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Abstract
In the near future, next-generation telescopes will be able to observe Earth-like exoplanets illuminated
by their parent stars for long periods of time. As the distance between exoplanet and observer is
enormous, exoplanets will only make up a pixel on our image. However, the observed intensity of this
pixel will fluctuate over time as the exoplanet rotates about its axis and orbits around its parent star.
These fluctuations in the reflected light contain information about the planet’s surface.

Previous researchers have developed a retrieval method known as spin-orbit tomography which
uses these intensity fluctuations to construct a surface map of the exoplanet assuming fully diffuse
reflection as a model for the reflection of starlight. In this thesis, we aim to build on this method by
introducing two new reflection models, namely Fresnel and Lommel-Seeliger reflection, and by using
this composite reflection model for the starlight we attempt to reconstruct the surfaces of exoplanets
based on their observed light curve. We will derive an analytical expression for the observed inten-
sity of the light reflected off an exoplanet. Next, we will simulate intensity observations along the orbit
of an exoplanet with a pseudo-randomly generated surface containing terrain types found on Earth.
As we assign a measure of reflectance for each reflection model, we will construct three distinct re-
flectance maps for one planet, and simulate the observed light curve by linearly transforming these
maps. Afterward, we attempt to retrieve the reflectance maps from the observed signal by inverting the
transformation.

We show that the retrieval of all three maps is successful if the light curve is observed without
noise, even when the number of samples is low. If artificial shot noise is imposed on our signal, we
are still able to retrieve glossy reflectance maps for Lambertian and Lommel-Seeliger reflection by
truncating the transformation matrix. Lastly, we show that even if the original light signal originates from
an exoplanet that only reflects according to the Lambertian model, then the composite reflection model
still retrieves the Lambertian map accurately. On the other hand, if the original light curve is simulated
by the composite reflection model, then the Lambertian method does not retrieve an accurate surface
map.

Sweder Blanken
Delft, August 2022
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1
Introduction

On October 6 1995, Michel Mayor and Didier Queloz discovered the world’s first exoplanet, named
Dimidium, using Doppler spectroscopy (Mayor and Queloz, 1995). This achievement earned them the
Nobel Prize in Physics in 2019. Since their discovery, the field of exoplanet detection has proven to be
very successful, and as of June 2022, over 5.000 exoplanets have been detected in more than 3.700
planetary systems, as shown in Figure 1.1. One of the main motives to study exoplanets is humanity’s
search for extraterrestrial life. When studying a terrestrial exoplanet, there are a number of signs that
indicate the possibility, if not the existence of life on that planet. These include the presence of oxygen
or other molecules vital to life in its atmosphere and the existence of liquid oceans or vegetation on its
surface. If we are able to construct a map of the planet’s surface we might determine its livability, and
maybe decide to send probes once interstellar travel becomes possible. This field is known as Exo-
cartography, and this thesis will primarily focus on the reflectance or albedo of different terrain types to
compose surface maps.

Figure 1.1: Cumulative detection of exoplanets per year (NASA, 2022).

As shown in Figure 1.1, most of the currently known exoplanets are identified through indirect meth-
ods of detection like Doppler spectroscopy1 or transit photometry. These indirect methods analyze the
changing light signal from a star to deduct if an orbiting exoplanet exists. However, these detection
methods barely tell us anything about the characteristics of the exoplanet itself, apart from its minimal
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mass. On the other hand, only a handful of exoplanets have been directly observed by imaging, as
this technique is more difficult. Firstly, the reflected light of an exoplanet is very faint when compared
to its bright parent star. Secondly, because other planetary systems are many light-years away from
our Solar System, if we do observe an exoplanet, they rarely make up more than a pixel on our image,
which makes us unable to work out the layout of its surface. Even with the rapid development of next-
generation telescopes, both on the Earth (e.g. the Extremely Large Telescope (Gilmozzi and Spyromilio,
2007)), as well as space telescopes (e.g. the recently launched James Webb Space Telescope (Gard-
ner et al., 2006)), this enormous distance between exoplanet and observer renders traditional methods
of directly imaging exoplanets almost completely useless. Therefore constructing a surface map of
terrestrial exoplanets seems to be beyond our current technological capabilities. Luckily, over the last
two decades a technique has been developed to construct surface maps of exoplanets that only uses
the observed intensity of the light and hence doesn’t require direct imaging.

