uses the lattice properties to determine the appro-
priate qubit register setup, as well as the structure, position, and order 
of quantum components that compose the algorithm. Next to discretiza-
tion details such as the number of gridpoints in each dimension (lines 
3-6) and number of discrete velocities (lines 7-10), users can addition-
ally specify properties of the geometry within the system (lines 12-23). 
Each geometric object is composed of a lower and an upper bound in 
each dimension (lines 14, 15), together with the object’s boundary con-
ditions (line 16). In the current version of qlbm, only cuboid-shaped 
geometries are supported for the QTM algorithm, with either specular 
or bounce-back boundary conditions. To accommodate the development 
of novel algorithms, qlbm parses the exact same specification file to 
derive multiple QBMs. Internally, the Lattice class provides a base 
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1 { 
2 " l a t t i c e " : { 
3 " d i m " : { 
4 " x " : 1 6 , 
5 " y " : 1 6 
6 } , 
7 " v e l o c i t i e s " : { 
8 " x " : 4 , 
9 " y " : 4 

10 } 
11 } , 
12 " g e o m e t r y " : [ 
13 { 
14 " x " : [ 9 , 1 2 ] , 
15 " y " : [ 3 , 6 ] , 
16 " b o u n d a r y " : " s p e c u l a r " 
17 } , 
18 { 
19 " x " : [ 9 , 1 2 ] , 
20 " y " : [ 9 , 1 2 ] , 
21 " b o u n d a r y " : " b o u n c e b a c k " 
22 } 
23 ] 
24 } 

Fig. 9. Sample qlbm lattice configuration. 

that includes a parser, which specialized implementations can leverage. 
In practice, this means utilities that warn users of ill-formed specifica-
tions can be shared between algorithms, and excessive information (i.e., 
boundary conditions that are not yet supported by some QBMs) can be 
discarded.

qlbm offers several alternatives that bridge the gap between the 
high-level JSON specification and nuanced details of the simulation. 
Fig. 10 depicts the most user-friendly interface available in qlbm, based 
around the SimulationConfig wrapper. First, users choose a lattice 
file to simulate, written in the same format as Fig. 9 (line 12). Next, the 
SimulationConfig class (lines 13-23) defines a convenient container 
that bundles together all required simulation data. This includes the spe-
cific components that make up the quantum algorithm (lines 14-17), the 
platforms that run and compile the quantum circuits (lines 18-20), and 
explicit simulator choices (lines 21-23). The components and simulator 
choices correspond exactly to the workflow described in Section 2.2.2
and Fig. 7. At this stage, no additional user configuration is required, 
as qlbm infers all quantum registers and circuits based on the parsed 
lattice data alone.

Following configuration, a single call to the prepare_for_simu-
lation() method of the configuration object determines whether the 
user-supplied configuration is valid and compiles all circuits to the ap-
propriate simulator format. Next, users need only make a call to the 
run() method of a Runner object, specifying the number of time steps 
to simulate, the number of shots to sample from the statevector, and 
whether to use the snapshot mechanism. We note that the distinction be-
tween where the sampling and snapshot mechanisms are specified stems 
from the fact that sampling requires a different compilation pipeline if 
enabled, and as such needs to be specified at circuit assembly time. We 
discuss the different available options for both compilers and runners in 
the following subsection.

2.3.2. Infrastructure and integration

The field of quantum software is rapidly evolving. The quality, scope, 
and variety of available software are continuously increasing as re-
searchers develop new methods to bridge the gap between the current-
day hardware and fault tolerance. Such improvements are evident at 
multiple stages of the quantum software pipeline, and taking advantage 
of them is crucial for increasing the pace and quality of related re-
search. In this section, we elaborate how advances in quantum software 

1 f r o m q i s k i t _ a e r i m p o r t A e r S i m u l a t o r 
2 
3 f r o m q l b m . c o m p o n e n t s i m p o r t ( 
4 C Q L B M , 
5 C o l l i s i o n l e s s I n i t i a l C o n d i t i o n s , 
6 E m p t y P r i m i t i v e , 
7 G r i d M e a s u r e m e n t , 
8 ) 
9 f r o m q l b m . i n f r a i m p o r t Q i s k i t R u n n e r , S i m u l a t i o n C o n f i g 

