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Active Disturbance Rejection Control for Uncertain
Nonlinear Systems With Sporadic Measurements

Kanghui He, Student Member, IEEE, Chaoyang Dong, and Qing Wang

 
   Abstract—This  paper  deals  with  the  problem  of  active
disturbance  rejection  control  (ADRC)  design  for  a  class  of
uncertain  nonlinear  systems  with  sporadic  measurements.  A
novel extended state observer (ESO) is designed in a cascade form
consisting  of  a  continuous  time  estimator,  a  continuous
observation  error  predictor,  and  a  reset  compensator.  The
proposed  ESO  estimates  not  only  the  system  state  but  also  the
total  uncertainty,  which  may  include  the  effects  of  the  external
perturbation,  the  parametric  uncertainty,  and  the  unknown
nonlinear  dynamics.  Such  a  reset  compensator,  whose  state  is
reset  to  zero  whenever  a  new  measurement  arrives,  is  used  to
calibrate the predictor. Due to the cascade structure, the resulting
error  dynamics  system  is  presented  in  a  non-hybrid  form,  and
accordingly,  analyzed  in  a  general  sampled-data  system
framework. Based on the output of the ESO, a continuous ADRC
law  is  then  developed.  The  convergence  of  the  resulting  closed-
loop  system  is  proved  under  given  conditions.  Two  numerical
simulations demonstrate the effectiveness of the proposed control
method.
    Index Terms—Active  disturbance  rejection  control  (ADRC),
extended  state  observer  (ESO),  sampled  measurements,  uncertain
nonlinear systems.
  

I.  Introduction

THE  issue  of  controlling  systems  subject  to  uncertainties
has received considerable attention over the past decades

because  system  uncertainties,  such  as  external  disturbances
[1],  un-modeled  dynamics  [2],  and  parametric  uncertainties
[3] are inevitably introduced in many practical systems. As a
rising  control  technology,  the  active  disturbance  rejection
control  (ADRC),  which  was  first  proposed  by  Han  [4],  is  an
innovative  and  effective  strategy  to  cope  with  uncertainties
appearing  in  the  nonlinear  systems.  The  most  distinctive
feature  of  the  ADRC  is  the  estimation  and  compensation

strategy.  As  an  almost  model-free  control  scheme,  ADRC
avoids  the  tedious  task  of  establishing  an  accurate  system
mathematical  model  and  improves  the  anti-interference
capability of the control system. Because of these outstanding
performance  advantages,  ADRC  has  been  successfully
employed in a broad range of practical engineering problems,
such as  motorbicycles  [5],  unmanned aerial  vehicles  [6],  and
flexible manipulators [7].

However,  the  structure  of  ADRC  proposed  by  Han  is
complex,  which  makes  rigorous  stability  analysis  for  ADRC
face  significant  challenges  and  fall  behind  its  extensive
application.  To  overcome  this  obstacle,  the  work  in  [8]  has
developed  a  linear  ADRC  structure  in  which  the  controller
and the  observer  are  both  presented  in  linear  forms with  one
parameter:  bandwidth,  to  be  tuned.  In  [9],  the  exponential
convergence  of  linear  ADRC  was  systematically  analyzed
based  on  singular  perturbation  theories.  Meanwhile,  the
nonlinear  ADRC  for  single-input-single-output  (SISO)
systems was first reported by Guo and Zhao in [10], and then
extended  to  multiple-input-multiple-output  (MIMO)  systems
in  [11].  After  that,  literature  has  emerged  that  comprising  an
extended  state  observer  (ESO)  and  a  projected  gradient
estimator  makes  the  ADRC  scheme  incorporate  no  prior
knowledge of control coefficient [12]. More recently, in [13],
an unconventional  ADRC approach was proposed for  a  class
of  uncertain  time-delay systems,  utilizing a  modified ESO to
predict  future  states  of  plants.  Works  on  the  learning-based
ADRC design can be found in [14].

H∞

In  other  aspects,  control  design  for  plants  with  sampled
measurements,  which  is  encountered  in  most  physical
systems, has been extensively explored in recent literature. In
most control systems, information is usually transmitted in the
form of digital signals. Because of communication constraints
between networks, sensors may not be able to broadcast data
continuously  or  periodically.  The  loss  of  information  in
sampling  intervals  may  lead  to  degradation  of  the  control
performance  and  even  instability  of  the  overall  system.
Therefore,  control  design  and  analysis  for  systems  with
discrete  nature  of  the  available  outputs  have  attracted
worldwide  attention,  especially  in  the  fields  of  fuzzy  control
[15],  control  [16],  and  some  observer-based  control
techniques  [17].  Unfortunately,  there  are  almost  no  related
researches  on  ADRC  design  and  analysis  for  systems  with
intermittent  measurement  information.  The  main  challenge
lies  in  the  fact  that  the  conventional  ESO  is  sensitive  to
measurement  variation  and  will  lose  the  estimation  ability
under the discontinuous measurement information. Moreover,
the  introduction  of  sporadic  measurements  induces  the  error
dynamic  in  a  hybrid  form,  thus  making  the  analysis  of  the
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stability  of  the  observer  and  the  closed-loop  system  more
difficult and complicated.

On  the  other  hand,  it  should  be  recognized  that  state
estimation  techniques  with  sporadically  available
measurements  have  been  extensively  explored  in  recent
literature.  The  approaches  essentially  belong  to  two  main
families.  The  first  one  is  the  so-called  continuous-discrete
time observer whose state is impulsive and reset at the arrival
of  a  new  measurement.  The  design  and  analysis  of  such  an
observer are reported, e.g., in [18]–[23]. Specifically, the work
in  [18]  considers  the  observation  of  linear  systems  with
unknown  parameters  and  discrete  time  measurements.  To
mitigate  the  effect  of  parametric  uncertainty,  the  structure  of
the  proposed  observer  is  multilayered  consisting  of  the
extended Kalman filter and adaptive estimation method. Later,
the  methodology  in  [18]  is  extended  to  a  more  general
nonlinear  system  in  [22].  What  is  more,  the  high  gain
impulsive observer design for the Lipschitz nonlinear systems
is  also  pursued  in  [19].  The  second  family  is  the  continuous
time  observer  whose  observation  error  is  estimated
synchronously  by  a  continuous-  discrete  time  predictor.
Related  works  can  be  seen  in  [24]–[29].  In  particular,  the
authors  in  [24]  provide  a  methodology  of  observer  redesign
from  continuous  sampling  systems  to  intermittent  sampling
systems. A different method is investigated in [26], where the
exponential  stability  results  for  a  class  of  sampled-data
systems  are  obtained  and  the  established  stability  results  can
provide a guideline for the implementation of observer design
based  on  isolated  time  measurements.  However,  we  should
point out that the methods mentioned above are only suitable
for  linear  systems  [18],  or  require  some  prior  knowledge  of
nonlinear  dynamics.  For  instance,  the  nonlinear  part  is
completely  known  [19]–[21],  [24],  [26],  [27],  the  nonlinear
function is Lipschitz [20], [23], [25], [28]. More importantly,
no  attempt  is  made  in  the  overall  estimation  of  nonlinear
uncertainty, which is sometimes demanded in control devices
such as the feedback linearization technique.

Motivated by these observations,  in  this  paper  we consider
the  ADRC  design  for  a  class  of  nonlinear  systems  with
periodically  sampled  outputs.  First,  a  redesign  procedure  is
made  to  develop  a  predictor-based  continuous  time  ESO
whose  state  consists  of  the  estimations  of  both  system  state
and  the  total  uncertainty.  Then,  an  approximate  feedback
linearization control law accounting for peaking phenomena is
presented.  Theoretical  analysis  and  numerical  simulations
suggest that the lower bound of the ESO gain is restricted by
the  sampling  interval.  This  is  a  new  feature  compared  with
most  previous  ADRC results.  The  main  contributions  of  this
article are twofold:

1) To our best  knowledge, this paper is  the first  attempt of
ADRC  application  in  sporadic-in-measurement  systems.  The
structure  of  the  proposed  ADRC  is  developed,  in  which  a
predictor-based  continuous  time  ESO  executes  state  and
uncertainty estimation based on intermittent measurements.

2)  Differently  from  all  existing  estimation  techniques  for
systems  with  sampled  measurements  [18]–[29],  the  ESO
proposed in this paper does not contain any impulsive motion

in  either  state  estimation  or  observation  error  prediction,  and
more  significantly,  eliminates  some restriction  on  the  system
nonlinearity.

The  remainder  of  this  paper  is  organized  as  follows.  In
Section  II,  the  control  problem  and  objective  are  formulated
and some important assumptions are listed. The observer and
controller design is presented in Section III. In Section IV we
focus  on  the  stability  analysis  of  the  ESO  and  give  some
results  on  a  class  of  more  general  sampled-data  systems.
Section V gives main results on the closed-loop system. After
that,  the  effectiveness  of  the  proposed  method  is  discussed
through two examples in Section VI. Finally, we conclude this
paper and discuss some prospective research in Section VII.