At first glance, there seems little to discern from one pixel of information. However, the brightness of
this pixel changes depending on the part of the planet that is illuminated, which is in turn dependent on
the position of the planet with respect to its parent star. Furthermore, like the planets in our own solar
system2, exoplanets tend to have some intrinsic spin, because they rotate about an axis. This means
that during different periods of the exoplanets’ day different regions of the exoplanet are illuminated. If
one hemisphere of the planet is covered with fresh snow, and the other with liquid water, then the light
reflected off the planet is much brighter if the snowy side faces the star, which affects the intensity of
the observed light curve. Moreover, if the planet’s axial tilt (or obliquity) is non-zero, the section of the
planet’s surface that is illuminated during a day changes over the exoplanet’s year3. More precisely,
different longitudes of the surface are illuminated during one planet-day, while different latitudes of
the surface are illuminated during the seasons over one planet-year. By repeatedly observing the
reflected light from a terrestrial exoplanet during its orbit, one should be able to use the light signal to
retrieve a two-dimensional map of its surface. This inversion method is called ’spin-orbit tomography’
first introduced by Kawahara and Fujii (2010), and is a fairly new technique in exoplanet research.
Some authors (see Cowan and Fujii (2017), Fujii and Kawahara (2012), and Meinke, Stam, and Visser
(2022)) started applying the technique by generating random albedo maps of exoplanets (or by using
that of the Earth) before simulating its reflected light curve and retrieving the albedo maps through mock
observations of the reflected starlight.

Up to now, most research about spin orbit tomography has assumed totally diffusive reflection,
otherwise known as Lambertian reflection, to simulate the light reflecting off the exoplanet’s surface.
In that case, the perceived brightness is invariant to the observer’s angle of view, and light scatters
equally in all directions off the surface. However, not all types of terrain reflect light the same way. For
example, large bodies of water reflect light more specularly or mirror-like at near-grazing incidences,
in accordance with the Fresnel equations. Furthermore, the observed light reflected of rocky heavenly
bodies such as the moon and Mars appear significantly brighter at low phase angles than predicted by
Lambertian reflection. So unlike diffuse reflection, these models depend on the angle of incidence and
reflection off the surface.

In this thesis, we attempt to build further on the method of spin-orbit tomography for edge-on obser-
vations introduced by Stuger (2021) by introducing two new reflectionmodels, namely Fresnel reflection
to account for the mirror-like reflection of water, and Lommel-Seeliger reflection to account for empirical
observations of rocky bodies at low phase angles. Effects due to the presence of an atmosphere, such
as Rayleigh scattering or overcast, are not incorporated in our model. As a result of this composite
reflection, we will make three separate reflectance maps for each planet with each map showing the
measure of reflectance for a particular model. We will then investigate if the implementation of these
models in our composite simulation makes the retrieval of our planet’s surface easier or more difficult
by comparing the maps retrieved from both simple and composite light curves.

In Chapter 2 the planetary system used for model purposes along with the necessary parameters are
described. Furthermore the different reflection models used for simulation the reflected light off our
exoplanets are introduced. Finally, an analytical expression for the observed light curve is formulated.

1Also know as the Radial Velocity method.
2For example, Mercury completes one full rotation in under 59 Earth-days, while Jupiter does the same in less than 10 hours

(Cox, 2015).
3Earth’s mean obliquity is about 23 degrees, which causes the seasons (Williams, 1993).
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In Chapter 3, we generate pseudo-random maps similar to Earth’s surface using a method called tetra-
hedral subdivision. Each different terrain type on the map is then attributed a measure of reflectance
for each of the models. Combining the results of these Chapters, in Chapter 4 the analytical expres-
sion for the light curve will be discretized to simulate the reflected light curve we would detect from
edge-on observations of irregular planets. When simulating we can also choose to disturb the signal
with artificial noise. Finally, in Chapter 5 we attempt to retrieve the surface maps from the light-curves
sampled from edge-on observations, both with and without noise. When doing this, we’ve assumed
we knew a priori the exoplanet’s axial tilt. Lastly, we evaluate if the assumption of different reflection
models improves or impedes our retrieval efforts. Conclusions are drawn in Chapter 6.