10 f r o m q l b m . l a t t i c e i m p o r t C o l l i s i o n l e s s L a t t i c e 
11 
12 l a t t i c e = C o l l i s i o n l e s s L a t t i c e ( " l a t t i c e . j s o n " ) 
13 c f g = S i m u l a t i o n C o n f i g ( 
14 i n i t i a l _ c o n d i t i o n s = C o l l i s i o n l e s s I n i t i a l C o n d i t i o n s ( 

l a t t i c e ) , 
15 a l g o r i t h m = C Q L B M ( l a t t i c e ) , 
16 p o s t p r o c e s s i n g = E m p t y P r i m i t i v e ( l a t t i c e ) , 
17 m e a s u r e m e n t = G r i d M e a s u r e m e n t ( l a t t i c e ) , 
18 t a r g e t _ p l a t f o r m = " Q I S K I T " , 
19 c o m p i l e r _ p l a t f o r m = " Q I S K I T " , 
20 o p t i m i z a t i o n _ l e v e l = 0 , 
21 s t a t e v e c t o r _ s a m p l i n g = T r u e , 
22 e x e c u t i o n _ b a c k e n d = A e r S i m u l a t o r ( m e t h o d = " s t a t e v e c t o r " ) , 
23 s a m p l i n g _ b a c k e n d = A e r S i m u l a t o r ( m e t h o d = " s t a t e v e c t o r " ) , 
24 ) 
25 
26 c f g . p r e p a r e _ f o r _ s i m u l a t i o n ( ) 
27 r u n n e r = Q i s k i t R u n n e r ( c f g , l a t t i c e ) 
28 r u n n e r . r u n ( 
29 2 0 , # N u m b e r o f t i m e s t e p s 
30 4 0 9 6 , # N u m b e r o f s h o t s p e r t i m e s t e p 
31 " q l b m -o u t p u t " , # O u t p u t d i r e c t o r y 
32 s t a t e v e c t o r _ s n a p s h o t s = T r u e , 
33 ) 

Fig. 10. Sample qlbm usage. 

technology affect qlbm, and how its integration with external software 
infrastructure can accelerate QCFD research. We begin by addressing 
how qlbm assembles quantum circuits before focusing on simulation, 
compilation, and visualization, respectively.

Circuit specification. Over the years, many quantum programming 
frameworks and languages have emerged for various platforms and spec-
ifications. Popular general-purpose quantum programming frameworks 
include the Open Quantum Assembly Language (OpenQASM) [22] Quip-
per [29], ProjectQ [71], Cirq [24], and Qiskit [37]. qlbm builds its 
internal representation of quantum circuits on top of Qiskit’s Quan-
tumCircuit class. Specifically, each qlbm primitive, operator, and 
algorithm holds an internal Qiskit quantum circuit that is built from 
either a small set of parameters or from a Lattice specification. We 
select Qiskit for three main reasons. First, its large ecosystem encom-
passes many useful pieces of adjacent infrastructure, including analysis 
and visualization tools. Second, Qiskit’s popularity increase the acces-
sibility and reach of qlbm with a broader user base. Finally, its rich 
toolkit of circuits makes the specification of elaborate quantum circuits 
seamless. It is especially this feature that enables qlbm’s modular com-
ponent architecture and circuit composition capabilities.

Simulation. Using classical hardware to simulate the exponentially 
large space that logical qubits reside in is an inherently limiting task. 
In the case of arbitrary random circuits, the amount of classical mem-
ory required to simulate a quantum algorithm doubles with every qubit. 
In spite of this fundamental limitation, researchers and engineers have 
been developing tools that can significantly accelerate quantum simu-
lation and increase the domain of algorithms that classical hardware 
can meaningfully emulate. When considering the advancements that 
quantum simulation technology has undergone in recent years, one can 
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distinguish between two main directions. The first direction concerns 
the simulation method. Quantum states can be represented directly 
as numerical instances of statevectors and density matrices, but also 
symbolically through graphs [77], tensor networks [51], and decision 
diagrams [80]. Though none of these methods fully overcome the ex-
ponential disadvantage that classical hardware faces, each of them may 
provide practically meaningful advantages for particular classes of prob-
lems. Second, improvements in simulation performance can also come 
from how the simulation method integrates with hardware. To this end, 
engineers have developed simulators for different platforms, including 
general purpose CPUs, as well as ARM-based clusters [35] and GPUs 
[32,26].

Selecting suitable simulation methods for the hardware at hand is 
pivotal for speeding up the simulation and development of QBM algo-
rithms. To reduce the friction between the zoo of available simulator 
implementations and the researchers looking to exploit them, qlbm pro-
vides several built-in presets. The simulation modules of qlbm rely on 
two external libraries: Qiskit [37] and Qulacs [75]. Qiskit provides a 
plethora of simulator options through its qiskit-aer package, which 
include nine different simulation techniques for heterogeneous com-
puter hardware. Qulacs provides a competing implementation of a stat-
evector simulator that has been shown to outperform Qiskit in several 
benchmarks [75]. Both Qiskit and Qulacs provide CPU and GPU imple-
mentations of their methods under similar interfaces, which qlbm in-
herits and provides different installations for. A third option natively 
supported in qlbm is MPIQulacs [35], a multi-node alternative of Qulacs 
designed for ARM-based compute clusters, that enables the distributed 
simulation of quantum algorithms.

