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Preface

This report is the culmination of my master thesis project, which started in May 2023 and ended in February

2024. It contains three parts: Part I) a scientific paper summarising the most important results, Part II) a

preliminary report containing results of the literature study, and Part III) appendices to the scientific paper

and preliminary report.

The reader is assumed to have a basic understanding of linear control theory and is expected to be

familiar with McRuer’s crossover model. Readers who are particularly interested in the results of the

human-in-the-loop experiment can refer to the scientific paper in Part I of the report. For those who are

interested in the methodology leading up to the final design of the adaptive haptic shared controller, this

can be found in Part II. Part III contains appendices to the preceding parts.

This project has been my largest undertaking by far (at the time of writing), and contains work that I am

truly proud to share. The only way I could have achieved it is by standing on the shoulders of giants, both

inside academia and in my personal life. My two daily supervisors, Professor Max Mulder and Associate

Professor René van Paassen, have both been immense inspirations to me throughout the duration of the

project.

Max’s deep knowledge, unwavering curiosity and meticulous attention to detail continuously motivated me

to do my best. Although, beyond his extraordinary dedication and intuition, the thing I am most grateful for

is his caring nature. As Carl Jung very wisely said: “An understanding heart is everything in a teacher,

and cannot be esteemed highly enough.” Without Max’s genuine encouragement and compassion, I truly

would not have been able to develop myself in the way that I have. I sincerely hope that one day I can pay

his support forward to others.

René’s contribution to the project, as well as towards my personal development, has also been invaluable.

His technical expertise is unparalleled, repeatedly saving me from getting lost in dead-ends. The focus

and single-mindedness with which René conducts his research is ever-present, and frequently illuminates

what would otherwise be dark paths. Even though I have less experience, I felt that René took me and my

ideas seriously, always taking care to steer me in the right direction. I have much to thank him for, and am

very lucky to have had him as a supervisor.

Over in my personal life, Neve, Sam, Mum and Dad (and our dog, Walter) have always offered me

unconditional love and support, for which I will forever be grateful. It is difficult to express the deep affection

I have for each member of the McKenzie clan, and how much my family has helped me endure hardships

throughout my life. These people are undoubtedly the most diverse set of characters I will ever encounter,

and every moment spent with them is a gift.

I also owe a debt of gratitude to my close friends, Sietse and Ari, for always standing by my side and

helping me to stay grounded. Sietse’s honesty, humour and work ethic are an unstoppable combination,

and always make him an absolute delight to be around. Whether it’s discussing personal challenges, or

knuckling down to do some hard work, Sietse has always been up for the challenge, day or night. And

although Ari may never fully realize it, she’s the reason that I managed to get through the dark winter

months leading up to graduation. Through our chats over Yorkshire tea, she managed to help me stay

grounded, and continuously reminded me to never take myself too seriously.

Finally, thank you, dear reader, for your interest in this project. I hope this document serves you well, and I

wish you the best of luck with your endeavours!

M. McKenzie

Antwerp, February 2024
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Implementing an Adaptive Haptic Shared Controller
in Pursuit and Preview Tracking Tasks

Max McKenzie

Abstract—Haptic shared controllers (HSCs) are a promising
solution to prevent human over-reliance on automation during
tasks such as car driving. However, research has shown that
if the HSC is tuned incorrectly, then there is a risk of haptic
conflicts between the human and HSC. To address this challenge,
this paper presents the design and implementation of a novel
adaptive HSC that continuously adjusts its look-ahead time. By
estimating the time shift between the reference state of the HSC
and the actual state, the HSC adapts to the look-ahead time
of the human it is interacting with. Results from a human-in-
the-loop experiment show that the novel HSC achieves similar
subjective ratings as a fixed preview HSC, as well as a significant
improvement over a fixed pursuit HSC. Going from pursuit to
preview, objective experiment data shows that as the adaptive
HSC adjusts its look-ahead time, haptic conflicts are reduced
and tracking performance is increased. The presented findings
are a step forward in designing haptic support systems with high
chances of user acceptance. The proposed adaptive look-ahead
algorithm provides a new method for online estimation of human
look-ahead time, with or without a HSC in-the-loop.

Index Terms—Shared control, preview control, haptic feed-
back, look-ahead estimation

I. INTRODUCTION

W ITH the advent of self-driving cars, societies are
becoming increasingly reliant on automatic systems

to control vehicles. However, this trend has led to concerns
about risks related to system failure, or humans becoming
dangerously inattentive [1–4].

As an alternative to full automation, haptic shared control
aims to offset risks related to over-compliance by making the
human operator (HO) partially responsible for steering the
vehicle [5]. By requiring that the HSC and HO share the same
physical interface (e.g., side-stick), both parties are forced to
continuously negotiate with each other in terms of control
input. A notable advantage of this method is that the HO is
always aware of the intentions of the system through haptic
feedback [6, 7]. Should the HO not be satisfied with the felt
intentions of the system, then the HSC’s input can immediately
be inhibited by impeding it from moving the physical interface.

Although a key aim of haptic shared control is to reduce
human control effort, HSCs are liable to cause conflict and
annoyance on the part of the HO [8, 9]. Paradoxically, it is
possible that even when a HSC improves overall control per-
formance, significant discomfort still occurs as a consequence
of misaligned intentions or control strategy [10].

Recently developed human operator models have paved
the way for the design of HSCs with a high chance of
user acceptance. Specifically, Van der El’s human controller
model for preview tracking tasks [11] has led to a better
understanding of HO behaviour during car driving. Through

the use of HO models, the HSC can be configured to mimic
the HO’s control strategy, hereby reducing the chance of haptic
conflicts [10]. For preview tracking tasks, HOs have been
found to use an aiming point situated up ahead along the
previewed target signal [11]. The amount of time that the
aiming point is situated up ahead into the future is referred
to as the look-ahead time.

To investigate human sensitivity to varying controller set-
tings, a previous study by Span et. al aimed to quantify
the impact of varying HSC look-ahead time on conflicts
and tracking performance. Using the Four Design Choices
Architecture (FDC-HSC) [12], a region of optimal HSC look-
ahead times between 0.7 − 0.8s was identified for which
conflicts are minimised and performance is maximised [10].

Despite the discovery of a range of optimal look-ahead
times for a FDC-HSC controller, it is still unclear exactly why
haptic conflicts arise, and how they should best be resolved
[13, 14]. In general, the challenge of investigating HO-HSC
interaction lies in the intertwined dynamics that occur between
the HSC and HO through physical feedback [15]. Since both
agents are either directly or indirectly influenced by one
another, it is impossible to study HO adaptation without con-
sidering the potential effects of these dynamics on the entire
system. On the other hand, understanding human adaptation
could play a crucial role in designing a new type of HSC,
which adjusts its settings to resolve conflicts automatically.

The goal of this study is to develop an adaptive haptic shared
controller (A-HSC) that adapts to its human counterpart in real
time to reduce haptic conflicts. As a first step, simulations were
used to test an A-HSC design that varies its look-ahead time
based on the time shift between the HSC’s reference state and
the actual state. Secondly, the A-HSC was tested in a human
experiment with 16 participants. Subjects performed a tracking
task during which the displayed preview time switched from
zero (i.e., pursuit), to one second of preview, or vice versa. For
reference, the A-HSC was tested alongside two types of fixed
FDC-HSCs with (1) pursuit settings, and (2) preview settings.

The paper is structured as follows. In Section II the control
task and context surrounding the paper is explained. There-
after, Section III describes the effects of look-ahead time
on HO-HSC interaction and investigates the nature of haptic
conflicts. The design methodology of the A-HSC is given
in Section IV. Thereafter, Section V shows the results of
offline simulations that test the A-HSC structure under varying
conditions. Section VI provides an overview of the human-
in-the loop experiment, after which experiment results are
presented in Section VII. Finally, the results and conclusions
are presented in the final two sections.



2

II. BACKGROUND

This section provides the necessary background and context
for the project by describing (A) the control task, (B) the
human operator model, and (C) the Four-Design-Choices
architecture for HSCs.

The general setup of a HSC in a preview tracking task
is illustrated in Fig. 1, where the dashed line indicates the
influence of haptic feedback on the HO. To extend the applica-
bility of simulations used by Span [10], Section III proposes a
method to explicitly model HO rejection of HSC forces, using
simulated haptic feedback (dashed line in Fig.1).

Human 
Operator

Haptic
Shared

Controller

Side
-stick

Controlled 
Element

Fig. 1: Haptic shared control in a preview tracking task [10]

A. Control Task

The control task consists of both the HSC and HO using the
previewed target signal, ft, displayed up until a preview time
of τp seconds into the future, as illustrated by Fig. 1. HOs
are to minimise the lateral error between the target and state,
e(t) = ft(t) − x(t). This can be considered a rudimentary
form of car driving, making this task a relevant case study for
the development of (haptic) driver support systems [16].

1) Signals: The range of preview information used by
the HO between the current time t and τp is denoted by
ft([t, t+τp]), as shown in Fig. 1. On the other hand, the HSC
is configured to use a single aiming point τHSC seconds up
ahead along the previewed target, ft(t+τHSC). This is related
to the HSC’s design and how HOs use preview information,
as is described in Section II-B.

THO(t) and THSC(t) are the torques applied to the physical
interface by the HO and HSC, respectively. The resulting
position of the side-stick or steering wheel is thereafter used

to drive the controlled element (CE) through the input u(t).
The HO is fed back information on the state by observing its
position on the display, whereas the HSC uses the raw signal
itself to compute THSC . Finally, an unobservable disturbance
fd(t) is applied to the CE, making the activity both a target-
following- and disturbance rejection task.

2) Forcing Functions: The target and disturbance functions
are defined to be the sum of sines as determined by Eq. 1,
with amplitude A, frequency ω and phase shift ϕ.

ft,d(t) =
10∑
i=1

At,d[i] sin(ωt,d[i]t+ ϕt,d[i]) (1)

The frequencies of the sines are selected from the same
set used by Van der El to sudy manual control behaviour in
preview tracking tasks [11, 17, 18]. However, for this study,
single bands of input frequencies are used as opposed to
double bands, which are commonly used in order to measure
a model’s linearity [11]. Each sine is an integer multiple ki
of the base frequency of 0.0524 rad/s, which corresponds to
120s of measurement time.

Table I lists the amplitudes, frequencies, and phase shifts
for one realization. A total of four realizations of the target
function were used to prevent pattern recognition during the
experiment, each varying only in terms of phase shift.

3) Bandwidth: The bandwidth of the target signal used in
this study is ωi = 1.5 rad/s, corresponding to the highest
frequency at which the signal has significant power. This aligns
with the target signal characteristics of both Van der El’s
and McRuer’s landmark experiments [11, 19], facilitating a
comparison between solo HO behaviour and a shared control
situation. Furthermore, the target bandwidth is lower than the
expected crossover frequency for single integrator (SI) CE
dynamics [19]. As a result, the HO is expected be capable of
adequately tracking components of the target that lie within
the signal bandwidth.

4) Disturbance and Controlled Element: By injecting a
disturbance at the output of the controlled element, the HO
is forced into using a feedback control strategy as opposed
to tending towards a predominantly feedforward approach
[11]. This is due to the fact that the disturbance cannot be

TABLE I: Multisine target and disturbance functions parameters

Target signal ft Disturbance signal fd

i kt
At

cm
ωt

rad/s
ϕt

rad
kd

Ad

cm
ωd

rad/s
ϕd

rad

1 3 0.731 0.157 4.488 4 0.292 0.209 0.241
2 5 0.731 0.262 5.699 7 0.292 0.367 1.669
3 8 0.731 0.419 1.373 9 0.292 0.471 1.899
4 11 0.731 0.576 5.472 13 0.292 0.681 1.295
5 19 0.731 0.995 1.331 22 0.292 1.152 3.982
6 29 0.731 1.518 5.257 31 0.292 1.623 4.496
7 47 0.073 2.461 5.399 51 0.029 2.670 3.365
8 77 0.073 4.032 3.289 79 0.029 4.136 0.469
9 143 0.073 7.488 2.999 147 0.029 7.697 0.964

10 263 0.073 13.77 5.591 267 0.029 13.98 4.296
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anticipated, and can therefore only be corrected after it has
influenced the position of the state. Throughout this study
the controlled element dynamics are single-integrator with
HCE(jω) = 1.5/(jω).

5) Physical Interface: The HO and HSC both share control
authority of a side-stick, modelled as a mass-spring-damper
system according to Eq. 2, with I = 0.01 kg/m2, b = 0.22
Nms/rad, k = 3.58 Nm/rad and Kstick = 25.4 cm/rad.

Hstick =
Kstick

I(jω)2 + bjω + k
(2)

B. Human Operator Model

To simulate human behaviour in a preview tracking task,
work by Van der El et al. [11] is used to model the HO as
a quasi-linear controller. A key benefit of this model is that
it can capture both pursuit and preview HO control behaviour
using one single framework, illustrated by Fig. 2.

1) Preview: In preview tracking tasks (τp = 1.0s), HOs
effectively track an aiming point τHO seconds into the future
along a low-pass filtered version of the target signal. By
minimising the error between the state and this self-generated
aiming point, HOs are able to cancel out their inherent delays
without additional control effort [17].

Fig. 2: Human operator model [10]

Fig. 2 shows how a low-pass filter HHO
f is applied to a

point f(t+ τHO) along the original target, where τHO is the
look-ahead time. The low-pass filter is defined by Eq. 3 with
gain Kf and time constant Tl,f .

HHO
f (jω) =

Kf

1 + Tl,f (jω)
(3)

For SI CE dynamics, the error between the resulting aiming
point f∗

t,f and the state x is minimised by a gain Ke∗ [20].
Then, HHO

nms−stick models the entire system’s mechanical lim-
itations (stick + neuromuscular) by a second-order filter. HO
time delays are accounted for by HHO

nms−stick in combination
with a pure time shift τv , represented by e−τvjω in the
frequency domain. The second order filter representing lumped
neuromuscular and stick dynamics is given by Eq. 4, with
natural frequency ωnms and damping ratio ζnms.

HHO
nms−stick(jω) =

ω2
nms

(jω)2 + 2ζnmsωnmsjω + ω2
nms

(4)

Since Van der El’s model aims to predict HO control activity
in terms of CE input u(t) as shown in Fig. 2, a simplified
inverse-stick model H−1

stick = k/Kstick is applied to the output
u to determine the underlying torques THO.

The model parameters for a preview HO model are given
by Table. II, with τHO = 0.68s for τp = 1.0s. Preview

information beyond the critical look-ahead time of around
τHO
crit = 0.6 − 0.7s is not used by the HO, since only a

certain amount of look-ahead is needed to cancel out their
lags. Therefore, when a full preview display is used with
τp = 1.0s, the HO’s look-ahead time tends to be approxi-
mately τHO = 0.68s.

2) Pursuit: When the display’s preview time τp is reduced
to zero, the control task reverts to a pursuit tracking task.
This means that τHO = τp = 0, which causes the HO to
adopt a more aggressive control strategy due to the lack of
preview information. This is reflected by the higher gain Ke∗

in Table II for the pursuit model relative to the preview model.
Furthermore, since HOs are unable to filter the upcoming
target in pursuit, Tl,f reduces to 0.01s, essentially making the
low-pass filter inactive.

3) Parameter Settings: Table II shows the settings that
were used to simulate both the HO and HSC. In cases where
the situation changed from pursuit to preview or vice versa,
model settings were switched discontinuously. Finally, for both
pursuit and preview models a remnant n is injected by low
pass filtering white noise at a power of 1 cm2, with a break
frequency of 3.5 rad/s and a gain of Kn = 0.223.

TABLE II: Model and display parameters

τp τHO Tl,f Ke∗ Kf τv ωnms ζnms

[s] [s] [s] [-] [-] [s] [rad/s] [-]

Pursuit 0 0 0.01 2.0 1.0 0.26 10.5 0.35Preview 1.0 0.68 0.2 1.25

C. Four-Design-Choices Haptic Shared Controller

This project makes extensive use of the FDC architecture
[12] to implement a controller that has the best chances of
user acceptance. The structure of the FDC-HSC used in this
study is given in Fig. 3, and consists of two main parts. The
first pertains to the generation of a human compatible reference
(HCR), which can be seen as the controller’s internal model for
how it expects the HO to act. The second part, haptic torque
generation, uses inputs from the HCR to generate a haptic
feedback torque that is then sent to the physical interface. In
this study, Van der El’s model was used to generate the HCR
with the parameters given in Table II, and the FDC gains were
set to KLoHS = 0.6, KSoHF = 0.8, KLoHA = 1.0. The four
design choices are:

1) Human compatible reference (HCR) is the HSC’s
internal model for the HO’s expected behaviour. Based
on the HCR, the HSC determines the reference state xr,
and reference torque Tr.

2) Level of haptic support (LoHS) uses the HCR’s refer-
ence torque Tr to provide open-loop guidance to the user.
Since this type of support is only dependent on the HCR
(and independent of the HO), it is useful to think of this
torque as being ‘suggestive’ rather than corrective.

3) Strength of haptic feedback (SoHF) serves as a cor-
rective torque that minimises the difference between the
reference and state ϵr = xr − x, shown in red in Fig. 3.
This difference is denoted the reference error.
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Human Compatible Reference Haptic Torque Generation

Fig. 3: Four Design Choices HSC [10]

4) Level of haptic authority (LoHA) determines the HSC’s
control authority, i.e., to what extent it is capable of
overriding the HO’s inputs. For the FDC-HSC structure
shown in Fig. 3, the LoHA is tuned by changing the gain
KLoHA.

Previous experiment results have shown that the SoHF
channel is significantly more prone to inducing conflicts than
the LoHS channel [10]. To explain why this is, consider the
reference error ϵr upon which KSoHF acts. The reference error
can be influenced by three key factors:

1) The HO’s remnant, influencing x
2) The disturbance fd(t), influencing x
3) Misaligned or sub-optimal HCR, influencing xr

For factors (1) and (2), activation of the SoHF channel
is actually desirable, since it will suppress effects of the
remnant and disturbance signal, which are both detrimental
to performance. However, for factor (3) it is not desirable
for the SoHF channel to become active, since in this case
the HO’s control strategy is misaligned with the HSC. The
resulting difference in HO-HSC intentions will inevitably
manifest itself in haptic conflicts, with the root cause being the
HCR itself. The solution is to develop methods for identifying
sustained, systematic conflicts that occur as a consequence of
a misaligned HCR, so that the HCR settings can be adjusted.

It is crucial to understand that the SoHF channel can only
ever steer the state towards the reference xr, and that this
happens independently of the target signal. Therefore, any
significant mismatch between the reference state xr and the
target ft will inevitably lead to a reduction in HSC tracking
performance, since the HSC is steering towards a sub-optimal
reference state. For example, if the HCR is setup in such a
way that it lags the target, the only way this can be resolved
is through 1) HO influence, or 2) adaptation of controller
settings. Therefore, an external feedback loop outside of the
FDC-HSC is required for effective HSC adaptation.

Ensuring that the reference state is designed in such a way
that it 1) behaves in a way that is compatible with the HO, and
2) aligns with the target signal, is the primary responsibility
of designers. The goal of the novel controller is to automate
this process in real-time by aligning the reference state with
the HO, both in terms of target signal and control behaviour.

III. HAPTIC TORQUE REJECTION

Given that the goal of the novel controller is to reduce
HO-HSC conflicts by varying the HSC’s look-ahead time,

first an analysis is performed on the effects of varying this
parameter and its influence on HO-HSC conflicts. Thereafter,
a structure is proposed for modelling haptic torque rejection.
The proposed model is validated by comparing its result with
experimental data gathered by Span [10].

A. Effects of Look-ahead Time
Work by Span et. al [10] investigated the effects of vary-

ing the look-ahead time of an FDC-HSC controller with
Van der El’s model as HCR, as shown in Fig. 3. The resulting
experimental data is given in Fig. 4, compared with simula-
tions that assumed no haptic interaction.

Both experimental and simulated results show that when
using a fixed preview display, if the HSC’s look-ahead time
varies significantly from 0.7 − 0.8s, then conflicts increase
and tracking performance decreases. These results correspond
with the HO’s critical preview time as estimated by Van der
El’s model, which predicts that the HO look-ahead time for a
preview display will be around 0.6− 0.7s [17].

The simulation results shown in Fig. 4 were generated
using a model that assumed no direct interaction between
the HO and HSC (inactive dashed line in Fig. 1). This is
equivalent to assuming that both the HO and HSC operate
as if they have their own side-stick, influencing the CE
independently of one another. Despite this approximation, the
model successfully predicts the optimal values of HSC look-
ahead time (τHSC = 0.7−0.8s) in terms of conflict resolution
and tracking performance. It is only when τHSC deviates
substantially from 0.7 − 0.8s that the model underestimates
the magnitude of conflicts, as well as tracking performance.
This suggests that through physical interaction with the side-
stick, HOs are capable of increasing performance at the cost
of conflict.

Fig. 4: Tracking error and conflicts for a FDC-HSC (experi-
mental data taken from [10]), NH refers to ‘non-haptic’

Fig. 5 shows the effect of τHSC on the HSC’s own internal
reference state xr. For τHSC = 1.2s, the reference state leads
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the target signal ft, whereas for τHSC = 0.0s the opposite
happens, causing xr to lag behind the target. These results
clarify why tracking performance gets worse when τHSC

deviates from τHSC = 0.7 − 0.8s. In these cases, the HSC
is steering towards a sub-optimal reference state xr.

Fig. 4 indicates that, in practice, HOs intuitively correct for
the sub-optimal reference state to maximise tracking perfor-
mance at the cost of conflict torques. The experimental data in
Fig. 6 further supports this hypothesis by revealing that when
the reference state xr is aligned with the target ft, conflicts
significantly reduce.

Fig. 5: Effect of HSC look-ahead time on reference state

In the event of a misaligned reference state as shown in
Fig. 5, HO and HSC torques have a tendency to amplify each
other. This is due to the nature of the SoHF channel and how
HOs correct for the HSC’s sub-optimal inputs. As soon as a
HO steers the state away from the misaligned reference, the
reference error ϵr = x− xr increases. As a consequence, the
HSC’s SoHF channel will apply torques to steer the state back
towards the misaligned reference, in the opposite direction
to the HO’s intentions. The more successful the HO is in
correcting for the sub-optimal reference state by minimising
the true error e = ft − x, the more the HSC will try to steer
the state x back towards the reference state xr.