2
Light reflection models

In this chapter, the reflection models are introduced that will be used in our research to simulate the
observed light curve from an exoplanet, beginning with Lambertian reflection. To account for the mirror-
like reflective behaviour of oceans, we include the Fresnel reflection model, and to account for the
bright observations of rocky bodies at low phase angles, we include the Lommel-Seeliger reflection
model. Firstly, we will describe the orbital system of the planet that we would like to observe, and
introduce some useful vector notation. Secondly, we’ll introduce the different reflection models using
their characteristic reflectance function, known as a BRDF. Next we use these BRDFs to simulate the
light curve for a very simplified version of our planetary model. Lastly, we investigate if the introduced
reflection models are physically realistic.

2.1. Coordinate system
To model the reflected starlight off an exoplanet, we consider a simple planetary system, in which a
single planet with radius ρ and no moons is directly observed as it moves in a circular orbit of radius R
around its parent star with orbital angular frequency ω. Furthermore, the exoplanet also rotates about
its axis with frequency Ω. We define the orbital plane as the xy-plane such that the origin of our system
coincides with the centre of the star, the planet orbits counter-clockwise when viewed from above, and
light rays directed to the observer travel parallel to the x-axis. A schematic of this setup can be viewed
in Figure 2.1. When talking about incoming rays of light reflecting off the different facets the planet, it’s
easy to get confused by all the different angles. Therefore we introduce the following unit vectors,

î =

 cos ζ
sin ζ
0

 , ô =

 sin γ
0

cos γ

 , ŝ =

 cosΦ sinΘ
sinΦ sinΘ
cosΘ

 , n̂ =

 cosα sinβ
sinα sinβ
cosβ

 , (2.1)

where î and ô point from the center of the exoplanet to the parent star and to the observer, respectively.
Here ζ is the phase angle of observation, and γ denotes the tilt of the orbital plane with respect to the
viewing plane. If γ = π

2 , then the observer is in the orbital plane, and we speak of edge-on observation.
Moreover, ŝ is a unit vector pointing to a facet of the planet’s surface defined by spherical coordinates
Φ and Θ, and n̂ denotes the orientation of the rotational axis of the planet, where α is the equinox angle
and β is the planet’s obliquity. These vectors and angles are shown in more detail in Figure 2.2.

When studying the incoming and reflecting rays of light from the star, it may be more useful to define
î, ô, and ŝ in terms of the incident and reflective angles (θi, ϕi and θr, ϕr). If we imagine the surface of
the planet to be locally flat, and we orient the coordinate system so that the origin lays on the surface
and the x-axis is parallel to the projection of î, as is shown in Figure 2.3, then we can rewrite the vectors
as:

î =

 sin θi
0

cos θi

 , ô =

 cos(ϕr − ϕi) sin θr
sin(ϕr − ϕi) sin θr

cos θr

 , ŝ =

 0
0
1

 . (2.2)

4



2.1. Coordinate system 5

Note that these alternate definitions of î, ô, and ŝ are only valid for points on the planet’s surface that
are in the observable domain %, i.e. both illuminated by the star and visible to the observer (see Figure
2.1 and Section 2.3). These two different ways to denote î and ô allow us to define the phase angle ζ in
terms of the angles of the incoming and reflective light rays in one direction and θi, θr and ψ = ϕr − ϕi
in terms of the original vectors in the other direction. Namely by combining Equations 2.1 and 2.2, we
obtain:

cos θi = î · ŝ
cos θr = ô · ŝ

cos ζ =
î · ô
sin γ

=
cos θi cos θr + cos (ϕr − ϕi) sin θi sin θr

sin γ

cosψ =
(̂i · ô)− (̂i · ŝ)(ô · ŝ)

|̂i× ŝ||ô× ŝ|

=
cos ζ − cos θi cos θr

sin θi sin θr
,

(2.3)

and for edge-on observations sin γ becomes unity.