The implementations that link qlbm to each simulator reside un-
der specialized implementations of a base Runner class. Any of the 
three implementations can be swapped into the same workflow that 
Fig. 10 shows (i.e. by swapping the QiskitRunner instruction in line 
27). Moreover, users can decide which of the three (CPU, GPU, or 
MPIQulacs) options they want to use at install time by specifying a 
single installation parameter. To further boost the reproducibility of re-
search carried out with qlbm, we provide versioned installation options 
for python environments, as well as Docker containers. For the latter, 
we bundle qlbm with custom container images that build on top of 
lightweight Python images and the NVIDIA cuQuantum Appliance for 
GPU simulation.

Circuit compilation. Much like classical software, high-level descrip-
tions of quantum circuits undergo a compilation process that translates 
the circuits to an instruction set that is compatible with a specific piece 
of hardware or simulator. To complement the modularity of qlbm’s 
circuit specification and simulation options, a similarly versatile com-
pilation system is required. Compilers with configurable platforms are 
called retargetable. We integrate qlbm with two such retargetable com-
pilers: Qiskit [37] and Tket [70]. Both frameworks offer a broad range 
of compilation targets and optimization techniques that can target both 
quantum simulators, as well as quantum hardware. Providing both op-
tions by default inside qlbm allows researchers to experiment with 
competing compilation options that may be favorable for different sce-
narios. For this purpose, we additionally build logging and analysis tools 
within qlbm, that allow users to automate the exploration and bench-
marking of available options.

From an implementation standpoint, qlbm simplifies the interaction 
between the framework and available compilers by providing a sin-
gle entry point through a CircuitCompiler class. Through a single 
call to the object constructor, users can specify the compiler platform 
(Qiskit or Tket) and its target (Qiskit or Qulacs) without any additional 
complications (i.e. CircuitCompiler("TKET", "QISKIT")). Addi-
tional options are available through the single .compile() method 
that allows users to select different backends and optimization levels. 
Currently, qlbm makes all cross-combinations of compiler platforms 
and targets available. This includes all extensions of Qiskit and Tket 

Backends, both simulator and hardware-specific emulators, as well 
as the Qulacs and MPIQulacs. To further simplify the interaction be-

tween the qlbm users and the vast number of viable combinations, 
we implement compilers in such a way that qlbm components can 
be directly input into the compiler, without requiring any processing 
or decomposition of the circuit (i.e. CircuitCompiler("QISKIT", 
"QULACS").compile(CQLBM(lattice), ...)).

Visualization. Visualization serves two main purposes in qlbm. The 
first is to convert the information extracted from the quantum state 
at the end of the computation into a visual interpretation of the flow 
field. Developers can use this feature to verify the correctness of an 
implementation and the evolution of the flow field over time. For debug-

ging purposes, we additionally allow users to save the statevector and 
counts to disk alongside the flow field visualization. The second goal of 
qlbm visualization tools is to provide a means for quickly assessing the 
difference in the performance and scaling of QBM algorithms and their 
adjacent infrastructure. To achieve this, qlbm provides scripts that au-

tomate both the parsing of log information into common data formats 
and the conversion of the extracted data into plots.

Implementation-wise, flow field visualization relies on the Visual 
Toolkit (VTK) [65] software package to efficiently encode flow field 
count data into standard formats. For geometry data, qlbm converts the 
cuboid bounds into triangulated surfaces in the commonplace stl for-

mat. Both flow field and geometry visualization conversions take place 
into specialized implementations of the base QLBMResult class that is 
specific to each QBM and integrates with the rest of the infrastracture. 
We select these formats specifically such that each artifact generated by 
qlbm can be visualized in Paraview [2] without any additional user in-

tervention. Finally, performance logs are parsed by scripts bundled in 
Jupyter Notebooks for easy editing and plotting within the qlbm envi-

ronment.