Fig. 6: Measured experiment state, reference state and conflicts
for fixed preview display (τp = 1.0s), data taken from [10]

B. Modelling Rejection Torques

1) Torque Rejection Loop: To account for the discrepancy
between the modelled and experimental data in Fig. 4, an
amendment is made to the structure shown in Fig. 2. By
constructing a torque-rejection loop as shown in Fig. 7, a

rejection torque TR is superimposed onto the nominal torque
THO∗, predicted by Van der El’s model according to Fig. 2
(THO). The goal of this structure is to allow the simulated HO
to cancel out the torques of the HSC, but only under certain
conditions. Note: the rejection torque TR is not to be confused
with the reference torque Tr of the HCR.

Side-stick

HSC

Fig. 7: Torque rejection model

The contents of the rejection block are shown in Fig. 8.
THSC∗ − THO∗ represents the difference between the HO’s
original plan of action, and the HSC forces as felt through hap-
tic feedback. A moving root-mean-square of THSC∗ − THO∗
is calculated using a sliding window of 5s, so that only
sustained differences in intentions will lead to rejection. When
a sustained difference in intentions occurs, a negative gain KR

is used to cancel out the original HSC torques by applying
force in the opposite direction to the HSC’s inputs.

To prevent over-compensation, a saturation limiter is used
to ensure that the rejection gain KR is always between 0 (no
rejection) and -1 (all HSC torques are rejected). The saturated
gain is then multiplied by the original HSC torque and passed
through Hnms (Eq. 4), resulting in the final HO rejection
torque to cancel the HSC’s inputs. In this model the HO is
assumed to have perfect knowledge about HSC inputs through
haptic feedback, i.e., THSC = THSC∗.

x
[0,-1]

Saturation

Fig. 8: Torque rejection loop

2) Haptic Conflicts for a Lagging HSC: The initial effects of
modelling rejection are shown in Fig. 9, where the look-ahead
times are set to τHSC = 0.0s and τHO = 0.6s. For the model
without rejection, the state is situated somewhere between
the misaligned reference and target, causing sub-optimal per-
formance. Furthermore, conflicts are underestimated relative
to experimental data. These two results are consistent with
Fig. 4, and fully explain the observed discrepancy between
experimental and modelled data.

By accounting for HO rejection of HSC torques, the simu-
lated HO and HSC torques both become larger in magnitude,
due to their tendency to amplify each other. Furthermore, the
simulated state tracks the target more closely. By using the
rejection model, the simulated torques and state correspond
much better to measured experimental data than the original
model, as shown in Fig. 9.

3) Haptic Conflicts for a Leading HSC: Fig. 10 shows the
difference between the two models for τHSC = 1.2s. Although
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the HO torques between the models are roughly the same
in magnitude, both undershoot the experimental data. This is
why the variance accounted for becomes negative as shown
in Fig. 13: the difference between the modelled torques and
experimental data is large relative to the magnitude of the
modelled signals themselves.

Fig. 9: Effects of rejection loop on modelled state, reference
state, and torques (τHSC = 0.0s, τHO = 0.6s, τp = 1.0s,
Kn = 0, KR = −4), experimental data taken from [10]

Comparing Fig. 10 with Fig. 9 shows that for τHSC =
0, HO rejection is more pronounced than for τHSC = 1.2s,
suggesting that it is easier for HOs to reject a lagging HSC
(τHSC = 0), compared to a leading HSC (τHSC = 1.2s). This
is further supported by the tracking error, for τHSC = 0 the
average error is RMSe = 0.278cm, whereas for τHSC = 1.2s
the error is RMSe = 0.319cm. Because HOs reject the HSC
more strongly when it is lagging, this also leads to a higher
quality-of-fit as shown in Fig. 13.

Fig. 10: Effects of rejection loop on modelled state, reference
state, and torques (τHSC = 1.2s, τHO = 0.6s, τp = 1.0s,
Kn = 0, KR = −4), experimental data taken from [10]

4) Comparing Models: Fig. 11 again shows the match
between experimental and simulated results, now using the
rejection loop with KR = −4 and a 5s moving RMS window.
For all settings of τHSC , both the average error and conflict

match experimental data better, or similar to the original model
(no rejection). The remnant gain for the original model is
Kn = 0.223, whereas for the rejection model it reduces
to Kn = 0.169. This effectively means that a portion of
the remnant (assumed to be entirely arbitrary) has now been
explained, hence reducing its contribution.

Fig. 11: FDC-HSC tracking error and conflicts (rejection-loop
model), experimental data taken from [10]

The Variance Accounted For (VAF) is used to determine a
model’s quality-of-fit, and is calculated according to:

VAF =

(
1−

∑N
k=1 |x(k)− x̂(k)|2∑N

k=1 x̂
2(k)

)
× 100% (5)

Fig. 12 shows the VAF of the state x, both for the rejection
model and the original. The experimental data consisted of
a total of 270 experiment runs of 120s, performed by 10
subjects. The rejection model’s quality of fit is either similar
or slightly better than the model without rejection. The only
significant difference is for τHSC = 0, where the VAF of the
rejection model is slightly higher.

Fig. 12: VAF for state (N = 9× 3× 10, KR = −4, 0)

Fig. 13 further investigates how well the models are able
to capture the underlying HO torques and control activity.
For τHSC > 0.8s the VAF becomes negative, indicating that
the variance of the mismatch is higher than the variance of
the modelled signal. For these settings both models fall short
and are unable to fully capture the dynamics of HO-HSC
interaction.

Between τHSC = 0.3− 0.8s both models perform roughly
the same. However, for τHSC = 0 the rejection model’s VAF
is 79%, which is significantly higher than the original model’s
38% quality-of-fit for τHSC = 0.

The takeaway is that both models are capable of adequately
predicting the state x, but are less suited for modelling specific
HO torques when τHSC > 0.8s. This suggests that HO’s use
an unknown strategy when it comes to HSC’s with a higher
look-ahead time than their own.
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Fig. 13: VAF for HO torques (N = 9× 3× 10, KR = −4, 0)

IV. CONTROLLER DESIGN

This section describes the methodology behind the design
of the adaptive haptic shared controller. The fundamental
hypothesis is that conflicts can be solved by aligning the
controller’s reference state with the intentions of the human. If
there is a difference in intentions between the HO and HSC,
it is assumed that the HO will always attempt to override
the HSC’s influence by countering its torques. By analysing
differences between the reference state and the actual state,
the look-ahead time can be adjusted accordingly. If x and xr

are in alignment, then the assumption is that the HO agrees
with the inputs of the HSC. By designing the controller in
this way, the root cause of conflicts is addressed head-on,
hence circumventing the need for conflict metrics and thereby
avoiding false positives (factors 1 & 2 in Section II-C).

A. Adapting Look-ahead Time

Fig. 14 shows the structure of the novel controller. The same
FDC-HSC structure from Span et. al is retained, except that
now its look-ahead time varies according to the ‘adaptive X-
corr’ block. Taking x and xr as inputs, this block determines
what adaptive look-ahead time, τHSC

a ,the FDC-HSC should
use. From this point forwards τHSC

a refers to the look-ahead
time used by an adaptive HSC, whereas τHSC

f refers to a fixed
HSC look-ahead time.

At each instant there are only three possibilities for adap-
tation: (1) τHSC

a should stay constant, (2) τHSC
a should

increase, (3) τHSC
a should decrease. If x and xr are in

alignment, then no conflicts are expected, hence condition (1)
applies. Alternatively, if the reference state xr lags behind the
actual state x as shown in Fig. 5 (τHSC

f = 0.0s), then this
indicates that the look-ahead should be increased. By analogy,
the look-ahead time should decrease when xr leads x.

To know in which direction to adapt τHSC
a , the phase shift

between xr and x is used to measure lead or lag between the
two signals. To this end, cross-correlation is used to estimate
the similarity between the two signals as a function of varying
relative time shift. This is illustrated by Fig. 15, which expands
the ‘adaptive X-corr’ block of Fig. 14.

To estimate the time shift between x and xr at each
instant, two rectangular windows are used to store the last
7 seconds of data for the two signals (Tb = 7s). The cross
correlation between the windowed signals, Kxxr (ζ), is then
computed as a function of time shift ζ. The estimated time shift
corresponding to the maximum cross-correlation is denoted τm
according to Eq. 6.

ζm = argmax
ζ

[Kxxr (ζ)] (6)

In turn, ζm is used to drive changes in adaptive look-ahead
time, ∆τHSC

a . This is based on the principle that if there is
a sustained, non-zero time shift between x and xr, then the
look-ahead time should either be increased or decreased.

A positive time shift ζm corresponds to xr lagging x, which
means that the HSC’s look-ahead time should be increased by
a positive ∆τHSC

a . Therefore, changes to the HSC’s look-
ahead time ∆τHSC

a are defined to be proportional to the
measured time shift, ζm. The gain Ka controls the rate of
adaptation and determines the magnitude of ∆τa for a given
time shift. The larger Ka, the faster the look-ahead time will
be updated.

FDC-HSC

Side 
-stick

Adaptive 
X-corr

CE

HO

Fig. 14: X-corr adaptive haptic shared controller

Note that the rate at which τHSC
a is updated by ∆τHSC

a is
directly proportional to the adaptation speed. This is because
for a constant time-shift, if τHSC

a is updated by τ∆HSC
a twice

as often, then the final adaptive look-ahead time will change
twice as fast. For this study, Ka = 0.002 and the update rate
is 100 Hz.

Buffer

Buffer X-corr

Fig. 15: Adaptive X-corr block

Fig. 16 shows the simulation results for a single run, during
which the HO model was set to discontinuously switch from
pursuit to preview according to the parameters in Table II. As
a consequence of varying HO behaviour, the look-ahead time
of the HSC adapts from τa = 0s to τa = 0.64s by the end
of the run. Note how adaptation is delayed by approximately
seven seconds after t = 50s, which is due to the buffer length.

To mitigate the risk of the algorithm adapting its look-ahead
time in situations where no clear time shift can be measured,
a minimum threshold for correlation is set at Kxxr

> 0.26.
This ensures that adaptation will only take place if a time shift
between x and xr can be measured reliably. The downside
of this approach is that adaptation might unnecessarily be
hindered, causing stagnation as seen around t = 68s in
Fig. 16.
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Fig. 16: Simulated X-corr adaptive look-ahead time, cross-
correlation peak, time shift, state and reference state
(Ka = 0.002,KR = −4, Kn = 0.223, Kxxr > 0.26, Tb = 7s,
τHO = 0s (t < 50), τHO = 0.68s (t > 50))

B. Adapting Tl,f and Ke∗

Because the low-pass filter Tl,f and gain Ke∗ both sig-
nificantly vary between pursuit and preview situations, it is
important that changes to these parameters are also accounted
for during adaptation. This is done by varying the contributions
of the models given in Table II according to complementary
sigmoid functions, as shown in Fig. 17. The preview model
gain Kprev is given by Eq. 7 as a function of the adap-
tive look-ahead time, the pursuit model gain is defined by
Kpurs = 1−Kprev .

Kprev =
1

1 + exp(−33 · (τHSC
a − 0.186))

(7)

Fig. 17: Model contributions

Fig. 18 shows the results of simulating a HSC that dy-
namically varies THSC

lf,f and KHSC
e∗ , compared with fixed

HSCs with pursuit (PS) and preview (PR) settings according
to Table II. For t < 50s a PS-HO model was used with
τHO = 0s, after t > 50s the HO model switched to PR with
τHO = 0.68s.

If τHSC
a is adapted whilst keeping the other HSC parameters

at their PR values (‘Fixed preview’), then τHSC
a tends to

be overestimated as shown in Fig. 18. This is due to the
fact that the adaptive controller is compensating for the lag
introduced by its own low-pass filter and low gain. As a result,

for fixed PR parameters, the adaptive algorithm converges to
τHSC
a = 0.25s during PS.

Fig. 18: Simulated effects of Tl,f and Ke∗ adaptation
(KR = −4, Kn = 0, Kxxr

> 0.26, Tb = 7s,
τHO = 0s (t < 50), τHO = 0.68s (t > 50))

For fixed PS parameters (‘Fixed pursuit’) the opposite
happens, as the adaptive controller now requires less lead
compensation through look-ahead time. This is due to the
fact that the HSC’s low-pass filter is now essentially inac-
tive (THSC

l,f = 0.01s), in addition to the HSC using a more
aggressive control strategy (KHSC

e∗ = 2.0). As a result, look-
ahead time stagnates prematurely around τa = 0.291s after
transition from PS to PR.

V. CONTROLLER SIMULATIONS

This section briefly evaluates the results of Monte Carlo
simulations designed to test the novel structure under varying
conditions. First, the general distribution of the adaptive look-
ahead time is analysed for random remnant seeds. This is to
confirm that the adaptive HSC will converge to approximately
the same look-ahead time for HOs with varying remnants.
Thereafter, the effects of adaptation gain are considered to
gauge how sensitive results are to changes in Ka. Finally, the
influence of rejection is assessed, to determine if HO rejection
of HSC torques could significantly affect adaptation.

A. Distribution

Fig. 19 shows the distribution of 2 × 48 runs for three
different forcing function realizations with random remnant
seeds. At t = 50s the HO model discontinuously switches
from PS to PR, or vice versa, according to Table II. For PS
to PR the maximum spread is encountered at t = 80s, where
the look-ahead time ranges between τHSC

a = 0.12 − 0.66s
across all realizations. By the end of the run all adaptive look-
ahead times converge around a mean of τa = 0.64s between
τHSC
a = 0.55− 0.82s.
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Fig. 19: Simulated adaptive look-ahead time (N = 2 × 48,
Tb = 7s, KR=-4, Kn = 0.169, Kxxr

> 0.26, Ka = 0.002)

For PR to PS the maximum variance is also encountered
at t = 80s, with τHSC

a = 0.28 − 0.71s around a mean of
τHSC
a = 0.61s. By t = 128s all runs to converge around a

mean of τa = 0.50s between 0.38− 0.57s.
The asymmetry between PS-PR and PR-PS may be at-

tributed to how the pursuit model acts upon the error. Once
the HO model has switched to PS, the only option it has is to
minimise the current difference between the target ft and the
state x (no preview). Just after t = 50s, the adaptive controller
still retains its relatively high look-ahead time. As a result, the
HSC will outperform the HO in terms of reaction time and
will always ‘get there first’ in terms of minimising the error.
Since this aligns with strategy of the HO model, there is less
incentive on the part of the HO to influence the state, which
would cause deviations from xr (and adaptation).

The adaptation that does still occur in the PR-PS case in
Fig. 19 is likely the result of rejection torques (KR = −4),
which explicitly superimpose conflict forces to cancel out
effects of the HSC. This may cause the HO model to become
‘surprised’ when the HSC proposes torques that do not (yet)
align with its own actions, hence causing it to reject the HSC’s
input according to the structure laid out in Fig. 8. However, in
practice, it is likely that HOs will recognise that HSC torques
can be trusted to benefit tracking performance, since the HSC
will be reacting faster than the HO. Trusting the HSC equates
to complying with HSC torques, even though they may be
unexpected (relative to the HO’s own, slower control efforts).

B. Adaptation Gain

Fig. 20 shows the effects of increasing the adaptation gain.
Note that each line represents the averaged mean of 16 real-
izations, with higher Ka values resulting in faster adaptation.
For PS to PR, Fig. 20 suggests that the adaptation gain has
a significant effect on the final mean, with higher adaptation
gains resulting in not only faster convergence, but also higher
adaptive look-ahead times (τHSC

a ). The same trends apply

going from PR to PS, where larger values for Ka result in
larger τHSC

a deviations from the initial adaptive look-ahead
time.

Fig. 20: Simulated effect of adaptation gain (N = 2× 5× 16,
KR = −4, Kn = 0.223, Kxxr

> 0.26)

C. Rejection

Fig. 21 shows the effect of increasing the magnitude of
the rejection gain described in Section III. Going from PS
to PR, increasing the rejection gain of the HO model has
little effect, aside from a marginal improvement in adaptation
speed. For the reverse condition, PR to PS, rejection plays a
much larger role. Fig. 21 shows that after transition, τHSC

a

stays approximately constant when rejection is low (KR = 0).
This is because the HO model is mostly complying with HSC
torques, such that look-ahead adaptation does not take place.
For KR = −8, the adaptive look-ahead time significantly re-
duces from τHSC

a = 0.60s before transition, to τHSC
a = 0.27

after transition.

Fig. 21: Simulated effect of rejection gain (N = 2 × 5 × 16,
Ka = 0.002, Kn = 0.223, Kxxr > 0.26)

VI. HUMAN IN-THE-LOOP EXPERIMENT

In this section the experiment methodology and hypotheses
are described. Sixteen right-handed subjects, aged 23-52 years
old, were invited to participate in the tracking task laid out
in Section II. The goal of the experiment is to evaluate
the adaptive controller by using two fixed FDC-HSC’s as a
benchmark.

A. Experiment Design

1) Apparatus: The experiment was performed at the Human-
Machine Interface Lab, located within the faculty of Aerospace
Engineering at the Deft University of Technology. The re-
search and experiment was approved by the TU Delft Human
Ethics Research Committee. A 36 × 29.5 cm display with
a resolution of 1280 × 1024 pixels was used to show one
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second of preview information, updated at a 100 Hz refresh
rate. A right-handed electro-hydraulic servo-controlled side-
stick was used to perform the task and provide haptic force-
feedback, updated at 2, 500 Hz. Only the roll axis of the
stick had freedom of movement, its parameters are defined
in Section II-A.

2) Controllers: Two independent variables are varied be-
tween conditions: (1) type of HSC, and (2) display settings.
For the first, three types of HSC’s are tested: a fixed FDC-HSC
configured for full preview (F6), a fixed FDC-HSC configured
for pursuit (F0), and the novel adaptive controller (A-HSC).
In addition to the three HSCs, two non-haptic (NH) conditions
are also performed for reference.

The settings for the fixed HSCs are given in Table II. For
the A-HSC, a buffer time of Tb = 7s was used, its update
rate was f∆ = 100 Hz, its gain was Ka = 0.002, and
Tl,f , Ke∗ were dynamically adjusted according to Fig. 18. The
remaining HCR parameters were set according to Table II.
Finally, the initial pursuit and preview adaptive look-ahead
times were 0.0s and 0.6s, respectively.

3) Display: In terms of display settings, each condition went
from pursuit (PS, τp = 0s) to preview (PR, τp = 1.0s), or vice
versa, at t = 50s. It is important to note that the HSC is not
subject to this limitation, e.g., a HSC could have a look-ahead
time of τHSC = 0.6s when the HO is in pursuit. For example,
when using F6, the HSC will inevitably have a higher look-
ahead time than the HO for approximately half of the run
(during PS).

4) Training: Each participant was offered a set of minimum
three training runs, starting without haptic feedback to get
acquainted with the control task. The other two training
conditions consisted of at least one run of each fixed-controller
type. After a training run with haptic feedback, subjects were
asked to fill in a Van der Laan questionnaire [21], so that they
could establish a personal subjective baseline for evaluating
HSCs during the subsequent conditions. Throughout training
runs, the preview time was kept constant at τp = 1.0s, hereby
ensuring subjects experienced what it was like to conflict with
F0 before measurements were taken.

5) Conditions: Each of the three HSCs was tested in two
situations: PS-PR and PR-PS. In addition to two NH condi-
tions (PS-PR + PR-PS), a total of eight experiment conditions
were tested per subject. Each condition consisted of four runs
lasting 128 seconds each, discarding the first 8 seconds of each
run. The first run of each condition was discarded to mitigate
learning effects, the remaining three runs used three different
forcing function realizations.

6) Method: After each haptic condition, participants were
asked to rate their subjective experience of the HSC by filling
in a Van der Laan questionnaire. During non-haptic conditions,
the same cross-correlation algorithm was used to calculate τa
in the background, without applying any haptic feedback.

Three metrics were chosen to evaluate each condition: track-
ing error, conflicts, and control activity. Before transition at
t = 50s, the root-mean-square (RMS) was calculated per run
between t = 18−48s for each metric. After transition the RMS
was taken between t = 98−128s, to avoid measuring transient
effects while the A-HSC is still adapting. A distinction is

made between preview before transition (PR1) and preview
after transition (PR2), mutatis mutandis for pursuit.

To aggregate and compare pairwise results, first a Shaprio-
Wilk normality test was performed on the given metrics.
Thereafter, an F-test was applied to investigate the significance
of pairwise variances. Depending on the result of the F-test,
either a standard t-test was performed or Welch’s t-test.

B. Hypotheses

The experiment aims to test six hypotheses:
H.I Tracking performance and conflicts will be better for the

A-HSC compared to F0.
Previous results shown in Fig. 4 indicate that HSCs with
τHSC < 0.5s cause conflict and reduce performance.

H.II Tracking performance and conflicts will be similar for the
A-HSC compared to F6.
Because the F6 HSC will be able to react faster than the
HO in pursuit, F6 is expected to score higher or equal to
the adaptive HSC in terms of error and conflicts.

H.III The adaptive look-ahead time will increase from 0.0s to
0.6− 0.8s for the A-HSC (PS-PR).
The adaptive HSC is designed to adjust itself according to
the HO’s look-ahead time, which is expected to increase.

H.IV The adaptive look-ahead time will stay constant at 0.6−
0.8s for the A-HSC (PR-PS).
Results in Fig. 21 indicate that if the HO decides to trust
the HO and comply with its inputs, then the adaptive HSC
won’t be influenced by changes in the state.

H.V The estimated adaptive look-ahead time for NH (PS-PR)
will increase from 0.0s to 0.6− 0.8s throughout runs.
In the non-haptic condition, the adaptive look-ahead time
is expected to be an estimate of τHO.

H.VI The estimated adaptive look-ahead time for NH (PR-PS)
will decrease from 0.6− 0.8s to 0.0s throughout runs.
Because the HSC is no longer providing haptic feedback,
the measured adaptive look-ahead time is expected to
reduce relative to the A-HSC (PR-PS), reflecting τHO.