î

ô

R

ρ

ζ

ωt = ζ

Ωt

x

y

P1

P2

Figure 2.1: An overview of the observed planet with radius ρ in a circular orbit of radius R around its parent star,
defined in the XY-plane. ζ is the time-dependent phase angle of the planet with the observer, and Ω denotes the
angular frequency of the planet. P1 and P2 are two points in the planets orbit that are further studied in Figure 2.2.
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ŝ

î
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Figure 2.2: Detailed illustrations of the exoplanet in orbit. (a) xy-projection of the planet at point P1, where n̂
denotes the rotational axis’ orientation, and α its equinox angle. The observable domain, denoted as %, is also
shown. (b) xz-projection of the planet at point P2, showing the obliquity β and the orbital inclination γ.

x
y

î ô

ŝ

θi θr

ψ = (ϕr − ϕi)

Figure 2.3: By reorienting the coordinate system we can express î,ô and ŝ in terms of the optical angles.

2.2. Bidirectional reflectance distribution functions
A bidirectional reflectance distribution function (or BRDF) is a measure of how much light reflects off
different types of opaque surfaces from one angle to another (Nicodemus, 1965). It returns the ratio
of radiant flux reflected by a given surface per unit solid angle per unit projected area (or radiance) to
the radiant flux per unit surface area (or irradiance). In the most general case, it is an angle-dependent
function f(θi, ϕi; θr, ϕr), where the first two input angles define the incoming light direction and the
latter two define the outgoing light direction from a surface. In reality, the BRDF also depends on the
wavelengths of the incoming and reflected light, but this spectral dependence exceeds the scope of
this thesis1. A BRDF f can be formally defined as:

f(θi, ϕi; θr, ϕr) =
dL(θr, ϕr)

dE(θi, ϕi)
, (2.4)

where L denotes the radiance of the light rays (which corresponds to the brightness of the reflected
light from surface to detector) and E denotes the irradiance of the incident light. The two terms are
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related by the following equation (McCluney, 2014):

E =

∫
Υ

L(θ, ϕ) cos(θ)dυ, (2.5)

where Υ denotes a finite solid angle.
All physically realistic BRDFs have some fundamental properties (Duvenhage, Bouatouch, and

Kourie, 2013). These are:

1. Positivity: f(θi, ϕi; θr, ϕr) ≥ 0.
2. Helmholtz reciprocity: f(θi, ϕi; θr, ϕr) = f(θr, ϕr; θi, ϕi).
3. Energy conservation: for all incoming light directions,

∫
Ω
f(θi, ϕi; θr, ϕr) cos(θr)dωr ≤ 1.

BRDFs and their reflection models are used to realistically simulate or study the surface appearance of
various materials. Domains where these models are used include astronomy, computer graphics, and
military and commercial applications. In some situations BRDFs are amplified or empirical models are
used when similarity to observed data or visual aesthetics are preferred over a theoretical derivation.

2.2.1. Lambertian reflection
One of the most common reflection models is that of Lambertian reflection, which assumes perfectly
diffuse surfaces, i.e. the illuminated surface scatters the light evenly in all directions, and the reflected
radiance is independent of the viewing angles θr and ϕr. This also implies its independence of any
incident angle due to Helmholtz reciprocity. Therefore the BRDF for this model (from now on denoted
as fLa) is simply a constant:

fLa(θi, ϕi; θr, ϕr) =
1

π
. (2.6)

Figure 2.4 shows a 3-dimensional plot of the Lambertian reflection BRDF on an opaque surface for
different values of θr and ϕr. For this plot, θi = π

3 and ϕi = π
4 .

Figure 2.4: Bidirectional reflectance distribution function for Lambertian reflection, where θi =
π
3
and ϕi =

π
4
. As

the BRDF is a constant we get a horizontal plane with value 1
π
.