3. Results

This section demonstrates the experimental capabilities of qlbm. We 
highlight the computational and analysis tools of qlbm in order of the 
workflow depicted in Fig. 1. Section 3.1 showcases how the properties 
of quantum circuits can be analyzed by parameterizing the high-level 
JSON configuration files. In Section 3.2, we address the next step in 
the qlbm workflow – compilation. We specifically analyze the perfor-

mance of different compilers and the trade-offs they present. Section 3.3

covers simulation performance in detail. We begin by comparing the 
performance of different simulation platforms, before considering GPU 
compatibility. We also highlight how the computational improvements 
of concerning statevector processing significantly speed up simulation. 
Finally, Section 3.4 displays the visualization options that qlbm sup-

ports. All experiments were performed on a machine equipped with an 
AMD Ryzen 7 5800H CPU, 16 GB of RAM, and an NVIDIA 3050Ti GPU 
with 4GB of VRAM.

3.1. Algorithmic scalability

We begin analyzing the scalability of the QTM algorithm [61] ex-

pressed as the high-level circuit that qlbm generates as a platform-

agnostic quantum circuit. The simple specifications through which users 
configure qlbm makes it such that many different parameters can be iso-

lated and analyzed independently. For the purposes of this experiment, 
we select the number of objects within the fluid domain and the number 
of grid points in each dimension as the subjects of the analysis, because 
of their impact on the structure and depth of the quantum circuit. We 
consider the depth of the circuit and the time it takes qlbm to assem-

ble it. To mitigate the effects of noise, we execute each experiment 5 
times. The aim of this analysis is to highlight how qlbm facilitates the 
experimental analysis of quantum circuit implementation.
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Fig. 11. Comparison of QTM algorithm properties for uniform lattices between 16× 16 and 512 × 512 × 512 grid points and between 0 and 6 obstacles with bounce-

back boundary conditions.

We note that the QTM algorithm requires 
∑

𝑗⌈log2𝑁𝑔𝑗
⌉ positional 

qubits, 
∑

𝑗⌈log2𝑁𝑣𝑗
⌉ velocity qubits, and 4𝑑−2 ancilla qubits, where 𝑑

is the number of spatial dimensions of the system, 𝑁𝑔𝑗
is the number of 

gridpoints the lattice spans across dimension 𝑗, and 𝑁𝑣𝑗
is the number 

of discrete velocities in that dimension. Throughout our experiments, 
we select algorithms with either 2 or 3 dimensions and between 16×16
and 512×512×512 gridpoints, which require between 18 and 43 qubits, 
which may be reduced by either 1 or 2 by the adaptive register setup 
mechanism. For an in-depth analysis of the qubit register setup and of 
the complexity of the algorithm, we point the reader to Sections 3 and 
7 of [61], respectively. Fig. 11 displays the experimental results.

Fig. 11a and Fig. 11b show how dimensionality, grid refinement, and 
geometry affect the time it takes for qlbm to assemble the quantum 
circuits. Dimensionality and grid refinement both affect the number of 
qubits required to simulate the system, and as such they introduce addi-

tional linear complexity in the circuit. The number of (cuboid) obstacles 
has a similarly significant and linear on the assembly duration. This 
behavior is expected, as the implementation of QTM algorithm reuses 
structurally identical comparator operators to determine which popula-

tions to stream, for each edge and surface of an object. Of note is that 
the majority of the complexity of the QTM algorithm stems from reflec-

tion. Increasing the number of obstacles from 1 (median assembly time 
5.35s) to 5 (median assembly time 34.8s) causes a similar proportional 
increase in assembly time (6.50) as increasing the dimensionality of the 
system from 2D (median assembly time 5.38) to 3D (median assembly 
time 37.4) while keeping the number of obstacles fixed (proportional 
increase 6.96). The assembly duration increases are consistent with the 
number of gates of the algorithm shown in Fig. 11c and Fig. 11d. Both 
geometry complexity and grid refinement affect the scaling of the num-

ber of gates linearly.

The increase in both gate count and assembly time originates from 
two sources. First, operations on individual lattice locations require con-

trolled operations based on the entire grid register. These operations 
primarily occur around the corner points of objects, and they make the 
distinction between which populations are subject to boundary condi-

tion treatment. As the size of grid register scales with the refinement 
of the underpinning lattice, so does the number of gates required to set 
and reset the quantum state for each point. The second reason for the 

grid point-driven scaling has to do with the controlled incrementation 
operation that both streaming and reflection utilize. These circuits rely 
on a QFT operation followed by a controlled phase shift that increments 
the position of particles in physical space by one grid point. Each of 
these operations too scale with the size of the grid register, as incre-
mentation has to take place uniformly. Geometry-based scaling stems 
from the fact that the qlbm implementation of QTM boundary condi-
tions iterates through each surface of each obstacle in the lattice, which 
adds a number of gates that scales linearly with the number of obstacles. 
Finally, we emphasize that qlbm enables the analysis of such algorith-
mic properties for all quantum components (i.e. primitives, operators, 
algorithms), which in turn facilitates resource estimation for different 
implementations. In Section 3.2, we extend this analysis to low-level 
circuits targeted towards specific gate sets.