VII. EXPERIMENT RESULTS

This section lays out the results of the experiment: aggregate
results, control activity, look-ahead adaptation, and subjective
results.

A. Aggregate Results

Fig. 22 compares the distribution of the RMS for each of
the three metrics before and after transition.

1) Tracking Performance: For each of the three HSCs, the
mean error RMSe is smaller than the corresponding mean
error in the non-haptic case, shown by dashed blue lines in
Fig. 22. The F6 HSC scores the highest in terms of tracking
performance, with the error for F6 PS being approximately
equal to the NH error in PR. F0 results in the worst tracking
performance out of the three HSCs, although still providing a
marginal improvement in error relative to NH.

For PR1-PS2, the A-HSC yields similar tracking perfor-
mance to F6, whereas for PS1-PR2 the tracking performance
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Fig. 22: Root-mean-square for tracking performance, haptic conflict, and control activity for pursuit and preview per condition

of the A-HSC is worse, and therefore closer to F0. This
indicates a certain asymmetry: when the look-ahead time
increases, the tracking performance of the A-HSC tends to
more in line with F0, whereas when the look-ahead time
decreases the A-HSC yields similar performance for F6.

2) Conflicts: Fig. 22 shows that F0 results in significantly
more haptic conflict compared to the other two HSCs, hereby
performing the worst out of the three. The A-HSC results in
similar levels of conflict compared to F6, although the variance
of conflict is higher for PR2. The minimum conflict recorded
during the experiment occurred during PR1 for the A-HSC. In
this case the median conflict RMS was RMS∆T = 0.068 Nm
for the A-HSC, whereas for F6 it was 0.084 Nm.

3) Control activity: The last row of Fig. 22 shows that
HO control activity is highest for F0, which is a result of
increased conflict. For all three HSCs, going from PR1 to PS2
consistently leads to a reduction in HO control activity. The
opposite happens in the NH condition when going from PR1
to PS2, where HO control activity tends to increase when
HOs perform the control task on their own. This indicates
that HOs tend to become more passive going from PR to PS,
corresponding with increased HSC control activity between
PR1 and PS2 for the A-HSC and F6.

Going from PS1 to PR2, on average, HO activity either stays
constant (A-HSC) or increases (F0, F6), whereas in the NH
condition HO control activity reduces. This is approximately
the opposite of what occurred for PR1-PS2, which is due to
the fact that the display settings have simply been switched
(pursuit to preview vs. preview to pursuit).

4) Statistical Tests: Table III shows the results of the statis-
tical tests corresponding with Fig. 22, comparing the A-HSC
with the other two HSCs. Less significant differences were
found between A and F6 than were found when comparing
A F0. For A-F0, 11/16 highly significant differences were
found across all metrics, whereas for A-F6 only 7/16 highly
significant differences were found. This corresponds to the fact

that, by and large, A and F6 show more similarities in Fig. 22
than A and F0 do. This is primarily because of the significant
amount of conflict caused by F0.

Furthermore, Table III shows that A and F0 are least
different during PS1, relative to the other three cases. In fact,
PS1 is the only case for which the differences between A-F6
are more significant than they are for A-F0 as shown in Table
III. This is because both the A-HSC and F0 happen to be
using a similar look-ahead time for PS1, as is discussed in
Section VII-C.

TABLE III: Statistical test results for A-F0, A-F6

* indicates significant (p < 0.05),
** indicates highly significant (p < 0.001)

A-F0 A-F6
PR1 PS2 PS1 PR2 PR1 PS2 PS1 PR2

RMSTHO
**,W **,W *,W **,t **,W *,W *,t -,W

RMSTHSC
**,t **,W -, **,t **,t **,t **,t **,W

RMS∆T **,W -,W *,t **,W *,t *,t -,W -,W
RMSe **,W **,t *,t **,t *,t *,W **,W **,W

B. Control Activity

Fig. 23 shows how control activity, haptic conflict, and
tracking performance evolve throughout haptic conditions. The
moving average (MA) of the RMS was calculated for each
metric using a 10-second sliding window, and then averaged
across all runs. The use of a MA allows underlying trends
to be revealed, which are less dependent on high-frequency
content of the target signal.

1) Tracking Performance: Fig. 23 shows that in terms
of error during PR-PS, the A-HSC scores similarly to F6,
corresponding to results shown in Fig. 22. For PS-PR the
tracking error for the A-HSC is in line with F0, which is due
to the initial settings of the HSC (τHSC

a = 0). This can also
be seen in Fig. 22. During PR2 the tracking error reduces for
all three HSCs. However, although tracking performance for
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the A-HSC is initially similar to F0, after transition it tends
more towards F6. This is a consequence of adaptation taking
place in the A-HSC.

Fig. 23: Moving averages (MA) of root-mean-square for
tracking performance, haptic conflict, and HO control activity

2) Conflicts: For PR-PS, Fig. 23 shows that the A-HSC per-
forms slightly better than F6 in terms of conflicts during PR1.
After transition to PS2, all three HSCs result in approximately
the same amount of conflict. This is a remarkable finding,
given that tracking performance is significantly different be-
tween F0 and F6, and at least two of the HSCs (F0 and F6) are
using different look-ahead times. This result provides further
evidence that HOs adapt their compliance to HSC torques
depending on if the HSC is positively contributing to tracking
performance.

For PS-PR a brief period of conflict occurs after transition
for the A-HSC, tending towards the baseline level of conflict
set by F6. Out of all three HSCs, F6 is the only controller
for which the amount of HO-HSC conflict remained invariant
throughout the experiment conditions.

3) HO Control Activity: Fig. 23 shows that the HO was least
active for the A-HSC during PR-PS. Furthermore, for all three
HSCs, HO control activity reduced after transitioning from
PR to PS. This corresponds to an earlier finding as shown
in Fig. 22, and discussed in Section VII-A, suggesting that
HOs become passive when going from PR to PS under the
influence of haptic feedback. For PS to PR, control activity
of the A-HSC increases due to the conflict, but then tends
towards F6 as adaptation takes place.

4) Adaptive HSC Statistical Tests: Table IV shows the
statistical test results pertaining only to the A-HSC. Two types
of pairwise tests are performed: 1) within-run pairwise com-
parison (e.g., PS-PR), and 2) between-run pairwise comparison
(e.g., PS1 with PS2).

For the within-run tests, the only pairwise comparison that
had no significance was RMSTHO

, going from PS to PR.

A hypothesis for this is that since the A-HSC consistently
aligns itself with the HO’s behaviour, the HO’s contributions
remained approximately constant. For PR-PS a significant
effect was found for RMSTHO

, with Fig. 22 showing a
reduction in HO control activity. This is due to the A-HSC
operating with a higher look-ahead time than the HO, as
described in Section VII-C.

TABLE IV: Statistical test results for A-HSC

* indicates significant (p < 0.05),
** indicates highly significant (p < 0.001)

PR-PS PS-PR PS1-PS2 PR1-PR2
RMSTHO

**,t -,t **,W **,W
RMSTHSC

**,t **,t **,t -,t
RMS∆T **,t *,t -,W **,W
RMSe **,W **,t **,t **,t

For the between-run comparison, no significant difference
was found between the pursuit cases for RMS∆T , even though
it is known that in PS2 the HO tends to reduce their control
activity. This simply means that the level of conflict for a
complying HO in PS2 (τHSC

a > 0.6s) happens to be similar
to the level of conflict in PS1 (τHSC

a = 0s). Furthermore, for
PR1-PR2, no significant effect is observed for THSC , indicat-
ing that the level of control activity during PR is approximately
the same regardless of the order of pursuit/preview.

C. Look-Ahead Adaptation

Fig. 24 shows the adaptive look-ahead time τHSC
a for the

A-HSC and NH conditions, PS to PR. With the A-HSC active
in-the-loop, the mean look-ahead time across all subjects
increases from τa = 0.08s just before transition, to τa = 0.70
by the end of the condition. The maximum variance occurs
at t = 80s as predicted by simulations, the 25th and 75th
percentile equal q25, q75= 0.25 − 0.58s, respectively. At the
end of the condition q25, q75 = 0.660− 0.780s.

Fig. 24: Experiment adaptive look-ahead time (PS-PR)

For NH the mean just before transition equals τa = 0.09s,
increasing to 0.73s by the end of the condition. At t = 80s,
the mean look-ahead time is τa = 0.64s and q25, q75 = 0.39−
0.76s. By the end of the condition the 25th and 27th percentile
become q25, q75 = 0.69− 0.77s.
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Fig. 25: Experiment adaptive look-ahead time (PR-PS)

Fig. 25 shows the adaptive look-ahead time for the A-HSC
and NH conditions, now PR to PS. For the A-HSC the mean
look-ahead time marginally decreases from τa = 0.72s just
before transition, to τa = 0.65s by t = 128s. The variance
is approximately equal throughout the condition, with q75 −
q25 = 0.09s. For NH the mean just before transition equals
τa = 0.71s, decreasing to 0.47s by t = 128s. At the end of
the run q25, q75 = 0.42− 0.52s.

D. Subjective Results

Fig. 26 shows the subjective results gathered from the Van
der Laan questionnaires. It shows that the worst performing
HSC in terms of subjective experience is the fixed HSC with
pursuit settings. The results of the corresponding statistical
tests are listed in Table V, showing that the F0 does indeed
score significantly worse than the A-HSC. Comparing A-F6,
no significant difference was found between the subjective
ratings. These findings align with results summarised in Table
III, and shown in Fig. 22, where A-F6 are found to be more
similar than A-F0. Finally, no significant effect was observed
between the two conditions for the A-HSC (PS-PR vs. PR-PS).

Fig. 26: Subjective results

TABLE V: Statistical test results for subjective ratings

* indicates significant (p < 0.05), t indicates a normal t-test,
W indicates Welch’s t-test, note: 6/16 forms were lost

A-A A-F0 A-F6
PS-PR vs PR-PS PS-PR PR-PS PS-PR PR-PS

Usefulness -,W *,t *,W -,t -,t
Satisfacation -,W *,t *,W -,t -,t

VIII. DISCUSSION

The goal of this research was to design and implement
an adaptive haptic shared controller (A-HSC) capable of
adjusting its look-ahead time according to time-variant human
behaviour. To this end, the A-HSC was tested alongside
traditional fixed HSCs with constant parameter settings.

1) Hypotheses: H.I states that ‘tracking performance and
conflicts will improve when comparing the A-HSC to F0’.
Table III shows that in 3/4 cases conflict was found to have
significantly reduced, and that in 4/4 cases error significantly
reduced. Therefore, H.I is accepted.

H.II posits that ‘tracking performance and conflicts will
be similar for the A-HSC compared to F6’. In 2/4 cases no
significant difference was found in conflict between the two
controllers (A-F6). In terms of average error, all 4/4 cases
were found to be significantly different. In 2/4 cases the
average error was smaller for the A-HSC. Since the overall
differences in error and conflict are small relative to A-F0,
H.II is accepted.

H.III claims that ‘the adaptive look-ahead time will increase
from 0s to 0.6 − 0.8s for the A-HSC (PS-PR)’. On average
the adaptive look-ahead increased from 0.08s to 0.70s with
confidence intervals of q10, q90 = 0.02− 0.22s and q10, q90 =
0.55− 0.84s, respectively. Therefore, H.III is accepted.

H.IV claims that ‘the adaptive look-ahead time will stay
constant at 0.6− 0.8s for the A-HSC (PR-PS)’. Results show
that during the experiment the look-ahead time remained
bounded between q10, q90 = 0.60−0.77s for the A-HSC (PR-
PS), therefore, H.IV is accepted.

H.V expects that ‘the estimated adaptive look-ahead time
for NH (PS-PR) will increase from 0s to 0.6−0.8s throughout
runs’. Fig. 24 shows that for NH (PS-PR), τa increased from
0.09s to 0.73s with confidence intervals of q10, q20 = 0.01−
0.42s and q10, q20 = 0.66 − 0.80s, respectively. Therefore,
H.V is accepted.

Finally, H.VI states that ‘the estimated adaptive look-ahead
time for NH (PR-PS) will decrease from 0.6 − 0.8s to 0s
throughout runs’. Although a decrease in adaptive look-ahead
time was measured from τa = 0.71s to 0.47s, a larger
difference was expected, such that the HO’s actual look-ahead
time (0s in PS) would be reflected by the end of the run.
Therefore, H.VI is rejected. This effect is likely due to the
minimum threshold that was set for Kxxr

, as discussed in
Section IV-A.

2) Trust and Acceptance: The HO became significantly
more passive going from preview to pursuit than vice versa,
as shown in Fig. 23. For all three HSCs, HO control activity
reduced going from PR to PS. Some participants reported that,
although the F6 HSC was comfortable and trustworthy, it also
led to complacency and inattentiveness in pursuit situations.
This is likely due to the fact that the HSC was operating with
more information than was available to the HO. Furthermore,
it was observed that under no circumstance was there sustained
conflict with the F6 HSC.

Despite the A-HSC having similar subjective ratings as F6,
Fig. 23 shows a period of brief haptic conflict after transition
for PS-PR. Furthermore, the error of the A-HSC during PS1
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was significantly larger (RMSe ≈ 0.33cm) relative to F6
(RMSe ≈ 0.20cm). Remarkably, despite experiencing these
drawbacks, on average subjects rated the adaptive and F6
HSCs similarly. This indicates that by successfully adapting
to the HOs intentions, some of the A-HSC’s drawbacks are
negated and overall acceptance is still possible.

3) Recommendations: As a result of this study, new oppor-
tunities emerge for the development of adaptive haptic shared
controllers. The first step would be to explore possible avenues
for optimising the design laid out in this paper. Since this study
endeavoured to test an entirely novel design, the A-HSC’s
settings were set to be conservative in terms of adaptation
speed, favouring robustness instead. It is therefore likely that
the buffer size could further be reduced without sacrificing
stability, which would minimise delays related to the use of
a sliding window. Furthermore, the adaptation speed could
be improved by increasing Ka, in addition to removing the
minimum threshold for Kxxr : this protection was found to be
redundant, except under highly exceptional circumstances.

Looking further ahead, the next steps for this research are to
expand the application of the proposed novel A-HSC towards
control tasks that more closely resemble car driving. In order
to achieve this, the same steps outlined by Van der El [16] can
be used to move away from pure preview tracking, and closer
to real-life car driving. This could include the incorporation of
1) a linear perspective, 2) motion feedback, 3) multiple visual
feedback cues (e.g., sky and winding road), and 4) boundary
avoidance [22–25]. Additionally, the effect of using second
order controlled element dynamics should be investigated, as
these dynamics will more closely resemble car driving. These
steps could pave the way for the use of adaptive HSCs in
real-life car driving, hereby improving both the safety and
ease-of-use of advanced driver assistance systems.

As the experiment conditions are refined to more closely
reflect real car-driving, HO behaviour is expected to become
more complex. This will further complicate the design of an
adaptive controller, since it is likely that only adapting a single
parameter in an otherwise fixed controller structure will not
suffice. Despite these challenges, the results of this paper show
that, in principle, reliable methods exist for adapting look-
ahead time. Given the importance of look-ahead time and its
impact on HO control behaviour, the results of this paper can
be considered a successful step towards adaptive HSCs for
car-driving.

IX. CONCLUSION

In this paper, a novel design for an adaptive haptic shared
controller (A-HSC) is designed and implemented. A human-
in-the-loop tracking task was performed, during which the
display’s preview time transitioned from pursuit to preview,
or vice versa, at 50 seconds after the start of each run.
Going from pursuit to preview, the look-ahead time of the
A-HSC increased from 0.08 to 0.70s, resulting in a reduction
of haptic conflicts and an increase in tracking performance.
For preview to pursuit, subjects’ control activity reduced,
and the look-ahead time of the A-HSC stayed approximately
constant between 0.6−0.8s. Because the A-HSC had a higher

look-ahead time than the subjects at the point of transition,
participants reported complying with the HSCs inputs, hereby
preventing further adaptation. In terms of subjective rating, the
A-HSC scored equally well compared to a fixed preview HSC,
despite a brief period of conflict during adaptation, as well
as lower tracking performance during pursuit-to-preview. This
paper demonstrates the implementation of an adaptive haptic
shared controller that adjusts its look-ahead time according to
the human it shares control with. The adaptive look-ahead
algorithm can be used to determine an online estimate of
human look-ahead time during preview tracking tasks, with
or without haptic support.
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Summary

With the advent of self-driving cars, new types of human-machine interfaces are emerging to support

drivers in terms of performance, safety, and workload [1, 2]. Even though it may be attractive to replace

humans in tasks such as driving vehicles, hidden dangers such as over-reliance and loss of situation

awareness prove that full automation comes at a cost [3]. A promising solution to these challenges are

haptic shared controllers (HSCs), a form of automation that offers to combine the benefits of machines

with the strengths of human operators (HOs), whilst simultaneously offsetting risks related to complacency

and over-reliance [4, 5].

Work by Span proved that by configuring a haptic shared controller to mimic human behaviour through a

cybernetic model, the risk of conflicts is reduced and tracking performance increases [6]. However, in reality

the real strength of humans lies in their versatility in adapting to changing circumstances such as weather,

which is often the reason why they are kept in the control loop [7]. In such conditions a time-invariant HSC

with a fixed structure may become obsolete, since it cannot adapt to the varying behaviour of the HO who

it is trying to assist.

This report aims to propose a structure for an adaptive HSC which is capable of dynamically adjusting its

settings in real-time to reduce conflicts between a HO. To this end, three novel controllers are proposed,

each designed to adjust the look-ahead time of a Four-Design-Choices (FDC) HSC with the goal of

minimising conflict torques between the HO and HSC. Simulations show that each of the three adaptive

controllers is capable of adjusting its look-ahead time as a consequence of adapting to time-variant human

behaviour.

Furthermore, system identification is performed on previously gathered experiment data to evaluate if

individual differences can be captured, potentially increasing alignment between controller behaviour

and the HO. It was found that individual HO differences are not significant enough to result in increased

performance of a FDC-HSC by using subjects’ parameter estimation results.

To expand the applicability of existing models, a structure for HSC torque rejection is proposed and tested

against experimental data. The novel architecture superimposes a torque-rejection loop to model HO

suppression of HSC torques through force feedback. The rejection model was used in the design process

of the adaptive HSC to more accurately simulate HO behaviour, particularly for extreme values of HSC

look-ahead time.

The three adaptive haptic shared controllers (A-HSCs) are designed and tested in a simulated, time-varying

HO scenario. During runs of 200 seconds the HO’s look-ahead time is discontinuously changed from 0.6s
to 0.1s at t = 38s, triggering adaptation of the controllers.

(1) The inertial A-HSC uses a memory buffer (chunks) and decision policy to determine if adaptation steps

yield a reduction in HO-HSC conflict. If subsequent chunks indicate that conflict is reducing, then the

controller continues to adapt in the same direction. Conversely, if conflict is increasing, then the controller

reverses adaptation direction.

(2) The model-fitting A-HSC employs multiple HSCs running in the background. Every 5 seconds a selector

decides which HSC is the prime candidate based on its proposed torques. This candidate is then selected

to be in-the-loop together with the HO.

(3) The cross-correlation A-HSC is designed to minimise the phase difference between the FDC-HSC’s

reference state, xr, and the actual state, x. In doing so, the controller reduces the mismatch between the
HSC’s internal model and reality, hereby resolving the root cause of HSC-HO conflicts.

The cross-correlation A-HSC shows the most promising results based on adaptation speed, adap-

tation range, and robustness against disturbances. Simulation results averaged over 100 realizations

show that the controller is capable of adapting from τa = 0.78s to τa = 0.29s during a period of 16s. After
199s, on average the controller adapts its look-ahead time from τa = 0.76s to τa = 0.30s. The average
standard deviation throughout simulation runs is σ = 0.07s.
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1
Introduction

As society becomes increasingly dependent on automated machines due to their economic and practical

benefits, there exists a strong impulse to replace human beings with autonomous systems. However, even

once a task or process has been automated humans are nonetheless often required to be present in a

supervisory role for redundancy purposes [7]. The transition from active participant to observer may cause

the user to adopt a passive mindset, become over-reliant on the system, or lose situation awareness [3, 8].

Although these issues may not reveal themselves under normal circumstances, they frequently prove to

be crucial factors in the case of accidents resulting from human-machine error [9, 10]. Therefore, there is

a strong case to be made that as the complexity of automation increases, the more important the design of

its human interface becomes [11].

An alternative to completely automating a given task is shared control, which proposes that a human

operator (HO) is assisted by automation in such a way that control authority is shared between the system

and the user. In the context of steering vehicles, shared control entails that the human is required to

actively participate in driving the vehicle whilst being assisted by a guidance system.

By ensuring that the operator is partially responsible for controlling the vehicle, risks related to over-reliance

and complacency are offset in a way that retains the benefits of automation [8]. The difficulty in shared

control lies in configuring the guidance system such that the HO trusts and accepts its inputs [12], which

implies that the driver has a minimum level of understanding about the system’s intent. One method to

achieve this is through haptic force-feedback.

The objective of this report is to propose a novel adaptive haptic shared controller (HSC) that adjusts its

settings in real-time to reduce conflicts between a HO in a preview tracking task. To this end, three novel

haptic shared controllers were designed and evaluated. Simulations investigated each controllers’ ability

to adapt to time-varying human behaviour.

Through its adaptive structure, the proposed architecture promises to accommodate time-varying human

behaviour. This could be beneficial in developing Advanced Driver-Assistance Systems (ADAS), particularly

in the case of reduced visibility when the driver’s control behaviour is expected to change due to the

now-limited preview information [13].

The report is presented in the following structure. The remainder of Chapter 1 describes in detail the

motivation for adaptive haptic shared control, as well as the research objective of the project and its

outline. Thereafter, Chapter 2 summarizes the relevant literature concerning human behaviour in a preview

tracking task, the Four Design Choices (FDC) Architecture, and the effects of preview time on conflicts

for an FDC-HSC. Chapter 3 details the design and testing of the novel adaptive controller, as well as an

evaluation of system identification results and proposal of an HO HSC-rejection model. Finally, conclusions

are laid out in Chapter 4.
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1.1. Motivation For Adaptive Haptic Shared Control
In haptic shared control the guidance system provides force inputs to the same control device that the HO

uses, hereby allowing the driver to sense the system’s intentions by means of touch or force feedback.

