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Abstract

Neuromorphic electronic systems have used asynchronous logic combined with
continuous-time analog circuits to emulate neurons, synapses, and learning al-
gorithms. It is attractive because of its low power consumption and feasible
implementation. Typically, the neuron firing rates are lower than the modern
digital systems. Thus, the endpoints of neuromorphic electronic systems are
clusters of neurons instead of individual neurons. Address event representa-
tion (AER) was proposed in 1991 to multiplex communication for a cluster
of neurons into an individual communication channel. AER circuits provide
multiplexing/demultiplexing functionality for spikes that are asynchronously
generated by/delivered to an array of individual neurons. Asynchronous tech-
niques are not only used in neuromorphic electronic systems, but also widely
used in globally asynchronous and locally synchronous (GALS) SoCs, or SoCs
with full-asynchronous solutions.

However, commercial tools on the market do not support designing asyn-
chronous circuits, making the circuits cannot be adopted easily by most prod-
ucts. This thesis aims at addressing the challenge by providing an asyn-
chronous library establishment strategy. The strategy uses SR-latches as stan-
dard asynchronous cells together with logic gates to build an AER communica-
tion circuit. With the strategy, the performance of using a modified traditional
arbiter in the AER transmitter can be compared favourably with using state-
of-the-art arbiters. A back-end flow and a verification flow are developed to
evaluate the performance of the design as well as to check the feasibility of the
strategy. The proposed 32-bit AER transmitter under TSMC 28nm CMOS
technology sacrifices area and power to achieve better timing performance,
where the modified arbiter inside has an 11.54% better response time than
the arbiter who used to be the best in an old comparison.
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Abstract

Neuromorphic electronic systems have used asynchronous logic combined with
continuous-time analog circuits to emulate neurons, synapses, and learning algorithms.
It is attractive because of its low power consumption and feasible implementation.
Typically, the neuron firing rates are lower than the modern digital systems. Thus,
the endpoints of neuromorphic electronic systems are clusters of neurons instead of
individual neurons. Address event representation (AER) was proposed in 1991 to mul-
tiplex communication for a cluster of neurons into an individual communication chan-
nel. AER circuits provide multiplexing/demultiplexing functionality for spikes that
are asynchronously generated by/delivered to an array of individual neurons. Asyn-
chronous techniques are not only used in neuromorphic electronic systems, but also
widely used in globally asynchronous and locally synchronous (GALS) SoCs, or SoCs
with full-asynchronous solutions.

However, commercial tools on the market do not support designing asynchronous
circuits, making the circuits cannot be adopted easily by most products. This thesis
aims at addressing the challenge by providing an asynchronous library establishment
strategy. The strategy uses SR-latches as standard asynchronous cells together with
logic gates to build an AER communication circuit. With the strategy, the perfor-
mance of using a modified traditional arbiter in the AER transmitter can be compared
favourably with using state-of-the-art arbiters. A back-end flow and a verification flow
are developed to evaluate the performance of the design as well as to check the feasibil-
ity of the strategy. The proposed 32-bit AER transmitter under TSMC 28nm CMOS
technology sacrifices area and power to achieve better timing performance, where the
modified arbiter inside has an 11.54% better response time than the arbiter who used
to be the best in an old comparison.
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Introduction 1
When no clock is utilized to implement sequencing in a digital circuit, the circuit is
asynchronous. These circuits are also known as clockless circuits [13]. Engineers have
a long history of research on asynchronous circuits. As early as ILLIAC in 1952 and
ILLIAC II in 1962, University of Illinois had claimed that the two computers combine
synchronous and asynchronous technologies [14]. A very famous asynchronous micro-
processor is MiniMIPS, an asynchronous version of the 32-bit MIPS R3000 micropro-
cessor designed by the Caltech group [15]. Its performance is as fast as four times that
of its clocked version in the same technology [16]. Albeit the fact that asynchronous
design has the potential of faster speed, lower power consumption, and better modular-
ity in a large system, developing asynchronous circuits is a tough task at the time since
there is no available asynchronous circuits designing tool. Alain Martin’s communicat-
ing hardware processes (CHP) design methodology aided in the development of general
asynchronous circuits [13, 17]. Starting with a high-level definition of the intended
system, this technique entails the application of a sequence of program decompositions
and transformations. The designed circuit will be a valid logical implementation of the
specifications, as each step retains the logic of the original program.

Address event representation (AER) communication protocol transfers spikes be-
tween bio-inspired chips. It was first proposed together with the early neuromorphic
circuits by Sivilotti [18] and Mahowald [19]. These designs were affected by the research
in asynchronous circuits design at the time within their laboratory groups at Caltech.
With the facilitation of the CHP design methodology, Boahen [20] proposed the first
AER communication transistor blocks.

Figure 1.1 illustrates the principle of AER communication. There are cell arrays
in the transmitter and receiver. Each cell contains an oscillator that generates pulses
of minimum width. These spikes represent events. When generating events, the cell
communicates with the periphery and its address is encoded on the external digital
bus. Handshaking channels (request and acknowledgement) are used for completing
the communication. In the receiver, the cell whose address is on the bus will be pulsed
so that the same pulse stream will be delivered to cells with the same address in the
receiver from the transmitter.

AER communication circuits are asynchronous because spikes are asynchronous.
Thus, to build AER blocks for neuromorphic electronic systems, the problem of design-
ing asynchronous circuits shall be solved.

1.1 Problem Statement

Many examples show that using asynchronous circuits to design custom chips can
achieve cutting-edge performance and/or power consumption. But generally, there
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Figure 1.1: AER inter-chip communication scheme [1]

are two inconveniences. Firstly, designers may find it is inconvenient to design the
asynchronous circuits using existing tools since the lack of a pre-defined library. The
standard library, provided by the chip or the intellectual property (IP) vendors, is re-
garded as the key to speed up the design phase of integrated circuits (ICs) and often
referred to as the success factor for the rapid growth of integrated systems [21]. How-
ever, building a standard cell library for asynchronous components can be challenging
because the different styles of implementing asynchronous circuits require specific com-
ponent sets. Thus, characterizing the electrical behaviour of asynchronous sequential
components by the designer is demanded.

The second inconvenience is, researchers may find it is inconvenient to simulate
the performance results of the chip, simply because there is no ready-made electronic
design automation (EDA) tool for asynchronous circuits. For instance, there are many
interconnected loops in an asynchronous circuit, making analyzing the performance of
the circuit different from that of the clocked one. Hence, a back-end design flow is
required to analyze the performance of the asynchronous design.

1.2 Approach

As part of the Innatera1 initiative, this dissertation focuses on developing library estab-
lishment strategy and back-end design flow specifically for asynchronous circuits used
in building AER communication blocks. The key to approach this is to well understand
the target circuit. Proper decomposition of the circuit components helps to reduce the
characterization workload. And familiarity with the operating mechanisms of the com-
munication circuits helps to build the proposed asynchronous design flow based on the
existing digital flow.

A diagram of the approach to the asynchronous design flow is shown as Figure 1.2.
First of all, the asynchronous cells are customized specifically for AER communication
blocks. The electrical and geometrical behaviours of the components are described by

1Innatera Nanosystems is the company where the author interned.
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the Liberty timing file (LIB) and Library Exchange Format (LEF) file. The logical
behaviours are described by the Verilog file. The design is implemented through logic
design approaches but with several changes. Three simulations will be done after
synthesis, placement and routing, and SPICE verification, respectively.

Figure 1.2: An overview of the asynchronous design flow

1.3 Goals

The main objective of this dissertation is to design a high-speed AER communication
transmitter using the proposed library characterization and back-end design flow. To
approach this main objective, several goals of the thesis are defined:

• Review the literature of sub-modules in AER transmitter design, and the litera-
ture of asynchronous design flow in commercial tools. Understand the operation
mechanisms of the AER communication circuit.

• Define the asynchronous cells that are used in designing the AER transmitter
block by circuit structural decomposition. Specify the logic, power arcs, timing
arcs, etc. for characterizing the asynchronous cells at multiple processes, voltages,
and temperatures (PVTs).

• Develop an asynchronous cell characterization and back-end design flow for the
AER transmitter. Provide the solutions to the problems such as metastability,
combinational loops, and interest timing path tracing, etc.

• Establish a verification flow to ensure the correctness and performance of the
designed AER transmitter as well as the characterized asynchronous library.

3



1.4 Contributions

The main contributions of the thesis are:

• Provided an asynchronous cell library that supports the establishment of the AER
communication circuit. The library contains the electrical, geometrical, and logi-
cal information of the cells.

• Provided a 32-bit AER transmitter based on the SR-latch implemented asyn-
chronous components that are designed through the proposed back-end flow. The
transmitter design is improved in the aspects of the arbiter architectures, encoder
styles, and the “req out” signal generation.

• Proposed a complete asynchronous circuit back-end design flow, which involves
custom cell characterization, synthesis, post-synthesis verification, placement and
routing, and static timing analysis. Also, provided a verification flow to validate
the functionality of the resulting design from the back-end flow.

1.5 Outline

The dissertation is divided into three parts:
Part I: Literature Review

• Chapter 2 introduces the background for AER communication, discusses the state-
of-the-art mechanisms and architectures of sub-modules in AER transmitter.

• Chapter 3 discusses current asynchronous circuits characterization methodology
in commercial tools.

Part II: Proposed Transmitter Architecture Design

• Chapter 4 presents the AER transmitter architectures implemented with several
to be compared modules, and explain the circuit diagram, signal transition graph,
and timing diagram in detail.

Part III: Results

• Chapter 5 discusses the proposed asynchronous circuits characterization and ver-
ification flow, why the metastability filter is required, and also how to check the
metastability by Monte Carlo simulation. The results of the transmitter perfor-
mance are also reported in this chapter.

• Chapter 6 concludes this dissertation and talks about future work.
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Literature Review
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AER Communication Circuits 2
As it has been stated in Chapter 1, the communication scheme of AER includes trans-
lating a sequence of pulses generated by a set of cells into an ordered sequence of
addresses. The addresses are sent through a digital address bus to the periphery. The
sequence of addresses is converted in the receiver through the AER address decoder
into a sequence of pulses and transferred to their destinations.

Figure 2.1 details the functional block information of Figure 1.1. The pixel blocks
represent neurons to generate events. Naturally, neurons are arranged in a 2D spatial
grid in retina models. This is also popular when the number of neurons becomes large
since the 2D array allows encoding the two-dimension addresses of the neuron that
pulsed separately.

Figure 2.1: Block diagram of AER blocks on a 2D transmitter chip and 2D receiver chip [2]

This chapter aims at introducing various schemes of communication blocks in the
literature for AER transmitters, which are different in their mechanisms for arbitrating
and encoding. Different schemes can adapt to different types of neuromorphic systems
because of their particular advantages and drawbacks.