3.2. Compiler comparison

We shift focus towards analyzing the QBM circuits after transpiling 
them to lower-level gate sets. Here, we consider the performance of the 
Qiskit and Tket compilers and their trade-offs. We again use the end-
to-end QTM algorithm [61] as a benchmark, and analyze three metrics 
for each compiler – compilation time, circuit depth, and gate count. 
Together, these three metrics give an indication of the trade-offs that 
users face when choosing between transpilation times and performance. 
For the compiler platform, we select the Qulacs gate set available both 
in Qiskit and Tket through the qiskit-qulacs and pytket-qulacs 
packages, respectively. Qulacs has a significantly more restricted gate 
set than the one that qlbm uses to construct quantum circuits, which 
makes it a suitable candidate for such a benchmark because of its 
likeness to real quantum hardware constraints. We select a 17 qubit 
quantum circuit simulating one time step of a 16 × 16 grid with 4 dis-
crete velocities in each dimensions and between 0 and 6 obstacles with 
bounce-back boundary conditions placed at different positions on the 
grid. We specifically select the number of obstacles as the parameter to 
be varied as it only influences the depth and number of gates of the cir-
cuit, rather than the number of qubits. This factor also has the largest 
impact on algorithm complexity, after dimensionality.

Fig. 12 displays the results. When assessing compiler performance in 
terms of the conciseness of the generated circuit, Fig. 12a and Fig. 12b 
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Fig. 12. Compiler comparison for 2D QTM algorithm for a 16 × 16 grid with 4 discrete velocities per dimension and between 0 and 6 obstacles in the domain. 

show that the Tket and Qiskit compilers have different strengths. While 
Qiskit generates circuits that contain up to 50.000 fewer gates than their 
Tket counterparts, the Tket circuits have a depth that is up to 20.000
gates shallower. For both compilers, the depth and the gate count scale 
linearly with the number of obstacles in the grid, which is in line with 
the scalability analysis. A third natural consideration when assessing 
compilers is computation time. While the scaling is again linear for 
both candidates, Tket is significantly faster than Qiskit, and is able to 
transpile the most complex circuit in under one sixth of the time that 
Qiskit requires. The qlbm analysis and benchmark suite makes such 
experiments easy to execute and replicate, which in turn helps practi-
tioners make informed decisions that can significantly accelerate their 
workflows. We next extend this analysis to the performance of different 
simulators under nominal use cases on different hardware platforms.

3.3. Performance comparison

Selecting the appropriate simulation technology for the hardware 
available at hand is a necessity for optimizing the development process 
of novel QBMs. Performance is sensitive to many factors, including the 
simulation paradigm, its compatibility with available hardware, and its 
suitability for the structure of the circuits being simulated. Constructing 
QBM implementations that are versatile enough to allow for experi-
mentation with all of these parameters is a time-consuming ordeal that 
qlbm seeks to relieve researchers of. In this subsection, we demonstrate 
automated experiments that users of qlbm can easily carry out to as-
sess the performance of simulation software for their specific needs. We 
begin with assessing different simulators with out-of-the-box settings 
before assessing the statevector snapshot technique described in Sec-
tion 2.2.2 and showing its integration with GPUs.

Simulator comparison. Perhaps the most important choice when it 
comes to assessing simulation performance is choosing the appropriate 
software library. This poses a challenge for developers, as differences 
in library APIs, software dependencies, and circuit assumptions can all 
hamper the simulation of QBMs. To alleviate these burdens, qlbm pro-
vides two features. First, the modular design of the Runner module 
allows for easy extendibility to novel simulators. Second, the built-in 
SimulationConfig class automatically parses all components that 
make up the QBM into the appropriate format for simulation, for any 

provided simulator. We demonstrate such experiments by comparing 
the baseline Qiskit AerSimulator with two alternatives: Qulacs [75] 
and DDSIM. 2 Though tensor networks [51] provide promising alter-

natives to statevector- and decision diagram-based simulators, we steer 
away from the former in this empirical analysis due to high degree of 
entanglement between the grid, velocity, and ancilla qubits, which is 
a known weakness of tensor networks. To ensure fairness, we compare 
each simulator against the baseline in independent Python virtual en-

vironments because of dependency discrepancies. Statevector snapshots 
and sampling are both turned off in this experiment.