N
N+

R+

Rm×n m×n
n×n In

∥·∥ ∇ f (·)
f (·) C

β (·) : [0, ∞)→ [0, ∞) K∞
β (·)

β (0) = 0 and β (∞) =∞ λP, max and λP, min

ℓP = λP, max/λP, min
O (µ)

Notations: The  set  denotes  the  set  of  positive  integers
containing zero while the set  is the set of strictly positive
integers.  The  set  is  the  set  of  positive  reals  while  the  set

 denotes  the  set  of -dimensional  matrices.  The
identity  matrix  with  dimension  is  written  as .  The
Euclidean norm of a vector is denoted as .  represents
the  gradient  of  a  function .  We utilize  to  represent  the
set  of  all  continuously  differentiable  functions.  A  function

 is  called  to  belong  to  a  class  of 
functions  only  if  is  continuous  and  strictly  increasing
with .  represent  the
maximum and minimum eigenvalues of a symmetric positive
definite matrix P respectively, and  denotes
P’s  conditioning  number.  refers  to  the  equivalent
infinitesimal notation of a small positive real number μ.  

II.  Preliminaries
  

A.  Problem Formulation
Consider  the  following  nonlinear  system  with  sporadic

measurements:
 

ż(t) = f0(t, x(t),z(t),ω(t))

ẋ(t) = Ax(t)+B[ f (t, x(t),z(t),ω(t))

+g(t, x(t),z(t),ω(t))u(t)]

y(tk) =Cx(tk), t ≥ t0, k ∈ N

(1)

x (t) = [x1 (t) , . . . , xn (t)]T ∈ Rn z (t) ∈ Rp

ż(t) = f0(t, x(t),z(t),ω(t))
ω ∈ R u (t) ∈ R
y (tk) ∈ R tk

τk = tk+1− tk > 0 f0(·) ∈
C([t0,∞]×Rn+p+1,Rp) f (·), g(·) ∈ C([t0,∞]×Rn+p+1, R)

(A, B, C)

where  and  are the state
vectors,  is  the  zero  dynamics  of  the
system,  is the external disturbance,  is the input
signal,  is  the  sampled  output  at  time  instant ,

 is  the  time-varying  sampling  period, 
,  are

unknown  nonlinear  functions,  and  the  triple  matrices
 represent a chain of n-dimensional integrators

 

A =



0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1
0 0 0 · · · 0


∈ Rn×n, B =



0
0
...

0
1


∈ Rn×1

C = [1 0 · · · 0] ∈ R1×n. (2)
It  is  worth mentioning that the dynamics of many practical

engineering systems can be described by model (1) or can be
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transformed  to  (1),  for  instance,  the  biological  systems  [30],
the  urban  traffic  systems  [31],  and  the  hypersonic  vehicle
systems  [32].  The  sampled  measurements  modeled  in  this
paper  may  result  from  the  limited  data  transmission  rate  or
event-triggered mechanisms in networked control systems, or
from sensors’ limited sampling frequency. The discrete nature
of  measurements  can  cause  considerable  damage  to  safety-
critical  systems  in  which  real-time  performance  needs  to  be
guaranteed.  The  conventional  ADRC  design  for  system  (1)
has  been  widely  investigated  in  the  absence  of  sporadic
measurements.  However,  the  ADRC  technique  can  not  be
directly  applied  to  (1)  because  the  traditional  ESO  relies  on
the continuity of  system output.  The control  objective of  this
paper  is  thereby  to  design  the  ADRC  law  to  accommodate
uncertain  nonlinearities  with  limited  knowledge  of  system
measurements.

g(t, x(t),z(t),ω(t))
g (t, x (t) ,z (t) ,ω (t)) = g0 (x (t))+

g∆ (t, x (t) ,z (t) ,ω (t)) g0 (·) ∈ C(Rn, R)
g∆ (·) ∈ C([t0,∞]×Rn+p+1, R)

In  this  paper,  is  assumed  to  be  partially
known and can be modeled as 

.  is  known,  non-zero,
and  globally  bounded,  while  is
an unknown nonlinear part.

Throughout the paper, the original system (1) is assumed to
satisfy the following assumptions.

ω (t)

ϖ (x,z,ω) ∈ C(Rn+p+1, R+) t ≥ t0

Assumption  1  [33]: The  external  disturbance  and  its
time  derivative  are  assumed  to  be  bounded.  What  is  more,
there  exists  an  unknown  continuous  and  positive  definite
function  such that for any 
 

| f (t, x,z,ω) |+ ∥ f0 (t, x,z,ω)∥+ ∥∇ f (t, x,z,ω)∥
+ ∥∇ f0 (t, x,z,ω)∥ ≤ϖ (x,z,ω) .

V0 (z) ∈ C(Rp, R+)
(t, x,z,ω) ∈ [t0, ∞)×Rn+p+1

Assumption  2  [33]: There  exists  a  continuous,  positive
definite  and  radially  unbounded  function 
such that for any 
 

∂V0

∂z
(z) f0 (t,z, x,ω) ≤ 0, ∀||z|| ≥ βz (|| (x,ω) ||)

βz (·) K∞where  is a  function.
τk = tk+1− tk,

k ∈ N τk ∈ [τm, τM] τm and τM

Assumption  3  [22]: The  sampling  intervals 
 are  bounded  by ,  where  are

positive constants.

(t, x,ω)

Assumptions  1  and  2  can  be  commonly  observed  in  the
literature related to ADRC and can be verified for a series of
practical  control systems, including the inverted pendulum in
[34].  Assumption  1  limits  the  unknown  nonlinearities  to  a
time-independent  function,  while  Assumption  2  ensures  that
the  zero  dynamics  with  the  input  is  bounded-input-
bounded state (BIBS) stable. This condition is looser than that
of the input-to-state stable (ISS) [12]. Besides, the assumption
that the sampling interval is bounded is ubiquitous for control
design in the presence of sporadic measurements.  

B.  Traditional ADRC
The  predictor-based  continuous  time  ESO  to  be  designed

later  is  issued from a proper redesign of  the continuous ESO
which has been extensively used in the estimation of nonlinear
system’s uncertainty. Before starting our design procedure, let
us recall the conventional ADRC methodology for continuous-
in-measurement  systems.  Notice  that  the  system (1)  is  subje-

f0(·) f (·)

g∆(·)
y (t) =Cx (t) , t ≥ t0

f (t, x,z,ω)+g∆(t, x,z,
ω)u (t) xn+1 (t)

cted  to  multiple  uncertainties,  including  the  uncertainty  in
zero  dynamics ,  the  unmodeled  dynamics ,  the
external  disturbance ω ,  and  the  uncertainty  of  control
coefficient .  If  the  measurement  equation  in  the  original
system  (1)  is  in  continuous  form ,  by
defining  the  uncertain  nonlinearity 

 as  the  extended  state ,  we  reconstruct  (1)  as
follows:
 

ż(t) = f0(t, x(t),z(t),ω(t))

ẋ1 (t) = x2 (t)

...

ẋn (t) = xn+1 (t)+g0 (x (t))u (t)

ẋn+1 (t) = h

y(t) =Cx(t), t ≥ t0.

(3)

x (t)
xn+1 (t)

Following  the  idea  from  [35],  we  can  construct  the
following  linear  ESO  to  estimate  the  unmeasured  states 
and the total uncertainty .
 

˙̂x(t) = Āx̂(t)+ B̄g0 (x̂ (t))u (t)+
1
εn+1∆

−1
ε W(y(t)− C̄ x̂(t)) (4)

W = [w1, w2, . . . ,wn+1]T ∈ Rn+1

sn+1+w1sn+ · · ·+wn+1 ∆ε =

diag{1/εn, 1/εn−1, . . . ,1} ∈ R(n+1)×(n+1)

(Ā, C̄) (A, C)
n+1 B̄ = [0,

0, . . . ,1, 0]T ∈ R(n+1)×1

where  is  designed  such  that
the  polynomial  is  Hurwitz, 

, ε  is  a  small  parameter
to be determined,  is in the similar form with  in
(2)  where  the  dimension  is  changed  to ,  and 

.
W and ε

x̂n+1 (t)
xn+1 (t)

ẋn+1 σi
T1 > 0 |xi (t)− x̂i (t)| ≤ σi, i = 1, 2, . . . ,

n+1, ∀t ≥ t0+T1

The  selection  of  the  gain  parameters  is  not  only
theoretically  analyzed  in  [8]  by  using  bandwidth  theory  but
also investigated in practice, see for instance the work of [36].
In fact, if the parameter ε  is selected small enough, the linear
ESO  (4)  is  essentially  a  high  gain  observer  and  more
importantly,  can be viewed as an appropriate estimate
of  the  total  uncertainty .  According  to  Theorem  1  in
[35], if  is bounded, there exist a series of constants  and
a  finite  time  such  that 

.  With  this  property,  based  on  the  output  of
the  ESO  (4)  one  can  directly  design  the  control  law  to
approximately  compensate  the  total  uncertainty  and  stabilize
the system near the equilibrium point.

In the sporadic-measurement-free case, the ESO (4) can be
replaced  by  some  other  kinds  of  disturbance  observers,  such
as  high-order  sliding  mode  observer  (HOSMO)  [37]  and
generalized  proportional  integral  observer  (GPIO)  [38].  For
systems  with  sporadic  measurements,  almost  all  the  works
concentrate on state estimation problems while no attempt has
been made on the overall  estimation of  nonlinear  uncertainty
or disturbance.  

III.  Observer and Controller Design

In this paper, since the output measurements are available in
a  discrete  manner,  we  redesign  a  predictor-based  continuous
time  ESO  for  system  (1)  to  derive  the  estimates  of  both  the
unmeasured states and total uncertainty.
 