2.1 AER Transmitter Blocks

Focusing on the transmitter as it is the target communication block to be designed, and
also to verify the feasibility of the design flow, it has many individual axons from neurons
as inputs. From this point, it is required to have the following three functions. The
transmitter must first decide which spike to be communicated on the output channel
next. This is related to the conventional arbitration problem. The address bus can
assign a single address per time slot. If two or more spikes are produced at the same
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time, the transmitter must determine in which order they are broadcasted through the
address bus. To tackle such a simultaneous multi-event situation, an asynchronous
arbiter is a solution. Secondly, since the address bus is shared by modules that operate
separately and asynchronously, the AER bus access strategy must avoid bus collisions.
In the third place, the transmitter must encode the address information of the axon and
produce an output signal indicating the address generation after selecting the spiking
axon. This is referred to as an encoding problem. N different spikes are encoded using
logN bits.

2.1.1 C-elements

The above mentioned three functions correspond to three modules in the design: ar-
biter, handshake module, and encoder, where the arbiter and the handshake module
have handshaking protocol implemented. The C-element is used to create a handshake
between two communication processes. C-elements are one of the most basic cells in
asynchronous VLSI circuits. There are symmetric and asymmetric C-elements. Their
symbols are plotted as Figure 2.2 and 2.3. The symmetric C-element is a state-holding
element, with a high output when the inputs are high and a low output when the inputs
are low. Any other input combinations have no effect on the C-element’s state [22] (see
truth table Table 2.1). Asymmetric C-element is an extended C-element allowing its
inputs to only affect the element’s operation when it transits in one direction. There
are two types of asymmetric C-elements because of two directions (see truth tables
Table 2.2 and 2.3 respectively).

Figure 2.2: Symmetric C-element symbol

Table 2.1: Symmetric C-element truth table

a b cn
0 0 0

0 1 cn−1

1 0 cn−1

1 1 1

Figure 2.3: Asymmetric
C-element symbol

Table 2.2: Asymmetric
C-element I truth table

a b cn
0 0 cn−1

0 1 1

1 0 0

1 1 1

Table 2.3: Asymmetric
C-element II truth table

a b cn
0 0 0

0 1 1

1 0 0

1 1 cn−1

The architectures of the C-element are various. For example, symmetric C-element
can be implemented as in Figure 2.4a according to (2.1). As (2.1) can be rewritten to

8



(2.2), the CMOS implementation can also be changed to as Figure 2.4b.

cn = an × bn + an × cn−1 + bn × cn−1 (2.1)

cn = (an + bn)× cn−1 + an × bn (2.2)

(a) (b)

Figure 2.4: Transistor implementation of symmetric C-element, based on (a) (2.1), (b) (2.2)
[3]

Designing C-element from the transistor level is a full-custom asynchronous design
approach. It sacrifices time to obtain well-sized C-element gates and thus better com-
patibility with the design. C-element can also be built from the logic gate level that
speeds up the phase of transistor sizing. For instance, as truth tables of the two asym-
metric C-elements can be written as (2.3) and (2.4), the logic gate implementations of
asymmetric C-elements are presented as Figure 2.5a and 2.5b.

cn = cn−1 × an + bn (2.3)

cn = (cn−1 + an)× bn (2.4)

(a) (b)

Figure 2.5: Logic gate implementation of asymmetric C-element (a) I, (b) II
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2.2 Arbitration Mechanisms

Arbitration is the process of selecting the access order to a shared resource among
asynchronous requests [2]. There are several different architectures of arbiter according
to different arbitration mechanisms. In the AER transmitter, the arbiter occupies most
of the area and delay. Thus, the selection of arbiter architecture is important to the
performance of the transmitter.

The key to ensuring that communications along several input channels are mutually
exclusive in the arbiter is the mutual exclusion element (MUTEX). It is a two-input
device guaranteeing the early coming request will be acknowledged first, and the in-
puts are mutually exclusive. The circuit of MUTEX comprises a NAND SR-latch
and a metastability filter (MSF). The latch provides two stable states separated by a
metastability state when the two inputs are both high. The filter is for restoring the
metastability to a certain voltage level. It can be implemented by using transistors or
logic gates as Figure 2.6a and 2.6b shown, respectively. The logic gate implementation
consumes more area but achieves HDL synthesizability.

Two-way arbiters, such as two-way MUTEXes, can be used to make N-way arbiters,
for example, constructing traditional arbiters like mesh, tree, and token ring arbiters. In
the next sections, the mechanisms and architectures of those arbiters will be introduced.

(a)
(b)

Figure 2.6: MUTEX cell implemented with (a) transistor based MSF [4], (b) logic gate
based MSF [5]

2.2.1 Mesh arbiter

An n-way mesh arbiter has a basic structure that can be realized by arbitrating com-
binations on the 2-of-n basis [4]. Figure 2.7 shows a four-way mesh arbiter consisted of
six MUTEX cells. The arbitration mechanism of the mesh is to compare the incoming
order of the request one by one. For instance, G1 will win the arbitration if R1 wins
R2 (as MUTEX in the first comparison stage1), and R1 wins R3 (second stage) and
R1 wins R4 (third stage). For n inputs arbitration, we would need C2

n MUTEX cells.
Each request will propagate through n − 1 stages to grant. It can be found that the
mesh architecture’s complexity increases quadratically with the number of inputs n,

1We call MUTEXes in the first column as first comparison stage, etc.
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while latency is proportional to n as well [23]. As a result, when an arbiter has a large
number of inputs, this architecture is impractical.

Figure 2.7: Four-way mesh arbiter [4]

Figure 2.8: Four-way ordered arbiter [4]

The mesh arbiter architecture, because of its quadratically increased area consump-
tion, has little literature focusing on improving its performance. Yu Liu et al. proposed
an ordered arbiter working based on the mesh arbitration mechanisms [4]. It aggres-
sively places the comparison logic all at the first comparison stage as Figure 2.8. That
is to say, the comparisons of R1 vs. R2, R1 vs. R3, and R1 vs. R4 are all done at the
first stage so that the latency remains minimal. The proposed ordered arbiter has the
best latency comparing with other arbiter architectures [4], but its area consumption
is even worse than the mesh arbiter because of the AND gates at the output.

2.2.2 Tree arbiter

The N-way arbiter can also be built using cascaded tree topology with n−2 tree arbiter
modules and one MUTEX cell, as shown in Figure 2.9. The tree arbiter module has
various kinds of implementation. Figure 2.10 shows one kind of implementation for the
tree arbiter module. It is constructed by MUTEX cell, symmetric C-elements, and logic
gates. There are two input channels and one output channel, each channel contains
a request line and a grant line. The operation of the tree arbiter module is based on
four-phase handshake protocol, which works either in the order IREQ1+ → OREQ+
→ OGR+ → IGR1+ → IREQ1- or in the order IREQ2+ → OREQ+ → OGR+ →
IGR2+ → IREQ2-.

In the cascaded tree arbiter, the signal OREQ in each tree module represents the
input signals IREQ1 and IREQ2. It will propagate to the next level of the tree to
be arbitrated with their neighbour cell in the same way. When the signal reaches the
root of the tree, which is a MUTEX cell, the arbitration is resolved and the result
will propagate back through the grant path. The request signal will pass through the
log2N − 1 tree arbiter modules forward to the root MUTEX cell, and then pass back
through the same log2N − 1 modules.

As is mentioned, the tree arbiter module has various kinds of implementation. A
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Figure 2.9: N-way tree arbiter [6]

Figure 2.10: One of the schematic
implementation for tree arbiter module [6]

comparison of different architectures of tree arbiter module is done by G. A. Subbarao
et al. [5]. Under TSMC 65nm CMOS technology, the paper compares five novel tree
arbiter module architectures with another architecture itself proposed, as shown in
Table 2.4. The architectures include: a simple and popular arbiter that was proposed
by J. Sparsø et al. [24]; a small in size but not HDL synthesizable arbiter that was
proposed by K. A. Boahen et al. [25]; an arbiter with pipelined requests aiming at
improving the response time that was proposed by S. R. Naqvi et al. [26]; a two-way
arbiter improved in its concurrency based on the design of A. Ghiribaldi et al. [27] that
was proposed by G. Miorandi et al. [28]; a unique arbiter containing no MUTEX but
only C-elements which suffers from temporary deactivation of OREQ that was proposed
by T. Turko et al. [29]; and an arbiter merging the C-elements into the logic with an
HDL synthesizable MSF that was proposed by the author, G. A. Subbarao et al.

Table 2.4: Arbiter feature comparison [5]

[5] [24] [25] [26] [28] [29]

Num of transistors 62 74 44 116 82 70

Four-way handshake Yes Yes Yes No Yes No

Use MUTEX Yes Yes Yes Yes Yes No

Gate MSF Yes Yes No Yes Yes -

Average
response time

IREQ1↑-OREQ↑ 53.68ps 206.18ps - 50.81ps 74.80ps 143.05ps
IREQ1↑-IGR1↑ 187.62ps 249.48ps - 295.57ps 202.75ps 114.74ps

To conclude, Subbarao’s arbiter wins in its well-balanced response time and number
of transistors. It also supports HDL synthesis and four-way handshaking. For large
scale Network-on-Chip, the number of transistors and the HDL synthesizability are two
vital factors for the designer. Thus, Subbarao’s arbiter is selected to be reproduced in
our technology to compare its performance with the arbiter implemented using our
proposed designing strategy. The comparison result is shown in Section 5.6.

2.2.3 Token ring arbiter

A token ring arbiter consists of multiple nodes, each of which is linked to a module
that sends out requests through a channel. A token rotates around the ring indefinitely,
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visiting nodes and polling requests in topological order. The node to which the module
is attached will obtain the token and thereby win the arbitration [4].

Figure 2.11: N-way ring arbiter [6]

Figure 2.12: Ring arbiter module [6]

There are two types of token ring arbiters: busy ring arbiters and lazy ring arbiters
[23]. The busy ring protocol is suitable for a heavy workload environment due to its
faster response time, but it has a high power consumption. The lazy ring arbiter is
advantageous in the inconstantly rotating token. Only when there is a request being
activated, the token will move around in the ring, which saves power. But this will
cause a delay in the token loop.

2.2.4 Arbiter architecture comparison

Some circuit designs and their comparison have been proposed [4, 6]. Aiming at 32 and
above bits arbiter, the features of three arbiter architectures for large N is presented
as Table 2.5, where the throughput is defined as the reciprocal number of the average
interval between grant signals. Concluded from simulation results of Masashi Imai at
el. as Figure 2.13 [6], the mesh arbiter2 performs no better than the other two arbiter
architectures in terms of latency, throughput, and area. Its area, as plotted in Figure
2.13g, is the worst because of its quadratically increased complexity. And its long
propagation path leads to bad latency and throughput.