Fig. 13 displays the results. Fig. 13a indicates that Qiskit and Qulacs 
perform similarly well for all 7 instances. For lattices with up to 3 obsta-
cles, the performance of the two simulators is almost indistinguishable. 
For the instance with 4 obstacles, Qulacs slightly outperforms Qiskit, 
while the instances 3, 5, and 6 obstacles slightly favor Qiskit. Fig. 13b 
shows the comparison between the same Qiskit simulator and DDSIM. 
Here, all instances show a significant difference between the simulators, 
in favor of Qiskit. As the circuits grow more complex (i.e. more obsta-
cles), the difference becomes practically more relevant. While this in no 
way implies the general superiority of the Qiskit simulator, it hints at the 
fact that the circuits that implement the QTM algorithm in qlbm may 
be structurally a poor fit for the decision diagram decomposition that 
DDSIM relies on. This kind of analysis can point researchers towards 
the simulator that best fits the kind of algorithm they are working on 
extending or implementing. In what follows, we analyze how the stat-

evector snapshot technique can significantly increase the performance 
of any simulator capable of capturing entire statevectors.

Statevector snapshots. Fig. 14 shows the scalability of the statevector 
snapshot and sampling techniques described in Section 2.2.2. Dashed 
lines indicate configurations that were simulated with both techniques 
enabled, whereas solid lines indicate regular simulations. Both sets of ex-

periments were repeated 5 times, and the figures illustrate the mean and 
standard deviation of the simulation time, respectively. For consistency, 
we consider the same benchmark example as in the previous experi-

ments. Both the generation of the circuits, as well as the compilation 
(through Qiskit) were handled through the standard qlbm workflow. 

2 DDSIM is available at https://github.com/cda-tum/mqt-ddsim.

https://github.com/cda-tum/mqt-ddsim
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Fig. 13. Simulator comparison for 2D QTM algorithm for a 16 × 16 grid with 4 discrete velocities per dimension and between 0 and 6 obstacles in the domain, for 
up to 20 time steps.

Fig. 14. Comparison of statevector snapshot performance for a 16 × 16 grid with 4 discrete velocities per dimension and between 0 and 6 obstacles in the domain, 
for up to 20 time steps.

All simulations were carried out on Qiskit’s AerSimulator with the 
statevector method, which has shown the best performance in pre-

vious instances.

The results confirm the complexity analysis provided in Section 
2.2.2. Focusing on Fig. 14a, the results show how when combined, the 
snapshot and sampling techniques can decrease the time required to 
perform a 20-step simulation by up to a factor of 6. The deviation in per-

formance is increasingly visible as the complexity of the circuit scales 
with the number of obstacles in the fluid domain. Concretely, simula-

tions that use both of our computational improvement techniques scale 
linearly in the number of steps simulated, while the standard simula-

tion method scales quadratically. In the practical development cycle, 
this drastically accelerates the pace at which researchers can verify and 
debug their implementations. Since the difference between statevector 
snapshots and regular simulations scales linearly with the complexity of 
a single time step circuit, the number of time steps that snapshots save 
is always higher for more complex systems. This is a valuable improve-

ment in practice, as more complex systems generally require more runs 
to verify and debug.

We also note that the transfer of statevectors between simulators, 
despite not requiring a deep copy, still introduces overhead that is mean-

ingful in some instances. This is especially visible for shorter circuits, 
where statevector transfer between simulators takes up a higher percent-

age of the computational time. For simpler circuits, such as the instances 
with 1 and 2 objects, the scaling advantage only overtakes this overhead 
after 4 and 3 steps, respectively. As the complexity of the simulated cir-

cuits increases however, the number of steps required for the statevector 
snapshots to become advantageous decreases. For the instance with 3
obstacles, the overhead is only unfavorable for the first time step, fol-

lowing which the scaling factor becomes dominant. To better highlight 
this downside of snapshots, we zoom in Fig. 14b. Averaging over all lat-

tice configurations, it takes 3 time steps to gain a practical advantage 
from the snapshot mechanism, which also proved advantageous for all 

runs after 5 time steps (or more). As researchers are typically interested 
in simulating tens or hundreds of time steps for algorithmic verifica-
tion purposes, this overhead is rarely a downside in practice. In the next 
paragraphs, we show the versatility of the snapshot mechanism by per-
forming simulations on a GPU.

GPU integration. All qlbm performance improvements can leverage 
multiple compute architectures, including GPUs and ARM-based CPUs. 
We demonstrate this by showing the applicability of the statevector 
snapshot mechanism when applied to GPU simulation. We use the same 
benchmark as in the previous two example and compare the Qiskit 
AerSimulator running CPU and GPU devices with both snapshots 
and sampling optimizations enabled. The GPU simulator leverages the 
cuQuantum SDK [7] and runs in a modified Docker container, based on 
the NVIDIA cuQuantum Appliance. As with all examples used through-
out this manuscript, we make the container used in this benchmark 
available with the rest of code base.