Because both the guidance system and operator influence the position of the same physical object, control

authority is negotiated by the operator’s continuous acceptance or rejection of the guidance system’s forces.

For example, if the operator senses that the system’s forces are not in line with his/her own expected

control inputs, the operator can override the automation by counteracting its forces.

Neuromuscular feedback in humans is significantly faster than visual cues [14], making haptic feedback

a highly effective method of interaction and communication between guidance systems and HOs. Fur-

thermore, since the operator is required to be in direct physical contact with the control device to apply

steering forces, he/she is always optimally positioned to correct or reject the guidance system. Compared

with traditional on-off automation this allows users to respond more swiftly to unexpected situations (even

before situation awareness is considered).

For example, in the case of an unexpected event in an aircraft flying on autopilot, the pilot would typically

first be required to place his/her hand on the disengage switch to disable the automation. Thereafter

control is abruptly surrendered by the system and it is left to the operator to rapidly transition from passive

observer to active controller, a challenge that is compounded by potential startle & surprise effects of the

original unexpected event.

Since it is largely unknown how humans adapt to haptic guidance systems [15], it is difficult to predict the

likelihood that a given controller will be accepted by the user. A promising method is to use a cybernetic

model to simulate the HO, hereby configuring the HSC to mimic the HO’s behaviour.

By simulating novel HSC designs and observing the effects of controller settings on error and control

inputs, a prediction can be made as to which settings will minimize human-machine conflict during

experiments. Furthermore, insights can be gained as to which configurations will have the highest chance

of user acceptance. The ultimate goal is to converge towards the optimal settings in real-time such that

performance and conflicts are optimised.

1.2. Research Objective
Previous research by Span [6] has proven that the driver’s workload can be reduced by configuring the

guidance system to mimic the human’s control strategy. Through the use of cybernetics a so-called human

compatible reference (HCR) can be implemented in the guidance system, which allows it to model and

replicate the user’s control behaviour [16]. In the case of a preview display, the human’s response is

characterised by a ‘corner-cutting’ approach and the use of a look-ahead time, whereby the user aims to

track a point on the signal τ seconds into the future [17].

Span showed that if the look-ahead time of the HCR deviates significantly from the human’s actual control

strategy in a preview tracking task, then the duration and magnitude of conflicts between the automation

and user increase [6]. These conflicts defeat the entire purpose of the guidance system, which is to offer

collaborative support to the human.

Although a region of optimal look-ahead times has been identified in which conflicts between the guidance

system and human are reduced, the root causes of human-haptic conflicts is yet to be investigated.

Moreover, most of the parameters of current HSCs are fixed and tuned heuristically (e.g. level of haptic

authority), meaning that such controllers are not capable of accommodating time-varying human behaviour.

This is likely because the effects of changing parameters within the haptic controller are currently not

sufficiently understood, possibly made worse by the knowledge gap concerning the user’s adaptation to

haptic forces.

In conclusion, current HSCs are to an extent limited by their fixed structure and parameters, rendering

them unable to adapt to time-varying human behaviour and dynamic environments. The most pertinent

case study can be found in driver-assist systems in cars, which are currently limited in their ability to

accommodate time-varying human behaviour.
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In light of these challenges, the primary focus of this project is therefore given by the following research

objective:

To design, simulate, and validate an adaptive haptic shared controller that adjusts itself in

real-time to reduce conflicts between a human operator in a preview tracking task, without

undermining control performance.

Research Objective

An important first step is to define under which circumstances the controller should adapt itself, and to

what end. A common assumption is that conflicting control inputs between the human and automation

are undesirable and should be reduced through the design or tuning of the controller. However, other

indicators may also be suitable to drive adaption. Therefore, the first research question is:

Which metrics should be used to trigger or drive adaptation of the haptic shared controller?

Research Question 1

Once metrics have been identified and selected to drive changes within the controller, the next step is to

further clarify exactly what those changes are and how they should relate to the adaptation drivers. For

example, if conflict torques occur increase, to what extent should the adaptive haptic shared controller

adapt itself and how? This is the focus of the following research question:

How should the system adapt itself in relationship to the chosen metrics?

Research Question 2

Finally, the ultimate goal of the project is to prove that the proposed adaptive controller is successful

in reducing conflicts in a real-life setting. This implies the design and execution of a human-in-the-loop

experiment, leading to the final research question:

To what extent does the adaptive shared controller lead to a reduction in conflict torques during

human-in-the-loop experiments?

Research Question 3
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1.3. Project Outline
Figure 1.1 illustrates the general outline of the project. During the literature study phase the focus lies on

understanding the state of the art of the following three areas of research, as described in Chapter 2:

1. Preview Cybernetics: understanding how humans use preview information in a manual control task

is key to successfully designing a haptic controller that mimics the user’s behaviour in such a task.

2. Four Design Choices Architecture (FDCA): this project will make use of an FDCA haptic controller,

which has proven to reduce conflict torques by segregating two key components of haptic guidance:

a feedforward and feedback component.

3. Effects of Look-Ahead Time: the known effects of look-ahead time on conflict torques can be

compared with the results of the novel adaptive controller for validation.
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Figure 1.1: Thesis outline

In the controller design phase a novel adaptive controller is proposed by leveraging simulations to conduct

an iterative design process, of which the results are laid out in Chapter 3. During this process previous

work by Span [6] is expanded upon by proposing a model to capture human rejection of guidance forces.

Furthermore, Span’s system identification results are evaluated to investigate if they could lead to improve-

ments within the shared controller. The final step after this process is to develop an experiment plan to

validate and test the novel controller in a human-in-the-loop experiment.
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Literature Review

This chapter aims to recapitulate the core literature relevant to the project, starting with a summary of Van

der El’s work on human adaptation to preview information in Section 2.1. Thereafter a brief recap of the

Four Design Choices Architecture is given in Section 2.2, followed by a description of an FDC-HSC in

Section 2.3. Finally, effects of varying HSC look-ahead times are summarised in Section 2.4.

2.1. Preview Cybernetics
2.1.1. Motivation to Study Preview Control
There are three primary motivations to implement haptic shared control in a preview tracking task as done

in a previous study by Span. Firstly, it is known that human beings are adapted to use preview information

when available to increase control performance in everyday situations [18]. The most prominent example

of this is car-driving, where human beings heavily use the visual cues of the road ahead to optimize their

control strategy. Designing a shared control system specifically for preview situations will therefore likely

be more widely applicable in the real world than e.g. compensatory control as studied by McRuer & Jex in

1967 [19].

Secondly, implementing haptic shared control for a preview control task allows for the use and validation

of novel human-operator models by Van der El, building on existing cybernetic foundations that were

previously limited to compensatory control [7, 19]. By using these models to design controllers that are

better adapted to the user’s behaviour, the power and validity of cybernetic models for preview information

can be demonstrated.

Finally, a preview display offers the driver information about the future of the target signal and therefore

affords the driver the possibility of anticipating the upcoming route, something that is not possible for a

compensatory tracking task. It is possible that the ability to anticipate future control inputs plays a key role

in deciding when to reject the guidance system’s inputs, making preview tracking a compelling case study

for haptic shared control.

For example, if the upcoming route clearly shows a left turn and the guidance system is steering to the

right, the driver will most likely counteract the system. By comparing his/her own (planned) intentions with

the guidance system, the driver can decide to reject the system’s inputs by impeding the movement of the

control device. In this way, the user can dynamically determine the level of control authority the guidance

system has by the degree to which its inputs are admitted.

2.1.2. Van der El’s Cybernetic Model for Preview Control
Up until recently the study of manual cybernetics was limited to compensatory control, a form of steering

that at first glance bears little resemblance to common real world tracking tasks such as driving a car or

flying an aircraft. Pioneering work by Van der El has proven successful in expanding the field of manual

cybernetics to accommodate human behaviour in a preview tracking task, opening up a vast landscape of

opportunities for modelling human behaviour.

Through a black-box system identification method analogous to McRuer’s landmark experiment, a cyber-

netic model for preview information was derived as shown in Figure 2.1. This model identified two channels,

the first one describing the human controller’s (HC) response to a so-called ’near-viewpoint’ some τn
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seconds along the previewed target signal into the future, ft(t+ τn). The second channel describes the
HC’s response to a far-viewpoint further ahead, τf (> τn) seconds along the previewed signal.

Figure 2.1: Intuitive form of Van der El’s preview model [17]

The near-viewpoint response is characterised by a feedforward open-loop control strategy, whereby the

human aims to track high-frequency components of the signal. Van der El posits that this response is

made possible by the fact that full periods of the high-frequency components are visible on the display,

allowing the HO to recognise cyclic patterns. This behaviour is modelled by a high-pass filter Hon(jw):

Hon = Kn
jw

1 + Tl,n(jw)
(2.1)

For the purposes of this project the near-viewpoint response will not be considered, since it is likely a

special case of human adaptation which only occurs in a laboratory setting. In most real-world control tasks

the chances of a pure sine wave occurring in the target signal are extremely small (consider the geometry

of the average road), hence the motivation to discard this channel and focus only on the relatively strong

far-viewpoint response.

The far-viewpoint response involves a feedback control loop that minimises the error between the current

state and a low-pass filtered point on the signal τf seconds ahead into the future. The way that humans
use the far-viewpoint can be characterised by two phenomena:

1. Corner cutting approach: high frequency components of the signal are neglected, similar to the

behaviour described by McRuer’s crossover model. This corner cutting is captured in the model by

low-pass filtering a point on the signal τf seconds ahead into the future.

2. Look-ahead anticipation: by minimising the error between the current state and a point on the

target τf seconds into the future, the HO effectively cancels out the inherent delays resulting from

his/her physical limitations.

These two strategies are captured by the feedback loop illustrated in Figure 2.1 [17]. This channel minimises

the error between the current state and a low-pass filtered point on the signal (corner-cutting) situated τf
seconds ahead (delay cancellation). Equation 2.2 shows the transfer function of the low-pass filter.

Hof =
Kf

1 + Tl,f (jw)
(2.2)

Neuromuscular dynamics are modelled by a second order filter Hnms as described by Equation 2.3, after

which a remnant is injected as shown in Equation 2.2. A time delay term e−τvjω accounts for any other

inherent HO delays.

Hnms =
ω2
nms

(jω)2 + 2ωnmsζnms(jω) + ω2
nms

(2.3)
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The remnant is modelled by low-pass filtering white noise according to the filter described by Equation 2.4,

as proposed by Levison et al. (1969).

Hn(jω) =
Kn

1 + Tl,n(jω)
(2.4)

Table 2.1 shows the model settings for single-integrator (SI) dynamics, as will be used throughout this

project. For SI dynamics, Hoe = Ke∗ = 1.25.

Table 2.1: HO model settings

HCE τf Kf Tl,f Ke∗ τv ωnm ξnm Kn 1/Tl,n

(s) (-) (s) (-) (s) (rad/s) (-) (-) (s)

SI 1.5/(jω) 0.60 1.0 0.20 1.25 0.26 10.5 0.35 8 3.5

2.1.3. Adaptation to Preview Time
To provide context for designing a novel controller capable of successfully adapting to a time-varying

HO, this section summarizes how human behaviour changes as a function of preview time. In a preview

tracking task it is known that HOs adapt themselves to the following three task variables [17]:

1. Controlled element dynamics

2. Preview time

3. Target trajectory bandwidth

For this project preview time is selected as the driver for time-varying human behaviour for the following

reasons. In reality, the chances that the controlled element dynamics change during a tracking task are

small, since it would imply that the dynamics of the vehicle are not constant (e.g. mechanical failure). As

for target trajectory bandwidth, Van der El concluded that:

“Humans do not systematically adapt their control behavior to the target trajectory

bandwidth (between 1.5-4 rad/s) in preview tracking tasks” [17]

This leaves preview time as the primary task variable which drives time-varying human behaviour

in real-world tracking tasks, for example in situations of reduced visibility due to weather or time of day.

Furthermore, work done by Span investigated the effects of the HSC’s look-ahead time on conflicts and

control performance. By varying the preview time in an experiment with an adaptive HSC in a similar way,

the hope is to shed light on the underlying relationships between the human’s look-ahead time, preview

time, and HSC look-ahead time.

Figure 2.2 [17] shows how a limited preview time τp affects the target information on the display, i.e. a short
preview time will limit the amount of the upcoming signal that is shown to the operator. Note however that

the underlying cybernetic structure (as described in Section 2.1.2) is assumed to be constant regardless of

preview time. As a consequence, human adaptation to varying preview time can in theory be fully captured

by changing the model parameters.
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Figure 2.2: Van der El’s framework for short and long preview [17]

Hypothetically, if humans somehow employed a different control strategy in light of shortened preview

time, this would make the development of an adaptive shared controller vastly more difficult. In this case

the controller would likely have to adjust its entire structure to accommodate varying human behaviour,

whereas Van der El’s work suggests that to account for changing human behaviour in light of varying

preview time, a simple adaptation of model parameters would suffice.

Figure 2.3 [13] and Figure 2.4 [13] show the two HO model parameters that are most dependent on preview

time for single integrator (SI) and double integrator (DI) CE dynamics.

Figure 2.3: Look-ahead time adaptation [13]   Figure 2.4: LP-filter time constant adaptation [13]

Figure 2.3 [13] shows that the HO look-ahead time τf does not increase beyond a critical preview time of

approximately 0.6s for SI dynamics, and approximately 1.0s for DI dynamics. This suggests that around this
point the human has optimally cancelled out his/her own phase lags, hence additional preview information

is no longer used. For preview times less than critical, HOs seem to use the maximal possible look-ahead

time available to them, i.e. τf = τp. In this case the operator will not be able to generate the optimal

amount of phase lead to cancel out his/her delay, hence the output will tend to lag the target [17]. This

result is crucial to bear in mind for the novel shared controller design.

Figure 2.4 [13] shows that the low-pass filter time constant Tl,f is on average higher for DI dynamics,

indicating that higher frequency components of the target signal are ignored. This is similar to behaviour

described by McRuer & Jex’s crossover model. Furthermore, for zero preview time the entire task regresses

to a pursuit tracking task for which the HO is no longer afforded the possibility of filtering out high-frequency

components of the target (they are no longer visible), hence Tl,f = 0.
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Main Finding of Section 2.1

The theoretical cornerstone of this project is Van der El’s Cybernetic Model for manual preview

control tasks. It captures two phenomena:

1. Corner-cutting: high-frequency components of the target signal are neglected
2. Look-ahead time: using a point up ahead, lead is generated to compensate for HO lags

Concerning human adaptation to preview time, there are two takeaways:

1. For preview times less than critical, the HO will no longer be able to generate the optimal

amount of phase lead to match the target.
2. As preview time increases, subjects respond less to the higher frequency components of the

target signal.

2.2. Four Design Choices Architecture
As this project makes extensive use of the Four Design Choices Architecture (FDCA), this section will briefly

summarize its philosophy and implications. Span proved that implementing a FDC-HSC minimises conflict

torques relative to other types of controllers, such as a meshed HSC [6]. One key strength of the proposed

architecture lies in the fact that each of the four design choices play a distinct and physically-interpretable

role in the behaviour of the controller [16]:

1. Level of haptic authority (LoHA) determines to what extent the controller is capable of overriding

inputs from the human and can be interpreted as the ’stiffness’ of the guidance system. A rigid

controller will yield less to human inputs than a soft controller.

2. Human compatible reference (HCR) can be interpreted as the internal trajectory that the controller

is steering towards, denoted xr. This can be taken to be the average of multiple human runs without

haptic guidance, but more recently cybernetic models have been used to generate a HCR reference

state without the need for prior experiments [6].

3. Strength of haptic feedback (SoHF) serves as a corrective force that minimises the difference

between the state and human compatible reference. Note that this force does not act upon deviations

from the target signal: any mismatch between the HCR reference state xr itself and the target can

never be corrected by this force.

4. Level of haptic support (LoHS) is designed to support the user by providing guidance forces based

on upcoming parts of the target signal. These forces are open-loop as they are independent of the

state, error, or human input.

Figure 2.5: FDCA design philosophy [16]

Note that since LoHS, SoHF and LoHA are each simple gains, increasing the LoHA by a factor of two is

equivalent to increasing SoHF and LoHS by a factor of two (see Figure 2.5). Therefore, when tuning LoHS

and SoHF, it is the ratio between the two that is important, the absolute values only have meaning relative

to the level of haptic authority.

Furthermore, in the case that there are no disturbances and no HO, the LoHS can be tuned such that the

SoHF channel becomes inactive. In this case the state tracks the HCR perfectly by feed-forward control

alone, hence there is no need for correction by the SoHF channel. In practice this is not only undesirable

since it would imply no input from the HO (meaning full automation instead of shared control), but also

impossible for the following reasons:
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1. In real-world control scenarios a stochastic disturbance is often present (e.g. wind), requiring some

form of active closed-loop control (in addition to LoHS).

2. Assuming the system is tuned such that input from the HO is required, the actual state will never

follow the HCR entirely due to the inevitable presence of non-linear behaviour in humans.

Main finding of Section 2.2

The FDC architecture entails four distinct design choices that can be tuned to reduce conflicts:

1. Level of haptic authority: how much the controller can override the HO
2. Human compatible reference: the controller’s internal reference for forces and state
3. Strength of haptic feedback: how much the controller applies corrective forces
4. Level of haptic support: how much the controller provides passive guidance

2.3. Four Design Choices Haptic Shared Controller
As a foundation for simulations, this section will detail the exact structure of the HO and HSC model

originally used by Span. The aim is to provide a foundation of understanding for the development of new

HSC designs. Figure 2.6 shows the FDC-HSC structure derived by Span that was tested in a preview

tracking task [6], as will also be used in this project to build an adaptive HSC. Both the HO and HCR were

modelled in accordance with Van der El’s cybernetic model for a preview tracking task, shown in Figure 2.1

(note: the near-viewpoint response is always omitted in this project).

Figure 2.6: Haptic shared control setup [6]

Figure 2.6 shows the target signal ft as well as the look-ahead time of both the HO (τp) and HSC (τHSC).

Each of the two applies a torque to the side-stick, the position of which influences the controlled element

through u(t). The feedback signal going from the side-stick to the human operator signifies the haptic

force-feedback that the human receives from the HSC force inputs. It is precisely this feedback which

makes haptic shared control so promising, since it allows the HO to ’feel’ the intentions of the HSC. Initially,

this feedback is not simulated under the assumption that HO’s do not adapt their behaviour to HSC inputs.

As a result, the HO is assumed to act as if he/she was performing the preview task alone.

The target and disturbance signals used by Span are given by Equation 2.5 and Table 2.2.

f(t) =

Nf∑
i=1

Ai sin (ωit+ φi) (2.5)
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Table 2.2: Target and disturbance signals [6]

Target signal ft Disturbance signal fd

i kt
At

cm

ωt

rad/s

φt

rad
kd

Ad

cm

ωd

rad/s

φd

rad

1 3 0.731 0.157 4.488 4 0.292 0.209 0.241

2 5 0.731 0.262 5.699 7 0.292 0.367 1.669

3 8 0.731 0.419 1.373 9 0.292 0.471 1.899

4 11 0.731 0.576 5.472 13 0.292 0.681 1.295

5 19 0.731 0.995 1.331 22 0.292 1.152 3.982

6 29 0.731 1.518 5.257 31 0.292 1.623 4.496

7 47 0.073 2.461 5.399 51 0.029 2.670 3.365

8 77 0.073 4.032 3.289 79 0.029 4.136 0.469

9 143 0.073 7.488 2.999 147 0.029 7.697 0.964

10 263 0.073 13.77 5.591 267 0.029 13.98 4.296

Figure 2.7 shows the HO model used by Span to simulate the FDC-HSC setup. This model is based on

Van der El’s preview model, using the settings given in Table 2.1 where HHO
f = Hof , H

HO
e∗ = K∗

e . Note

that torque from the HSC is assumed to have no influence on HO behaviour in this model. Furthermore,

KHO is assumed to be 1, indicating that the HO does not adjust the magnitude of his/her response relative

to a ’vanilla’ preview tracking task (no HSC). The settings used in simulations are given by Table 2.1. A

remnant is modelled according to Kn = 8 and wb,n = 3.5 according to Equation 2.4 with wb,n = 1/Tl,n.

Figure 2.7: HO Model [6]

In simulating a shared control scenario with HO and HSC, it is beneficial to model the expected forces on

the stick1. To determine the expected forces an adjustment must be made to the model shown in Figure 2.7.

The model was derived according to a black-box method which describes HO behaviour in terms of the

relationship between HO input (state variables) and stick output (u(t) in Figure 2.6) [17]ts, meaning that
it includes both neuromuscular and stick dynamics. This means that to determine the (simulated) HO

forces in the HCR, one must ’undo’ the stick dynamics using an inverse-stick block (H−1
stick) as applied in

Figure 2.7. In doing so, the underlying forces are revealed.

In Span’s original work the inverse-stick model is given by Equation 2.6 with the following settings:

k = 3.58 Nm/rad Kstick = 10 inch/rad b = 0.22 rad/s I = 0.01 kg/m2

H−1
stick =

( Kstick

I(jω)2 + bjω + k

)−1

(2.6)

Figure 2.8 shows the structure of the FDC-HSC controller. Since the controller was designed to be used in

a preview tracking task, the human compatible reference is setup to mimic human behaviour corresponding

1If no interaction is assumed between a HSC and HO, forces may not be required since summing uHSC and uHO is equivalent

to first adding the (inverted) forces and passing the sum through a side-stick model.
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to a preview task (settings given in Table 2.1). This is achieved by using Van der El’s preview model to

generate a guidance force FR, as well as a reference state xR. The same inverse-stick model that is used

to determine THO is also used to determine FR.

Figure 2.8: Four Design Choices Haptic Shared Controller [6]

Figure 2.8 shows that a CE block is used to produce a reference state xR, which is compared with the

true state x to produce a corrective force through KSoHF . The reference state is also fed back within

the HCR to determine an internal error e∗. This error represents the difference between the low-passed
phase-shifted target f∗

t,f and the reference state xr.