Table 2.5: Features of three arbiter architectures for large N (N ≥ 6) [6]

tree ring mesh

Latency good bad bad

Throughput bad good bad

Area good good bad

Energy good bad good

Tree arbiter wins the comparison of average latency. Its worst latency is better than
the ring but its best latency is worse than the ring. This is because, for the cascaded

2There are two kinds of mesh arbiters in the figure: tri-mesh and square mesh. The tri-mesh arbiter is an
unfair arbiter and the square mesh arbiter is an improved fair arbiter. Because the two arbiters do not show
their advantages in the simulation result, here we do not explain them in detail.
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tree arbiter, the latency for each request path is averaged because of its symmetric
structure. For ring arbiter, the latency for each iteration in the simulation will be
different according to the token location. For example, the worst-case latency happens
when the nth request is active, but the token is located in the n + 1th ring arbiter
module so that the token has to propagate through all the other n − 1 ring arbiter
module back to grant the nth request. Besides, the paper also reported that the area
of the ring is slightly larger than that of the tree. And its average energy-per-cycle is
also larger. But because of its uncertain timing performance in the best and the worst
cases, it is also selected to be reproduced in our technology to see which architecture
is better for this design.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.13: Comparison results of the mesh, tree, token ring arbiters: latency (a) in
average, (b) of the worst path, (c) of the best path; throughput (d) in average, (e) of the

worst path, (f) of the best path; (g) area, (h) average energy-per-cycle, (i) average
energy-per-cycle under the maximum throughput condition [6]
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2.3 Handshake Mechanisms

In the transmitter design, the acknowledgement signal generated by the arbiter will
be encoded to address and passed to the receiver. Hence, the operation of the arbiter
should be stable and synchronized to the external handshake. Figure 2.14a and 2.14b
show the signal transition diagrams of two handshake protocols. The two-phase op-
eration mode, benefited from that it can work at both the rising and falling edge of
the request signal, has twice throughput as much as that of four-phase protocol cir-
cuits under the same frequency. But also because of this, the circuit is required to be
edge-sensitive and has high complexity. The four-phase protocol does not suffer from
such a transition problem. Only rising (falling) transition events or signal levels will
be considered. Despite slow in comparison with the two-phase mode, the four-phase
protocol is robust and can be accomplished with conventional logic circuits. As a re-
sult, most modern self-timed circuits use a four-phase handshake as their preferred
implementation method [30].

(a)

(b)

Figure 2.14: Handshake transmission protocols: (a) two-phase handshake protocol, (b)
four-phase handshake protocol [7]

The transmitter communicates using a four-phase handshake protocol. To hold the
four-phase handshake cycle until the address event is sent, an external handshake block
is required. It latches the request and grant signals between the spike inputs and the
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arbiter such that they are synchronized with the external acknowledgement “eack”. To
be specific, the block guarantees that the request into the arbiter stays high until it has
been granted by both the arbiter and the external receiver, and a new arbitration is
latched and postponed until the external acknowledgement has gone low again before
starting a new cycle.

2.4 Encoding Mechanisms

The address encoder encodes the one-hot grant signals generated by the arbiter. For the
32-bit AER transmitter, the address encoder is a 32 to 5 encoder. Except for address
output, there should be a signal called “req out”, which indicates that the address is
ready to be read by the receiver. When the “req out” is high, the receiver will read in
the address and decode it to pulse its corresponding neuron cell. Hence, the “req out”
should be active only if all the addresses are available.

To reduce the encoder area specifically for tree arbiter, a hierarchical structure is
applied instead of the basic encoder structure. For conventional logarithmic encoder
as Figure 2.15a, each acknowledgement signal line connects to O(logN) transistors.
Thus, the address encoder consumes O(NlogN) transistors in total to generate the
encoded address. The hierarchical encoder structure (Figure 2.15b) allows each bit of
the address to be encoded at each level of the tree. For instance, the root of the tree
determines whether the most significant bit of the encoder output is 0 or 1, etc. By
splitting the encoder levels, one cell in the arbiter connects to only two transistors. The
number of the used transistor is reduced to O(N). This technique cannot be applied
to the ring arbiter because the ring arbiter does not have such a hierarchical structure
as Figure 2.15c.

(a) (b) (c)

Figure 2.15: Encoder structures for arbitration: (a) basic tree encoder structure, (b)
hierarchical tree encoder structure, (c) token ring encoder structure [8]
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2.5 Combined Operation

To conclude, the target AER transmitter expanded from Figure 2.1 consists of three
main parts: the external handshake modules, the arbiter, and the encoder. Two one-
dimension transmitters can combine to achieve a two-dimension transmitter. Hesham
Mostafa et al. [9] provide a simple and straightforward block diagram of the transmitter,
as Figure 2.16. The presented transmitter has 64 channels, each channel contains a
request signal and an acknowledgement signal. The “nChip ack i” in the figure is the
external acknowledgement “eack” in our definition. It is connected to all 64 external
handshake elements to hold the four-phase handshake cycle until the receiver requiring
the next address event. The arbiter tree is used to determine the access order if multiple
requests are sent at one time. The arbiter architecture in our design is not restricted
to be the tree. As mentioned in Section 2.2.2 and 2.2.4, G. A. Subbarao et al.’s tree
arbiter and Masashi Imai et al.’s lazy token ring arbiter have been proven to be better in
performance comparing with other mentioned arbiter architectures. These two arbiter
architectures will be compared in Chapter 4 with another popular tree architecture,
where the latter is not listed in Table 2.4, but widely used in arbiter design as [2, 6, 9].
The arbitrated grant signal will propagate back to the external handshake block, then
encoded to address by the encoder. The 64-bit OR gate is for generating the “req out”
signal. However, in Mostafa’s design, it does not consider that the “req out” should
be available after the address is ready. Also, the one-hot encoder is a conventional
logarithmic encoder. As a result, our proposed AER transmitter design will be improved
in the aspects of the arbiter architectures, encoder styles, and the “req out” signal
generation to achieve better performance and correct operation.
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Figure 2.16: AER transmitter block diagram [9]
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Asynchronous Circuits in
Commercial Tools 3
With the development of clocked circuits and their computer-aided design (CAD) flow,
the design difficulty of asynchronous circuits has been reduced compared to before.
However, the challenge of universal adoption of this disruptive technology still ex-
ists. One of the crucial obstacles is how to apply the CAD flow of clocked circuits to
asynchronous circuit design [31, 32]. Clocked CAD flows are more powerful than asyn-
chronous ones, but they are incompatible to design sequential asynchronous circuits.
Thus, there is widespread doubt about the ability to design commercial asynchronous
circuits correctly and reliably.

Many research aiming at addressing the challenges work on the direction of inte-
grating and adopting clocked CAD. Ad Peeters et al. [33] proposed an asynchronous
design flow based on Tangram with the synchronous implementation of handshake cir-
cuits, which is advanced in technology and successful in commerce. In a different study
field of desynchronization, Daniel H. Linder et al. [34] proposed a method of replacing
each logic gate in a synchronous synthesized design with a small sequential handshaking
asynchronous circuit. It is improved by Robert B. Reese et al. [35] to a coarse-grain
approach to alleviate the excessive overhead caused by gate transformation. Current
desynchronization approaches like [36, 37] are based on template and support Verilog,
but they do not support general asynchronous design. Theseus Logic [38, 39] proposed
a commercial tool flow based on clocked CAD that supports Verilog design descriptions.
But this approach is only able to support quasi delay-insensitive null convention logic.

This chapter aims at stating the asynchronous circuit design flows proposed in
literature, reporting the commercial tools used in the flows, and summarizing what
changes the papers have made to the tools to make them suitable for asynchronous
design. For some approaches in the proposed design flows, we learn from them and
integrate them into our flow. Some methods and tools are abandoned due to reasons
that will be explained in Chapter 5.

3.1 Asynchronous Cell Characterization

As is mentioned, the difficulty of establishing a standard cell library for asynchronous
components comes from the different styles of implementing asynchronous circuits re-
quiring specific component sets. Thus, different ways of characterization are proposed.
This section mainly focuses on the case studies and analyzes their pros and cons if
implemented in our flow.

• Jiang et al. [10] proposed a characterization method based on cutting feedback
loops in asynchronous design. The target cell is a click element that has combi-
national loops inside. Its output pins function is more complex and indescribable
to EDA tools. Thus, manually describe the pin functions of the click element, as
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well as other standard asynchronous cells in their library, is impractical. Their
method is to cut the loops when designing it in the library and reconnect the cut
points when describing it in the Verilog. Albeit the characterization runtime is
raised because of the increased number of pins, the method achieves character-
ization automation without using manual scripts. The click element is divided
into a combinational logic part, buffers, and D flip-flop. And the layout is also
arranged correspondingly so that every time when synthesizing, the output pulse
width will not change too much according to the placement and routing. Such a
customized cell achieves 20.8% less area and 63.7% less power consumption.
However, the paper did not mention anything about how to design and test a
circuit system using the click element. Reconnecting the combinational loops will
eventually cause trouble in static timing analysis because the current EDA tool is
not able to analyze a circuit with complex loop feedback. If allowing tools to ana-
lyze it automatically, it will break the loop by inserting loop breakers and that may
cut the interest timing path. This proposed method inspires us to do circuit de-
composition when trying to create a standard cell library for asynchronous design.
Instead of cutting feedback loops but still defining combinational and sequential
parts in one cell, we attempt to separate the whole system into a combinational
part and a sequential part. The asynchronous cells belonging to the sequential
part will need to be characterized. The paper also reminds us to first analyze
whether the decomposition of circuits causes any trouble in timing analysis.

Figure 3.1: The design flow of standard cell libraries, proposed by Jiang [10]

• Moreira et al. [11, 40] proposed a Library Characterization Environment
(LiChEn), which is an open-source electrical characterization tool for asyn-
chronous standard cells. It is implemented using the C/C++ language and its
characterization process is based on the generation of a SPICE simulation envi-
ronment. The precision of the tool is verified by comparing seven logic gates’
characterization results generated by the LiChEn and provided by the chip manu-
facturer, where the gates are from the STMicroelectronics 65nm CMOS technology
library. And the performance of the program is verified through the time for char-
acterizing 18 different types of C-elements in the ASCEnD library.
Our specific target circuit, which is the AER transmitter, allows us to do circuit
decomposition to reduce the complexity of the asynchronous cells so that the char-
acterization workload and difficulty is lowered. An automated method is always
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good, however, here we prefer to characterize asynchronous cells by using manu-
ally created scripts since it is not laborious for us. In the script, the timing and
power arcs, as well as the logic of the cell, should be described. Moreira’s work
has a detailed explanation of how they defined those in the SPICE simulation
environment, which is very helpful for our cell definition.