Fig. 15 shows the results. Both the CPU and GPU simulator display 
the same linear scaling as Fig. 14. The CPU version slightly edges its 
GPU counterpart in 4 of 7 instances, but no significant difference occurs 
between the two. As in the Qulacs and DDSIM example, these experi-
ments are meant to highlight the ease with which practitioners can test 
different simulator options that pertain to heterogeneous hardware plat-
forms, within the qlbm workflow. Furthermore, the results demonstrate 
the versatility of the snapshot and sampling techniques, which nets users 
significant improvements when compared to naive implementations. In 
what follows, we feature how qlbm makes use of these effective simula-
tion techniques to create detailed and useful visualizations of the system 
under simulation, concluding the workflow.

3.4. Visualization integration

Visualization serves two important purposes in the qlbm pipeline. 
First, it allows researchers to verify the correctness of their implemen-
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Fig. 15. CPU and GPU performance comparison using statevector snapshots for 
a 16 × 16 grid with 4 discrete velocities per dimension and between 0 and 6
obstacles in the domain, for up to 20 time steps.

tation. This is especially important when addressing end-to-end algo-

rithms. Complete circuits may be hundreds of thousands of gates deep 
and simultaneously address dozens of boundary condition edge cases, 
and visualization provides a means of assuring that end-to-end integra-

tion of the quantum components is sound in relation to the physical 
system being simulated. The second grounds for visualization is accessi-

bility. For users familiar with classical CFD workflows, integration with 
established visualization software bridges the gap between the novelty 
of the quantum methods and standard practices. In this subsection, we 
demonstrate the built-in Paraview [2] integration of qlbm for both 
the QTM [61] and STQBM [62] algorithms.

Fig. 16 depicts the evolution of a 2D system with 64 grid points in 
each dimension and seven obstacles placed in close proximity to one 
another. Each dimension has 4 discrete velocities, and the entire circuit 
is comprised of only 22 qubits. Obstacles depicted in grey are imposed 
bounce-back boundary conditions, while black objects implement spec-

ular reflection. The edges of the domain implement periodic boundary 
conditions. Fig. 16a shows the initial conditions of the system, with 
particles distributed uniformly throughout the left half of the domain. 
Darker shades of red indicate the presence of a higher concentration of 

particles. Any irregularities in the density stem from the stochasticity 
of the counts extracted from the quantum state at the end of each time 
step. While inexact, this is the same process that one would follow on 
actual quantum hardware. The initial conditions are set up with native 
quantum gates, and are such that all particles in the systems have ve-

locities pointing in the positive directions in both the 𝑥 and the 𝑦 axes. 
Intuitively, particles are moving towards the upper right-hand corner 
of the domain. Fig. 16b, Fig. 16c, and Fig. 16d show the evolution of 
the system after 16, 32, and 64 steps. Higher particle densities emerge 
naturally at the boundaries of objects, as well as in areas where parti-

cles meet as a result of the change in direction caused by the different 
boundary conditions of the objects. Fig. 16c showcases the difference 
between the two types of boundary conditions: the particles interacting 
with the obstacles in the upper half of the domain get reflected along 
their previous trajectory, while their conterparts in the lower half of the 
domain interact differently with the obstacle walls.

Fig. 17 highlights an example of a 3D flow in a 16 × 16 × 16 system 
with 2 bounce-back boundary conditioned obstacles of different shapes. 
As in the previous example, each dimension has 4 discrete velocities. 
With qlbm’s adaptive register setup, the entire quantum circuit only re-

quires 28 qubits. Each discrete grid point is represented by a sphere, the 
color of which denotes the relative density of particles at that physical 
location. As in the 2D example, darker shades of red indicate higher den-

sities, and dark blue spheres indicate the absence of particles. Fig. 17a 
again shows the initial conditions, which are the 3D equivalent of the 
previous example. We choose this specific visualization integration as 
it allows for the examination of individual grid locations that corre-

spond to specific edge cases in the underlying quantum algorithm, which 
makes verification significantly less tedious than otherwise parsing in-

formation from the computed quantum state. We also highlight the fact 
that in the qlbm implementation of the QTM algorithm, there are no 
additional constraints on 3D systems: the same boundary conditions, 
simulation techniques, and visualization media are supported.