˙̂x(t) = Āx̂ (t)+ B̄g0 (x̂ (t))u (t)+
Lχ (t)
ε
, ∀t ∈ [t0, ∞) (5)
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x̂ (t) = [x̂1 (t) , . . . , x̂n+1 (t)]T ∈ Rn+1

x (t) and xn+1 (t) χ (t) =
[
χ1 (t) , . . . , χn+1 (t)

]T ∈ Rn+1

L ∈ R(n+1)×(n+1)

L = diag {l1, . . . , ln+1}

where  represents the estima-
tes  of , 
contains  the  approximation  of  observation  error. ε  is  a  small
positive parameter to be designed later, and  is
a diagonal matrix: .(

y (tk)− C̄ x̂ (tk)
)
e−l1(t−tk)

y (tk)− C̄ x̂ (tk)

χ(t)

In many recent works, the observation error in (5) is usually
predicted  by ,  or  directly  given  by

. These approaches may induce cumulative error
occurred in the sampling intervals. To this end, we develop an
adaptive  predictor  to  estimate  the  observation  error.  In
particular,  the  vector  variable  is  updated  through  the
following ordinary differential equation:
 

χ̇ (t) =
1
ε

C̄T
((

y (tk)− C̄ x̂ (tk)
)
e
−l1(t−tk)
ε + l1ϕ (t)

)
+

1
ε2

(
ĀT −εQ

)
χ (t) , ∀t ∈ [t0, ∞) (6)

Q ∈ R(n+1)×(n+1) Q = diag{q1, . . . ,

qn+1} ϕ (t) ∈ R
where  is  a  diagonal  matrix: 

,  and  is  used  to  compensate  for  the  adverse
effects of cumulative errors and designed as
 

ϕ (t) =
w t

tk

1
ε

((
y (tk)− C̄ x̂ (tk)

)
e
−l1(s−tk)

ε − χ1 (s)
)
ds

t ∈ [t0, ∞) with ϕ (tk) = 0. (7)

(n+1)
xn+1 (t) =

f (t, x (t) ,z (t) ,ω (t))
y (t)− C̄ x̂ (t)

[tk, tk+1)

ϕ (t)

It can be obviously seen that the proposed ESO is composed
of  three subsystems.  The first  subsystem is  of th  order
and  is  just  a  copy  of  the  extended  system  with 

.  Due  to  the  sampled  output,  the
observation  error  term  in  the  continuous  ESO  is
unavailable during sampling intervals . Therefore, we
draw into the second subsystem as a  predictor  estimating the
future observation error after a sampling instant. The state 
in the last subsystem is generated through an integrator and is
triggered  to  zero  at  sampling  instants.  The  purpose  of
involving the last subsystem is to compensate the accumulated
error during the sampling intervals.

Based on the output of the ESO (5)–(7), an output feedback
linearization controller is given as
 

unom (t) =
u0( ¯̂xn)− x̂n+1

g0
(
¯̂xn

) (8)

¯̂xn = [x̂1, . . . , x̂n]T u0 (·)where ,  and  represents  some  kinds  of
linear  or  nonlinear  feedback  law  which  guarantees  the
globally  asymptotic  stability  of  the  following n-dimensional
chain of integrals:
 

ẋ (t) = Ax (t)+Bu0 (x) .
Additionally,  considering  that  peaking  phenomena  may

occur  due  to  the  high  gain  property  of  the  observer,  we
introduce a saturation version [39]
 

u (t) = Mgε

(
unom (t)

M

)
(9)

gε (·) ∈ C(R, R)to modify the original control input.  is a non-
decreasing,  odd,  continuously  differentiable  function  defined
by

 

gε(r) =



r, 0 ≤ r ≤ 1

r+
r−1
ε
− r2−1

2ε
, 1 < r ≤ 1+ε

1+
ε

2
, r > 1+ε.

(10)

gε(·)

M is a saturation bound to be designed later. Generally, the
saturation  bound  should  be  selected  such  that  the  saturation
function  will always work in the linear zone under state
feedback [34].

The control framework is illustrated in Fig. 1.
 

Uncertain
nonlinear
system (1) Observer (5)

Predictor (6)
χ(t)

χ(t) ϕ(t)

x(t)
u(t)

uo(xn)unom(t)

y(tk) x(tk)

Reset 
compensator (7) Predictor-based ESO

Disturbance 
rejection (8)Saturation (9) Output 

feedback (11)

Disturbance rejection controller
 
Fig. 1.     The architecture of the proposed ESO and the disturbance rejection
controller.
 

u0 (·)The  following  assumptions  are  made  on  the  control 
and the ESO (5)–(7).

u0 (·)

V1 (·) ∈ C(Rn, R+)
α1, β1, c11, and c12

Assumption 4:  is a globally Lipschitz function. What is
more,  there  exist  a  continuous,  positive  definite  and  radially
unbounded  function  and  positive  constants

 such that
 

c11∥x (t)∥2 ≤ V1 (x (t)) ≤ c12∥x (t)∥2

n−1∑
i=1

xi+1 (t)
∂V1 (x (t))
∂xi (t)

+u0 (x (t))
∂V1 (x (t))
∂xn (t)

≤−αV1 (x (t))

∣∣∣∣∣∂V1 (x (t))
∂xn (t)

∣∣∣∣∣ ≤ β1 ∥x (t)∥

t ≥ t0hold for all .
li and qi, i = 1, 2, . . . ,

n+1 Aξ =
[

Ā −L
C̄T C̄ ĀT −Q

]
∈

R(2n+2)×(2n+2)

Assumption  5: The  gain  parameters 

 are selected such that  the matrix 
 is Hurwitz.

ω(t) ∈W,∀t ∈ [t0,∞)
W∈ R

cz
Z = {z ∈ Rp;∥ z ∥≤ cz}

X ∈ Rn

Y Y = X×Z×W

Based  on  Assumption  1,  let  for  a
compact  set .  Meanwhile,  by  Assumption  2,  there
exists  a  positive  constant  such  that  the  compact  set

 is  a  positive  invariant  set  for  the  zero
dynamics.  For  any  given  compact  set ,  define  a
compact set  by .

g0(x)Assumption  6: The  known  control  gain  coefficient 
satisfies the property of
 

max
(x,z,ω)∈Y, ¯̂xn∈X

∣∣∣∣∣∣g(·)−g0(x)
g0( ¯̂xn)

∣∣∣∣∣∣ = γg < 1.

u0 (·)
Remark  1: The  simplest  way to  satisfy  Assumption  4  is  to

make  be a linear form 
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u0 (x (t)) = Kx (t) (11)
K = [k1, k2, . . . ,kn] ∈ R1×n

A+BK

g0(x)
g (t, x (t) ,z (t) ,ω (t))

where  is chosen such that the matrix
 is  Hurwitz.  Such  control  (9)  with  the  general  linear

ESO  (4)  is  the  so-called  linear  ADRC.  Assumption  6  is  a
common  assumption  for  the  ESO-based  or  high-gain-
observer-based  controllers,  which  means  that  the  modeled
control  coefficient  should  not  be  too  much  far  away
from  the  real  control  coefficient .  In
addition,  the  satisfiability  of  Assumption  5  will  be  discussed
in detail in the next section.

Remark  2: One  aspect  of  the  proposed  predictor-based
observer  is  that  neither  the  observer  nor  the  predictor  is
impulsive. The calibration of the predictor is achieved through
a  compensation  signal  obtained  by  a  reset  operator.  In
retrospect  to  the  existing  research  on  observer  design  for
sampled-in-measurement  systems,  one  can  see  that  some
observers,  e.g.,  in  [18]–[23]  were  totally  impulsive  while
others,  e.g.,  in  [24]–[28]  were  continuous  in  estimates  but
used  impulsive  output  predictors.  In  this  sense,  this  paper  is
the  first  attempt  to  utilize  not  only  continuous  observers  but
also  continuous  predictors.  Actually,  it  is  in  general  difficult
to  tell  which  one  performs  better  than  the  others.  However,
from  the  stability  analysis  point  of  view,  thanks  to  the
separation of the estimation process and impulsive correction
process,  the  error  dynamics  of  the  proposed ESO avoids  any
jumping  stage  and  is  thus  classified  as  a  kind  of  non-hybrid
system.  This  property  renders  the  stability  analysis  and
parameter design more convenient and intuitive.

χ (t)
y (tk)− C̄ x̂ (tk)

tk

The proposed predictor-based ESO shows superiority in the
estimation  of  both  unmeasured  states  and  uncertainty.  First,
the developed method is applicable to the case when systems
contain  large  uncertainties,  while  existing  results  [19]–[29]
need full or partial knowledge of nonlinear dynamics. What is
more,  the  developed  method  can  also  provide  a  continuous
prediction  of  these  uncertainties,  which  is  appealing  for
feedback  control  design.  On  the  other  hand,  compared  with
some other sample-data control methods derived from ADRC,
such as the event-triggered ADRC proposed in [40], [41], our
approach  employs  the  power  of  a  predictor  (6)  for  the  ESO
design,  in  which  the  observation  error  is  online  estimated  by

 (shown  in Fig. 1 ),  while  in  [40],  [41],  it  is  fixed  at
 during  the  sampling  intervals.  As  a  result,  the

cumulative observation error can be effectively suppressed by
our  control  scheme.  What  is  more,  the  sampling instant  in
[40],  [41]  is  designed  by  the  event-triggered  mechanism.  In
comparison,  our  work  focuses  on  the  development  of  the
ESO’s structure so that it can be applicable for systems where
the  sampling  interval  is  directly  determined  by  physical
factors  such as  network transmission rate  or  sensor  sampling
frequency.