Figure 3.2: The LiChEn electrical characterization flow, proposed by Moreira [11]

• Cell characterization does not only include electrical information extraction, but
also related to, for example, layout, symbol, and Verilog generation, etc. Moreira
et al. [12] proposed the ASCEnD flow, a fully automated1 flow for designing the
components required for asynchronous systems using standard cells. The design
flow has been used to establish a library of over 500 components based on the
STMicroelectronics 65nm CMOS technology. And the components have been
used to build three different network-on-chip routers and an RSA cryptographic
core till layout level.
The ASCEnD flow is complete in cell characterization. The LiChEn mentioned
above is a part of the ASCEnD flow used to extract electrical characteristics of
defined cells. This flow inspires us to develop our cell customization flow, which
uses the tools of Cadence Virtuoso, Liberate, and Abstract Generator, to generate
scs netlist, LIB, and LEF files respectively.

1The flow is automated except for the layout generation step.
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Figure 3.3: The ASCEnD design flow, proposed by Moreira [12]
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Part II

Proposed Transmitter Architecture
Design
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AER Transmitter 4
Inspired by Mostafa’s AER transmitter block diagram as mentioned in Section 2.5,
the structure of a 4 channels demonstration of our AER transmitter is plotted as
Figure 4.1. It will be improved in the aspects of arbiter architectures, encoder styles,
and the “req out” signal generation. An asynchronous back-end design flow has been
established in Chapter 5 to evaluate the performance of the design.

Figure 4.1: AER transmitter block diagram: a demonstration of 4 channels

In this chapter, we detail the circuit implementations of each component in the AER
transmitter design. The different arbiter styles and architectures are illustrated. How
the hierarchical encoder and external handshake are implemented is introduced. With
this information, the circuit will be decomposed to find the needing cells used to build
the transmitter but not included in the TSMC 28nm CMOS technology library, where
the cells are required to be characterized.
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4.1 Circuit Structural Decomposition and Cell Definition

Through studying the literature, there are three ways to design standard cells for asyn-
chronous circuits. The first and also the simplest way is to use a behavioural model.
The synthesis tool will read the behavioural HDL code description and find the corre-
sponding asynchronous gates, for example, latch, in the standard library. This method
benefits from that it does not require any custom library cell. However, cells in the
standard library are generally built for synchronous design. Hence, this might not be
an optimal solution in the power and timing performance aspects. Customizing cells
at the transistor level is the optimal solution to create cells with the best performance.
Designing at the transistor level allows designers to size the transistors to improve the
design. But this method is time-consuming. It also requires many SPICE simulations
to validate the design correctness. The third and preferred method is to customize cells
at the logic gate level. It requires less SPICE simulation than customizing cells at the
transistor level since the logic gates are provided by the foundry. Their functions and
performances are verified by the foundry. Also, it provides better performance than
the first method, since the cell can be customized by choosing logic gates with different
driving strengths, where the latter differ in their area, power, and timing performance
so that the proper ones can be picked to fit the design.

To design the asynchronous standard cell library at the logic gate level and obtain
their electrical behaviours in characterization with less work, the target cells, as well
as their schematics, should be defined. As described in Section 2.1.1, symmetric and
asymmetric C-elements are needed to be characterized, where the former is used in
the arbiter and the latter is used in the external handshake blocks. In Section 2.2,
a MUTEX cell used in the arbitration is also introduced. They all contain a basic
asynchronous gate structure inside, which is the SR-latch. SR-latch is the simplest
bistable device. Information can be stored by the latch because of its feedback path.
As a result, the latch functions as a memory device that can store one bit of data. The
operation of SR-latches is independent of control signals and is solely dependent on the
state of the set and reset inputs.

SR-latches can be constructed by two cross-feedback NOR gates or two cross-
feedback NAND gates (usually called SR-latch). The truth tables of NOR and NAND
SR-latches are as Table 4.1 and 4.2, where the input combinations of “11” for NOR
SR-latch and “00” for NAND SR-latch are two metastable states that do not allow to
present. This is because practically one of the two logic gates will always win due to
the manufacturing process, but there is no way to predict which it will be for a specific
device from an assembly line.

Table 4.1: NOR SR-latch truth table

S R Qn Qn

0 0 Qn−1 Qn−1

0 1 0 1

1 0 1 0

1 1 Metastable

Table 4.2: NAND SR-latch truth table

S R Qn Qn

0 0 Metastable

0 1 0 1

1 0 1 0

1 1 Qn−1 Qn−1
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By comparing the differences between truth tables of asymmetric C-elements (see
Table 2.2 and 2.3) and SR-latches, it can be concluded that if making pin Qn uncon-
nected, the asymmetric C-elements can be constructed by simply placing an inverter
at the pin Qn of the SR-latches. To be specific, the asymmetric C-element I is built
by a NOR SR-latch together with an inverter (as Figure 4.2a), and the asymmetric
C-element II is built by a NAND SR-latch together with an inverter (as Figure 4.2b).

(a) (b)

Figure 4.2: Circuit schematics of the asymmetric C-elements, built by: (a) NOR SR-latch,
(b) NAND SR-latch

The gate-level symmetric C-element can be implemented with a cross-feedback
structure or a loop-back structure. The symmetric C-element in this design is con-
structed by a NAND SR-latch together with other logic gates (as Figure 4.3). Also, the
MUTEX itself is a NAND SR-latch as Figure 2.6b. By decomposing the asynchronous
circuits like so, in this design, there are only five cells having characterization necessity.
They are NOR SR-latch, NAND SR-latch, NOR metastability filter, NAND metasta-
bility filter, and loop-break inverter. Where the latter three cells have the logic of an
inverter but will be used in different places in the design. The metastability filter is
used for cancelling the metastability of latches, this is described in Section 5.5. The
loop-break inverter is for breaking the combinational loops in the asynchronous circuits,
which will be introduced in Section 5.2.1. All the other modules in this design are built
by the five cells and the standard cells in the TSMC 28nm CMOS technology library.

Figure 4.3: Circuit diagram of the symmetric C-element

27



4.2 Arbiter

Figure 4.4a and 4.4b show the signal transition and timing graphs of the tree arbiter
module. One of the two request signals, ai and bi, is selected by the MUTEX cell
according to their incoming order to be granted. If ai is selected first, the acknowledge-
ment of bi will be postponed until the finish of the ai grant, and vice versa.

(a)

(b)

Figure 4.4: Tree arbiter module: (a) signal transition graph, (b) timing diagram

The two to be compared cascaded tree arbiter module architectures are introduced
as Figure 4.5a and 4.5b. The first one is a traditional tree arbiter module that was not
listed in Table 2.4’s comparison. Here it is implemented with SR-latches in the MUTEX
and symmetric C-element. The second architecture is the winner of the comparison,
which was proposed by Subbarao et al [5]. The function of the C-element is merged
into the logic gates and the loops in this design.

(a)
(b)

Figure 4.5: Tree arbiter modules to be compared: (a) a widely-used and traditional
architecture implemented with SR-latches, (b) architecture proposed by Subbarao et al. [5]

Another comparison candidate of the arbiter architecture is the token ring arbiter.
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Its ring arbiter module is plotted as Figure 4.6. It is constructed by MUTEX, logic
gates, and a sequential component: D flip-flop. But the D flip-flop here is used as a
control logic to manage the token access instead of storing bit.

Figure 4.6: Token ring arbiter module

The three architectures are all implemented in the proposed asynchronous back-
end design flow to compare their performances. The results of the comparison and
the analysis are presented in Section 5.6. Briefly speaking, the traditional tree arbiter
module with SR-latches wins the comparison if assuming the request signals occurring
with equal probability. As a result, this architecture will be used in the transmitter in
later design.

4.3 Handshake Module

Here shows the schematic of the external handshake module as Figure 4.7. It is con-
structed by connecting asymmetric C-elements I and II implemented by NOR and
NAND SR-latches. An inverter has been added to the “eack” pin to make it active low.
The “req n” and “ack n” are two pins connecting to external circuits. The “req arb”
and “ack arb” are two pins connecting to the arbiter inside the AER transmitter.

Figure 4.7: Circuit diagram of the external handshake module

There are two conditions to guarantee the correct operation of the AER transmit-
ter: 1) The request into the arbiter should stay high until it has been granted by both
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the arbiter and the external receiver. 2) A new arbitration should wait until the ex-
ternal acknowledgement has gone low again before starting a new cycle. With the two
conditions being fulfilled, the operation of the external handshake is as follow:

1. All the inputs are set to be zero at the initial state.

2. When a request is received, the asymmetric C-elements I inside the external hand-
shake module will send the signal to the arbiter. After arbitration, the correspond-
ing grant signal will propagate from the arbiter to the asymmetric C-elements II.

3. When the external receiver is ready to read the address, the “eack” will turn high.
Only when both “ack arb” and “eack” are high, the asymmetric C-elements II can
send the grant signal to the external receiver.

4. When the arbitration is done and its encoded address has been read by the ex-
ternal receiver, “req n” and “eack” signals will turn low, resulting in the external
handshake module back to its initial state. See Figure 4.8a and 4.8b for detailed
operation.

(a)

(b)

Figure 4.8: External handshake module: (a) signal transition graph, (b) timing diagram
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4.4 Address Encoder

The address encoding part has been explained in Section 2.4. Here only introduce
the method to generate the “req out” signal following the rule of “req out” must be
ready after the address is available. At the very beginning phase of the design, this
function is planned to be achieved by using a delay module. Listing 4.1 shows how it
is implemented now with logic gates, where the “ack” is the acknowledgement signal
generated by the external handshake module, the “ad” is the address encoded by the
hierarchical encoder. The different addresses will have different logic to determine the
generation of the “req out” signal instead of postponing the signal by a constant time
using the delay module. This achieves true asynchronous but costs more in area and
power.