Fig. 18 illustrates the evolution of a 8 × 8 system simulated with 
the STQBM algorithm. In addition to streaming, the STQBM also per-

forms collision at the cost of including neighboring velocity informa-

Fig. 16. Simulation of the QTM algorithm [61] on a 64 × 64 grid for with 7 solid obstacles for 64 time steps. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)
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Fig. 17. Simulation of the QTM algorithm [61] on a 16 × 16 × 16 grid for with 2 solid obstacles for 9 time steps. 

tion for each grid point. In practice this limits the size of systems that 
classical hardware can emulate for practical development and research 
purposes. For the 5 steps in Fig. 18, 1024 qubits would have been re-

quired to simulate the end-to-end system, which is infeasible for any 
classical hardware available today. The simulation was instead per-

formed using qlbm’s automated reinitialization mechanism described 
in Section 2.2.2, which can function with circuits as small as one time 
step. While this does inherently introduce inaccuracies in the quantum 
computation, the space-time encoding is less susceptible to this than 
amplitude-based methods, and the performance advantage gained from 
reinitialization is substantial – the entire simulation, including parsing 
the results into the visualization format takes seconds on commodity 
hardware. The only precision lost through reinitialization is in the rela-

tive density of particles at specific grid locations – basic constraint such 
as conservation of mass are not violated. We again stress that reinitial-

ization is a feature of qlbm and not a requirement of the underlying 
algorithms, which can be executed entirely on quantum hardware, pro-

vided a sufficient number qubits.

Fig. 18a shows the initial state of the system, where 4 particles are 
concentrated in one grid point, under the 𝐷2𝑄4 lattice discretization. 
The 4 particles are each travelling along one of each of the 4 discrete 
velocity channels. Following one time step, particles stream to neighbor-

ing grid points (Fig. 18b). Since collision only affects instances where 
particles reach the same grid point and have a velocity profile that can 
be mapped onto an equivalence class, the 3 following time steps are un-

affected by it and only practically consist of streaming, with the added 
complexity of periodicity. In Fig. 18e, two particles reach the same grid 
point in two different instances, both with velocity profiles that colli-

sion affects. As a result, collision redistributes the particles such that 
mass and momentum are conserved, as described in [62]. This simula-

tion was carried out using a circuit that only performs the computation 
of one time step, shown in Fig. 19. Reinitialization automatically com-

putes the initial conditions that allow the transition between steps be 
carried between time steps. This is assumed to prepare the state of grid 
qubits prior to simulation.

4. Conclusion

We introduced qlbm, a Python software framework that aims to ac-

celerate the development, simulation, and analysis of Quantum Lattice 
Boltzmann Methods. We designed qlbm as an end-to-end development 
environment that caters to every step of the research process, from 
assembling proof-of-concept quantum circuits to analyzing their perfor-

mance within different simulation platforms. The modular architecture 
of qlbm decouples the hierarchically arranged quantum component 
module from external infrastructure, which promotes testability through 
isolation. Additional modules interface with state-of-the-art quantum 
simulators and compilers, which allows users to seamlessly tune their 
setup according to their goals and resources.

To increase the accessibility of QBMs to researchers and practitioners 
with various backgrounds, we implemented convenient interfaces that 
bridge the gap between the delicate quantum circuit assembly process 
and the high-level interfaces that users have come to expect from more 
mature classical software frameworks. We introduced novel simulation 
techniques in the form of statevector snapshots, statevector sampling, 
and reinitialization, which massively increase the performance of simu-

lations and in turn hasten future research. Finally, we demonstrated the 
versatility of these techniques by incorporating them within 2D and 3D 
simulations on CPUs and GPUs and showed the practical benefit of built-

in experimentation pipelines and visualization techniques. To encourage 
collaboration and reproducibility in the field of quantum computational 
fluid dynamics, we make both the source code of qlbm and a replication 
package of this study available at https://github.com/QCFD-Lab/qlbm

and [27], respectively.

https://github.com/QCFD-Lab/qlbm
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Fig. 18. Simulation of the STQBM algorithm [62] on a 16 × 16 × 16 grid for with 2 solid obstacles for 64 time steps. 

We envisage two future directions for qlbm. Primarily, the purpose 
of this framework is to be of service the broader QCFD research commu-

nity and assist in QBM development. This includes both the implemen-

tation of novel algorithms in the future, as well as the generalization of 
past and present techniques from the literature. Secondarily, qlbm will 
remain up-to-date with the rapid developments occurring in the quan-

tum software field. Novel simulation and transpiler technologies, and ac-

cess to increasingly robust quantum hardware are developments which 
we aim to continue to integrate within qlbm, while retaining its high 
code quality and reproducibility standards.
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Fig. 19. One time step STQBM [62] circuit. 
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