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Abstract
In single-molecule microscopy, a big question is how precisely we can estimate
the location of a singlemolecule. Our research shows that by using iterative local-
isationmicroscopy and factoring in the prior information, we can boost precision
and reduce the number of photons needed. Leveraging the Van Trees inequal-
ity aids in determining the optimal precision achievable. Our approach holds
promise for wider application in discerning the optimal precision across diverse
imaging scenarios, encompassing various illumination strategies, point spread
functions and overarching control methodologies.
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1 INTRODUCTION

In single-molecule localisation microscopy (SMLM),
sparsely activating fluorescent emitters sequentially
improves resolution beyond the diffraction limit.1
Modulation-enhanced SMLM (meSMLM) utilises pat-
terned illumination to enhance localisation precision.2
Methods like SIMFLUX, SIMPLE and repetitive opti-
cal selective exposure employ standing-wave intensity
patterns, while MINFLUX uses a doughnut-shaped
pattern.3–6
The localisation precision can be iteratively improved

around emitters using prior information in iterative
meSMLM (imeSMLM). In an iterativeMINFLUX variant,9
the emitter positions are estimated through triangula-
tion with doughnut-shaped illumination patterns, leading
to improved precision. Distributing the limited photon
budget over iterations is favoured over increasing signal

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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photons per iteration for better information content.
Characterising (me)SMLM methods’ localisation pre-

cision involves using the Cramér-Rao lower bound
(CRLB).7 imeSMLM iteratively updates prior informa-
tion, and additional information can be gained from
photoactivation. The CRLB, which requires unbiased
estimators, cannot incorporate a prior distribution on
estimands.10
Kalisvaart et al.8 propose using the Van Trees inequal-

ity (VTI) as a Bayesian alternative to the CRLB due to
available prior information.11–13 The VTI establishes a fun-
damental limit on imeSMLM precision, especially with
standing-wave illumination. Simulation results demon-
strate the exponential increase in information contentwith
iteration count in ideal conditions, but nonideal conditions
require optimal design considering practical imaging con-
ditions. TheVTI serves as a performancemetric for in silico
control strategy design.
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F IGURE 1 Poster summary of Kalisvaart et al.8 (Introduction) In imeSMLM techniques like iterative MINFLUX, patterned illumination
zooms in on individual molecules. Our research highlights the intrinsic limits and trade-offs in localization precision within imeSMLM.
(Methods) Traditionally, the Cramér-Rao Lower Bound (CRLB) has set the standard for estimating the highest achievable precision in
localization microscopy. However, its application has been limited due to its dependence on unbiased estimators when incorporating prior
information from previous experiments. Our study reinterprets imeSMLM from a Bayesian perspective, utilizing the Van Trees Inequality
(VTI) to address the CRLB’s limitations. The VTI integrates uncertainty from prior information and current measurements, providing a lower
bound on the precision achievable with imeSMLMmethods. (Results) We found that, in ideal conditions with no background noise and
perfect modulation, the information content of signal photons grows exponentially with each iteration. However, this exponential growth
diminishes with the presence of background noise, imperfect modulation, or mechanical resolution limits of the illumination positioning
system. For instance, with 8 background photons per pixel and 95% modulation contrast, imeSMLM with two iterations achieves, at most, a
5-fold improvement over conventional SMLM. (Conclusion) The VTI proves to be a crucial tool for evaluating illumination control
performance, making it the preferred method for optimizing imeSMLM design and implementation.
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Practical Considerations

Building upon the groundwork laid byOber et al.,7
our research addresses the fundamental question
in single-molecule localisation microscopy – the
precision in determining the position of a single
molecule. Kalisvaart et al.8 focus on iterative local-
isation microscopy, exemplified by techniques
such as MINFLUX and iterative MINFLUX.9 Our
findings show that the precision enhancement
achieved through iterative localisationmicroscopy
stems from the incorporation of prior information,
thereby reducing the required number of pho-
tons for accurate localisation. In this context, the
Bayesian Van Trees inequality emerges as a valu-
able metric to quantify the optimal localisation
precision attainable through iterative localisation
microscopy under various practical scenarios.