However,  the  high-gain  property  of  the  ESO  causes  some
converse effects.  First,  the estimation capability is  limited by
the  minimum  sampling  frequency,  especially  when ε  is
selected  to  be  small.  This  problem  will  be  theoretically
formulated in Theorem 2. The other problem is the eradication
of the “peaking” of the ESO. Even though it can be eliminated
through  the  modification  of  saturation  in  (9),  the  control

performance  may  still  be  degraded  if  the  systems  are
oversaturated  [42].  Some  other  solutions  such  as  selecting
adaptive  gains  [36]  can  be  utilized  and  need  further
investigation.  

IV.  Convergence of the ESO

The separation  principle  for  nonlinear  systems implies  that
the  faster  convergence  of  the  observer  should  be  guaranteed
before  obtaining  the  stability  of  the  proposed  ADRC.  In  this
section the stability  condition of  the ESO under  the circums-
tance  of  bounded  closed-loop  performance,  summarized  as
Theorem 2, will be addressed. Before that, we first derive the
error  dynamics  of  the  proposed ESO and find that  it  belongs
to a more general nonlinear sampled-data system. Given this,
we  study  the  exponentially  input-to-state  stable  (eISS)
condition of the sampled-data system and state it as Theorem
1, which will  be exploited to get  the results  of  the ESO with
some additional assumptions.  

A.  Error Dynamics Equation
We define the estimation error of the ESO as the following

scale:
 

η(t) =
[
η1(t), . . . ,ηn+1(t)

]T , ηi(t) =
xi(t)− x̂i(t)
εn+1−i (12)

i = 1,2, . . . ,n+1.with  It follows from (1), (5)–(7) and (12) that
the error dynamics can be specified as:
 

η̇ (t) =
1
ε

Āη (t)+ B̄g∆ (t, x,z,ω)u (t)+ D̄h (t)− 1
ε

Lϑ (t) (13)

ϑ (t) = ∆εχ (t) ∈ Rn+1 ∆ε = diag{1/εn,1/εn−1, . . . ,

1} ∈ R(n+1)×(n+1) D̄ = [0, 0, . . . , 0, 1]T ∈
R(n+1)×1

where  with  
 defined  in  (4)  and 

.

ϑ (t)
On  other  aspects,  the  dynamics  of  the  scaled  observation

error  can be computed as
 

ϑ̇ (t) =
1
ε2
∆ε

(
ĀT −εQ

)
ϑ (t)

+
1
ε
∆εC̄T

(
C̄∆−1
ε η (tk)e−

l1(t−tk)
ε + l1ϕ (t)

)
. (14)

∆εC̄T C̄∆−1
ε = C̄T C̄ ∆εC̄T = 1

εn C̄T

∆εĀT = εĀT∆ε

From  the  facts  that , ,  and
, we obtain

 

ϑ̇ (t) =
1
ε

(
ĀT−Q

)
ϑ (t)+

1
ε

C̄T C̄η (tk)e−
l1(t−tk)
ε +

l1
εn+1 C̄Tϕ (t)

=
1
ε

(
ĀT −Q

)
ϑ (t)+

1
ε

C̄T C̄η (t)+
1
ε

C̄Tρ (t) (15)

ρ (t) = C̄η (tk)e−l1(t−tk)/ε− C̄η (t)+ l1
εn ϕ (t) ∈ R

C̄η (tk) = η1 (tk) η̇1 (t) = η2 (t)/ε − l1ϑ1 (t)/ε2

ρ (t)

where .  Note  that
 and  ,  so  compute

the derivative of  with respect to time, then we get
 

ρ̇ (t) = − l1
ε
η1 (tk)e−

l1(t−tk)
ε − 1

ε
η2 (t)+

l1
ε
ϑ1 (t)

+
l1
εn+1

((
y (tk)− C̄ x̂ (tk)

)
e−

l1(t−tk)
ε − χ1

)
= − 1
ε
η2 (t) . (16)
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ρ (t)
ρ (t) = Ω (η (t))

A  direct  integral  calculation  shows  that  can  be
expressed by the reset operator  with
 

Ω :


ρ (t) = −1

ε

w t

tk
η2 (s)ds, ∀t , tk

ρ (tk) = 0.

(17)

ξT (t) = (ηT (t) , ϑT (t))Define  the  condensed  state  vector ,
then the scaled error dynamics of the ESO can be rewritten as
 

ξ̇ (t) =
1
ε

Aξξ (t)+
(

D̄h(t)+ B̄g∆u(t)
0n+1,1

)
+

1
ε

(
0n+1,1

C̄Tρ (t)

)
(18)

Aξ =
[

Ā −L
C̄T C̄ ĀT −Q

]
∈ R(2n+2)×(2n+2)where .

  

B.  Generic Conditions
The fact that the proposed ESO partially jumps when a new

measurement arrives indicates that the updating process of the
error  dynamics  can  be  classified  as  a  sampled-data  system.
Such  a  system  can  be  regarded  as  a  combination  of  a
continuous time system (18) and a reset integral operator (17).
In  view of  this,  in  this  subsection  we  consider  the  following
general nonlinear sampled-data system:
 ξ̇ (t) = fξ (t, ξ (t) ,d (t) ,ρ (t)) , ∀t ∈ [t0, ∞)

ρ (t) = Ωξ (ξ (t)) , ∀t ∈ [tk, tk+1), k ∈ N.
(19)

fξ (t, ξ (t) ,d (t) ,ρ (t)) ∈ C([t0, ∞]×Rm+mp+1, R)
ξ (t) ∈ Rm

d (t) ∈ Rmp

Ωξ (·)

Here  is  a
continuous  nonlinear  function,  is  the  state  vector,

 represents  some  bounded  perturbations  such  as
external  disturbances  and  unknown  nonlinearities,  is  a
reset operator in the following form:
 

Ωξ :

ρ (t) =
w t

tk
φξ (ξ (s))ds, ∀t , tk

ρ (tk) = 0
(20)

φξ (·) ∈ C(Rm, R)

d (t)

with  a  continuous  function .  Worthy  of
mention  is  that  system  (19)–(20)  represents  a  large  range  of
nonlinear sampled data systems discussed in related literature.
See  for  instance  the  works  of  [26]  and  [28].  The  error
dynamics  of  the  ESO  in  Section  IV. A  is  a  special  case  of
(19)–(20).  Therefore,  we  present  generic  conditions  for  the
exponentially input-to-state stable (eISS) properties of system
(19)–(20) with respect to .

d (t)
(t0, ξ0) ∈ R+×Rm ||d (t) || ≤ d̄

ξ (t, t0, ξ0) ξ (t0) = ξ0
t ≥ t0 ξ (t, t0, ξ0)

ξ (t, t0, ξ0) a, b, and c
ξ0

Definition  1: Consider  the  sampled-data  system  (19)–(20).
Regard  as  the  input  of  the  system.  For  each

 and .  If there exists a continuous
function  with  the  initial  state  satisfying
(19)  for  all ,  then  is  called  a  solution  of  the
system  (19).  What  is  more,  the  system  (19)  is  said  to  be
exponentially  input-to-state  stable  if  there  exist  a  unique
solution  and  three  positive  constants ,
independent of , such that
 

∥ξ (t, t0, ξ0)∥ ≤ ae−b(t−t0) ∥ξ0∥+ cd̄, ∀t ≥ t0. (21)
The criteria for determining whether a system is eISS can be

summarized as the following theorem.

ξ (t0)

v (ξ (t)) ∈ C(Rm, R+)
α2, β2, γ, c21, c22 > 0, r ≥ 1, θ = 1/r
ξ (t) ∈ Rm

Theorem  1: Consider  the  system  (19)–(20)  subject  to
Assumption 3.  For  any initial  state ,  if  system (19)–(20)
admits  a  unique  solution  and  there  exist  a  differentiable,
positive  definite  function ,  and  constants

 such  that  for  any
 

 

α2−β2τM > 0 (22)
 

c21∥ξ (t)∥r ≤ v (ξ (t)) ≤ c22∥ξ (t)∥r (23)
 

v̇ (ξ (t))+α2v (ξ (t)) ≤ β2v1−θ (ξ (t))
w t

tk
vθ (ξ (s))ds

+γ ∥d (t)∥v1−θ (ξ (t)) (24)

t ∈ [tk, tk+1), k ∈ N ξ0 ∈ Rm

d (t)
hold  for  all .  Then  for  any ,  the
system is eISS with respect to , namely
 

∥ξ (t)∥ ≤
cθ22

cθ21

e−µ(t−t0) ∥ξ (t0)∥+ γd̄τM

cθ21

(
1+

1
1− e−µτm

)
∀t ≥ t0 (25)

where
 

µ = (α2−β2τM)θe−α2θτM (26)
is the exponential decay rate.

v1 (ξ (t)) = vθ (ξ (t))Proof: Let  .  Using  the  result  of  Lemma
2.1 in [25], we obtain
 

v1 (ξ (t)) ≤ e−µ(t−t0)v1 (ξ (t0))+γd̄τM

(
1+

1
1− e−µτm

)
.

t ≥ t0Recall that (23) holds for all , then it yields
 (

c21∥ξ (t)∥r)θ ≤ v1 (ξ (t)) ≤ e−µ(t−t0)(c22∥ξ (t0)∥r)θ
+γd̄τM

(
1+

1
1− e−µτm

)
.

rθ = 1Note that , the above inequality is further simplified as
 

∥ξ (t)∥ ≤
cθ22

cθ21

e−µ(t−t0) ∥ξ (t0)∥+ γd̄τM

cθ21

(
1+

1
1− e−µτm

)
.