The gainKHSC represents the level of haptic authority, since the larger this gain, the more guidance torque

will be applied (both corrective and feed-forward). KLoHS determines the relative strength of the open-loop

guidance channel, whereas KSoHF indicates how strongly the system will ’pull’ the current state x back
towards the HCR reference state xR. In this case, KLoHS and KSoHF are tuned such that KHSC = 1,
meaning that KLoHS and KSoHF implicitly determine the LoHA, which is set to 1.

Table 2.3: FDC and HO gains

KLoHS KSoHF KHSC KHO

0.6 0.8 1.0 1.0 [−]

In line with Section 2.1, the HCR model in Figure 2.8 steers towards a point on a low-pass filtered trajectory

τf seconds into the future. Note that a remnant is lacking, which effectively makes the HCR an idealized

HO adapted to preview information. As a result, the HCR reference state xR represents the expected

output of the system in the case of an idealized, linear, time-invariant human operator. This has two crucial

benefits:

1. Guidance torques have a high likelihood of being accepted by the human, since the controller is

trying to replicate the average operator’s behaviour and control strategy, including corner cutting and

delay cancellation. One could also point out that the system is, to an extent, subject to the same

physical limitations as its human counterpart (neuromuscular filter and time delay), meaning that it

essentially ’acts’ as if it had a body!

2. Since the HCR lacks a remnant which accounts for the stochastic and non-linear element of hu-

man behaviour, it is expected to out-perform its human counterpart (assuming that the non-linear

component of human behaviour does not contribute to superior control performance).

Main finding of Section 2.3

By choosing to implement Van der El’s cybernetic model as a FDC human compatible reference,

performance is expected to increase and HO-HSC conflicts are expected to be minimal. The HSC

settings are taken to be the same as the ’average’ HO, allowing the FDC-HSC to emulate the

behaviour of a linear, time-invariant, idealized (no remnant) human being.
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2.4. Effects of Controller Look-Ahead Time
2.4.1. Simulation and Experiment Results
Work by Span looked at the effects of varying look-ahead times using a FDC-HSC with a HCR configured

according to Van der El’s model, revealing a region of optimal look-ahead time’s for τHSC = [0.7s, 0.8s]
where conflict is minimal [6]. This corroborates with Van der El’s work which proved that a critical look-

ahead time exists for values of τf around the same value, beyond which additional preview information no

longer influences the HO’s behaviour.

Furthermore, these results also make intuitive sense: by adjusting the settings of the controller to match

the expected behaviour of the average human, conflicts are evidently reduced. In the case of Span’s

FDC-HSC experiment the preview time was set to τp = 1.0s, meaning that the HO was likely employing a

look-ahead time of around τf = 0.6s. When the HSC’s look-ahead time was set to approximately the same

value, τHSC ≈ 0.6, conflicts were found to be reduced. Therefore, by aligning the HSC’s (HCR) settings
with the parameters that describe HO behaviour (i.e. same look-ahead time), conflicts between the HO

and HSC are minimal.

Using the parameters defined in Table 2.1 and Table 2.3, simulation results were then averaged over 1000
realizations yielding the results in Figure 2.9, Figure 2.10, Figure 2.11, and Figure 2.12. These simulations

were initialised with the settings given in Section 2.3. Figure 2.9 shows the experiment tracking error and

control activity relative to simulations, clearly suggesting a region of optimal look-ahead times around

τHSC = 0.6s for both the simulations and the experiment. Figure 2.10 suggests that on average, the

simulations underestimate the amount of torque applied by both the HO and HSC. This can be observed

even more clearly in Figure 2.12, which shows that there was more conflict between the HO and HSC

during the experiment than predicted for extreme values of τHSC . Figure 2.11 again supports the notion

that the HSC and HO are optimally aligned around τHSC = 0.7s.

Figure 2.9: Tracking error and control activity [6] Figure 2.10: Torque magnitudes [6]

Figure 2.11: Conflict time [6] Figure 2.12: Conflict torque [6]
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The main takeaway from Figure 2.9 and Figure 2.12 is that the simulations underestimate both tracking

performance and conflicts for extreme values of τHSC . This suggests that HOs are willing to endure

conflicts to achieve superior tracking performance. Because the model’s main limitation is that it cannot

account for direct physical interaction between the HSC and HO through the side-stick, this is likely the

channel through which HO instigate conflicts in real-life to improve tracking performance.

2.4.2. Comparing Experiment Data with Simulation Results
The difference between experimental and simulation results around extreme values for τHSC is hypothe-

sised to be due to human adaptation to the controller [6]. It is important to realise that in the simulations

performed by Span, the HO is assumed not to react directly to torques from the controller, which is the

primary benefit that HSCs have to offer in real-world scenarios.

However, in Span’s simulations the HO does act upon the state x, which is influenced by torques stemming
from the HSC. In simulations without explicit human adaptation to force-feedback, HSC torques are

assumed to directly control the side-stick in parallel with the HO without impediment. This entails that the

only method of interaction between the HO and HSC is through the state x, which is inherently slower than
direct force-feedback due to the delays introduced by the side-stick and controlled element. This ’slower’

path is illustrated by the green line in Figure 2.13.

Another way to consider this fact is by realising that an equivalent simulation would be to model two

side-sticks through two independent channels, with one for the HSC and one for the HO. By summing the

output of each side-stick as shown in Figure 2.13 the same results would be achieved as in the single

side-stick model without adaptation. This makes intuitive sense, since the model assumes no direct

physical interaction between the two parties through the side-stick.

Furthermore, even once the (simulated) HO has ’recognised’ the delayed effects of the HSC on the state x,
it must still process these inputs (adding more delays such as τv) and pass them through its own side-stick.

In conclusion: due to the inherent structure of the baseline FDC-HSC simulation the HO is severely limited

in its capacity to correct the HSC in the case of poor performance. This explains the discrepancy in tracking

performance and conflicts between the simulation and experiment data for extreme values of τHSC .

Human 
Operator

Haptic 
Shared 

Controller

Side
stick

Controlled 
Element

Side
stick

HSC Input
 Feedback

Figure 2.13: Equivalent FDC-HSC model without HO adaptation

2.4.3. HSC Performance for Varying Look-Ahead Times
The reason that conflicts occur for extreme values of τHSC is likely because the HO is compensating for

the poor performance of the controller in these configurations. Evidently, the HO is aware that the HSC is

not aiding the situation and is therefore willing to undergo conflicts to rectify the sub-optimal inputs from

the HSC.

The hypothesis that the HSC is performing poorly for extreme values of τHSC is further supported by

Figure 2.14, which shows the closed-loop behaviour of the HSC without the HO. Note that for τHSC = 0.8
performance is optimal with RMSe = 0.2 cm, which is very similar to the level of performance achieved

when the HO and HSC work together (Figure 2.9).
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Figure 2.14: HSC error and control activity without HO

Figure 2.9 shows that without the HSC, the HO achieves a tracking performance of RMSe = 0.32 cm in the

non-haptic (NH) condition. It is therefore to be expected that if the HSC is significantly under-performing

this benchmark, then the HO will be dissatisfied with the performance of the controller (since the HO

could do a better job if the controller was disabled). Figure 2.14 shows that for look-ahead times outside

of τHSC = [0.6, 1.0]s the controller achieves worse performance than the HO would if it performed the

task alone. This is because for these values, the reference state either leads or lags the target signal,

substantially decreasing tracking performance.

Figure 2.15 shows the effect of HSC look-ahead time on the state x in the case of a closed-loop HSC

without HO. For τHSC = 0.3s both the reference state and actual state tend to lead the target ft. The
reverse is true for τ = 1.0s, where x and xr lag the target instead. The reason for this behaviour is due to

the fact that the SoHF channel will always steer the state towards the reference xr. For extreme look-ahead

times the HSC-HCR itself will be either be leading or lagging the target, hence the state will be steered

towards a sub-optimal reference.

Figure 2.15: Reference state phase shift, HSC without HO

Since the reference state is simply what the controller ’thinks’ would happen if a human would be behind

the wheel, there is no amount of gain-tuning or tweaking that could ever resolve the fundamental mismatch

between xr and ft. The only remedy is to either design an additional feedback loop (furthermore convoluting
an already complex controller), or simply correct the settings of the controller such that it produces a

reference state that is aligned with the target.

The reason why the controller is not aligned with the target (apart from τHSC = 0.65) can be attributed to
the implementation of Van Der El’s model as a HCR. Since this model describes how HO behaviour has

evolved to compensate for inherent human delays (e.g. τv), its parameters are derived in such a way
2 that

the look-ahead optimally compensates the model’s lags. If this was not the case, then the model would

not prove successful in describing HO behaviour, since in reality humans have evolved to use preview

information (lead) to optimally compensate for our own biological limitations (lag). Therefore, one cannot

expect to tweak model settings such as look-ahead time without voiding the HCR’s accuracy in describing

HO behaviour, hereby negatively impacting tracking performance and ’breaking’ a well-tuned model.

2Not accounting for individual differences between HOs.
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Figure 2.16 shows the situation in which the look-ahead time of the controller is tuned to a more realistic

value of τHSC = 0.65. In this case the target and reference state are optimally aligned in terms of phase
shift. Since the SoHF channel minimises the error between x and xr, if xr happens to align with the

target, then the state will also seemingly track the target (it is actually following the reference state, see

Figure 2.8).

Figure 2.16: Reference state alignment, HSC without HO

Although correct cancellation of model delays (e.g. τv) through look-ahead time lead (τ ) is essential, in
theory, there is one way the look-ahead time could be reduced without a significant loss of performance.

Figure 2.17 shows the effects of setting τv = 0.0 in combination with reducing the look-ahead time to

τHSC = 0.4. By reducing both delay and lead equally, the final reference state happens to align with the

target. This finding could prove useful for the case in which the HSC only has a limited preview time (e.g.

0.4s), but still retains Van der El’s model characteristics.

Figure 2.17: Reference state alignment, HSC without HO, τv = 0

Main finding of Section 2.4

Extreme values of τHSC lead to conflicts between the HO and HSC, as well as a reduction in

performance. For high look-ahead times the reference state tends to lead the target, for low look-

ahead times the reference state tends to lag the target. The degree to which the reference state

and target are aligned plays a pivotal role in both tracking performance and conflicts. If the HCR

is not properly tuned, i.e. if the lead generated by look-ahead anticipation does not cancel out the

model delays, then there will be a guaranteed mismatch between the reference state and target.
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Controller Design and Simulations

This chapter aims to describe the design process of the novel adaptive HSC, starting with the motivation

behind the controller and the design methodology in Section 3.1, followed by Section 3.2 which replicates

and validates results by Span for a FDC-HSC. Thereafter, Section 3.3 evaluates the usability of system

identification results in capturing individual HO differences. Section 3.4 investigates the occurrence of

conflicts and their relationship to the reference state of the HCR. This is followed by Section 3.5 which

details how HO rejection of HSC torques is modelled.

The second half of the chapter describes the design of the novel controllers. This starts with Section 3.6,

which lays out the test scenario for time-varying HO behaviour. Section 3.7, Section 3.8, and Section 3.9

describe the design and results for three adaptive HSCs: inertial, model-fitting, and cross-correlation,

respectively. The performance of the controllers is compared in Section 3.10, after which additional findings

are presented in Section 3.11.

3.1. Motivation and Methodology
The primary goal of the project is to develop an adaptive HSC. Making the controller adaptive has numerous

benefits relative to previous designs:

1. There is no longer a need for manual tuning, a process that was often done heuristically and therefore

subject to individual preferences of the designer.

2. Performance is expected to increase and conflicts are expected to reduce relative to a fixed controller,

since by adapting itself the controller will ’find’ the optimum settings. This entails that the controller

will in theory be able to adapt to individual operator differences, assuming that these differences are

significant enough to cause measurable anomalies in conflict and/or tracking performance.

3. By adapting solely based on performance and conflicts, the system is not limited to current hypotheses

about the structure of the ’optimal’ controller. In this way, the hope is that the controller will empirically

lead to new insights on operator preferences in a haptic control setting. This is particularly useful in

the event of time-variant operator behaviour as a consequence of limited preview information (e.g.

due to weather).

The proposed methodology for designing an adaptive haptic shared controller (A-HSC) is summarised in

the following steps:

1. Validation of FDC-HSC Model

2. Evaluation of System Identification Results

3. Conflict and HCR Analysis

4. Modelling HO Rejection of HSC Torques

5. Adaptive Haptic Shared Controller Design

The cornerstone of this project is a set of MATLAB simulations which are used to test and evaluate

prospective adaptive controllers. By building an understanding of their strengths and limitations and

extending their validity, the models are optimally leveraged in the design process of the novel adaptive

controller. For this reason the chapter starts by validating the FDC-HSC model used by Span [6].

39
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Thereafter previous experiment data and system identification results are used to build personalised

cybernetic models of individual subjects. These models are then tested to evaluate if the new methods

lead to a more accurate representation of subjects’ behaviour, possibly leading to improvements over the

current one-size-fits-all HCR model.

Focus will then shift towards the design of an adaptive controller by first performing a conflict analysis on

both LoHS and SoHF channels, as well as developing a model to capture HO rejection of HSC torques.

The final step is to propose and test a structure for an adaptive controller with varying look-ahead time.

Since the effects of look-ahead time on performance and conflicts is known from Span’s research [6], this

provides a reference that can be used to evaluate the novel adaptive controller. Testing the new controller

and verifying that it leads to reduced conflicts and increased performance is the last step before evaluating

it during a real experiment.

3.2. Validating FDC-HSC Model
The replica-simulation model parameters are set according to Table 2.1 and Table 2.3. The only difference

between the replica-simulation and Span’s original work is the use of a different inverse-stick model to

reveal the underlying torques. For convenience a simplified inverse-stick model was used in the replica

model, as given by Equation 3.1.

H−1
stick =

k

Kstick
(3.1)

Whereas in Span’s original work Equation 3.2 was used as an inverse-stick model, consisting of the inverse

of the transfer function describing the full stick dynamics. Note that this model is improper and non-casual.

To circumvent this issue during simulation, Span combined this transfer function in series with its adjacent

blocks as shown in Figure 2.8, such as Hnms. Due to the presence of poles in the transfer functions of the

adjacent blocks the system becomes casual again and therefore realizable.

H−1
stick =

I(jω)2 + bjω + k

Kstick
(3.2)

Implementing the simplified stick model as in Equation 3.1 yielded negligible difference in results compared

to the full model as shown in Equation 3.2. This was validated by comparing actual LoHS torque from

experiment data with simulations using the simplified stick-model. To measure the fit between the two

signals, the Variance Accounted For was calculated using Equation 3.3, where T̂i is the simulated LoHS

torque determined using the simplified model (Equation 3.1), and Ti the experiment LoHS torque.

VAFi =

(
1− var(Ti − T̂i)

var(Ti)

)
· 100% (3.3)

Table 3.1: Simplified inverse stick VAF

Fofu nr. 1 2 3

VAF 94.93% 94.97% 94.98%

The LoHS channel is ideally suited for comparing the simplified and full inverse-stick model, since it is

always independent of the state and HO input. Therefore, it can be said with certainty that the only reason

the VAF values in Equation 3.9 are not 100% must be due to a difference in HCR structure or parameters.

And indeed, the only difference in HCR between the two is that the experiment uses the full inverse-stick

model, whereas the simulation uses a simplified inverse-stick model.

Figure 3.1 shows the LoHS channel for both full and simplified inverse stick-models. The minor phase

shift between the experiment (full) and simulation (simplified) occurs due to the neglected dynamics

in the simplified model. To go from Equation 3.2 to Equation 3.1 one can imagine multiplying with a
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second-order filter, effectively dampening high frequency components and shifting the signal in time as

shown in Figure 3.1. Because of the multiple low-pass filters in the HCR model (Hnms,Hof ) most of the

high frequency components are already removed, hence why the simplified model results in a negligible

difference in results.

Figure 3.1: Full and simplified inverse-stick model TLoHS

Using the experiment data from [6], each experiment run was simulated by initialising a remnant with

a random seed, using the same forcing function as from the experiment run. The results are shown in

Figure 3.2 and Figure 3.3, agreeing well with Figure 2.9 and Figure 2.12. Note that the replica-simulations

also underestimate the error for extreme values of τHSC as evident in Span’s work.

Figure 3.2: Validation tracking error Figure 3.3: Validation conflict torque

Main finding of Section 3.2

Simulations were performed with a FDC-HSC controller to validate Span’s work. It was found that

a simplified inverse-stick model can be used without significantly affecting the accuracy of results.

The simplified model essentially applies a low-pass filter, hereby introducing a small amount of

phase lag (due to the presence of other filters, high-frequency components are already removed).

To validate the use of the simplified model, Variance Accounted For (VAF) was computed between

experiment TLoHS and simulated TLoHS , with all VAF values exceeding 94%.
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3.3. Evaluation of System Identification Results
Span’s work included fitting a model to individual subjects for the non-haptic condition, in the hope that a

correlation could be identified between the identified look-ahead and the optimal look-ahead time found

during the experiment [6]. However, only a weak correlation between the two was found, with an insignificant

p-value of p = 0.174 > 0.05. This is a key finding that suggests the following hypothesis:

Individual differences between HO’s are not large enough to produce noticeable changes in optimal

controller settings (e.g. τHSC)

The above implies that a one-size-fits-all HCR works equally well for the average participant compared

to fitting a personalised HCR for each subject. To test this, system identification was performed on each

subject in order to build a ’personalised’ HCR that is expected to more accurately reflect each HO’s

individual behaviour. This hypothesis was then tested by simulating each of the subject runs using models

that incorporate the system identification results per subject.

To model individual subjects’ behaviour the same methodology was used as laid out by Span [6]. This

method estimates parameters in the frequency domain according to the structure laid out in Figure 3.4. The

HO model consists of two channels, with Hot describing the response to the forcing function as described

by Equation 3.5 and Hox incorporating the response to the state x as given by Equation 3.4.

Hox(jω) = Kee
−τvjω (3.4)

Note that Equation 3.5 captures the corner cutting behaviour and look-ahead time, whereas Equation 3.4

captures the inherent time delays of the HO.

Hot(jω) = Hox

Kf

Tl,f jω + 1
eτHOjω (3.5)

As this structure does not assume any stick or neuromuscular dynamics, it is considered a reduced model

(RM). Span proved that it is capable of capturing human behaviour for the non-haptic condition, with

variance-accounted-for VAF values exceeding 90% for all subjects [6].

Figure 3.4: Reduced model (RM) for parameter estimation

The high VAF values initially suggest that neuromuscular dynamics can be omitted in the HCR, as long

as the rest of the HCR parameters are updated according to the parameter estimation results yielded by

the structure given in Figure 3.4. To evaluate the effects of omitting neuromuscular and stick dynamics,

a full-model (FM) is tested as shown in Figure 3.5. To prevent increased complexity during parameter

estimation, Hnms is assumed to be equal for all subjects according to Equation 3.6.

Hnms =
ω2
nms

(jw)2 + ζnmsωnms(jw) + ω2
nms

=
10.52

(jw)2 + 0.35 · 10.5 · (jw) + 10.52
(3.6)
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Figure 3.5: Full model for parameter estimation

The results of the FM compared to the RM for all 10 subjects are given in Figure 3.6. For each NH run the

parameter vector Θ = [τHO,Kf , Tl,f ,Ke, τv] [6] is estimated by minimising the squared magnitude of a
cost function, shown in Equation 3.7 [6].

Θ̂ = argmin
Θ

Nf∑
i=1

|ε (jωi | Θ)|2 (3.7)

The cost function itself is defined by Equation 3.8 for a given parameter vector Θ, with X as the Fourier

transform of the state from experimental data, Ft being the Fourier transform of the target and U being the

Fourier transform of the input.

ε (jωi | Θ) = U (jωi)−
(
Ĥot (jωi | Θ)Ft (jωi)− Ĥox (jωi | Θ)X (jωi)

)
Hnms (3.8)

Figure 3.6 shows the effect of neglecting the neuromuscular system and side-stick dynamics on parameter-

estimation results. For Tl,f and τHO little difference is to be found, which makes intuitive sense since

neuromuscular and stick dynamics are not necessarily expected to influence the amount of corner cutting

or look-ahead time.

Figure 3.6: System identification results

Table 3.2 shows that Ke decreases marginally for the FM and that τv decreases by 29%. Therefore, the

main conclusion is that neuromuscular and side-stick dynamics are implicitly accounted for and ’lumped’

into τv in the case of the RM. This is important to consider when designing a HCR according to parameter

identification results. For example, when using the RM parameters in a HCR it is important to omit the

NMS in the HCR, as apparently this has a significant impact on τv.
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Table 3.2: Grand means RM versus FM

Ke [−] Tlf [s] τHO [s] τv [s]

RM 1.46 0.44 0.84 0.40

FM 1.40 0.42 0.83 0.31

∆ 4.3% 4.8% 1.2% 29.0%

Figure 3.7 and Figure 3.8 show the effects of using each subject’s personalised parameter estimation

results to model their individual behaviour and adjust the HCR parameters accordingly. Note that in this

case the FM was chosen to perform system identification, meaning that the original HSC-HCR structure

could be used (i.e. not omitting the NMS).

It is evident from Figure 3.7 and Figure 3.8 that by adapting the HCR and HO model, on average little

benefit is gained in terms of accuracy relative to the experiment results. This supports the hypothesis

that individual differences as shown in Figure 3.6 are not significant enough to yield an improvement in

simulation accuracy relative to the one-size-fits-all baseline model as described in Section 2.4. Furthermore,

human adaptation seems to have a far more significant effect on model accuracy than individual differences

between HO’s.

Figure 3.7: Personalised simulations tracking error Figure 3.8: Personalised simulations conflict

Main finding of Section 3.3

Parameter estimation results by Span are used to model individual HO behaviour, resulting in

personalised HCRs. Using this method to simulate Span’s experimental data did not result in

increased performance (in terms of tracking error) relative to the baseline model, suggesting a

one-size-fits-all model is adequate to model HO behaviour in an FDC-HSC controller. Furthermore,

(the lack of) human adaptation seems to have a substantially stronger effect on model accuracy

than individual differences between HOs.
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3.4. Conflict and HCR Analysis
3.4.1. Root Causes of Conflicts
One of the driving factors behind the design of haptic control systems is the minimisation of conflict forces,

which occur when the operator disagrees with the control inputs of the automation and decides to counteract

them. In the worst case the user may even decide to disengage the automation altogether, negating the

possible benefits of the guidance system.