2 RESULTS

The VTI was simulated to assess the performance of
imeSMLM under 95% modulation contrast. We show
that calculating the VTI using unbiased Gaussian prior
information is approximately equivalent to calculating
the CRLB over all iterations, thereby indicating that the
precision improvement in imeSMLMis derived fromGaus-
sian prior information. By using two iterations in total,
imeSMLM reaches at most a fivefold improvement over
SMLM at 8 background photons per pixel. This shows
that the exponential localisation improvement as a func-
tion of the iteration count cannot be achieved in realistic
experimental conditions, as it breaks down for slight
imperfections in the modulation contrast (Figure 1).
The optimal choice of the illumination pattern posi-

tions depends on the expected background photon count,
the modulation contrast, and the expected signal photon
count. To show this, we quantify the distance between the
pattern minimum and the estimated emitter position as
a function of the aggressiveness parameter 𝛼. We show
that the optimal aggressiveness parameter 𝛼 decreases for
a decreasing signal photon count. For 95%modulation and
8 background photons per pixel, 𝛼 = 2.5 is optimal at a
signal photon budget of 2000 photons, while 𝛼 = 5.5 is
optimal at a signal photon budget of 5000 photons. That
is, as the signal-to-background ratio increases, the optimal
distance between the pattern minimum and the emitter
increases as well.

3 CONCLUSIONS

The proposed framework provides novel insights that
challenge existing paradigms in the field of iterative
modulation-enhanced SMLM.14 We outline three signifi-
cant examples:
1. Our research challenges the conventional belief

that the smallest step size guarantees the best perfor-
mance in iterative localisation microscopy. We establish
that the optimal step size is contingent upon factors
such as modulation contrast, molecule intensity and
background fluorescence. Furthermore, our work reveals
that the relationship between localisation precision and
step size is nuanced, showing the limited conditions
under which the assertions made by Balzarotti et al.14
hold.
2. Earlier claims suggest exponential localisation

improvement under zero background and perfect mod-
ulation contrast. Our study demonstrates that such
enhancements break down in most experiments, particu-
larly when confronted with slightly imperfect modulation
contrast (m < 1). This finding nuances assertions made by
Gwosch et al.9
3.We establish the optimality of isotopically distributing

the single-molecule’s photon budget across iterations in
iterative localisation microscopy, contributing a nuanced
understanding of the imeSMLM field.
These insights hold particular significance for (iterative)

MINFLUX users, given the diverse expectations associ-
ated with these methods. For instance, the application of
MINFLUX toDNA-PAINTnecessitates optimising the step
size due to elevated background levels. In addition, we
expect that extending the analysis of (iterative) MINFLUX
methodologies using the VTI, for example, to detection
and single particle tracking, will reveal new insights. We
anticipate that our framework and findings will swiftly
be embraced by both method developers and users, fos-
tering nuanced and optimised applications of (iterative)
MINFLUX methodologies.15,16

DATA AND SOFTWARE

The data and software can be found at https://github.
com/qnano/iterative-localization and https://data.4tu.nl/
articles/_/19786735.

ORCID
Carlas Smith https://orcid.org/0000-0003-0591-5093
Kirti Prakash https://orcid.org/0000-0002-0325-9988

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13338 by T
u D

elft, W
iley O

nline L
ibrary on [22/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/qnano/iterative-localization
https://github.com/qnano/iterative-localization
https://data.4tu.nl/articles/_/19786735
https://data.4tu.nl/articles/_/19786735
https://orcid.org/0000-0003-0591-5093
https://orcid.org/0000-0003-0591-5093
https://orcid.org/0000-0002-0325-9988
https://orcid.org/0000-0002-0325-9988


4 SMITH et al.

REFERENCES
1. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W,

Olenych, S., Bonifacino, J. S., Davidson, M W., Lippincott-
Schwartz, J., & Hess, H. F. (2006). Imaging intracellular flu-
orescent proteins at nanometer resolution. Science, 313(5793),
1642–1645.

2. Reymond, L., Huser, T., Ruprecht, V., & Wieser, S. (2020).
Modulation-enhanced localization microscopy. Journal of
Physics: Photonics, 2(4), 041001.