Listing 4.1: “req out” generation Verilog code

1 always@(ack) begin
casez(ack)
32'h00000001: req_out = ack[0];
32'h00000002: req_out = ad[0];
32'h00000004: req_out = ad[1];

6 32'h00000008: req_out = ad[1] & ad[0];
32'h00000010: req_out = ad[2];
32'h00000020: req_out = ad[2] & ad[0];
32'h00000040: req_out = ad[1] & ad[2];
32'h00000080: req_out = ad[2] & ad[1] & ad[0];

11 32'h00000100: req_out = ad[3];
32'h00000200: req_out = ad[3] & ad[0];
32'h00000400: req_out = ad[3] & ad[1];
32'h00000800: req_out = ad[3] & ad[1] & ad[0];
32'h00001000: req_out = ad[3] & ad[2];

16 32'h00002000: req_out = ad[3] & ad[2] & ad[0];
32'h00004000: req_out = ad[3] & ad[2] & ad[1];
32'h00008000: req_out = ad[0] & ad[3] & ad[2] & ad[1];

32'h00010000: req_out = ad[4];
21 32'h00020000: req_out = ad[4] & ad[0];

32'h00040000: req_out = ad[4] & ad[1];
32'h00080000: req_out = ad[4] & ad[0] &ad[1];
32'h00100000: req_out = ad[4] & ad[2];
32'h00200000: req_out = ad[4] & ad[0] &ad[2];

26 32'h00400000: req_out = ad[4] & ad[2] &ad[1];
32'h00800000: req_out = ad[4] & ad[2] & ad[0] & ad[1];
32'h01000000: req_out = ad[4] & ad[3];
32'h02000000: req_out = ad[4] & ad[0] &ad[3];
32'h04000000: req_out = ad[4] & ad[3] & ad[1];

31 32'h08000000: req_out = ad[4] & ad[3] & ad[0] & ad[1];
32'h10000000: req_out = ad[4] & ad[3] & ad[2];
32'h20000000: req_out = ad[4] & ad[3] & ad[2] & ad[0];
32'h40000000: req_out = ad[4] & ad[3] & ad[2] & ad[1];
32'h80000000: req_out = &ad;

36 default: req_out = 1'b0;
endcase
end
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4.5 32-bit AER Transmitter

One of the advantages of an asynchronous circuit is that it has high modularity. With
the above-mentioned modules, the channels of the transmitter can be easily extended
to higher bits by adding modules without changing the topology of the circuit. Sim-
ilarly, the number of channels can be shrunk down to lower bits. Figure 4.9 presents
the circuit diagram of an 8-bit AER transmitter as a demonstration to illustrate how
the communication operates. The signal transition and timing diagrams of one request
signal being activated are plotted as Figure 4.10a and 4.10b. The “ExHs” represents
external handshake blocks. The “XARB” represents tree arbiter modules. The system
starts at an all-zero initial state. Only when both request and external acknowledge-
ment signals are high, the grant signal generated by the arbiter can be seen by the
external system. The grant signal will be encoded to an address and then a “req out”
signal will be produced to indicate that the address is available to be read. Similarly,
only when both request and external acknowledgement signals are low, the grant signal
turns low, which causes address and “req out” to change to low. When a request is cho-
sen by the arbiter, all the other active request during the arbitration and transmission
will be delayed till the beginning of the next cycle.

Figure 4.9: Circuit diagram of the AER transmitter: a demonstration of 8 channels
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(a)

(b)

Figure 4.10: AER transmitter: (a) signal transition graph, (b) timing diagram
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Proposed Back-end Design
Flow, Verification Flow, and
Results 5
The back-end design flow involves cell customization, synthesis, post-synthesis veri-
fication, placement and routing, and static timing analysis. The cell customization
aims at generating the LIB and LEF files of asynchronous logic cells defined in this
design. Those cells shall be constructed by standard cells and characterized for both
timing and power so that the designers can design the asynchronous circuit just like
designing a digital circuit without doing full-custom cell design and SPICE verification.
The synthesis and static timing analysis are for checking the performance of the AER
transmitter. There are combinational loops in asynchronous design, which shall be
disabled to allow correct timing result generation. This chapter details the steps in the
back-end design and verification flows, and presents the evaluation results of the AER
transmitter.

Figure 5.1: Back-end design flow chart

To be specific, the flow chart of the back-end design flow is shown as Figure 5.1. The
ellipse represents the tools and the parallelogram represents the results or the resulting
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files. The red labelled files shall be changed when changing PVT condition. The flow
starts with needing cell customization. Five cells need to be characterized for this
design. Their scs netlist and GDS layout will be generated by the Cadence Virtuoso.
For asynchronous logic cells, delay and power arcs will be defined and given to the
Liberate to generate the LIB file. After acquiring the LIB and LEF file of the custom
cells, the Verilog file containing those cells will be synthesized and post-verified in
Genus and Xcelium, respectively. Where in the synthesis step, the loop-break inverter
will be inserted to the proper place to disable the combinational loops without breaking
interest paths. After checking that the synthesis result is correct, needing files will be
sent to Innovus to do placement and routing, and static timing analysis. A script will
be used to track the interest signal propagation paths and generating the timing report
for the AER transmitter. The design flow shall be able to adapt different PVT for
supporting various PVT characterization. The flow ends with the generation of area,
power, and timing reports; GDS file; and Verilog file of the AER transmitter.

5.1 Asynchronous Cell Characterization

Five cells have customization necessity for the AER transmitter, they are NOR SR-
latch, NAND SR-latch, NOR metastability filter, NAND metastability filter, and loop-
break inverter. They are constructed by the standard cells in the TSMC 28nm CMOS
library, where the latches are used to build C-elements and MUTEX, the filters are used
to cancel the metastability caused by the latches, and the loop-break inverters are used
to break the combinational loops to correctly generate timing report. Cadence Liberate
is used as the characterization tool to generate the LIB file of the five cells. It generates
electrical cell views for timing, power, and signal integrity, including advanced current
source models (CCS and ECSM).

Please see Section 5.5 for more explanation of how the metastability filters work and
their schematics. The metastability filters and the loop-break inverter are acting as an
inverter in the aspect of their digital logic. For Cadence Liberate, it can automatically
generate the LIB file for such a one-input one-output device. For asynchronous cells
like latches, their delay and power arcs shall be defined manually.

Typically for identifying timing arcs, pin to pin delays, as well as the corresponding
output slopes, are characterized as a function of load and input slope. This enables
slews to propagate during delay and timing analysis. In this design, a 5 × 5 template
table is used, where the slew rate is defined to be 10ps, 25ps, 50ps, 75ps, and 100ps,
and the load capacitance is defined to be 1fF, 5fF, 10fF, 15fF, and 20fF. For power,
both dynamic and leakage powers are characterized. Dynamic power can be divided
into internal power and switching power. The power dissipated by an instantaneous
short-circuit connection between the supply voltage and the ground at the moment the
gate switches state is known as internal power. Switching power is dissipated when the
internal and net capacitance is charging or discharging, and leakage power is caused
mainly when a transistor is switched off, undesired sub-threshold current flows through
the transistor channel [41].

As a result, power arcs are defined in the characterization template as when input
changes resulting in no output transitions. Timing arcs are defined as when input
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changes causing output transitions. And the leakage power is defined as when the states
in the truth table occur for each cell. For example, truth tables of NOR and NAND
SR-latches are rewritten and presented as Table 5.1 and 5.2 considering metastability
as a legal state. Each truth table contains five states because input combinations of
“00” for NOR SR-latch and “11” for NAND SR-latch can be expanded to two states
according to its different previous outputs.

Table 5.1: NOR SR-latch truth table

State S R Qn Qn

1 0 0 0 1

2 0 0 1 0

3 0 1 0 1

4 1 0 1 0

5 1 1 0 0

Table 5.2: NAND SR-latch truth table

State S R Qn Qn

1 0 0 1 1

2 0 1 0 1

3 1 0 1 0

4 1 1 1 0

5 1 1 0 1

Table 5.3 and 5.4 show the timing and power arcs definition of the NOR and NAND
SR-latches. The circled number represents the state transition situation, and the 0, 1,
and arrows represent the input or output transition situation. 0 or 1 means before and
after the state transition, the logic of the particular pin remains unchanged at 0 or 1.
The up arrow means the logic is transiting from 0 to 1, and for the down arrow, it
represents the opposite.

Table 5.3: Timing and power arcs of NOR SR-latch

Delay arcs Power arcs

1 4 ↑ 0 ↑ ↓ 3 4 ↑ ↓ ↑ ↓ 5 3 ↓ 1 0 ↑ 1 3 0 ↑ 0 1

1 5 ↑ ↑ 0 ↓ 3 5 ↑ 1 0 ↓ 5 4 1 ↓ ↑ 0 2 4 ↑ 0 1 0

2 3 0 ↑ ↓ ↑ 4 3 ↓ ↑ ↓ ↑ 5 2 ↓ ↓ ↑ 0 3 1 0 ↓ 0 1

2 5 ↑ ↑ ↓ 0 4 5 1 ↑ ↓ 0 4 2 ↓ 0 1 0

Table 5.4: Timing and power arcs of NAND SR-latch

Delay arcs Power arcs

1 2 0 ↑ ↓ 1 4 1 ↓ ↓ 1 ↑ 3 2 ↓ ↑ ↓ ↑ 2 5 ↑ 1 0 1

1 3 ↑ 0 1 ↓ 5 1 ↓ ↓ ↑ 1 4 2 ↓ 1 ↓ ↑ 3 4 1 ↑ 1 0

2 1 0 ↓ ↑ 1 1 5 ↑ ↑ ↓ 1 5 3 1 ↓ ↑ ↓ 4 3 1 ↓ 1 0

2 3 ↑ ↓ ↑ ↓ 3 2 ↓ 0 1 ↑ 5 2 ↓ 1 0 1

In the arc definition, five arcs are not defined for each latch, namely for NOR
SR-latch: 1 2

1, 2 1 , 3 2 , 4 1 , and 5 1 ; for NAND SR-latch: 4 5 , 5 4 ,
2 4 , 3 5 , and 1 4 . They are absence because they are impossible to occur in the

operation.
The characterization is done under different process, voltage, and temperature as

Table 5.5 shown. The PVT conditions are chosen according to the existing TSMC 28nm

1This way of expression represents transiting from state 1 to state 2.
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CMOS library. The LIB files after Cadence Liberate lacks cell area and some other
configurations, where this information are written into another LIB file and merged
with the resulting file using the “merge library” command.

Table 5.5: PVT conditions

Corner
Voltage
(unit: V)

Temperature
(unit: ◦C)

FF
0.88 0 -40 125
0.99 0 -40 125
1.05 0 -40 125

SS
0.9 0 -40 125
0.72 0 -40 125
0.81 0 -40 125

TT
0.8 25 85
0.9 25 85
1 25 85

The LEF file of the five cells is generated by Cadence Abstract Generator. It takes
the GDS layout as input, using the layermap file to generate the LEF file of the cells.

5.2 Synthesis

5.2.1 Breaking timing loops

The LIB and LEF files generated by cell customization helps the designer to design the
asynchronous circuit as designing a digital circuit. The asynchronous cells are made as
black boxes so that the loops inside the cell would not cause any problem in synthesis.
However, the combinational loop does not only exists in the asynchronous cells but
also in other modules of the design. A combinational feedback loop is a path that can
be traced through combinational logic back to the starting point [42]. For instance,
each grant path in the tree arbiter module has two combinational loops as Figure 5.2a
and 5.2b. The loop is for arbitrating the signal considering the grant situation so that
guaranteeing the correct operation of the tree arbiter.