    ■
β2v1−θ (ξ (t))

r t
tk

vθ (ξ (s))dsThe integral  item  in  (24)  can  be
viewed  as  a  storage  term  which  guarantees  the  exponential
dissipativeness of system (19)−(20) in the consideration of the
sampling.  The  works  in  [28]  and  [43]  replace  this  term  by
exploring  a  so-called  storage  function  and  finally  obtain
tractable stability criteria in terms of linear matrix inequalities.
In  this  paper,  we  formulate  the  eISS  condition  based  on  the
existence  of  a  Lyapunov  function,  which  is  the  extension  of
Lemma 2.1 in [25].  

C.  Main Results of the ESO
Base on the eISS analysis for the more general sample-data

system  (19)–(20),  we  obtain  the  main  results  about  the
estimation  capability  of  the  proposed  ESO  by  embedding
(17)–(18) into (19)–(20).

h (t)
Come back to the condensed error dynamics of the ESO in

(17)–(18), the item  can be specified as
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h = ḟ (t, x,z,ω) + ġ∆ (t, x,z,ω)u (t)+g∆ (t, x,z,ω) u̇ (t)

=
∂ f (·)
∂t
+

n−1∑
i=1

∂ f (·)
∂xi

xi+1 (t)+
∂ f (·)
∂xn

× ( f (t, x,z,ω)+g∆ (t, x,z,ω)u (t))

+ f0 (t, x,z,ω)
∂ f (·)
∂z
+ ω̇
∂ f (·)
∂ω

+ (ġ (t, x,z,ω)− ġ0 (x)) Mgε

u0
(
x̂n

)
− x̂n+1

g0
(
x̂n

)
M


+ (g (t, x,z,ω)−g0 (x))

dgε (r)
dr

×

(
u̇0

(
x̂n

)
− ˙̂xn+1

)
g0

(
x̂n

)
−
(
u0

(
x̂n

)
− x̂n+1

)
ġ0

(
x̂n

)
g2

0

(
x̂n

) .

x (t) ω, f0 (·) , f (·)

|u (t) | ≤ M(1+ε/2)
| dgε(r)

dr | ≤ 1 t ≥ t0

N1, N2

By Assumptions 1 and 2, if  is bounded, ,
and  their  partial  derivatives  are  all  bounded.  Additionally,  it
follows  from  (9)  and  (10)  that  and

 for all . Therefore, considering Assumptions 1,
2,  and 6,  we have that  there exist  two ε-independent  positive
constants , such that the differentiation of the perturbed
item in (18) is bounded in the sense of
 

∥D̄h(t)+ B̄g∆u(t)∥ ≤ N1+N2∥η∥, ∀t ≥ t0. (27)

L and Q Aξ =
[

Ā −L
C̄T C̄ ĀT −Q

]
P > 0

If  are  selected  so  that  is

Hurwitz, there exist a symmetric positive definite matrix 
and a positive constant κ such that
 

AT
ξ P+PAξ ≤ −2κI2n+2. (28)

The  following  theorem  generalizes  the  stability  analysis
results of the proposed ESO.

x (t) x (t) ∈ X, ∀t ≥ t0 X
ε∗ =

κ−κ1λP,max
N2ℓPλP,max

δM =κ1/(2
√
ℓP)

κ1 ∈ (0, κ/λP,max)

Theorem  2: Consider  the  system (1)  which  is  observed  by
the ESO (5)–(7). Suppose that Assumptions 1–3, 5, and 6 hold
and the state  is bounded by , where  is a
compact  set.  Denote  and  ,
where 

τM < ε
∗δM ε ∈ (τM/δM ε

∗)

D̄h(t)+ B̄g∆u(t)

1)  If ,  then  for  any ,  the  solution
of the error dynamics (17) and (18) is eISS with respect to the
unknown nonlinearity .

τM < ε
∗δM ε ∈ (τM/δM , ε

∗)
supt∈[t0+T (ε), ∞) ∥ξ (t)∥ = O (ε) T (ε) > 0 T (ε)→
0 ε→ 0

2) Furthermore, if , then for any ,
.  where  and  

 as .
V2 (ξ (t)) =

ξT (t) Pξ (t)
Proof: Consider the Lyapunov function candidate 

 and differentiate it along (18)
 

V̇2(ξ (t)) ≤ − 2κ
ε
∥ξ (t)∥2+2ξT (t) P

(
D̄h(t)+ B̄g∆u(t)

C̄T ρ(t)
ε

)
≤ − 2κ

ε
∥ξ (t)∥2+2

∥∥∥ξT (t) P
∥∥∥

×
(
∥D̄h(t)+ B̄g∆u(t)∥+ 1

ε2

w t

tk
|η2 (s)|ds

)
. (29)

λP,min∥ξ (t)∥2 ≤ V2 (ξ (t)) ≤ λP,max∥ξ (t)∥2∥∥∥ξT (t)P
∥∥∥ ≤ √

λP,maxV2 (ξ (t))
In view of (27),  and

, (29) can be released as
 

V̇2 (ξ (t)) ≤ − 2κ
ελP,max

V2 (ξ (t))+2λP,max ∥ξ (t)∥

×
(
N1+N2∥η∥+

1
ε2

w t

tk
∥ξ (s)∥ds

)
≤ −

(
2κ
ελP,max

−2N2ℓP

)
V2 (ξ (t))

+2N1
√
λP,max

√
V2 (ξ (t))

+
2
√
ℓP

ε2

√
V2 (ξ (t))

w t

tk

√
V2 (ξ (s))ds. (30)

ε∗ =
κ−κ1λP,max
N2ℓPλP,max

ε ∈ (0, ε∗)
2κ

ελP,max
−2N2ℓP > 2κ1/ε V2 (ξ (t))

By comparing  the  right  side  of  (30)  and  (24),  we  can  find
that  if  we choose ,  for  any ,  we have

. Then,  just satisfies (24) with
 

r = 2, θ =
1
2
, α2 =

2κ1
ε
, β2 =

2
√
ℓP

ε2

γ = 2N1
√
λP,max, c21 = λP,min, c22 = λP,max.

δM = κ1/(2
√
ℓP)

τM ≤ δMε

Thus,  taking  we  can  find  that  for  all
, we have

 

α2−β2τM ≥
κ1
ε
> 0. (31)

V2 (ξ (t))
v (ξ (t))

The combination of (30) and (31) shows that the Lyapunov
function  candidate  falls  in  the  class  of  functions

 presented in Theorem 1. Recall that the error dynamics
(17)–(18)  is  a  kind  of  system  described  in  Section  IV-B.
Therefore,  according  to  Theorem  1,  the  solution  of  (18)
satisfies the following inequality:
 

∥ξ (t)∥ ≤
√
ℓPe−µ(t−t0) ∥ξ (t0)∥

+2
√
ℓPτMN1

(
1+

1
1− e−µτm

)
(32)

(κ1/ε−
√
ℓPτM/ε

2)e−κ1τM/εwhere the decay rate μ is equal to .
This proves the first proposition of Theorem 2.

τM≤κ1ε/(2
√
ℓP) µ(τM)= (κ1/ε−√

ℓPτM/ε
2)e−κ1τM/ε

τM

Furthermore,  since ,  and 
 is  a  strictly  decreasing  function  with

respect to , we obtain
 

µ = µ (τM) ≥ µ (εδM) =
κ1
2ε

e
−
κ21

2
√
ℓP =

N3

ε
(33)

N3 =
κ1
2 e−κ

2
1/(2

√
ℓP)

∥ξ (t)∥
where  is a constant independent of ε. After
taking  into  account  (32)  and  (33)  we  can  get  that 
satisfies
 

∥ξ (t)∥ ≤
√
ℓPe−

N3(t−t0)
ε ∥ξ (t0)∥

+
√
ℓPδMN1

1+ 1

1− e−
N3τm
ε

ε. (34)

ε→ 0
T (ε) = −ε lnε

ε∗ τM < ε
∗δM ε ∈ (τM/δM , ε

∗)
supt∈[t0+T (ε), ∞) ∥ξ (t)∥ = O (ε)

The  right  side  of  (34)  tends  to  zero  as .  More  speci-
fically,  by  taking ,  we  can  see  that  there  exists
an  such  that  if ,  then  for  any ,

 holds. ■  
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D.  Checking Assumption 5

V2 (ξ (t))
Aξ

li and qi, i = 1, 2, . . . ,n+1
Aξ

From the  proving  progress  of  Theorem 2,  one  can  observe
that  the  existence  of  the  Lyapunov  function 
principally  depends  on  whether  the  matrix  is  Hurwitz.  In
the  following  we  will  demonstrate  that  by  selecting

 one  can  assign  the  eigenvalues  of
 to make Assumption 5 satisfied.
λ ∈ CLet  be  an  arbitrary  complex number.  Define  a  set  of

matrices
 

G2 j =

 −λI j+A j −L j

CT
j C j −λI j+AT

j −Q j

 , j = 1, . . . ,n+1

A j, L j and Q j
Ā, L, and Q C j = [1, 0, . . . ,0] ∈

R j×1 G2 j
G2n+2 = Aξ −λI2n+2

l1, l2, . . . , l j q1, q2, . . . ,q j
det(G2 j) = 0

Aξ

where  are  the j th  sequential  principal  minor
matrices  of ,  respectively,  and 

.  From  the  definition  of  we  can  readily  know  that
.  Next,  we  will  iteratively  show  that  one

can  select  appropriate  and   to  assign
the  roots  of  the  equation  arbitrarily  and  thus
make  Hurwitz.  The  design  procedure  is  similar  to  that  in
[29], while the difference is that we use Laplace expansion to
simplify the design.

j = 1 G2 j =

(
−λ −l1
1 −λ−q1

)
.