Designers have two primary tools at hand to reduce conflicts. Firstly, the design architecture of the controller

itself plays a large role in ensuring that the guidance system’s control strategy is aligned with the human.

To this end, cybernetic models are used to capture and replicate human control behaviour.

Secondly, a range of parameters within the controller can be tuned to further ensure satisfactory behaviour

and alignment with the user. Some of these parameters pertain to the HO model (for example, look-ahead

time), whereas others are a matter of preference or design choice (for example, the strength of guidance

input relative to the user’s input).

The details of how humans adapt to haptic controllers are yet unknown, although it can be expected that

operators will counteract the guidance forces in the case of one or more of the following occurrences:

1. The operator expects that the system’s inputs will have a negative impact on control performance

(i.e. increase the error between the target and state)

2. The operator’s intended or present control inputs run counter to the system’s inputs

3. The operator lacks trust in the system

The expected result of one or more of the above is that the operator will seek to neutralise the guidance

forces, negating their effect on the controlled element (CE) state x.

Note that (1) and (2) may coincide in practice, assuming that the human’s control strategy is to minimise

the error with the least amount of effort. Therefore, if the user anticipates that the system’s inputs will lead

to an increase in error, the chances are high that these inputs will also be in opposition to the human’s

control strategy. However, in theory it is possible that the human’s intended control inputs do not align with

the system’s, despite the fact that the system’s inputs would lead to better performance.

Consider the case in which the guidance system has a faster and more ambitious control strategy than

the human. In this example conflicts may arise from the fact that the human is unable (or unwilling) to

keep up with the automation, despite both parties being able to accomplish the task (albeit with varying

performance).

If situations (1) or (2) occur, the implicit effect on the operator will likely be a lack of trust (3) and subsequent

neutralisation of the system’s control inputs through conflict torques. Although it may be possible that due

to stress or inherent lack of confidence in the automation, the operator is reluctant to accept guidance

forces regardless of their potential benefit.

In practice it is very difficult to distinguish between (1), (2) and (3) since it highly unlikely that they occur

independently of each other. This is the reason why modelling human rejection of guidance forces poses

a significant challenge. However, it is still useful to contemplate the root causes of conflicts to shed light

on the importance of the following design options:

1. Human compatible reference: To reduce the chances of the operator suspecting that the system

will have a negative impact on control performance, a simple constraint can be implemented: the

HCR reference state xR should be designed to be as close to the target as possible, subject to the

HO model constraints (such as the neuromuscular system or limited preview time). This way the

HSC is guaranteed to result in a satisfactory tracking error, increasing the chances of acceptance.

2. HO identification: In an idealized simulation with cybernetic models, the guidance system will

perfectly replicate the human’s inputs in the case of zero remnant (i.e. the human is modelled as a

linear time-invariant system with optimal parameters). In practice, it is inevitable that the guidance

system will not be able to perfectly capture the human’s behaviour due to a) the remnant, and b)

sub-optimal model parameters. To account for this, system identification methods can in theory be

used to capture individual differences between operators1.

1Albeit in the case of this project, individual differences between HO subjects are evidently not significant enough.
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3. Display: For optimal trust and transparency, it may be beneficial to show the user a portion of the

HCR, or a graphical representation of the current guidance inputs. In the case that the guidance

is sub-optimal, this would allow the user to anticipate conflicts similar to how he or she anticipates

the target signal. Furthermore, the operator would also have the possibility of building an intuition

about the cause of conflicts by relating them to the system’s HCR signal (for example, observing if

the reference signal consistently lags or leads the target).

Finally, although it has been proven that conflict torques can be reduced by adopting a controller structure

that mimics the human’s behaviour, it is yet unknown exactly what set of parameters lead to optimal

control performance and minimisation and conflicts. For example, it may be advantageous to implement a

controller that reacts faster than the HO (e.g. less time delay), but is still subject to a cybernetic structure

that describes the user’s overall control behaviour. In this case the set of parameters that best describe the

operator’s behaviour may not correspond to the set of HSC parameters that best support the operator’s

behaviour.

3.4.2. LoHS and SoHF Conflicts
One of the benefits of the FDC architecture is that designers are able to separately tune the open-loop

support channel (LoHS) and the feedback channel (SoHF). Because these channels both have a physically

interpretable meaning, it is useful to consider how they individually contribute to conflicts and tracking.

Figure 3.9 shows the forcing function and torque taken from a single run of Span’s experimental data,

with τHSC = 0.0s (both HO and HSC active). From Span’s work it is known that this condition is prone to

inducing conflicts, since the controller is not producing any phase lead to compensate for its HCR delays

(e.g. τvHSC
). The effect of this is clearly seen by the fact that the reference signal xr significantly lags the

target, meaning that without the HO the HSC would ensure that the state would lag the target by tracking

xr instead.

Figure 3.9: Experiment target and torque for τHSC = 0.0s

Figure 3.9 also demonstrates the effect of HO adaptation, showing that for the majority of the time, the HO

is giving contradictory inputs to the HSC. It is these inputs by the HO that compensate for the phase lag

generated by the HSC continuously trying to ’pull’ the state x back towards a lagging reference state xr.

Figure 3.10 shows the occurrences of conflict for the same run, analysed per HSC channel with opposite

inputs to the HO marked in red. It can be clearly seen that the vast majority of conflicts are due to the SoHF

channel. This makes sense, as this channel is by nature a corrective force that will react to deviations of

the state x from the reference xr. Therefore, the more successful the HO is in correcting the lagging xr to

improve tracking performance, the more feedback the SoHF channel will exert to ’correct’ the HO! For

this reason, the SoHF channel and HO tend to amplify each-other’s control activity, but only when the

reference xr deviates substantially from the target.
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Figure 3.10: Experiment TSoHF and TLoHS for τHSC = 0.0s

Furthermore, Figure 3.10 shows that when xr crosses ft (see blue in top figure) there is a short reduction
in conflicts for TSoHF . This is because for a moment, the difference between xr and x is small. Conversely,
TLoHS exhibits the opposite of this behaviour as it is prone to conflict at exactly these locations in time

(compare the red regions in the second and third row of Figure 3.10). This can be explained as follows.

It is known that changing the look-ahead time of the controller has the effect of phase shifting the reference

signal xr, resulting in a pure phase shift of the output torque of the LoHS channel. In the grand scheme of

things this phase shift has little effect on conflicts since the majority of the time, the LoHS channel is still

’on the right side of the fence’: when the target is primarily positive, the LoHS channel is also positive and

vice versa. This is illustrated by Figure 3.11, which shows the effect of phase shifting two pure sine waves,

highlighting the regions where they are opposite in sign. It can be seen that in Figure 3.10 and Figure 3.11

most conflicts occur around TLoHS = 0, with the duration of conflicts being longer for a larger phase shift.

Figure 3.11: Conflict regions between two sine waves with a phase shift
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The right hand-side of Figure 3.12 shows the same data for a run with minimal conflicts (τHSC = 0.8s). As
expected, in this case the reference state xr almost perfectly follows the target, hereby ensuring that the

SoHF will always ’pull’ the state towards the target signal since xr is now aligned with ft. The effect of this
is a drastic reduction in conflict torques relative to τHSC = 0.0s, with the remaining conflict that does still
occur being significantly smaller in magnitude.

Figure 3.12: Experiment TSoHF and TLoHS for τHSC = 0.0s, 0.8s

Main finding of Section 3.4

HO-HSC conflicts are mostly due to the SoHF channel, which becomes active in the event that

x 6= xr. If the HSC is using extreme values for τHSC , then x 6= xr will be the predominant case,

hence leading to significant conflicts. The more successful the HO is in rectifying the offset of the

reference state by ’pulling’ the state back to the target, the larger the difference between x and

xr, further activating the SoHF channel. For this reason, HO and HSC torques tend to amplify

each-other in the event of sustained SoHF conflict.

3.5. Modelling HO Rejection of HSC Torques
This section proposes a model to capture the behaviour of HO’s when τHSC deviates substantially from

the look-ahead time of the HO. Modelling this aspect of human behaviour will help to improve the accuracy

of the simulations used to develop the adaptive HSC, hereby aiding the design process. Figure 3.13

illustrates the proposed amendment to Van der El’s existing structure, incorporating a rejection loop that

supplements the original torque modelled by Van der El, THO∗ , with an additional rejection torque T∆.

The amount of rejection torque T∆ applied is dependent on two factors:

1. The difference between the HO’s expected applied torque THO∗ and the current felt torque of the

HSC through force feedback, THSC .

2. The magnitude of the HSC torque itself, as this will determine to the strength of rejection in the event

that it occurs.

Note that this model assumes the force feedback from the stick as felt by the HO to be 100% accurate with

zero time delay.
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Side-stick

HSC

Figure 3.13: Adaptive HO model

Figure 3.14 shows the inner workings of the rejection block. This consists of taking the root-mean-squared

(RMS) value of T∆ as an indication for how much the haptic controller is currently operating counter to

the intentions of the HO. Alternatively, this can also be a running RMS to simulate a buildup (or lack)

of trust over time. Thereafter, the RMS block output is multiplied with a gain before it passes through a

saturation-limiter with limits [0,−1], after which it is multiplied with the current HSC torque. Finally, the

product is passed through a low-pass NMS filter taken to be the same as Hnms in Van der El’s preview

model.

The effect of this structure is to reverse the effects of the HSC torque by directly counter-acting them

(negative gain), if they run counter to the intended torques of the HO for the current state x. To prevent
this loop from being active in the case that the HSC and HO inputs are of the same sign, a saturation

limiter is used, also ensuring that the rejection forces never exceed the original HSC torque as felt through

force-feedback. By adapting the rejection gain Kr the amount of counter-torque (rejection ) for a given

T∆ can be adjusted. This allows for modelling varying degrees of rejection, with Kr = 0 resulting in no
rejection forces (no HO adaptation).

Figure 3.14: Rejection block structure

Effectively, this structure makes the following assumptions:

1. Human rejection of conflict torques only occurs when HSC torques run opposite to the HO’s intentions.

2. Humans are able to feel the magnitude of applied HSC torque without delay and noise.

3. In the event of conflicting inputs, humans will attempt to cancel out the HSC’s inputs by applying

torques in the opposite direction, with a magnitude that is at most equal to the original HSC torque

causing the conflict.

The effects of this change to the model are best illustrated by considering how the original baseline

simulation performed in the case of high conflict. This situation is shown in Figure 3.15 where simulated

conflict torques and compared with experiment data.
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Figure 3.15: Simulated versus experiment torques for τHSC = 0.0s

Note that due to the effects shown by Figure 2.13, even without modelling rejection, the simplified HO

model is capable of correcting the poor performance of the HSC to an extent. This is evident from the fact

that the simulated state x is situated between the target and reference xr, indicating the the simulated HO

is ’pulling’ the HSC towards the target and introducing lead. Although the simplified simulation captures

the fact that HO and HSC torques run counter to each other in terms of sign, Figure 3.15 shows that the

magnitude of both HO- and HSC torques are underestimated by the simplified model. This supports the

hypothesis made in the previous section that the SoHF channel tends to amplify HO torques and vice

versa, which is exactly what is lacking in this case.

Figure 3.16 shows the same run but with the HO torque-rejection model, which results in increased

simulated magnitudes of both THO and THSC . Furthermore, the error is reduced from RMSe = 0.47 cm for

the non-adaptive HO, to RMSe = 0.30 cm for the adaptive HO shown in the right-hand side of Figure 3.16,

indicating that the adaptive HO model achieves better tracking performance through conflicts. In this run

the experiment error was RMSe = 0.35 cm, meaning that the simulated adaptive HO even out-performs

the subject for this run. This may be due to the idealized assumptions governing the adaptive model.

Figure 3.16: Simulated versus experiment torque for an adaptive HO model, τHSC = 0.0s

Figure 3.17 shows the magnitude of both HO and HSC torques as a function of rejection gain, Kr. For no

rejection (Kr = 0) both the HO and HSC torques are relatively small in magnitude. As rejection increases,

the amplification effect of the SoHF can be clearly seen as both torques increase in magnitude (but opposite

in direction). Further increasing the magnitude (|Kr| > 8) yielded negligible differences, indicating that
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there is a limit to the amount of rejection/adaptation that can be done. This makes intuitive sense due to

the saturation limiter, which ensures that rejection torques will, at most, fully cancel out the HSC torques.

Figure 3.17: Conflict as a function of varying rejection, τ = 0.0s

Figure 3.18 shows the results of setting Kr = −4 and computing the VAF between the simulated values

of x and experimental data for Span’s 10 subjects. For the majority of values of τHSC , the rejection

model yields better or similar VAF scores as the Span’s baseline simulations. The exception to this rule is

τHSC = 1.2s, where using the rejection model results in a worse fit than the baseline (no rejection). This
result suggests that HO’s use a different strategy when adapting to a controller with high-look

times relative to a controller with low look-ahead times. Finally, Figure 3.19 shows that the adaptive,

conflict-rejecting HO model fits the experiment data better for extreme values of τHSC than the baseline,

validating its use in designing an adaptive HSC.

Figure 3.18: VAF for rejection model

Figure 3.19: Error and conflict for rejection model and varying τHSC
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Main finding of Section 3.5

HO rejection forces are modelled based on the assumption that if a HO notices that the current HSC

input runs counter to its own, then it will undergo additional effort to reject this input. This is modelled

by adding a ’rejection’ loop that runs parallel to Van der El’s model, which outputs a rejection torque

TR by comparing the HO’s current nominal torque (THO∗ ) and the current HSC torque (THSC ). If the

HSC torque deviates too much from the HO’s expectation, the HO will neutralise it by superimposing

the rejection torque on top of its nominal output (THO∗ ), hereby cancelling the effects of the HSC.

3.6. Modelling Time-varying HO Behaviour
The final and ultimate goal of this report is to propose and test a structure for an adaptive HSC. To this

end a test scenario is created in which the preview time is varied during a simulation run, resulting in

time-variant HO behaviour. Figure 3.20 shows a timeline of the proposed scenario, starting off with a run-in

time of 8s. This is followed by the first condition, which will be either full preview (1.0s) or limited preview
time (0.1s). At t = 38s the condition will switch, going from either 1.0s to 0.1s or vice versa. A period of

transient behaviour is expected, after which another 30s period allows for system identification during the

second condition for real-life experiment runs.

The HO model used during simulations is identical to the one previously described in Section 2.1, with the

exception of look-ahead time. To model time-varying HO behaviour in light of the varying preview-time,

the HO is expected to change its look-ahead time from τHO = 0.6s to τHO = 0.1s when the preview time is

reduced to τp = 0.1s (see Section 2.1.3). Initially this change will be modelled to be instantaneous, hereby
offering the novel controller designs the best chance of recognising and adapting to (abrupt) changes in

HO behaviour. Later on in the chapter the effects of transient behaviour will be evaluated. All simulations

assume SI CE dynamics.

Figure 3.20: Test case

The remainder of this chapter uses the above test case and the target signal given by Table 2.2 to evaluate

three distinct adaptive haptic shared controllers. Note that simulations in this chapter assume HO rejection

of HSC torques, modelled according to Section 3.5 with Kr = −4 and Kn = 8 (remnant gain). The effects
of varying Kr on A-HSC behaviour are evaluated at the end of the chapter.

3.7. Controller Design: Inertial A-HSC
3.7.1. Inertial A-HSC Structure
The structure of the first of three proposed A-HSC’s is discussed in this section: the inertial A-HSC, shown

in Figure 3.21. Note that the HO given in Figure 3.21 is modelled to be time-variant according to the test

case given in Section 3.6. The inertial A-HSC consists of three core parts:

1. Adaptive controller: determines the optimal look-ahead time for the HSC

2. Phase shifter: modulates the target function depending on the adaptive look-ahead time

3. FDC-HSC: a conventional Four-Design-Choices HSC as described in Section 2.2

The adaptive part of the controller (’Adaptive Controller’ in Figure 3.21) determines the look-ahead time τa
for the traditional FDC-HSC controller (’HSC’ in Figure 3.21), taking as an input the difference between

the HO and HSC torques (∆T ) in order to measure conflict, also leveraging the target ft and state x.
Thereafter, the calculated adaptive look ahead time τa is determined and used to phase shift the target
signal before it is passed to the FDC-HSC.
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Figure 3.21: Adaptive controller structure

The most difficult part of the design process is determining how to determine the optimal look-ahead time

τa (the inside of the ’Adaptive Controller’ block), which relates to research questions 1 and 2:

Which metrics should be used to trigger or drive adaptation of the haptic shared controller?

Research Question 1

How should the system adapt itself in relationship to the chosen metrics?

Research Question 2

To answer these questions, Figure 3.22 shows the inner workings of the ’Adaptive Controller’ block in

Figure 3.21. It consists of two main parts: 1) the calculation of a cost value c which is to be minimised and
2) a memory buffer and decision policy to decide how τa should be adapted.

RMS

RMS

Memory 
buffer

Decision 
policy

Figure 3.22: Adaptive controller cost and policy

Exactly how the cost is best defined is yet to be fully investigated, since it raises a deeper question about if

the controller should adapt itself to reduce conflicts or error. For example, for limited preview times it is

known that the HO’s tracking performance will deteriorate as it is not able to generate the same amount of

phase lead as before, hence lagging the target. In this case the controller can be configured to also lag the

target by aiming to reduce the maximum amount of conflict torques ∆T . Alternatively, the HSC can be

set to (additionally) reduce the error. For the purposes of this project, the cost value is taken to only be

dependent on ∆T , meaning that the error channel is inactive in Figure 3.22.
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The memory buffer takes the average cost of 5-second chunks of time to average out some of the inherent

stochastic conflict that is always present due to the HO remnant and disturbance. It was found that a lower

chunk length resulted in the controller not being able to distinguish random conflicts from its own adaptive

influence. The last two cost-chunks Ci−1, Ci are stored before the decision policy uses them to evaluate in

which direction τa should adapt.

The decision policy itself simply evaluates whether the last cost-chunk Ci performs better than the previous

chunk Ci−1. If Ci−1 − Ci < 0, then the value of the look-ahead time for the next chunk will evolve in the
same direction as previous look-ahead times were going in, because performance is evidently increasing.

The next iteration of look-ahead time τi+1 will then experience a change as described by Equation 3.9.

τi+1 = τi + 0.68 · |Ci−1 − Ci| · sign(τi − τi−1) (3.9)

Note that the proportionality constant 0.68 was tuned heuristically to strike a balance between adaptation
speed and stability. This constant can be seen as a meta-gain: the larger it is, the larger steps the controller

will take during adaptation. However, similar to conventional controllers, high gains come at the cost of

reduced stability and increased volatility (sensitivity to stochastic signals).

If the performance of the latest chunk is not sufficiently better than the one before it, i.e. Ci−1 − Ci > 0,
then the next look-ahead time will adapt in the opposite direction as before, shown in Equation 3.10 by a

subtraction of the step value instead of addition.

τi+1 = τi − 0.68 · |Ci−1 − Ci| · sign(τi − τi−1) (3.10)

The controller exhibits a certain ’momentum’ or inertia when it is adapting in a direction that reduces the

cost value (it keeps going until it encounters an increase in conflict), hence its name: inertial HSC.

Figure 3.23 shows the cost and chunks over time for a typical run starting at τa0 = 0.6s. Note how the

raw cost is volatile due to the stochastic nature of the disturbances and HO remnant, in turn influencing

HO-HSC conflicts which are measured by the cost value. For this reason 5-second chunks are used to

accumulate an average across time, so that the influence of the adaptive controller can be inferred reliably.

Figure 3.23: Inertial A-HSC example run 1

After the fog ’hits’ at t = 38 the simulated HO reduces its look-ahead time to τ = 0.1s. The effect of this is
a sharp increase in raw cost, as there are now more conflicts. In turn, this increase is measured by the

subsequent chunks, driving the adaptation policy to change τa.

The primary disadvantage of the inertial A-HSC is the fact that at the time of fog, the controller does not yet

know which direction is ’correct’. In the case of Figure 3.23, the adaptive look-ahead time first increases
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(between t = 45− 55) before the controller realises that it should have gone the other way. This can be
seen by the increase in cost/conflict at t = 50− 55, causing the controller to revert its adaptation direction
and reduce the look-ahead time, this time adapting in the correct direction. Finally, the controller converges

to τa = 0.09s.

Figure 3.24 shows the same data for another run with a different remnant seed. In this case it can be seen

that the same initial spike in cost occurs after the fog hits. However, for this particular run the controller

happens to immediately adapt in the correct direction (lowering τa). Therefore, only one spike in cost
value is present in Figure 3.24, as opposed to two in Figure 3.23 (the second one is due to the controller’s

mistake).

Figure 3.24: Inertial A-HSC example run 2

Finally, notice how the chunk value always lags behind the raw cost in both Figure 3.23 and Figure 3.24.

This is because the chunk buffer needs time to fill-up and average the previous 5 seconds of data, hereby

negating the stochastic effects of the raw cost/conflict. The fact that each chunk lags reality severely limits

the speed of adaptation and essentially causes the A-HSC to be 5 seconds late at all times. Especially if

the controller happens to be going in the ’wrong’ direction, this poses a serious limitation.

3.7.2. Inertial A-HSC Results
The results of the inertial A-HSC structure are given in Figure 3.25, showing the averaged results of 100

runs for SI CE dynamics with randomly selected target phases and remnant seeds, initialised with τa = 0.6.
The target signal is given by Table 2.2. Preview time is suddenly limited at t = 38, the corresponding
change in HO behaviour is simulated by changing τHO from 0.6s to 0.1s.