3. Gu, L., Li, Y., Zhang, S., Xue, Y., Li, W., Li, D., Xu, T., & Ji,
W. (2019). Molecular resolution imaging by repetitive optical
selective exposure. Nature Methods, 16(11), 1114–1118.

4. Reymond, L., Ziegler, J., Knapp, C., Wang, F. C., Huser, T.,
Ruprecht, V., & Wieser, S. (2019). SIMPLE: Structured illumina-
tion based point localization estimator with enhanced precision.
Optics Express, 27(17), 24578–24590.

5. Cnossen, J., Hinsdale, T., Thorsen, R. Ø., Siemons,M., Schueder,
F., Jungmann, R., Smith, C. S., Rieger, B., & Stallinga, S. (2020).
Localization microscopy at doubled precision with patterned
illumination. Nature Methods, 17(1), 59–63.

6. Schmidt, R.,Weihs, T.,Wurm, C. A., Jansen, I., Rehman, J., Sahl,
S. J., & Hell, S. W. (2021). MINFLUX nanometer-scale 3D imag-
ing and microsecond-range tracking on a common fluorescence
microscope. Nature Communications, 12(1), 1478.

7. Ober, R. J., Ram, S., & Ward, E. S. (2004). Localization accuracy
in single-molecule microscopy. Biophysical Journal, 86(2), 1185–
1200.

8. Kalisvaart, D., Cnossen, J., Hung, S. T., Stallinga, S., Verhaegen,
M., & Smith, C. S. (2022). Precision in iterative modulation
enhanced single-molecule localization microscopy. Biophysical
Journal, 121(12), 2279–2289.

9. Gwosch, K. C., Pape, J. K., Balzarotti, F., Hoess, P., Ellenberg, J.,
Ries, J., & Hell, S. W. (2020). MINFLUX nanoscopy delivers 3D

multicolor nanometer resolution in cells. Nature Methods, 17(2),
217–224.

10. Smith, C. S., Joseph, N., Rieger, B., & Lidke, K. A. (2010).
Fast, single-molecule localization that achieves theoretically
minimum uncertainty. Nature Methods, 7(5), 373–375.

11. Van Trees, H. L. (2004). Detection, estimation, and modulation
theory, part I: Detection, estimation, and linearmodulation theory.
John Wiley & Sons.

12. Bay, S., Herzet, C., Brossier, J. M., Barbot, J. P., & Geller, B.
(2007). Analytic and asymptotic analysis of Bayesian Cramér–
Rao bound for dynamical phase offset estimation. IEEE Trans-
actions on Signal Processing, 56(1), 61–70.

13. Gill, R. D., & Levit, B. Y. (1995). Applications of the van Trees
inequality: A Bayesian Cramér-Rao bound. Bernoulli, 1, 59–
79.

14. Balzarotti, F., Eilers, Y., Gwosch, K. C., Gynnå, A. H., Westphal,
V., Stefani, F. D., Elf, J., & Hell, S. W. (2017). Nanometer res-
olution imaging and tracking of fluorescent molecules with
minimal photon fluxes. Science, 355(6325), 606–612.

15. Prakash, K., & Curd, A. P. (2023). Assessment of 3D MINFLUX
data for quantitative structural biology in cells. Nature Methods,
20(1), 48–51.

16. Prakash, K. (2022). At themolecular resolutionwithMINFLUX?
Philosophical Transactions of the Royal Society A, 380(2220),
20200145.

How to cite this article: Smith, C., Kalisvaart, D.,
& Prakash, K. (2024). Unveiling the limits of
precision in iterative MINFLUX. Journal of
Microscopy, 1–4. https://doi.org/10.1111/jmi.13338

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13338 by T
u D

elft, W
iley O

nline L
ibrary on [22/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/jmi.13338

	Unveiling the limits of precision in iterative MINFLUX
	Abstract
	1 | INTRODUCTION
	2 | RESULTS
	3 | CONCLUSIONS
	DATA AND SOFTWARE
	ORCID
	REFERENCES