(a) (b)

Figure 5.2: Grant path combinational loops in tree arbiter module: (a) I, (b) II

To analyze design with combinational loops, Genus requires to break the loop at
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some point within the loop. By default, Genus recognizes each feedback loop, adds a
buffer from the technology library on the path, and disables its timing arc from input to
output, thus breaking the timing loop. These inserted buffers are easy to be identified
since they follow the “cdn loop breaker<number>” nomenclature. However, the loop
can be broken at multiple points. An improper breaking point in a loop might result
in the interest paths being unintentionally eliminated in the timing analysis.

To avoid the problems caused by automatically breaking the loop, a loop-break in-
verter is customized and made available to be inserted to break the loop manually. The
loop-break inverter has the same schematic and layout as an inverter in the TSMC 28nm
CMOS library “INVD0BWP30P140”. It is created to distinguish it from the original
cell. It is written in the Verilog code to replace the inverter between the symmetric C-
element and the AND gate in the tree arbiter module. And its timing arc is disabled in
the synthesis constraint by using “set disable timing [get lib cell loop inv]” command.
The loop is broken before “synthesize” command, thus there is no need to remove the
automatically inserted buffer by using the command “remove cdn loop breaker” since
there will be no loop detected and no buffer inserted.

The synthesis generates gate-level Verilog code of the design, Synopsys Design Con-
straints (SDC) file, and a Standard Delay Format (SDF) back-annotation file used in
post-synthesis verification.

5.2.2 Post-synthesis verification

The post-synthesis verification uses Xcelium as a simulation tool. It ensures the logical
correctness of the synthesized gate-level circuit and also allows back annotation to do
a more realistic simulation.

The testbench starts with an all one request, namely all request signals are being
activated to see the response of the circuit. Figure 5.3a and 5.3b show the results of
the simulation. The two AER transmitters after synthesis have been verified to have
a correct function. From the results, it can be observed that the tree arbiter does not
arbitrate in the topology order, but the ring arbiter does.

5.3 Static Timing Analysis

To check the performance of the AER transmitter, the area, power, and more impor-
tantly, timing information of the transmitter will be generated by Innovus. The Innovus
working flow starts with loading files into the tool and floorplanning. Then the ports of
the design will be assigned to physical pins along the perimeter of the design. The pins
will spread along the left and right perimeters of the core area. The path groups will
then be set up to prioritize which paths should spend more time fixing for the engine.
The power ring will be added around the core, where two pins of VDD and GND will
be created to fit the following GDS to SPICE conversion. After adding the well tap,
the design will be placed and routed, and fillers will be added. The final resulting
layout is shown as Figure 5.4. The address encoder located at the right side of the chip
is constructed by a large number of logic gates. Thus, the wire connection density is
large. Even though the arbiter in the middle of the chip has more gates utilized, but
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(a)

(b)

Figure 5.3: AER transmitter post-synthesis verification result: (a) with tree arbiter, (b)
with lazy token ring arbiter
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gates are customized and characterized as standard cells as latches. So some of the
wires are connected inside the blocks, which visually seems to have a lower density.

Figure 5.4: AER transmitter layout

To correctly report the interest timing information, it needs to be ensured that the
engine is tracing the correct signal propagation paths. Because of the tree topology,
the grant signal after arbitration has multiple paths to propagate back to the acknowl-
edgement pins, in which the one that has the corresponding number with the request
signal is the correct and interest path. The ring arbiter does not have such a problem,
but it requires generating the token loop delay information. The token loop delay is
measured by summing the delays of each loop sections. The loop section is defined to
be the delay from the clock pin of the D flip-flop in the ring arbiter module to the next
clock pin of the D flip-flop in the next module.

Table 5.8 shows an Innovus timing report example of the AER tree transmitter’s
worst delay. After the 31st request signal being activated, the external handshake
module will send that signal to the tree arbiter. The signal will go through the corre-
sponding tree arbiter modules in the four-level tree and reach the MUTEX at the root
of the tree. After arbitration at the MUTEX, the grant signal will propagate through
the grant path of the same four tree arbiter modules and back to the handshake mod-
ule. The grant signal is passed from the arbiter to the external system according to the
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“eack” signal. At the same time, the signal also enters into the address encoder. And
finally, the addresses and “req out” signal will be produced.

Table 5.6 lists the same case but for the AER ring transmitter. A timing report of
one token loop section inside the ring arbiter is also included as Table 5.7. As mentioned
in Section 5.6, the worst delay of the ring reported by Innovus is the worst delay of
the best case, which does not consider the token loop. Thus, the request signal from
the handshake module will directly pass through the ring arbiter module to become a
grant signal without considering the token location. To evaluate the true worst delay
of the worst case, a sum of token loop delays will be added to the above delay. As in
the table, the loop section is measured from the clock pin to the next clock pin of the
D flip-flop in neighbour ring arbiter modules.

Table 5.6: AER ring transmitter worst delay Innovus timing report

Instance Arc Cell Delay
Arrival
Time

Required
Time

req[31] ˆ 0.000 0.412
external hs[31].exhs NRSR1 R ˆ ->Q v NOR SR 0.006 0.006 0.418
external hs[31].exhs NDMSF1 I v ->ZN ˆ NAND MSF 0.005 0.012 0.424
ar1 ring arb[31].ring module1 mutex1 NDSR1 S ˆ ->QN v NAND SR 0.014 0.025 0.437
ar1 ring arb[31].ring module1 mutex1 NRMSF2 I v ->ZN ˆ NOR MSF 0.015 0.040 0.452
ar1 ring arb[31].ring module1 g7 A2 ˆ ->Z ˆ AN2D1BWP30P140 0.022 0.062 0.474
external hs[31].exhs NDSR1 R ˆ ->Q v NAND SR 0.015 0.078 0.490
external hs[31].exhs NRMSF2 I v ->ZN ˆ NOR MSF 0.027 0.104 0.516
encoder1 g1532 A1 ˆ ->ZN ˆ INR4D0BWP30P140 0.074 0.178 0.590
encoder1 g1503 A1 ˆ ->ZN ˆ IND2D1BWP30P140 0.035 0.214 0.626
encoder1 g1479 B3 ˆ ->ZN v INR4D0BWP30P140 0.020 0.233 0.646
encoder1 g1473 B2 v ->ZN ˆ IND4D1BWP30P140 0.026 0.259 0.671
encoder1 g1468 A4 ˆ ->Z ˆ OR4D1BWP30P140 0.029 0.288 0.700

req out ˆ 0.000 0.288 0.700

Table 5.7: AER ring transmitter token loop delay Innovus timing report

Instance Arc Cell Delay
Arrival
Time

ar1 ring arb[31].ring module1 DFF1 Q reg CP ˆ 0.000
ar1 ring arb[31].ring module1 DFF1 Q reg CP ˆ ->Q v DFCND1BWP30P140 0.073 0.073
ar1 g15 I v ->ZN ˆ INVD0P7BWP30P140 0.014 0.087
ar1 ring arb[0].ring module1 g12 A1 ˆ ->Z ˆ XOR2UD1BWP30P140 0.018 0.105
ar1 ring arb[0].ring module1 mutex1 NDSR1 R ˆ ->Q v NAND SR 0.021 0.126
ar1 ring arb[0].ring module1 mutex1 NRMSF1 I v ->ZN ˆ NOR MSF 0.016 0.142
ar1 ring arb[0].ring module1 g8 A1 ˆ ->ZN ˆ INR2D0BWP30P140 0.022 0.164
ar1 ring arb[0].ring module1 DFF1 Q reg CP ˆ DFCND1BWP30P140 0.000 0.164
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Table 5.8: AER tree transmitter worst delay Innovus timing report

Instance Arc Cell Delay
Arrival
Time

Required
Time

req[31] ˆ 0.000 0.335
external hs[31].exhs NRSR1 R ˆ ->Q v NOR SR 0.006 0.006 0.342
external hs[31].exhs NDMSF1 I v ->ZN ˆ NAND MSF 0.004 0.010 0.346
at1 tree lv1[15].xarb1 mutex1 NDSR1 S ˆ ->QN v NAND SR 0.013 0.024 0.359
at1 tree lv1[15].xarb1 mutex1 NRMSF2 I v ->ZN ˆ NOR MSF 0.015 0.039 0.374
at1 tree lv1[15].xarb1 g35 A1 ˆ ->Z ˆ CKAN2D1BWP30P140 0.024 0.062 0.398
at1 tree lv1[15].xarb1 g33 A2 ˆ ->Z ˆ OR2D1BWP30P140 0.020 0.082 0.418
at1 tree lv2[7].xarb2 mutex1 NDSR1 S ˆ ->QN v NAND SR 0.013 0.095 0.431
at1 tree lv2[7].xarb2 mutex1 NRMSF2 I v ->ZN ˆ NOR MSF 0.015 0.110 0.445
at1 tree lv2[7].xarb2 g35 A1 ˆ ->Z ˆ CKAN2D1BWP30P140 0.023 0.133 0.469
at1 tree lv2[7].xarb2 g33 A2 ˆ ->Z ˆ OR2D1BWP30P140 0.023 0.156 0.492
at1 tree lv3[3].xarb3 mutex1 NDSR1 S ˆ ->QN v NAND SR 0.014 0.170 0.505
at1 tree lv3[3].xarb3 mutex1 NRMSF2 I v ->ZN ˆ NOR MSF 0.015 0.185 0.520
at1 tree lv3[3].xarb3 g35 A1 ˆ ->Z ˆ CKAN2D1BWP30P140 0.024 0.209 0.544
at1 tree lv3[3].xarb3 g33 A2 ˆ ->Z ˆ OR2D1BWP30P140 0.020 0.229 0.564
at1 tree lv4[1].xarb4 mutex1 NDSR1 S ˆ ->QN v NAND SR 0.013 0.242 0.577
at1 tree lv4[1].xarb4 mutex1 NRMSF2 I v ->ZN ˆ NOR MSF 0.015 0.257 0.592
at1 tree lv4[1].xarb4 g35 A1 ˆ ->Z ˆ CKAN2D1BWP30P140 0.025 0.281 0.617
at1 tree lv4[1].xarb4 g33 A1 ˆ ->Z ˆ OR2D1BWP30P140 0.020 0.302 0.637
at1 mutex1 NDSR1 S ˆ ->QN v NAND SR 0.013 0.315 0.650
at1 mutex1 NRMSF2 I v ->ZN ˆ NOR MSF 0.026 0.341 0.677
at1 tree lv4[1].xarb4 symCele1 g6 A1 ˆ ->Z ˆ OR2D1BWP30P140 0.021 0.363 0.698
at1 tree lv4[1].xarb4 symCele1 NDSR1 S ˆ ->Q v NAND SR 0.007 0.370 0.705
at1 tree lv4[1].xarb4 symCele1 NRMSF1 I v ->ZN ˆ NOR MSF 0.015 0.385 0.720
at1 tree lv4[1].xarb4 symCele1 g4 I ˆ ->ZN v INVD1BWP30P140 0.018 0.402 0.738
at1 tree lv3[3].xarb3 symCele1 g6 A1 v ->Z v OR2D1BWP30P140 0.022 0.424 0.760
at1 tree lv3[3].xarb3 symCele1 NDSR1 S v ->Q v NAND SR 0.015 0.439 0.774
at1 tree lv3[3].xarb3 symCele1 NRMSF1 I v ->ZN ˆ NOR MSF 0.015 0.454 0.789
at1 tree lv3[3].xarb3 symCele1 g4 I ˆ ->ZN v INVD1BWP30P140 0.022 0.476 0.811
at1 tree lv2[7].xarb2 symCele1 g6 A1 v ->Z v OR2D1BWP30P140 0.025 0.500 0.835
at1 tree lv2[7].xarb2 symCele1 NDSR1 S v ->Q v NAND SR 0.015 0.515 0.850
at1 tree lv2[7].xarb2 symCele1 NRMSF1 I v ->ZN ˆ NOR MSF 0.015 0.530 0.866
at1 tree lv2[7].xarb2 symCele1 g4 I ˆ ->ZN v INVD1BWP30P140 0.021 0.551 0.887
at1 tree lv1[15].xarb1 symCele1 g6 A1 v ->Z v OR2D1BWP30P140 0.023 0.575 0.910
at1 tree lv1[15].xarb1 symCele1 NDSR1 S v ->Q ˆ NAND SR 0.006 0.581 0.917
at1 tree lv1[15].xarb1 symCele1 NRMSF1 I ˆ ->ZN v NOR MSF 0.004 0.585 0.920
at1 tree lv1[15].xarb1 symCele1 g4 I v ->ZN ˆ INVD1BWP30P140 0.016 0.601 0.936
external hs[31].exhs NDSR1 R ˆ ->Q v NAND SR 0.020 0.621 0.956
external hs[31].exhs NRMSF2 I v ->ZN ˆ NOR MSF 0.026 0.647 0.982
g3347 A2 ˆ ->Z ˆ OR2D1BWP30P140 0.028 0.675 1.010
g3298 A2 ˆ ->ZN v ND4D1BWP30P140 0.025 0.699 1.035
g3287 B v ->ZN ˆ OAI31D1BWP30P140 0.020 0.720 1.055
g3283 A3 ˆ ->ZN v AOI32D1BWP30P140 0.024 0.743 1.079
g3277 B3 v ->ZN ˆ INR4D0BWP30P140 0.040 0.783 1.118
g3274 B ˆ ->ZN v AOI31D1BWP30P140 0.024 0.807 1.142
g3272 B3 v ->ZN ˆ OAI33D1BWP30P140 0.057 0.864 1.199