Figure 3.26 shows that initially all runs converge around a mean of τa = 0.68 with a standard deviation of
σ38 = 0.13s. After the fog hits the distribution diverges, increasing the standard deviation to σ54 = 0.30s.
Finally, at t = 199s the runs converge to a new mean of τa = 0.26s with σ199 = 0.14s. The divergence of
simulation runs at 54s is indicative of the controller being driven to adapt due to an increase in conflict.
When HO behaviour changes the controller is initially unaware of which direction it should adapt τa, hence
it will take a relatively large step in whatever direction τa happened to be evolving in before the fog. After
this period of divergence, at t = 199s the simulation runs converge to an average look-ahead time of

τa = 0.26s, which is closer to the modelled HO’s ’fogged’ look-ahead time of τf = 0.1s.

Table 3.3: Inertial A-HSC mean and standard deviation

Time 38s 54s 199s

Mean τa (s) 0.68 0.61 0.26

Standard dev. τa (s) 0.13 0.30 0.14
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Figure 3.25: Inertial A-HSC look-ahead time, N=100 Figure 3.26: Inertial A-HSC histogram, N=100

Main finding of Section 3.7

The inertial A-HSC uses a memory buffer and decision policy to adapt the look-ahead time of an

FDC-HSC controller. The memory buffer averages the RMS value of 5-second chunks of conflict

(cost) to separate the influence of the controller from random disturbance functions or remnant. If

the values of subsequent chunks indicate that conflict is reducing, then the controller continues to

adapt in whatever direction it was going in. Conversely, if subsequent chunks indicate an increase

in conflict, then the policy is to reverse the direction of adaptation.

3.8. Model-Fitting Adaptive HSC
3.8.1. Model-Fitting A-HSC Structure
Figure 3.27 shows the structure of the second A-HSC named Model-Fitting (MF). The philosophy behind

this controller is to run multiple HSC’s in the background and select the one that fits best.

HO

Side-stick

HSC 1

HSC 2

HSC ...

CESelector

Figure 3.27: Model-fitting controller structure
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Even though only one of the HSC’s can be in the loop together with the HO at any given time, it is still

possible to determine what the other controllers proposed torques would have been to an extent. Each

controller receives two inputs:

1. The target function shifted according to the controller’s unique look-ahead time

2. The current state x, influenced by the HO and the current active HSC

Every 5 seconds the selector compares the last 5 seconds of THSC−i with THO for each HSC model.

Based on the amount of hypothetical conflict between THO and each controller, the selector then chooses

the HSC that would have been closest to the HO in terms of least amount of conflict torques.

The limitation of this design is that it does not account for the fact that the HO is likely adapting its torque

depending on the HSC that is currently active, which is something the inactive HSC’s cannot ’see’ or

account for. This makes selecting a HSC based on past resemblance to the HO’s torque a questionable

method. Furthermore, each latent HSC is dependent upon the current state x, which is influenced by
the HO’s (adaptive) behaviour, drawing into question the validity the inactive HSC’s latent torques (since

they are a function of x). This may be the reason that during initial testing of the controller, the selector
occasionally got ’confused’ and switched between HSCs with extreme look-ahead times, as shown in

Figure 3.28.

Figure 3.28: Model-fitting without 0.1s restriction

After implementing a restriction that only allows the selector to change to a HSC with a deviation of

∆τHSC = 0.1s at a time, the results improved as shown in Figure 3.29.

Figure 3.29: Model-fitting with 0.1s restriction

Another possible remedy for the aforementioned limitations is to simply select the HSC whose proposed

torque is smallest in terms of RMS value for the past 5 seconds. The reasoning behind this is best explained

with an example. Take HSC-1 to be the active HSC with τ1 = 0.0s and a HO with τHO = 0.6s. Due to the
low look-ahead time of the active HSC, the HO will likely use conflict forces to rectify the poor performance

of the active HSC and ensure that x follows the target, despite HSC-1 having a sub-optimal look-ahead
time of 0.1s.

Due to the SoHF path, inactive HSC’s with extreme look-ahead times (e.g. τHSC = 1.2s) will propose to
’correct’ the current state (which is following the target due to HO rejection of HSC-1) and ’pull’ it towards

their own reference state. The hypothesis is that the latent HSC with τHSC = 0.6 will propose a minimum

level of adjustment, since the current state is already aligned with its own reference. Therefore, this HSC

(τHSC = 0.6) is expected to be chosen as the prime candidate. Analogous reasoning can be applied to the
situation where the HO is ’fogged’ and forced to use a lower look-ahead time.



58 Chapter 3. Controller Design and Simulations

3.8.2. Model-Fitting Results
Figure 3.30, Figure 3.31, and Table 3.4 show the results for a model-fitting A-HSC that selects based on a

minimal difference in torque between latent HSCs and the HO (MF-1).

Figure 3.30: MF-1 look-ahead time, N=100 Figure 3.31: MF-1 histogram, N=100

Table 3.4: MF-1 mean and standard deviation

Time 38s 54s 199s

Mean τa (s) 0.74 0.63 0.52

Standard dev. τa (s) 0.11 0.13 0.14

Figure 3.32, Figure 3.33, and Table 3.5 show the results for a model-fitting A-HSC structure that selects

based on which HSC proposes the minimum RMS of torque, without explicitly comparing with HO torques.

This method is denoted MF-2. The results are notably different from MF-1, with the means of the MF-2

distribution being significantly lower than those of MF-1.

Figure 3.32: MF-2 look-ahead time, N=100 Figure 3.33: MF-2 histogram, N=100
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Table 3.5: MF-2 mean and standard deviation

Time 38s 54s 199s

Mean τa (s) 0.38 0.22 0.17

Standard dev. τa (s) 0.11 0.11 0.09

Main finding of Section 3.8

The model-fitting A-HSC uses multiple HSCs running in the background together with a selection

algorithm. Every 5-seconds the selection algorithm may choose to ’activate’ a latent HSCs based

on one of the two following criteria:

• MF-1: The difference between the (proposed) HSC and HO torques of the latent HSC is

smaller than the current difference
• MF-2: The RMS value of the (proposed) HSC torque of the latent HSC is smaller than the

current RMS value of the active HSC torque

The disadvantage of model-fitting lies in the fact that only one model can be active at any given time.

It is therefore difficult to predict which inactive model will outperform the current one, given the fact

that inactive models cannot truly be evaluated unless they are made active together with the HO.

3.9. Cross-Correlation Adaptive HSC
3.9.1. Cross-Correlation A-HSC Structure
The structure of the final and most promising A-HSC design is given by Figure 3.34. The cross-correlation

haptic shared controller (XC-AHSC) is similar in design to the inertial A-HSC as it also seeks to determine

the optimal look-ahead time before passing this information to a conventional FDC-HSC. However, the

method it uses to determine the optimal look-ahead time is fundamentally different from the inertial A-HSC.

Figure 3.35 shows the contents of the ’Adaptive Controller’ block in Figure 3.34 and reveals the mechanism

by which the A-HSC adjusts the look-ahead time of the FDC-HSC. The adaptation policy is based on

the relationship between the reference state and HO-HSC conflicts. Section 3.4 concluded that if the

actual state and the reference state are not aligned then it is highly likely that the HSC is not in agreement

with the HO’s actions. To measure sustained mismatch between xr and x in terms of phase shift, the

cross-correlation between the two is computed over a buffer as shown in Figure 3.35.

HSC

Side-stick

Adaptive 
Controller

CE

HO

Phase 
shift

Figure 3.34: Cross-correlation A-HSC structure
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By evaluating at which index the cross-correlation function reaches its maximum, the amount of lead or lag

between the state and reference can be determined. How much the reference state is leading/lagging

the actual state (measured by imax) determines to what extent the current look-ahead time τa should be
adapted. To control the speed of adaptation, the gain Ka can be tuned. If the reference is consistently

lagging the actual state, by implication this must mean that the HO is ’pulling’ the state and causing lead

(and vice versa), resulting in conflict. By measuring this misalignment through cross-correlation and using

it to drive adaptation, the root cause of conflicts is addressed head-on without circumvention. The buffer

size is set to t = 9.00s with an overlap of t = 8.99s, Ka is set to 1.25 · 10−5.

Buffer

Buffer

X-corr

Figure 3.35: Cross-correlation adaptive controller block

3.9.2. Cross-Correlation Results
The results of the XC-AHSC are given by Figure 3.36, Figure 3.37, and Table 3.6. Out of the three A-HSC

designs the XC-AHSC exhibits the most robust behaviour, indicated by the low spread of data. This is

likely due to the simplicity of the design and its capacity to effectively address the root cause of conflicts.

Furthermore, the XC-AHSC is the only adaptive controller that does not require discontinuous jumps

between distinct look-ahead times. By selecting a sufficiently large buffer overlap the optimal look-ahead

time can be updated at arbitrarily small intervals (in this case, every 0.01s). The ability to smoothly shift
between look-ahead times may also increase the likelihood that the controller will be accepted by HO’s

during an experiment (compared to a discontinuous A-HSC).

Figure 3.36: X-corr look-ahead time, N=100 Figure 3.37: X-corr histogram, N=100

Table 3.6: Cross-correlation mean and standard deviation

Time 38s 54s 199s

Mean τa (s) 0.78 0.29 0.30

Standard dev. τa (s) 0.03 0.13 0.04
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Main finding of Section 3.9

The XC-AHSC’s decision policy is based on the fact that almost all conflicts are rooted in a misaligned

reference state. Using the index of the maximum value of the cross-correlation function of x and
xr, the XC-HSC updates the current look-ahead time as to reduce the phase lead or lag between

the reference state and actual state. Preliminary results show the XC-AHSC to be robust against

disturbances and more stable than the other controllers.

3.10. Comparing A-HSC Designs
Table 3.7 and Figure 3.38 show the combined means and standard deviations for all A-HSCs. In terms of

spread of look-ahead data, X-corr has a similar narrowness of distribution as MF-2. However, X-corr has

the added benefit of being able to adapt to a wider range of look-ahead times with simulations showing

adaptation from an initial convergence of µτ = 0.78s to µτ = 0.30 (∆τ = 0.48s). This is a significant

improvement over MF-2’s adaptation range, which is ∆τ = 0.38s − 0.17s = 0.21s. The second-best

performer in terms of adaptation range is the inertial-AHSC, going from 0.68s to 0.26s (∆τ = 0.42s).
However, the inertial-AHSC’s volatile nature (large spread) renders it a risky choice for an experiment.

Table 3.7: Adaptive look-ahead time mean and standard distribution per controller

X-corr MF-2 MF-1 Inertial

38s 54s 199s 38s 54s 199s 38s 54s 199s 38s 54s 199s

µτ 0.78 0.29 0.30 0.38 0.22 0.17 0.74 0.63 0.52 0.68 0.61 0.26

στ 0.03 0.13 0.04 0.11 0.11 0.09 0.11 0.13 0.14 0.13 0.30 0.14

Figure 3.38: Adaptive look-ahead time mean and standard distribution per controller

Figure 3.39 shows the averaged values of all runs for three A-HSC designs (N=3x100) combined in one

graph. MF-2 is not considered due to its tendency to converge to short look-ahead times (even in situations

with high preview time), which would likely result in conflicts [6]. Figure 3.40 shows the same data with an

emphasis on convergence, showing how the look-ahead time of each controller remains bounded.

Figure 3.39: Comparing averaged look-ahead times for A-HSCs (N=3x100)
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Figure 3.40: Convergence of A-HSCs (N=3x100)

Table 3.8 presents the data shown in Figure 3.40 in tabulated format. The settling time refers to the start of

the convergence regions in Figure 3.40, i.e. the time beyond which τa remains bounded between the upper
and lower limits specified in Table 3.8. The inertial A-HSC performs the best with respect to convergence

range, however, its settling time (115s) is more than double that of the XC-AHSC, which has the fastest

settling time of 53.27s. Note that the convergence range of the mean values is not to be confused with the

standard deviation of aggregated realizations, as given by στ in Table 3.7.

Table 3.8: Convergence of A-HSCs (N=3x100)

Convergence metric Inertial MF-1 XCorr

τa lower bound (s) 0.2559 0.4750 0.2608

τa upper bound (s) 0.2937 0.5750 0.3036

τa range (∆) (s) 0.038 0.100 0.043

Settling time (s) 115.00 65.00 53.27

Main finding of Section 3.10

The XC-AHSC performs better or equal to other AHSCs according to the following metrics:

1. Adaptation speed: how quickly the controller is capable of converging after fog.
2. Robustness: the spread of data, i.e. how resilient is the controller against false adaptations

(remnant or disturbance).
3. Adaptation range: the range of look-ahead times that the controller can adapt to.

For these reasons, only the XC-AHSC will be considered going forward in the project.

3.11. Cross-Correlation A-HSC: Additional Findings
3.11.1. Effects of Transient Behaviour on XC-AHSC Adaptation
This section evaluates the effects of using various methods to model the HO’s transient behaviour. Thus

far simulations have been performed under the assumption that the HO discontinuously changes its

look-ahead time from 0.6s to 0.1s. In reality this change will be continuous rather than instantaneous, since
it is likely the HO will remember certain parts of the previewed signal just before they disappear due to the

limited preview time.
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To model time-varying behaviour of the HO more in a more realistic manner, two sigmoid functions of

varying speeds are used. These functions are used to shift between the original HO model (τHO = 0.6)
and the adapted HO model (τHO = 0.1) by changing each model’s contribution to the output. This is given
by Equation 3.11, where S1 and S2 are complementary sigmoid functions such that S1(t) + S2(t) = 1 ∀t.
Table 3.9 shows the parameters used to generate both fast and slow sigmoid functions, with duration

measuring the time it takes the function to go from 0.1 to 0.9. The results are given in Figure 3.41, showing
the value of S2(t) in addition to how the average adaptive look-ahead time is influenced by the three types

of transient functions (N=3x100).

Tho = T0.6 · S1(t) + T0.1 · S2(t) = T0.6

(
1

1 + ea(t−c)

)
+ T0.1

(
1

1 + e−a(t−c)

)
(3.11)

Table 3.9: Sigmoid parameters

c (s) a (−) Duration (s)

Fast 40 3.3 1.32

Slow 43 1.0 4.39

Figure 3.41: Effects of varying transient behaviour, N=3x100

As expected, it takes slow sigmoid the longest time to adapt. For an instant transient function it takes on

average 6.7s for the look-ahead time to adapt from 0.75s to 0.6s. For the fast and slow sigmoids it takes

17.2s and 17.5s, respectively.

Figure 3.42, Figure 3.43, and Table 3.10 show more detailed results for the slow sigmoid compared to

instantaneous HO adaptation. It can be seen that the initial rate of adaptation for the slow sigmoid is more

shallow than for the instantaneous case, with the sigmoid mean look-ahead time taking on average an

additional 48 seconds to converge to its final value (after some stagnation at τ = 0.4s).

Table 3.10: XC-AHSC Slow sigmoid mean and standard deviation

Time 38s 54s 199s

Mean τa (s) 0.78 0.59 0.30

Standard dev. τa (s) 0.03 0.09 0.04



64 Chapter 3. Controller Design and Simulations

Figure 3.42: XC-AHSC look-ahead time for slow

sigmoid, N=100

Figure 3.43: XC-AHSC histogram for slow

sigmoid, N=100

3.11.2. XC-AHSC Adaptation for Varying HO Levels of HO Rejection
This section briefly evaluates the effects of varying levels of HO adaptation on the average look-ahead times.

Figure 3.44 shows the results for 5x100 realizations performed for varying values of Kr between [0,−8]
with increments of −2. It can be seen that when HO rejection of HSC is disabled (Kr = 0), look-ahead
time adaptation is almost non-existent. However, when the HO model is configured to reject HSC

forces that are sufficiently different from their own intended actions, look-ahead time adaptation

increases significantly. This finding demonstrates the necessity of modelling HO rejection of HSC forces

and raises the following question: to what extent will HO’s reject HSC forces under limited preview time in

real life? Answering this question is one of the goals of this project’s HO-in-the-loop experiment.

The reason the controller is more prone to adaptation for higher levels of rejection is because the HO

exerts an increasing level of influence on the state x for higher values of Kr. When configured to reject

HSC forces, a fogged HO will not accept a reference state that follows the target, because in this case the

HSC’s torques will not be in line with the HO’s inputs. Therefore, adaptation is required to align xr with the

actions of the HO. However, if the HO is configured not to reject HSC forces, then evidently it has no issue

with accepting a look-ahead time that is significantly higher than its own. Whether or not HO’s choose to

reject HSC forces may be dependent on the task instructions, trust, and personal preference.

Figure 3.44: XC-AHSC look-ahead time for varying Kr (N=5x100)
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3.11.3. Effects of Fog Direction on XC-AHSC Adaptation
Figure 3.45 shows the same experiment performed in the opposite direction, going from limited preview

time to full preview after t = 60s. Contrary to Figure 3.44, rejection seems to have a negligible effect

on adaptation if the look-ahead time is increasing. Depending on the amount of rejection (as shown in

Figure 3.44), this finding suggests that the controller and HO may be more prone to adaptation in

the direction of small-to-large look-ahead times than vice versa.

Figure 3.45: XC-AHSC look-ahead time for varying Kr, reversed (N=5x100)

Figure 3.46, Figure 3.47, and Table 3.11 show the results of 100 realizations for when the HO initially

starts with a limited preview time (τHO = 0.1s) and instantaneously shifts to a higher look-ahead time

at t = 38s, essentially reversing the previous simulations. Table 3.11 shows that the adaptation range
(∆τ = 0.80− 0.33 = 0.47s) is similar to the original case (Table 3.6: ∆τ = 0.48s). Furthermore, the spread
of the distributions is narrower, having an average standard deviation of στ = 0.04s, compared to the

original case which has an average of στ = 0.07s. These findings may be related to results of Section 3.5,
which suggest that HO’s may use a different strategy to reject HSC forces depending on if the look-ahead

time is higher or lower than their own.

Table 3.11: XC-AHSC reversed mean and standard deviation

Time 38s 54s 199s

Mean τa (s) 0.33 0.49 0.80

Standard dev. τa (s) 0.03 0.06 0.04

Figure 3.46: XC-AHSC reversed adaptive look-ahead

time, N=100

Figure 3.47: XC-AHSC reversed histogram,

N=100
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3.11.4. Effects of Buffer Size on XC-AHSC Adaptation
The top row of Figure 3.48 shows the evolution of adaptive look-ahead time for a single run without

remnant, with a buffer length of 5 seconds and fog at t = 48s. The corresponding phase delay (φ) between
the reference state and actual state is given by the second row, as determined through the index of the

maximum value of the cross-correlation function. The last row shows the reference and actual state.

Figure 3.48: Reference state, phase lag and adaptive look-ahead time during plateau

Figure 3.48 shows that after initial excitement between t = 56 − 63s, adaptation briefly stops before

continuing at t = 67s. This plateau coincides with zero phase delay, as adaptation is driven by a phase
lead or phase lag. The reason for the plateau is due to the characteristics of the target signal. The adaptive

algorithm is most effective during large excursions of the target signal, i.e. when the HSC is able to follow

the target, but with a certain amount of measurable lag relative to the reference. This occurs in Figure 3.48

between t = 63− 66s (bottom row), for example, where the reference leads the state due to a relatively

high look-ahead time (τHO = 0.1s).

However, when the target signal is relatively constant (or ’flat’), the phase lead or phase lag between x
and xr is minimal. An example of this can be seen highlighted in red in the bottom row of Figure 3.48.

As a result of overlap between x and xr, adaptation stagnates. It is important to bear in mind that the

cross-correlation at a given point in time refers to the last 5s chunk of data in the event of a buffer size

equal to 5 seconds. This is why the measured phase lag or phase lead is delayed relative to the actual

phase difference, hence why the coloured windows are shifted in the last row as seen in Figure 3.48.

Figure 3.49 shows how increasing the buffer length for the same run (no remnant, same target signal)

results in smoother adaptive behaviour. This is because due to the fact that larger time-frames are being

considered, it is less likely that the target will be ’flat’ throughout the entirety of a chunk of data.

Figure 3.49: Effect of buffer size on adaptive look-ahead time
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Main findings of Section 3.11

This section evaluated the effects of the following factors on the XC-AHSC controller:

1. Transient functions: two sigmoid curves were used to gradually adapt HO behaviour. It

was found that by using a sigmoid function, the start of adaptation time was delayed by

approximately the length of the sigmoid curve.
2. Varying HO rejection: a clear correlation was established between the amount of torque-

rejection and look-ahead time adaptation. In the case of high-to-low look-ahead adaption, the

more HSC torques are rejected by the HO, the more the controller is prone to adaptation. This

effect was not found in the opposite direction (low-to-high look-ahead times), suggesting an

inherent asymmetry in HO-HSC behaviour.
3. Fog direction: by configuring the HO to initially have a limited preview time that increased

halfway through the runs, the effect of reversing the fog direction was evaluated. The spread

of adaptive look-ahead times was found to be narrower for the reversed situation. A similar

adaptation range was observed relative to the original case.
4. Buffer size: for small buffer sizes, the controller is prone to intermittent periods of stagnation

(plateau-ing). This is due to characteristics of the target signal, where medium-to-large

excursions of the state are required to measure a phase difference between the reference

state. By increasing the buffer size adaptation becomes less prone to stagnation, since phase

differences are evaluated over a longer time-span with more data.





4
Conclusion

The purpose of this report was to propose an adaptive haptic shared controller design to make progress

towards the following research objective:

To design, simulate, and validate an adaptive haptic shared controller that adjusts itself in real-

time to reduce conflicts between a human operator (HO) in a preview tracking task, without

undermining control performance.

Research Objective

To this end, simulations are performed using three novel adaptive haptic shared controllers: inertial, model-

fitting, and cross-correlation (X-corr). Each controller is tested in a simulated scenario with time-varying

human behaviour to evaluate adaptation performance. Thereafter, the results for each controller are

compared and the X-corr controller is selected based on robustness, adaptation range, and adaptation

speed.

The first research question pertains to the cost metric:

Which metrics should be used to trigger or drive adaptation of the haptic shared controller?

Research Question 1

Answer to research question 1: the cross-correlation between the internal reference state of the HSC

and the actual state x is used to drive adaptation of the look-ahead time.

The second research question pertains to the decision policy:

How should the system adapt itself in relationship to the chosen metrics?