G2 λ2+q1λ+ l1
det (G2)

P2 (λ) = λ2+a1λ+a2
q1 = a1 l1 = a2 det (G2) = P2 (λ) .

Step 1: Let , then  The determin-
ant  of  is  .  It  is  obviously  simple  to  make

 be  a  Hurwitz  polynomial.  Namely,  if  the  target
Hurwitz polynomial is ,  one can directly
choose ,  to make 

j > 1
det(G2 j) det(G2 j−2)

G2 j
2 j G2 j

Step  2: When  ,  let  us  first  detect  the  relationship
between  and  .  By  using  the  Laplace
expansion  theorem,  we  expand  the  determinant  of  along
the jth and th lines of , we obtain
 

det
(
G2 j

)
= λ

(
λ+q j

)
det

(
G2 j−2

)
+ li. (35)

P2 j (λ) = λ2 j+
∑2 j

s=1 a( j)
s λ

2 j−sLet  be  an  arbitrary  target
Hurwitz polynomial, then it can be rewritten as
 

P2 j (λ) = λ

λ2 j−1+

2 j−1∑
s=1

a( j)
s λ

2 j−1−s

+a( j)
2 j

= λR j (λ)+a( j)
2 j (36)

R j (λ) = λ2 j−1+
∑2 j−1

s=1 a( j)
s λ

2 j−1−s

R j (λ)

−λ j det(G2 j−2)

where .  We  take  into
consideration that  is an odd-order Hurwitz polynomial,
so  there  must  exist  at  least  one  real  negative  root  which
denoted by . Then, the target polynomial for  is
designed as
 

P2 j−2 (λ) =
R j (λ)
λ+λ j

. (37)

Combined with (37), (36) yields
 

P2 j (λ) = λ
(
λ+λ j

)
P2 j−2 (λ)+a(2 j)

2 j . (38)

q j = λ j, l j = a( j)
2 j

G2 j P2 j (λ)

Comparing the right  side of  (35)  and (38),  we can see that
by  choosing ,  we  can  guarantee  that  the
determinant  of  matches  the  Hurwitz  polynomial .
Furthermore,  by  iteratively  using  the  above  method  for

j = n+1, n, . . . ,2,1
L and Q Aξ

,  we  can  complete  the  design  task  of
 and finally construct a Hurwitz matrix .

li and qi, i = 1, 2, . . . ,n+1
The above two steps indicate a feasible design procedure of

,  which  can  be  summarized  as
follows.

P2n+2 (λ) =
λ2n+2+

∑2n+2
s=1 a(n+1)

s λ2n+2−s j = n+1
Step 1: Initialize  a  target  Hurwitz  polynomial 

 and let .
P2 j (λ) = λ2 j+

∑2 j
s=1 a( j)

s λ
2 j−s

l j = a( j)
2 j

Step 2: i)  For  given ,  choose
.

−λ j

R j (λ) = λ2 j−1+
∑2 j−1

s=1 a( j)
s λ

2 j−1−s q j = λ j

ii)  Search  one  real  negative  root  (denoted  by )  of  the
polynomial  and let .

j ≥ 2 P2 j−2 (λ) to
R j(λ)
λ+λ j

j→ j−1 j = 1
iii)  If ,  determine  the  next  polynomial 

 and  let .  Then  go  back  to  Step  1.  If ,  the
design procedure is finished.  

V.  Closed-Loop Performance

x(t) ∈ X, t ≥ t0

The previous section indicates that under the condition that
the  state  trajectory  of  the  system  is  bounded,  the  estimation
error  of  the  ESO is  convergent.  Based  on  Theorem 2,  in  the
following lemma we will show the boundedness of the closed-
loop  system’s  trajectory  under  the  ADRC  law  (5)−(9)  in
Lemma 1, where the condition  involved in the
previous  section  will  be  removed.  Based  on  Lemma  1  and
Theorem 1,  we are  in  the  position to  state  our  main result  in
Theorem  3,  which  concludes  the  convergence  level  and  rate
for the closed-loop system.

ς1 = sup∥x(t)∥≤∥x(t0)∥V1 (x (t))+1 V1 (x (t))Let ,  where  is  a
function satisfying Assumption 4. Then, let us first define two
compact sets as below
 Ξ1 =

{
x (t) ∈ Rn : V1 (x (t)) ≤ ς1

}
Ξ2 =

{
x (t) ∈ Rn : V1 (x (t)) ≤ ς2

} (39)

ς2 ∈ (ς1, ∞)
x (t0) ∈ Ξ1 Ξ1 ⊂ Ξ2

x (t) Ξ1
Ξ2

where . From (39), it can be readily detected that
 and  .  The  following  lemma  will  show that

under some conditions,  starting in  will always stay in
.

δM = κ1/(2
√
ℓP)

κ1 ∈ (0, κ/λP,max) ε1 τM < ε1δM
∀ε ∈ (τM/δM , ε1) ∀t ≥ t0 x (t) ∈ Ξ2

Lemma  1: Consider  the  closed-loop  system  consisting  of
(1),  the  ESO  (5)–(7)  and  the  controller  (8)–(9).  Suppose
Assumptions 1–6 are satisfied. Denote , where

.  There  exists  an  such  that  if ,
then  and ,  holds.

x (t0) Ξ1
x (t) [t0, ∞)

ta > t0
x (t) ∈ Ξ1 t ∈ [t0, ta]

x (t)
x (t)

Ξ1 Ξ2
∃tc > tb > ta

Proof: Remark that  is  an  interior  point  of  and the
solution  is  continuous  in  the  time  interval .
Therefore,  there  must  exist  a  point  of  time  such  that

 holds  for  all .  Next,  we  will  use
contradiction  to  complete  the  rest  of  the  proof.  Assume  that
Lemma 1 is not true, then according to the continuity of ,
there exists a period of time when the trajectory  escapes
from  and  reaches  the  boundary  of .  That  is  to  say,

 such that
 

V1 (x (tb)) = ς1
V1 (x (tc)) = ς2
ς1 ≤ V1 (x (t)) ≤ ς2, t ∈ [tb, tc]

V1 (x (t)) ≤ ς2, t ∈ [t0, tc] .

(40)
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t ∈ [t0, tc]
√
ς2/c12 ≤ ∥x (t)∥ ≤

√
ς2/c11

∀ε ∈ (τM/δM , ε
∗)

[t0, tc]
x̂i (t) ≤ |xi (t)|+εn+1−i |ηi (t)| , i = 1, . . . ,n+1
M > supt∈[t0, tc] |(u0(x(t))− xn+1(t))/g (x(t))|

[t0, tc]
V1 (x (t))

Then  for  any ,  and
hence all the conditions in Theorem 2 are satisfied. Therefore,
we can conclude that for ,  (34) holds in the
time interval .  Additionally,  from (10) we observe that

,  so  we  can  choose
 such  that  the

control  input  (9)  is  never  saturated  during  the  time  interval
.  Based  on  Assumption  4,  calculating  the  time

derivative of  alone (1), we deduce
 

V̇1 (x (t)) =
n−1∑
i=1

xi+1 (t)
∂V1 (x (t))
∂xi (t)

+
(
xn+1+u0

(
¯̂xn

)
− x̂n+1

) ∂V1 (x (t))
∂xn (t)

=

n−1∑
i=1

xi+1 (t)
∂V1 (x (t))
∂xi (t)

+u0 (x)
∂V1 (x (t))
∂xn (t)

+
(
ηn+1+u0

(
¯̂xn

)
−u0 (x)

) ∂V1 (x (t))
∂xn (t)

≤ −α1V1 (x (t))+N4β1 ∥η (t)∥∥x (t)∥

≤ −α1c11 ∥x (t)∥
(
∥x (t)∥− N4β1

α1c11
∥η (t)∥

)
(41)

N4

ξ (t) η (t)
∥η (t)∥ ≤ ∥ξ (t)∥ ≤ α1c11

N4β1√
ς2/c12, ∀t ∈ [t0, tc]
ε1 ∈ (0, ε∗) τM < ε1δM

where  is  an ε -independent  positive  constant.  Recall  that
 is an extended vector of  and satisfies (34), so we can

select ε  to  be  enough  small  such  that 
.  In  other  words,  there  exists  an

 such that if  is satisfied, then
 

V̇1 (x (t)) < 0 (42)

ε ∈ (τM/δM , ε1 ) t ∈ [tb, tc]holds  for  any  and .  The inequality
(42) contradicts (40). ■

Finally,  we  are  ready  to  present  our  main  results  on  the
proposed ADRC structure.