req out ˆ 0.001 0.865 1.200
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5.4 Verification Flow

The goal of the verification is to generate the SPICE file of the designed AER trans-
mitter, which includes not only the transistors but also the RC extraction of the wires.
With the SPICE, the functionality of the transmitter can be verified and the metasta-
bility conditions of the SR-latches can be checked in the Spectre simulator. The inputs
of the generation flow are a GDS file and a Verilog file, one describes its geometric in-
formation and the other describes its logical expression. The two files are all generated
by the Innovus at the end of the proposed design flow.

Figure 5.5: Verification flow chart

There are five tools/commands involved in the GDS to SPICE conversion, they are:

• v2lvs: a Calibre command to convert the Verilog Hardware Description Language
to cdl, a Circuit Description Language. This cdl file is used to do Layout vs.
Schematic (LVS) check with the GDS file.

• LVS: SPICE output from Quantus only applies to LVS input, here we use Calibre
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LVS to generate a Calibre SVDB. It is important to make sure that the LVS check
is clean so that a correct database can be generated.

• Calibre Database Query: The SVDB database is further processed by Calibre
query to be accepted by Quantus.

• Techgen: For techfile generation, a lvsfile in the Quantus tech directory is manda-
tory in the Calibre flow. Our LVS rule deck is in an encrypted format, which can
only be translated to Quantus rule by using Techgen compilation instead of a
simple command in Calibre called “calibre2qrc”.

• Quantus QRC: Once all needed files are available, the SPICE netlist of the AER
transmitter is ready to be generated by the Quantus QRC.

The generated SPICE file of the transmitter contains resistors and capacitors with
best, worst, and typical corners2. And it will be sent to the Spectre simulator to verify
the functionality of the transmitter, as well as check the metastability of the SR-latches
inside. Figure 5.6 shows the simulation environment of the established functional check
verification flow. The “EACK” and the logic gates in the figure together represent the
correct operation of the external hardware around the transmitter. In the simulation,
whether the acknowledgement is corresponding to the request will be checked. Also,
whether the address is corresponding to the grant signal, and whether the “req out” is
coming after the available address will be examined. The verification result shows that
the design is correct in its function.

Figure 5.6: Simulation environment

2The three corners are controlled by three parameters. For instance, a resistor’s value might be assigned
as: “R1 ∗ 0.825893 + R2 ∗ 0.825990 + R3 ∗ 0.825995”. And the resistor is in the best corner when making R1
equals to 1 and R2 and R3 equal to 0.
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5.5 Monte Carlo Simulation for Metastability

As mentioned, SR-latches are chosen to be the standard cells to construct asynchronous
components such as C-elements and MUTEX in the design. And they are possible
to enter a metastable state where there will be an uncertain voltage level produced.
This will cause trouble to the circuit following it since the logic is also uncertain.
Please note that the correct operation sequence of the transmitter is not able to drive
the circuit into metastability logically. But because of gate delays, the precondition
of metastability is possible to be formed and propagate to the SR-latches inside the
circuit. To prevent that, metastability filters are necessary. To shorten the simulation
time, a 4-bit transmitter is established to see the metastability and check the filters’
performance in the Monte Carlo simulation.

Take NOR SR-latch as an example, the metastability for NOR SR-latch occurs when
there is no previous state for 00 input. For example, if at time zero, the 00 input is
given to the circuit, this will drive the cell into metastability. The consequence of the
metastability can be observed through Monte Carlo simulation as Figure 5.7. When
the NOR SR-latch enters the metastability as Figure 5.7b, its uncertain voltage level
will be stabilized to either logic 1 or logic 0. And it is unpredictable in the 100 times
simulation.

(a) (b)

Figure 5.7: Monte Carlo transit simulation of NOR SR-latch 100 times: (a) with previous
state, (b) without previous state

The metastability filters can be built based on transistors or logic gates. Here it
is based on logic gates of 4-input NAND and NOR. The filters are created by simply
connecting the input pins of the 4-input NAND and NOR gates. By doing so, they
act like a skewed inverter. The NAND and NOR gates are from the TSMC 28nm
CMOS technology library. For the NAND SR-latch, we use NOR MSF as a filter.
And for the NOR SR-latch, we use NAND MSF. Figure 5.8 explains the reason. Take
NAND SR-latch as an example, the MSF for it, which is the NOR MSF, has DC
transfer characteristics as Figure 5.8a. The switching threshold of the gate is lower
than the middle voltage, which is 0.4V . NAND SR-latch’s DC characteristics (Figure
5.8c) show the “Q” pin of the latch falls to around 0.35V instead of 0 when getting
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into metastability. For this range of latch output, the above presented NOR MSF is
suitable to filter the metastable voltage all to 0 as Figure 5.8e. This is similar to NOR
SR-latch and NAND MSF as figures on the right side of Figure 5.8.

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: MSF DC transfer characteristics: (a) NOR MSF, (b) NAND MSF; SR-latch DC
metastability: (c) NAND SR-latch, (d) NOR SR-latch; SR-latch DC metastability after

filtering: (e) NAND SR-latch, (f) NOR SR-latch
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The designed MSFs are installed on the locations where there is a latch. It effec-
tively prevents the occurrence of metastability. Two Monte Carlo simulations are done
through GUI to plot the results visually as Figure 5.9. A precondition of making the
latch inside the external handshake module metastable is produced by the simulator.
Out of 30 times simulations, 4 times metastable states are observed. And they are
restored to logic 0 or 1 after inserting the filters.

(a)
(b)

Figure 5.9: Metastability of the 4-input transmitter: (a) without MSF, (b) with MSF

In a Monte Carlo test, more times of simulations guarantee a more reliable design.
As the metastability can affect the output of the transmitter and lead the voltage level
to uncertainty, more simulation data shall be generated to evaluate that whether the
design can overcome the metastability under different PVT conditions. To fasten the
speed of the test, the GUI method is abandoned and the command line method is
used to execute the simulation. Another three Monte Carlo simulations are done to
the three extreme cases: tt0p8v25c, ff1p05vm40c, and ss0p72vm40c, which corresponds
to the typical, fast, and slow cases. For each of them, 10, 000 times of Monte Carlo
simulations are done as Table 5.9. That amount of tests will generate huge temporary
results data in the server that might cause disk quota exceeded problem. A script used
to periodically remove those unnecessary data is created. The results show that there
is no uncertain voltage level at all when initializing the latch with no previous state.

Table 5.9: Monte Carlo simulations of the 4-input transmitter under three PVT conditions

PVT Logic 0 Logic 1 Total Num

tt0p8v25c 9,911 89 10,000

ff1p05vm40c 9,858 142 10,000

ss0p72vm40c 9,135 865 10,000
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5.6 Transmitter Characterization Results

Before presenting the transmitter performance results, the tree arbiter module imple-
mented with SR-latches in our design strategy is compared with several state-of-the-art
arbiter designs as Table 5.10. It can be seen that the number of transistors of this work
is larger than most of the proposed designs even not counting the MSF’s transistors.
But measured from the activation of the request signal to the propagation of the grant
signal, our arbiter has the best delay under TSMC 28nm CMOS technology, it has
an 11.54% improvement than the arbiter who used to be the best in the IREQ1↑-
IGR1↑ response time. The AER transmitters with different arbiter architectures are
also reproduced and characterized using the developed flow. Here shows part of the
characterization results as Table 5.11 and 5.12 to compare the three architectures under
the typical corner, 0.8V VDD, and 25◦C.