Research Question 2

Answer to research question 2: A phase shift between xr and x indicates that the HO and HSC are not

in agreement, since in this case the HO is likely correcting for sub-optimal performance of the HSC. By

evaluating the index of the maximum value of the cross-correlation function, the phase shift between the

two signals can be determined. If xr is found to be leading or lagging x, a step in look-ahead time ∆τ is
calculated and added to the current look-ahead time.

Simulation results averaged over 100 realizations show that for a instant change in the HO’s look-ahead

time (0.6s− 0.1s), the X-corr controller is capable of adapting from τa = 0.78s to τa = 0.29s during a period
of 16s. After 199s, on average the controller adapts its look-ahead time from τa = 0.78s to τa = 0.30s. The
average standard deviation throughout simulation runs is σ = 0.07s.
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A
Computing Cross-correlation

The aim of this appendix is to describe the theoretical foundations behind the cross-correlation function

(‘X-corr’), as well as how it is implemented to estimate the time shift ζm between the state x and reference

state xr. Figure A.1 shows how the adaptive look-ahead time, τa, is updated by increments ∆τa, based on
the estimated time shift ζm between x and xr.

Buffer

Buffer X-corr

Figure A.1: Adaptive look-ahead time loop

A.1. Cross-product, Cross-covariance, and Cross-correlation
Before discussing how the cross-correlating function between x and xr is computed, first a general definition

of the cross-product function is given. For two stochastic processes f̄ and ḡ, the cross product function is
defined according to Equation A.1, where E{·} refers to the expected value. The output of this function is
a measure of the coherence between the two signals as a function of varying time shifts ζ. One can think
of the second signal (in this case, ḡ) ’sliding’ over the first signal according to a time shift ζ, with Rf̄ ḡ(ζ)
measuring the similarity between the two signals depending on the time shift.

Rf̄ ḡ(ζ) = E{f̄(t)ḡ(t+ ζ)} (A.1)

If the means of both signals happen to be similarly large, then this will result in larger values of the cross

product. Therefore, in order to have a more ’pure’ measure of the two signals’ coherence, it is useful to

correct for the means of the two signals. This is achieved through the use of the cross-covariance function,

as shown in Equation A.2, where µf̄ and µḡ are the averages corresponding to f̄ and ḡ, respectively.

Cf̄ ḡ(ζ) = E{(f̄(t)− µf̄ ) · (ḡ(t+ ζ)− µḡ)} (A.2)

The final step is to normalize the covariance, such that the output of the function equals 1 when the signals

are maximally correlated (and 0 if uncorrelated). To this end, the cross correlation function Kf̄ ḡ is defined

according to Equation A.3, where σf̄ and σḡ are the standard deviations of f̄ and ḡ, respectively.

Kf̄ ḡ(ζ) = E{
f̄(t)− µf̄

σf̄

· ḡ(t+ ζ)− µḡ

σḡ
} (A.3)

Equation A.3 provides a useful tool for estimating the time delay or lead between two signals. If f̄ and ḡ are
maximally correlated for a particular value of ζ, this means that the two signals share a common feature
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which occurs both at t for f̄ , and at t+ ζ for ḡ. If the maximum cross-correlation occurs for a positive time

shift ζ, this means that the common feature occurs later in time (at t+ ζ) for ḡ than it does for f̄ (at t). If
maximum cross-correlation occurs for a positive ζ, then ḡ is said to be lagging f̄ . Equivalently, one could
also think of having to shift ḡ earlier by ζ seconds before maximum alignment between the two signals

occurs. For a negative ζ, ḡ is said to be leading f̄ .

The same method for estimating time shift also applies for Rf̄ ḡ and Cf̄ ḡ, as will now be explained. The

cross-product and cross-covariance function are related by Equation A.4, which shows that the only

difference between the two metrics lies in subtraction of a constant number (for a stationary process).

Therefore, if a peak in Cf̄ ḡ occurs at a given ζ, then Rf̄ ḡ will also be maximised at the same value of ζ.
However, the magnitude of each peak will be different (due to subtraction of the means).

Cf̄ ḡ(ζ) = Rf̄ ḡ(ζ)− µf̄µḡ (A.4)

In turn, the relationship between Cf̄ ḡ and Kf̄ ḡ is given by Equation A.5. This shows that Rf̄ ḡ and Kf̄ ḡ are

related through scaling and subtraction. Therefore, any ζ resulting in the maximisation of Rf̄ ḡ or Cf̄ ḡ will

also result in the maximisation of Kf̄ ḡ.

Kf̄ ḡ(ζ) =
Cf̄ ḡ(ζ)

σf̄σḡ
=

Rf̄ ḡ(ζ)− µf̄µḡ

σf̄σḡ
=

1

σf̄σḡ
Rf̄ ḡ −

µf̄µḡ

σf̄σḡ
(A.5)

The conclusion is that each function (cross-product, cross-covariance, cross-correlation) will output the

same measured time delay ζm when maximising the corresponding function. However, it is preferred to

use Kf̄g, since it provides a normalized measure for cross-correlation between [−1, 1].

A.2. Cross-correlation of a Finite Discrete Signal
Cross-product
To calculate an estimate for cross-correlation, first the cross-product is analysed as a first step. For

real finite discrete signals F and G with N samples each, the cross-product is estimated as shown in

Equation A.6, wherem is the relative shift in terms of number of samples: m = 1−N, 2−N, ..., N−2, N−1.

R̂FG[m] =


∑N−m−1

n=1 F [n]G[n+m] m >= 0∑N+m−1
n=1 F [n−m]G[n] m < 0

(A.6)

In the following it will be shown that the cross-product is related to the convolution of the same two signals,

which can in turn be calculated by multiplication in the frequency domain.

Convolution
The cross-product of two signals is closely related to the convolution of the same signals. The general

definition of a convolution for signals f̄ and ḡ is:

(f̄ ∗ ḡ)(t) =
∫ ∞

−∞
f̄(τ)ḡ(t− τ)dτ (A.7)

For real finite discrete signals F and G, the convolution is determined according to:

(F ∗G)[t] =
∑
τ

F [τ ]G[t− τ ] (A.8)

Where the summation is performed for all values of τ that result in valid indices for the given t (i.e., the
indices for which both signals overlap). Swapping τ for n, for t with m results in:

(F ∗G)[m] =
∑
n

F [n]G[m− n] (A.9)
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Replacing n with −n across the entire expression then results in Equation A.10.

(F ∗G)[m] =
∑
n

F [−n]G[m+ n] (A.10)

Equation A.10 shows that by flipping the discrete signal F [n] → F [−n], before computing the convolution,
the output then becomes:

(F ∗G)[m] =
∑
n

F [n]G[m+ n] (A.11)

Which is the same algorithm as shown in Equation A.6, where the summation also only applies to the

relevant indices n. This finding corresponds to the property that the cross-product of two signals, f ? g,
is related to the convolution of the same signals, f(−t) ∗ g, by flipping f in the time-domain before the

convolution. This relationship is formalized in Equation A.12.

[f(t) ? g(t)](ζ) = [f(−t) ∗ g(t)](ζ) (A.12)

Computing convolution in the frequency domain
To compute the convolution, use is made of the convolution theorem, which states that a convolution in

the time domain corresponds to multiplication in the frequency domain:

F{f(−t) ∗ g(t)} = F{f(−t)} · F{g(t)} (A.13)

By taking the inverse Fourier transform of the right-hand side of Equation A.13, an expression is found for

the cross-product f(t) ? g(t):

[f(t) ? g(t)](ζ) = [f(−t) ∗ g(t)](ζ) = F−1
(
F{f(−t)} · F{g(t)}

)
(A.14)

Finally, Equation A.15 shows the equivalent discrete-time algorithm for computing an estimate for the

cross-product using Discrete Fourier Transforms (DFT). To account for the disjunction in overlap between

two finite signals, F [−n] and G[n] are both zero-padded up to 2N − 1 (corresponding to the combined
length of the time-shifted signals, with only one sample of overlap). iDFT refers to the inverse DFT.

R̂FG[m] = F [n] ? G[n] = F [−n] ∗G[n] = iDFT{DFT{F [−n]} · DFT{G[n]}} (A.15)

Equation A.15 shows that there are three equivalent methods for estimating the cross-product. To estimate

the cross-correlation, the cross-product is normalized according to Equation A.16, such that the auto-

correlations of both signals equal 1 at zero lag.

K̂xxr
[m] =

R̂xxr
[m]√

R̂xx(0)R̂xrxr (0)
(A.16)

Estimated time shift
Figure A.2 shows the cross-product and cross-correlation estimates of windows of the simulated state

and reference state. The buffer length is N = 700 and the simulation time-step is ∆t = 0.01s. All three
methods for calculating the cross-product (given in Equation A.15) are used to estimate R̂xxr

, with each

algorithm resulting in the same output, as expected. The last row shows the cross-correlation, with a peak

occurring at index m = +26. This corresponds to xr lagging x, as shown in the top row.
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Figure A.2: Computing estimated cross-product/correlation of simulated x, xr (N = 700)

To estimate the time shift ζm between x and xr, the index for maximum K̂xxr
is multiplied by the time-step:

ζm = ∆t · argmax
m

(K̂xxr
[m]) (A.17)

For Figure A.2 this results in ζm = 0.01 · 26 = 0.26s. This concludes how the ’X-corr’ block in Figure A.1

calculates ζm based on the two buffers x and xr.



B
XC-AHSC: Robust Protection

This appendix explains the effects of implementing a safety measure to stop the controller adapting in

situations where a time-shift cannot be measured with sufficient certainty. The safety consists of setting a

minimum value for the peak cross-correlation, such that adaptation only occurs when a certain minimum

cross-correlation between x and xr is established. If the peak cross-correlation is not strong enough, then

the look-ahead time increment is set to ∆τa = 0 to prevent instability.

The decision was made to implement this protection as a result of encountering strange behaviour during

real life testing of the adaptive cross-correlation design. Occasionally, the adaptive look-ahead time would

increase or decrease erratically, seemingly unprovoked. This only occurred during the non-haptic condition,

when the user did not apply any input. To investigate this behaviour further, Figure B.1 shows a simulated

run with no inputs to the stick, setting KHSC = KHO = 0 and running the cross-correlation algorithm.

Remarkably, very similar results emerge as were observed in real life.

The reason behind the erratic behaviour is related to the fact that x = 0 (simulations), or the state is equal
to noise around a mean of zero (real life). As a result, the cross-correlation between x and xr is expected

to be approximately equal for all phase shifts, since x does not contain any distinct features. Despite xr

containing periodic elements, since x contains no temporal information and is entirely unpredictable, the
correlation between the two will never be dependent on their relative phase. Since adaptation is incumbent

on finding a peak correlation for a given phase shift, this effect is precisely what causes erratic look-ahead

adaptation as shown in Figure B.1.

Figure B.1: Normal behaviour Figure B.2: Erratic behaviour Figure B.3: Protected behaviour

The solution to this problem lies in setting a minimum threshold for K̂xxr such that adaptation will only

take place if a reliable correlation has been found. The results of applying this threshold are shown in

Figure B.3, where the minimum was set at K̂xxr
> 0.14 = K̂min.

Figure B.4 shows a typical simulation run from pursuit to preview with transition at t = 50s. The second
and third row show the peak cross-correlation and corresponding phase shift, respectively. The dotted

line shows the threshold that was used for protection during the experiment. The last row shows the

phase shift between the actual state and reference state of the controller. It can be seen that around
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t = 68s look-ahead adaptation briefly stagnates, even though there is a clear phase shift between x and
xr, correctly measured by the algorithm to be approximately t = 0.48s. Just as the phase shift peaks,
adaptation stops because the minimum threshold for peak cross-correlation is not met. This is an example

of the protection inadvertently hindering adaptation.

Figure B.4: Inadvertent plateauing during adaptation because of K̂min protection

Figure B.5 shows the effect of this safety measure on the non-haptic look-ahead adaptation for 2× 5× 16
realizations. For the pursuit to preview case, the minimum threshold has a significant impact on the speed

of adaptation. For low values of K̂min the controller is prone to overshooting before converging to the final

look-ahead time.

Results show that K̂xxr > 0.26 strikes a balance between speed and robustness. For preview to pursuit

there is little risk of overshooting, making protection redundant. This is likely the reason why look-ahead

adaptation for preview to pursuit in the non-haptic case was less aggressive than expected during the

experiment. To get the full picture on what the optimal settings for the controller would be, ideally K̂min

should be considered in conjunction with varying adaptation gains Ka. That way, the optimal balance

between performance and stability could be found.

Figure B.5: Effect of K̂min on average look-ahead time, N = 2× 5× 16, non-haptic

Finally, Figure B.6 shows the results of varying the threshold, together with an active HSC in the loop. The

results show that there is no need for the protection as long as both the HSC and HO are active, since there

is no risk of overshooting. In hindsight, ideally this could have been accounted for during the experiment.
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Figure B.6: Effect of Kmin on average look-ahead time, N = 2× 5× 16, KHSC = 1





C
Experiment Design

This appendix briefly discusses the experiment design. Sixteen subjects were invited to perform a total of

eight conditions, shown in Table C.1. During each condition a total of four runs were performed, where the

first run was discarded to mitigate learning effects. Figure C.1 shows the segments of each run, where the

first 8 seconds are discarded as run-in time. Thereafter, the display settings are switched at t = 50s, either
going from pursuit to preview, or vice versa.

Figure C.1: Run segments

Table C.1: Experiment conditions

’NH’ refers to ’non-haptic’, ’PS’ indicates pursuit to preview, ’PR’ indicates preview to pursuit,

’F0’ refers to a controller with pursuit settings, ’F6’ refers a controller with preview settings,

’A’ refers to the adaptive controller.

Subject Training Conditions

1 NH F0 F6 F0-PS NH-PR F6-PS A-PS A-PR NH-PS F6-PR F0-PR

2 NH F6 F0 NH-PR A-PS F0-PS NH-PS F6-PS F0-PR A-PR F6-PR

3 NH F0 F6 A-PS NH-PS NH-PR F0-PR F0-PS F6-PR F6-PS A-PR

4 NH F6 F0 NH-PS F0-PR A-PS F6-PR NH-PR A-PR F0-PS F6-PS

5 NH F0 F6 F0-PR F6-PR NH-PS A-PR A-PS F6-PS NH-PR F0-PS

6 NH F6 F0 F6-PR A-PR F0-PR F6-PS NH-PS F0-PS A-PS NH-PR

7 NH F0 F6 A-PR F6-PS F6-PR F0-PS F0-PR NH-PR NH-PS A-PS

8 NH F6 F0 F6-PS F0-PS A-PR NH-PR F6-PR A-PS F0-PR NH-PS

9 NH F0 F6 F6-PR F0-PS A-PR F0-PR NH-PS F6-PS A-PS NH-PR

10 NH F6 F0 F0-PS F0-PR F6-PR F6-PS A-PR NH-PR NH-PS A-PS

11 NH F0 F6 F0-PR F6-PS F0-PS NH-PR F6-PR A-PS A-PR NH-PS

12 NH F6 F0 F6-PS NH-PR F0-PR A-PS F0-PS NH-PS F6-PR A-PR

13 NH F0 F6 NH-PR A-PS F6-PS NH-PS F0-PR A-PR F0-PS F6-PR

14 NH F6 F0 A-PS NH-PS NH-PR A-PR F6-PS F6-PR F0-PR F0-PS

15 NH F0 F6 NH-PS A-PR A-PS F6-PR NH-PR F0-PS F6-PS F0-PR

16 NH F6 F0 A-PR F6-PR NH-PS F0-PS A-PS F0-PR NH-PR F6-PS
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D
Experiment Briefing and Consent Form

The following pages include the experiment briefing and consent form used for the experiment.
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Experiment Briefing 
Adaptive Haptic Shared Control 

 

Thank you for volunteering to parƟcipate in this experiment! 

This briefing will provide you with an overview of the goals of the project, the experiment setup, and 
what is expected from you as a parƟcipant. Please read this document carefully, and do not hesitate 
to ask the researcher any quesƟons that you may have. 

Research Context 
You are currently situated in the human-machine interface (HMI) lab of the Control and SimulaƟon 
secƟon of TU DelŌ’s Aerospace Engineering faculty. The main purpose of the laboratory is to allow 
researchers to perform experiments which invesƟgate how humans control vehicles.  

Today you will be asked to perform a preview tracking task as shown in Figure 1. This task requires 
you to place the circle (O) on the target cross (X). This can be done by moving the joysƟck either leŌ 
or right as shown in the figure. The future of the target is given by the curved line up ahead.  

  

Figure 1: A Preview Tracking Task 

 

Experiment ObjecƟve 
The goal of this research is to evaluate different types of support systems that will try and help you 
match the circle (O) with the cross (X). These systems will do so by applying forces to the joysƟck, 
similar to lane-assist systems in cars. For example, considering Figure 1, you may feel a force on the 
joysƟck that is pulling in the direcƟon of the target.  

In some situaƟons you may feel forces that are counterintuiƟve or even unhelpful. In these cases it is 
your responsibility to keep the circle on the target as best as you can, regardless of what the support 
system is doing. The aim of the experiment is to invesƟgate under which circumstances such 
conflicts occur, and how effecƟve various support systems are in minimising them. 



During runs you will see the amount of preview informaƟon (the curved line in Figure 1) change 
halfway throughout the run. It will either go from full preview (you see the upcoming route) to 
pursuit (you only see the X and O), or vice versa. The end goal remains the same throughout this 
transiƟon: to keep the circle on the target as best as possible at all Ɵmes, whatever the 
circumstances.  

Experiment Procedure 
IniƟally you will be offered the chance to perform some runs with and without hapƟc support to 
familiarise yourself with the task. Each run lasts approximately 2 minutes.  

Once training is complete, a number of runs will again be performed to collect data. Prior to each run 
you will be told whether or not hapƟc support will be present. You may or may not feel differences in 
the behaviour of hapƟc support during runs. It is important to remember that the primary goal is to 
minimise the distance between the circle and target as much as possible. 

A single run consists of the following steps: 

1. The parƟcipants waits for the researcher to configure the next run. 
2. The researcher checks that the parƟcipant is ready and iniƟates the run aŌer counƟng down 

(3-2-1-go). 
3. The parƟcipant performs the tracking task unƟl compleƟon.  

AŌer a set of runs with hapƟc support you will be asked to fill in a quesƟonnaire, raƟng your 
experience of the support system. Once the quesƟonnaire is completed, your total score for the set 
will be communicated.  

The enƟre experiment will last at most 3 hours, including planned breaks taken between sets. More 
breaks are always available should you feel discomfort at any point during the experiment. 

Your Rights & Consent 
ParƟcipaƟon is enƟrely voluntary, meaning that you can decide to withdraw from the experiment at 
any Ɵme without staƟng a reason. By parƟcipaƟng in the experiment you agree to the collecƟon of 
your data (e.g. tracking performance) and agree that it may be published anonymously. All data will 
be recorded in a way that makes it untraceable back to individual parƟcipants, except for the 
researcher. To ensure you understand and comply with the condiƟons of the experiment, you will be 
asked to sign an informed consent form. 

 

Thank you for parƟcipaƟng! 
 

Contact informaƟon researcher 
 

Max Mckenzie 
m.g.g.mckenzie@student.tudelŌ.nl 

+32 498 56 34 38 

Contact informaƟon research supervisor 
 

Max Mulder 
m.mulder@tudelŌ.nl 

+31 15 27 89471 
 

 



 

Contact information researcher Contact information research supervisor 
Max Mckenzie 

m.g.g.mckenzie@student.tudelft.nl 
+32 498 56 34 38 

Prof. dr. ir. Max Mulder 
m.mulder@tudelft.nl 

+31 15 27 89471 

 

 

Experiment Consent Form 

Adaptive Haptic Shared Control 

 
I hereby confirm, by ticking the box, that: 

1. I volunteer to participate in the experiment conducted by the researcher (Max Mckenzie), 
under supervision of Prof. dr. ir. Max Mulder, from the Faculty of Aerospace Engineering 
of TU Delft. I understand that my participation in this experiment is voluntary and that I 
may withdraw (“opt-out”) from the study at any time, for any reason. 

 

2. I have read the briefing document and I understand the experiment instructions, and have 
had all remaining questions answered to my satisfaction. 

 

3. I understand that my participation involves performing manual tracking tasks in the HMI-
Lab simulator at TU Delft. I understand that only the pseudonymized recorded time traces 
of the tracking tasks are saved and used for data analysis. 

 

4. I understand that the researcher will not identify me by name in any reports or publications 
that will result from this experiment, and that my confidentiality as a participant in this 
study will remain secure. Specifically, I understand that any demographic information I 
provide (gender, age range, see next page) will only be used for reference and always 
presented in aggregated form in scientific publications. 

 

5. I understand that this research study has been reviewed and approved by an ethics 
commission. To report any problems regarding my participation in the experiment, I know 
I can contact the researchers using the contact information below. 

 

 
 
 
 
 
 
 
 
 

  

 
 
 

 Date 

My Signature   
 
 
 

 Signature of researcher 

   
 

  



 

Contact information researcher Contact information research supervisor 
Max Mckenzie 

m.g.g.mckenzie@student.tudelft.nl 
+32 498 56 34 38 

Prof. dr. ir. Max Mulder 
m.mulder@tudelft.nl 

+31 15 27 89471 

 

 

Participant Demographic Information 

Adaptive Haptic Shared Control 

 
 

Age range:  

o 18 – 19 

o 20 – 24 

o 25 – 29 

o 30 – 34 

o 35 – 39 

o 40 – 44 

o 45 – 49 

o 50 – 55 

o 55+ 

 

Gender:  __________ 

 

Participant number:  __________ 
(filled out by the researcher) 

 





E
Van der Laan Questionnaire

This section includes the Van der Laan questionnaire which was used to evaluate participants’ subjective

experience.

91



1 Subject nr: CondiƟon:      
 

CondiƟon 1/8 

 

My judgments of the hapƟc support system are … (please Ɵck a box on each of the 9 lines) 

 

 

 

 

 

 

 

 

 

 

CondiƟon 2/8 

 

My judgments of the hapƟc support system are … (please Ɵck a box on each of the 9 lines) 
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