δM = κ1/(2
√
ℓP) κ1 ∈ (0, κ/λP,max)

x (t0) ∈ Ξ1 ε1 τM < ε1δM
∀ε ∈ (τM/δM , ε1) ∀t ≥ t0

Theorem  3: Consider  the  closed-loop  system  composed  of
(1)  and  (5)–(9).  Suppose  that  Assumptions  1–5  are  satisfied.
Denote ,  where .  For  any

,  there  exists  an  such  that  if ,  then
 and ,

 

sup
t∈[t0+T (ε),∞)

∥ξ (t)∥ = O (ε) (43)
 

sup
t∈[t0+T (ε),∞)

|xi(t)− x̂i(t)|=O(εn+2−i), i=1, . . . ,n+1 (44)

 

lim
t→∞
∥x (t)∥ = O (ε) (45)

T (ε) > 0 T (ε)→ 0 as ε→ 0where  and .

Ξ1 x (t) ∈ Ξ2, ∀t ∈ [t0, ∞)
t ∈ [t0, ∞) T (ε) = −ε lnε > 0

xi (t)− x̂i (t) = εn+1−iηi (t)
ξT (t) = [ηT (t) , χT (t)]

t ∈ [t0, ∞) d
√

V1(x(t))
dt =

Proof: In  the  proving  procedure  of  Lemma  1,  we  have
derived that the trajectory of the closed-loop system starting in

 will be bounded by . This yields that
(34) holds for all .  By taking  we
can  derive  (43).  Note  that  and

, then we get (44). Moreover, note that
(41)  holds  uniformly  in ,  by  using 

1
2
√

V1(x(t))
dV1(x(t))

dt , the following relationship is derived:
 

d
√

V1 (x (t))
dt

≤ −α
2

√
V1 (x (t))+

N5ε

2
(46)

N5
c11∥x (t)∥2 ≤ V1 (x (t))

where  is an ε-independent positive constant. From (46) and
the fact that , we can deduce (45). ■

f (·)

f (t, x,z,ω)

u0 (·)

Remark  3: We  should  point  out  that  some  other  output
feedback methods, such as continuous-discrete time high gain
observer  [25]  based  high  gain  control  [44]  can  likewise  be  a
valuable  tool  to  make  the  system’s  trajectory  as  small  as
expected under additional conditions like the nonlinearity 
being  Lipachitz  continuous.  However,  when  the  value  of

 is  large,  both  the  gains  of  the  observer  and  the
controller  have  to  be  large  enough  to  accommodate  large
uncertainty. The observer and controller with such large gains
are  a  waste  of  energy  in  practical  application  and  may  make
the  resulting  system  peak  during  the  transient  period  [45],
[46].  In  this  paper,  although  a  moderately  large  gain  in  the
proposed  ESO  is  still  necessary,  the  gain  in  the  control  law

 is  not  required  to  be  large  thanks  to  the  cancellation  of
uncertainty, and the peaking phenomena will be restrained by
introducing  the  saturation  function.  This  fact  will  be  verified
in Section VI.

Remark  4: It  is  worthy  to  notice  that  the  calibration  of  the
proposed  continuous  time  ESO  is  chiefly  dependent  on  the
adjustment of the gain parameter ε. From Theorem 3, one can
find  that  for  the  concerned  system  with  sampled
measurements,  the  lower  bound  of ε  is  limited  by  the
maximum  sampling  interval.  This  characteristic  is  similar  to
that  of  ADRC  design  for  time-delay  systems  in  [13].  The
explanation  of  this  coincidence  lies  in  the  fact  that  both  the
ADRC  schemes  in  this  paper  and  in  [13]  contain  state
predictors  whose  predictive  capability  is  constrained  by  the
maximum sampling interval, or maximum delay. On the other
hand, it is worthwhile to mention here that in most results on
the traditional ADRC design [10]–[12],  the value of ε  can be
tuned  to  be  arbitrarily  small  to  obtain  better  estimation
capacity and faster convergence rate. In this respect, combined
with the results in [13], the results in this paper can provide a
general guideline for the predictor-based ADRC design.

Remark 5: When the  system is  attached with  measurement
noise,  it  has  been reported in [47]  that  there exists  a  tradeoff
between the error due to system uncertainty and the error due
to sensor noise. Meanwhile, experiments have shown that too
small ε  causes  high-frequency  oscillations  in  control  signal
because  of  amplification  of  measurement  noise  [39].
Therefore, there are some practical limitations on the value of
ε when the control algorithm is implemented. To alleviate the
negative  effect  of  measurement  noise,  one  can  employ  the
idea of switched-gain [47], which can realize a better balance
between  system  uncertainty  and  sensor  noise.  This  issue
deserves detailed investigation in the future.

f (·) g(·)
f (·) g(·)

Remark  6: For  (1),  additive  disturbances  can  be  added  to
 and  ,  regarded  as  the “ total  uncertainty” in  ADRC

structure.  As a result,  as long as the new  and  satisfy
Assumptions  1  and  6,  the  proposed  ADRC  is  still  a  reliable
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scheme.  It  should  also  be  emphasized  that  the  results  of  the
proposed  ADRC  scheme  can  be  extended  to  systems  with
input  uncertainty,  or  even  mismatched  uncertainty.  To  deal
with  the  input  uncertainty,  one  can  readily  adopt  the  method
in [12], where a projection gradient estimator is constructed to
separate  input  uncertainty  from  total  uncertainty.  To
accomplish  mismatched  one,  the  coordinate  transformation
[11]  can  be  an  appropriate  approach  to  convert  systems with
mismatched uncertainty into the form of (1).

Remark 7: There are several groups of parameters that need
to  be  determined  in  our  presented  ESO-based  disturbance
rejection scheme.

li, qi, and ε, i = 1, . . . ,n+1
li and qi

Aξ

1) For the predictor-based ESO (5)–(7), the parameters to be
designed  are  the  gains .  The
selection of  can be iteratively completed via the pole
placement  algorithm  in  Section  IV-D,  so  that  the  matrix 
becomes  Hurwitz.  The  value  of ε  is  supposed  to  be  small  to
attain  more  accurate  estimation.  However,  the  minimum
acceptable value of ε is prescribed by the maximum sampling
interval. As for implementation, the value of ε can be assigned
by  some  trial  and  error  experiments,  based  on  the  recovery
performance of the system.

ki unom
ki

M > sup |u0(x(t))− xn+1(t)/g (x(t))|

2)  For  the  control  device  (8)–(11),  the  parameters  include
the feedback gains  and the saturation bound M for . The
values  of  can  be  set  through  various  methods  commonly
used  in  feedback  control  of  linear  systems,  such  as  pole
placement technique and linear quadratic regulator. The value
of M is usually decided according to the physical or geometric
constraints  of  the  actual  actuator.  From a theoretical  point  of
view,  the  saturation  bound  should  be  selected  such  that  the
saturation will  not be invoked under state feedback [34],  that
is .  

VI.  Numerical Simulations

In  this  section,  two  examples  are  given  to  show  the
performance of the proposed control scheme.  

A.  Example 1
Consider  the  following  uncertain  nonlinear  system  with

sampled measurements:
 

z (t) = −
(
x2

1 (t)+1
)
z (t)

x1 (t) = x2 (t)

x2 (t)= f (t, x (t) ,z (t) ,ω (t))+g (t, x (t) ,z (t) ,ω (t))u (t)

ω (t) =
sin(2t)

2
y (tk) = x1 (tk) , t ≥ t0, k ∈ N

(47)

f (t, x (t) ,z (t) ,ω (t)) = sin(x1 (t))+ x1 (t) x2
2 (t)+ sin(t)+

z (t) x1 (t)+ω (t) x2 (t)+ω (t) g (t, x (t) ,z (t) ,ω (t)) = 1+g∆(t, x(t),
z(t),ω(t)) g∆(·) = 0.5+0.2sin(x1(t))

tk

where 
, 

 with  the  unknown  part ,
and  is the sampling time with the interval
 

τk = tk+1− tk =
{

0.1, if k is odd
0.05, else.

f (·) g (·) ω (t) τkIt  is  apparent  that , ,  and   satisfy  Assump-
tions 1, 3, and 6, and Assumption 2 can be effortlessly verified

V0 (z) = z2 (t)/2
∂V0
∂z (z) f0 (·) = −(x2

1 (t)+1)z2 (t) ≤ 0
by considering the Lyapunov candidate  . From
(47),  we  have . Therefore,
the proposed ADRC can be applied.

x3 = f (·)+g∆(·)u
L and Q

Aξ

L and Q L = diag {3, 3, 1}
Q = diag {2, 2, 2}

K = [−4, −4] M = 30
[x1(0), x2(0), z(0)]T = [1, 1, 1]T

x̂ (0) = [0, 0, 0]T

±M

For  the  design  of  the  ESO,  take  as  the
extended state.  The coefficients  of  the gain matrices 
are  iteratively  computed  such  that  the  matrix  defined  in
(18) has six identical eigenvalues located at –1. The algorithm
detailed  in  the  Section  IV has  been  implemented  to  generate

.  The  derived  values  are  and
. The value of ε is set to 0.05. The controller

(8)–(9)  is  designed  in  a  linear  feedback  form  with
 and  .  Initial  states  of  the  plant  (47)  and

the  ESO (5)–(7)  are  fixed  at 
and .  The  simulation  results  are  depicted  in
Figs. 2 and 3, where one can observe that the ESO maintains
satisfactory performance and the control input saturates at 
during the peaking period.
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Fig. 2.     System response and ESO output.
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Fig. 3.     Input signal u.
 

y (tk)− C̄ x̂ (tk)

τk
x− x̂

We  further  compare  our  new  ADRC  with  the  event-
triggered  ADRC  established  in  [41].  The  event-triggered
ADRC develops a sample-data continuous ESO based on the
fixed observation error . In order to highlight the
comparison  results,  we  set  identical  gains  for  both  observers
and  controllers  in  our  proposed  scenario  and  the  scenario  in
[41].  The  simulation  results  are  shown  in Fig. 4 .  As  for
different ,  we  calculate  the  root  mean  squared  errors
(RMSE) of the system’s state x  and its  estimation error 

 902 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 5, MAY 2022

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2023 at 10:39:32 UTC from IEEE Xplore.  Restrictions apply. 