Table 5.10: Arbiter feature comparison

This work [5] [24] [25] [26] [28] [29]

Technology 28nm 65nm 65nm 65nm 65nm 65nm 65nm

Num of transistors 104 62 74 44 116 82 70

Four-way handshake Yes Yes Yes Yes No Yes No

Use MUTEX Yes Yes Yes Yes Yes Yes No

Gate MSF Yes Yes Yes No Yes Yes -

Average
response time

IREQ1↑-OREQ↑ 59.5ps 53.68ps 206.18ps - 50.81 74.80ps 143.05ps
- -10.84% 71.14% - -17.10% 20.45% 58.41%

IREQ1↑-IGR1↑ 101.5ps 187.62ps 249.48ps - 295.57 202.75ps 114.74ps
- 45.90% 59.32% - 65.66% 49.94% 11.54%

Table 5.11: Performances of AER transmitters with tree arbiter module I and II

Inst Name Inst Count Total Area Inst Name Inst Count Total Area

Tree: This work 768 1264.914 Tree: [5] 467 826.308

Total Power (mW) Total Power (mW)

Total Internal Power 0.022 67.172% Total Internal Power 0.017 72.982%

Total Switching Power 0.007 19.457% Total Switching Power 0.004 17.322%

Total Leakage Power 0.004 13.371% Total Leakage Power 0.002 9.696%

Total Power 0.033 Total Power 0.023

Worst slack 0.335 Worst slack 0.299

Beginpoint Endpoint
Arrival Time

(ns)
Beginpoint Endpoint

Arrival Time
(ns)

req[31] (∧) triggered by
leading edge of ’@’

req out (∧) 0.865
req[31] (∧) triggered by

leading edge of ’@’
req out (∧) 0.901

req[3] (∧) triggered by
leading edge of ’@’

req out (∧) 0.859
req[28] (∧) triggered by

leading edge of ’@’
req out (∧) 0.900

req[10] (∧) triggered by
leading edge of ’@’

req out (∧) 0.853
req[17] (∧) triggered by

leading edge of ’@’
req out (∧) 0.899

req[14] (∧) triggered by
leading edge of ’@’

req out (∧) 0.851
req[9] (∧) triggered by

leading edge of ’@’
req out (∧) 0.899

req[28] (∧) triggered by
leading edge of ’@’

req out (∧) 0.851
req[13] (∧) triggered by

leading edge of ’@’
req out (∧) 0.892

The tables list the area, power distribution, worst slack, and the five worst delay
propagation paths. The result shows that the arbiter module implemented using SR-
latches has slightly better timing performance than Subbarao’s. The worst path delay
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of the former is 0.036ns faster than that of the latter. But Subbarao’s arbiter has
a smaller area and lower power consumption. This is because its architecture allows
merging the C-elements into the logic and loops, so that eliminates the necessity of
using MSF, which costs area and power. But the propagation delay of the MSF is
shorter than a logic gate, thus making the SR-latches implemented architecture a bit
faster in speed. Because the delay is the main parameter that this design cares about,
it can be concluded that the former architecture is better for our specification.

Table 5.12: Performance of AER transmitter with lazy token ring arbiter module

Inst Name Inst Count Total Area

Ring 476 912.618

Total Power (mW)

Total Internal Power 0.016 70.730%

Total Switching Power 0.004 17.389%

Total Leakage Power 0.003 11.881%

Total Power 0.023

Worst slack 0.412

Beginpoint Endpoint
Arrival Time

(ns)

req[31] (∧) triggered by
leading edge of ’@’

req out (∧) 0.288

req[31] (∧) triggered by
leading edge of ’@’

ad[0] (∧) 0.283

req[22] (∧) triggered by
leading edge of ’@’

req out (∧) 0.279

req[23] (∧) triggered by
leading edge of ’@’

req out (∧) 0.274

req[19] (∧) triggered by
leading edge of ’@’

req out (∧) 0.270

Token loop delay 5.132

Not the same as the reported conclusion in Section 2.2.4, the power consumption
of the AER transmitter with tree arbiter is larger than that of with ring arbiter. The
area of the tree transmitter varies with the tree arbiter module architecture, so it is
not comparable. But at least the chosen tree transmitter’s area is larger than that of
the ring. The delay of the tree is larger than that of the ring, but the reported ring
delay paths are the best-case delay paths. They are measured by tracking the signal
from the request to the acknowledgement pin without considering the token loop delay.
The token loop delay for the ring is very large. If we assume the loop delay can be
averaged, (5.1) can be used to analyse which is better in delay performance. Where in
the equation, Dtoken loop is the token loop delay, Nbits is the number of bits, Dring worst

is the worst best-case delay of the ring, and Dtree worst is the worst delay of the tree. x
belongs to the set of natural numbers.

Dtoken loop

Nbits

× x + Dring worst ≤ Dtree worst (x ∈ N) (5.1)

By solving the equation, x ≤ 3.598 ≈ 3. This means the delay of when the request
signal coming within the next three ring modules of the module that the token is
currently located will be smaller than that of the tree. If assuming the other 31 request
signals have an equal probability to occur next, then the probability of the next ring
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delay is smaller than the delay when arbitrating using the tree is 3 over 31; and that
of it has a larger delay is 28 over 31. According to this, it can be concluded that the
timing performance of the ring is not better than that of the tree. The delay of the ring
arbiter is uncertain considering different locations of the token and request occurrence
probability. A certain and averaged delay is preferred for the project. Thus, the tree
is of more value to be finally implemented.

The characterization results of the SR-latch tree AER transmitter under different
PVTs are generated as Table 5.13. Firstly, the LIB files of asynchronous cells are
generated by Liberate at different PVTs. After that, Genus synthesizes the AER
transmitter under the PVT condition of tt0p8v25c3. The synthesized circuit will be
taken as input to the Innovus to generate a report under different PVTs. And because
we have the constraint, especially in the SS corner, the circuits will be synthesized
to have a larger area to fulfil the requirement of delay. Here only presents the table
of three parameters: total area, total power, and worst delay. Other information is
also generated and stored. To conclude, Innovus reports that the delay falls within a
reasonable range of from 0.475 to 1.150ns.

Table 5.13: Characterization result under different PVTs

Total Area
Total Power

(mW)
Worst Delay

(ns)
Total Area

Total Power
(mW)

Worst Delay
(ns)

ff0p88vm40c

1264.788

0.037 0.618 ss0p81v0c

1264.914

0.029 1.031
ff0p88v0c 0.047 0.615 ss0p81v125c 0.090 0.936

ff0p88v125c 0.634 0.605 ss0p9vm40c 0.036 0.806
ff0p99vm40c 0.049 0.510 ss0p9v0c 0.037 0.796

ff0p99v0c 0.065 0.516 ss0p9v125c 0.115 0.781
ff0p99v125c 0.888 0.525 tt0p8v25c

1264.914
0.033 0.865

ff1p05vm40c 0.058 0.475 tt0p8v85c 0.078 0.834
ff1p05v0c 0.078 0.479 tt0p9v25c 0.044 0.683

ss0p72vm40c 1547.532 0.032 1.150 tt0p9v85c
1264.788

0.107 0.682
ss0p72v0c 1380.960 0.029 1.122 tt1v25c 0.057 0.578

ss0p72v125c 1275.624 0.071 1.108 tt1v85c 0.143 0.585

ss0p81vm40c 1265.418 0.029 1.064

3This is the PVT expression of TSMC library, for example, ff1p05vm40c means FF corner, 1.05V VDD,
and −40◦C.
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Conclusion 6
6.1 Conclusion

In this thesis, a novel asynchronous library establishment strategy of using SR-latches
as standard cells to build AER communication circuits has been proposed. The library
correctness, strategy feasibility, as well as design performance, are simulated and eval-
uated through a proposed asynchronous back-end design flow and a SPICE verification
flow. The two flows are developed based on the existing digital design flow but with
some adaptations to fit asynchronous design.

Just like computer arithmetic uses the add and shift operations to perform mi-
nus, multiply, divide, and more complex operations; like digital circuit uses AND, OR,
inverter, buffer to construct more complex combinational systems; the most basic com-
ponents in building asynchronous circuits are our targets to be found and researched
so that with these components and other logic gates, functions of asynchronous circuits
can be achieved without laborious work. SR-latch, in our exploration, has been proven
to be able to establish the AER transmitter circuit. Its asynchronous sequential logic
can support the correct AER communication operation.

With the SR-latches implemented asynchronous modules, AER transmitters based
on three different arbiter architectures are established and compared. The simulation
results show that with our library design strategy, the tree arbiter module with the
most original and traditional architecture can be compared favourably with several
state-of-the-art arbiter architectures. This can be further validated by the transmitter
performance comparisons, where two state-of-the-art arbiter architectures are repro-
duced and implemented under our technology.

6.2 Future Work

Future works of this thesis can be extended in the following three aspects:

1. The logic of SR-latches is enough to support constructing asynchronous circuits
built by C-elements. However, the latches built by standard cells only have one
driving strength provided in our library, which is selected with the lowest delay.
The asynchronous library can be complemented by adding more driving strength
choices. And the logic of SR-latch can be made recognizable to the synthesize
tool so that the tool will automatically pick the most suitable one according to
its input/output capacitance information, etc.
Even though SR-latches can construct C-elements that support many asyn-
chronous logic implementations. Other logic requires other specific component
sets. If such asynchronous circuits can be structurally decomposed to find their
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basic constructing elements. These elements can be customized and characterized
as a library to support asynchronous design using digital design flow.

2. The AER transmitter design in our work only considers logic gate-level imple-
mentation. There is a paper that shows that transistor-level design is the most
economical in terms of silicon area [43]. A very simple example is the metasta-
bility filter. The gate-level implementation utilizes the skewed inverting property
of the NOR and NAND gates. Such property can be easily achieved by a proper
sized NMOS and a PMOS at the transistor level. However, it is not as easy as
simply sizing two transistors and connecting them as an inverter, since its switch-
ing voltage can be varied according to different PVT conditions, possibly making
preventing metastability fail in that case. Hence, the next step of the work in this
direction can be establishing a well-designed transistor-level asynchronous library
and uses simulations to validate the functions and performances of the cells.

3. Because of circuit decomposition, manually creating scripts for characterizing
asynchronous library is not laborious work for this thesis. However, it should
be admitted that making this flow automated to be able to universally character-
ize asynchronous cells is better when characterizing a library with more complex
logic, especially when the cell arcs are too complex to be described to the tool.
The proposed back-end design flow and SPICE verification flow are developed
based on the existing digital flow but with several changes to adopt the asyn-
chronous design. This flow is automated for our design, namely from generating
asynchronous library under different PVTs, synthesizing, to generating the final
output of the placed and routed design, the operation of the tool can be executed
by one or two command lines. However, if the target design is changed from
the current AER transmitter. The strategy of back-end design flow might also be
changed with it. For instance, the combinational loops cannot be broken automat-
ically by the tools since for a random and unknown (to the tool) design, its interest
signal propagation paths are also unknown if the designer does not specify them.
Nonetheless, asynchronous circuits with the same type/function/implementation
might have common grounds in their architectures and interest paths. From this
point, it might be possible to also make the back-end design flow automated.
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