τk

in  the  last  eight  seconds.  It  can  be  observed  that  when  the
sampling  interval  is  small,  both  scenarios  realize  satisfactory
control  performance.  However,  the  increase  of  results  in
much  larger  estimation  error  of  the  ESO  in  [41],  or  even
divergence.

τM
τM < ε

∗δM

τM

From  a  theoretical  point  of  view,  should  satisfy
,  given  in  Theorem  2.  This  condition  seems  to  be

pretty  restrictive  since  it  may  result  in  the  smaller  allowable
value  of  if  ε  is  selected  to  be  smaller.  Nevertheless,  this
condition  is  conservatively  prescribed,  for  the  purpose  of
getting  the  convergence  result  of  the  ESO.  Our  simulation
results  in Fig. 4  have  shown  that  the  proposed  scenario  can
perform effectively with sampling interval that are larger than
the theoretical bound given in Theorem 2.

y (tk) = x1 (tk)+∆m, t ≥ t0, k ∈ N ∆m ∈ R

To further indicate the tradeoff between the error caused by
model  uncertainty  and  the  error  induced  by  measurement
noise, we add a noise signal to the output of the system, that is

,  with  being  the
measurement  noise.  The  magnitude  of  the  noise  is  limited  to
0.001. Table I  summarizes  the  control  performance  under
different parameter settings of ε.
 

TABLE I 

RMSE of the System’s State With Measurement Noise

Values of ε 0.025 0.05 0.075 0.01

RMSE of x 0.461 0.152 0.133 0.141

As  mentioned  in  Remark  7,  the  computation  of  the
saturation bound M is not straightforward and one may end up
with  some  conservative  choices.  In  the  first  example,  we
further take different values for the saturation bound. Depicted
in Fig. 5 ,  our  numerical  simulation  indicates  that  a  larger
saturation  bound  is  likely  to  contribute  to  a  better  transient
performance.  

B.  Example 2
To further verify the applicability of the proposed approach,

a simulation is carried out for a single-link flexible-joint robot
manipulator  [22],  [48],  whose dynamics can be expressed by
the following equations:
 J1q̈1+ f ∗1 q̇1+M∗gl∗ sin(q1)+a∗ (q1−q2) = 0

J2q̈2+ f ∗2 q̇2−a∗ (q1−q2) = u
(48)

q1 and q2
J1 and J2

M∗ and l∗

g = 9.8 m/s2

f ∗1 and f ∗2
a∗

q1 and q2
x1 = q1, x2 = q̇1, x3 = q2 and x4 = q̇2

where  denote  the  link  angle  and  the  motor  angle,
 stand  for  the  link  inertia  and  the  motor  inertia,

respectively,  represent  the  mass  and  the  length  of
the  link,  respectively,  is  the  gravitational
acceleration,  is  the  friction  coefficients  of  the  link
and  the  motor,  respectively,  and  is  the  joint  stiffness.  The
control  objective  is  to  stabilize  at  zero.  Let

,  the  dynamics  (48)  can
be  reformulated  as  the  following  first  order  differential
equation form:
 

ẋ1 = x2

ẋ2 =
a∗

J1
(x3− x1)− f ∗1 x2−

M∗gl∗

J1
sin(x1)

ẋ3 = x4

ẋ4 =
a∗

J2
(x1− x3)+

1
J2

(
u− f ∗2 x4

)
.

(49)

tk = τk, k ∈ N
We assume that only the link angle can be measured and the

output  is  only  available  at  sampling  moments ,
where τ is the constant sampling interval. In this example, the
values of the parameters in (49) are listed in Table II.

 
TABLE II 

Parameters of the Robot Manipulator

Physical meaning Symbol Value

Link mass M∗ 1 kg

Link length l∗ 0.8 m

Link/motor inertia J1 and J2 kg ·m2 kg ·m21  and 1.2 
Joint stiffness a∗ 25 N

Link/motor friction coefficient f ∗1 and f ∗2 0.5 N · s and 1 N · s
Sampling intervals τ 0.1 s

 
 

s = [s1, s2, s3, s4]T s1 = x1

s2 = ṡ1 = x2 s3 = ṡ2 =
a∗
J1

(x3 − x1) − f ∗1 x2 − M∗gl∗

J1
sin(x1) =

b3
(
x1, x2, x3, f ∗1

)
s4 = ṡ3 =

∑3
i=1
∂b3
∂xi

ẋi = b4
(
x, f ∗1 , f

∗
2

)

It  should  be  noted  that  the  exact  values  of  the  friction
coefficients  are  not  easy  to  obtain  in  practice,  which  makes
the  dynamics  attached  with  mismatched  uncertainty.  As
mentioned  in  Remark  6,  combined  with  the  coordinate
transformation approach, the proposed ADRC scheme can be
a  feasible  method  to  handle  the  issues  considered.  Namely,
define  new state  variables .  Let ,

, 
, ,  then  we

have 
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Fig. 4.     The comparison of RMSE by using different approaches.
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Fig. 5.     System response under different saturation bounds.
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ṡ1 = s2, ṡ2 = s3, ṡ3 = s4

ṡ4 =

3∑
i=1

∂b4

∂xi
ẋi+
∂b4

∂x4

(
a∗

J2
(x1− x3)+

1
J2

(
u− f ∗2 x4

))

= ϕ̄
(
s, f ∗1 , f

∗
2

)
+

a∗

J1J2
u (50)

ϕ̄(s, f ∗1 , f
∗
2 )

y (tk) = s1 (tk)

s (t) and ϕ̄t(s, f ∗1 , f
∗
2 ) x (t)

L = diag {5, 10, 10, 5, 1} , Q = diag {2, 2, 2, 2, 2} ,
ε = 0.1, K = [−3, −5, −3, −1], unom (t) = J1 J2

a∗ (s5 (t)−3s1 (t)−
5s2 (t)−3s3 (t)− s4 (t)) and M = 8

x (0) = [−1, −1, −1.5, 1]T ŝ (0) = [0, 0, 0,
0, 0]T

where  represents  an  unknown  nonlinear  function
satisfying  Assumption  1.  By  this  formulation,  the  state
stabilization of (49) can be achieved by the stabilization of s-
system  of  (50)  with  the  measured  output .  The
outputs  of  the  ESO  are  accordingly  the  estimates  of

,  instead of .  The feedback controller
is  designed as  (7)  based on the continuous time ESO (5)–(7)
with 

 
.  The  initial  conditions  are

taken  as  and  
.

x (t) ŝ (t)

The simulation results are plotted in Figs. 6 and 7. In Fig. 6,
the  convergence  of  the  system  state  is  shown  and  reverse
calculation is used to obtain the estimate of  from . It
should  be  underlined  that  the  purpose  of  this  calculation  is
only to verify the results, while in practice, this calculation is
not  feasible  because  the  friction  coefficient  cannot  be
determined.  From Fig. 6 ,  one  can  observe  that  obtained  state
estimates  converge  to  the  true  value  faster  than  the  system
state  stabilizes  to  zero.  This  phenomenon  indicates  that  the
proposed  ADRC  possesses  multi-time  scale  characteristics
similarly to the general ADRC. What is more, to illustrate the
robustness  of  the  proposed  method  to  small  perturbations  of
sampling  intervals,  we  show  the  change  in  the  system
response with different lengths of sampling intervals in Fig. 8.  

VII.  Conclusion and Future Work
In this paper,  a predictor-based active disturbance rejection

control  (ADRC)  is  generalized  to  uncertain  discrete-in-
measurement  nonlinear  systems.  The  cases  where  the
uncertain  nonlinearity  is  not  Lipschitz  and  the  measurements
are  aperiodically  sporadic  have  been  investigated.  The
proposed  control  law  comprises  a  novel  extended  state
observer  that  is  competent  to  estimate  both  system  state  and
the total uncertainty without any interval. Theoretical analysis
has  shown  the  practical  convergence  of  the  closed-loop
system.  Simulations  are  carried  out  to  illustrate  the
significance of the proposed design.

Some limitations of the proposed design include the limited
estimation  capability  affected  by  sampling  frequency,  the
problem  of  peaking  during  the  transient  period,  and  time
delays. In future work, our research is thus divided into three
aspects. First, we will attempt to develop the proposed ESO to
a cascade form to accommodate larger sampling intervals. To
address  the  problem  of  peaking,  solutions  such  as  selecting
adaptive  gains  [36]  can  be  utilized  and  need  further
investigation.  Then,  we  will  further  explore  the  coupling
effect  of  measurement  discontinuity  and  measurement  delay
on our proposed controller.

Another topic comes from the fact that the ESO discussed in
this paper is inevitably linear, and numerical studies [4] have
shown  that  nonlinear  ESOs  perform  very  satisfactorily  in
convergence  rate,  robustness,  and  anti-chattering.  Therefore,
our  future  research  work  will  focus  on  the  practicability  of
general  nonlinear  ADRC  for  systems  with  intermittent
measurements.
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