As expected, the Lambertian BRDF remains invariant for different reflecting angles, as the plotted BRDF
shows just a horizontal plane with height 1

π ≈ 0.32.
Lambertian reflection is one of the most frequently used diffusive reflection models, and the majority

of earlier research about exocartography (Fujii and Kawahara (2012), Fan et al., 2019 among others)
has used this model as a basis of the light reflecting from terrestrial exoplanets (Fujii and Kawahara
(2012), Fan et al., 2019 among others). However, not all surface types reflect light completely diffusely.
For instance, if liquid oceans of water are present on the observed planet, then water is reflected
more specularly on those parts of the surface, especially at near-grazing incidence. Furthermore, the
reflected light from observed heavenly bodies such as the moon and Mars appears much brighter at

1See Ferrero et al. (2012) for research on spectral BRDFs.
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the limb of the planet than predicted by simple Lambertian reflection (Fairbairn, 2005), therefore we
include two other reflection models in our simulation that address each of these problems, namely
Fresnel reflection and Lommel-Seeliger reflection.

2.2.2. Fresnel reflection
The Fresnel reflection model is used for mirror-like reflections. A purely specular reflector has BRDF
zero unless θr = θi and ϕr = ϕi + π, leading to the BRDF of:

fMe(θi, ϕi; θr, ϕr) =
δ (θr − θi) δ (ϕr − ϕi − π)

cos θr sin θr
, (2.7)

here the subscriptMe stands for ’metallic’ reflection, and δ denotes the (finite) Dirac delta function:

δ(x) =

{
1, x = 0

0, x ̸= 0.
(2.8)

This BRDF describes the reflection off perfectly reflecting opaque surfaces. In practice, semi-transparent
surfaces like water transmit some of the incident light. In that case the BRDF is adjusted to:

fFr(θi, ϕi; θr, ϕr) = R(θi)
δ (θr − θi) δ (ϕr − ϕi − π)

cos θr sin θr
, (2.9)

here R(θi) = 1
2 (Rs +Rp) denotes the Fresnel power reflection coefficient for natural light, and

Rs(θi) = |cos θi −
√
n2 − sin2 θi

cos θi +
√
n2 − sin2 θi

|2 (2.10)

and

Rp(θi) = |n
2 cos θi −

√
n2 − sin2 θi

n2 cos θi +
√
n2 − sin2 θi

|2 (2.11)

denote the reflectance for s-polarized and p-polarized light, respectively. These Fresnel coefficients
are also where the subscript Fr comes from. Note that Rs and Rp are at their maximum2 when θi = π

2 ,
so that the rays of light barely graze the surface. Furthermore, n denotes the refractive index of the
reflecting surface. In our case this is water, hence n ≈ 1.33. In our simulation, the Dirac delta in equation
2.9 is replaced by a narrow Gaussian with variance 0.01 (unless specified otherwise) to prevent the
BRDF from always returning zero. Since we only simulate a finite number of different surface facets and
reflective angles, it could happen that for instance θi and θr are never exactly the same. Introducing
this Gaussian means our modeled reflected light becomes more glossy (and this glossiness depends
on the variance σ2 of the Gaussian), which might resemble the empirical light-reflective properties of
large bodies of water.

Figure 2.5 shows a 3-dimensional plot of the Fresnel reflection BRDF for a purely specular reflector
for different values of θr and ϕr, while Figure 2.6 does the same for reflection off water. For these plots,
θi =

π
3 and ϕi = π

4 . As we can see from the figure, the BRDFs for Fresnel reflection show a high peak
when θr = θi and ϕr = ϕi + π and zero reflectance everywhere else.

2.2.3. Lommel-Seeliger reflection
As discussed earlier, the reflected light we observe from terrestrial bodies in our Solar system with
regolith on the surface appear significantly brighter than what the simple Lambertian model would
predict when the phase angle ζ of observation is small. This phenomenon is called opposition surge
or the Seeliger effect, and the corresponding empirical reflection model is known as Lommel-Seeliger
reflection as described by Seeliger (1887) and Fairbairn (2005). It’s BRDF is

fLS(θi, ϕi; θr, ϕr) =
2

3π2

sin ζ + (π − ζ) cos ζ
cos θi + cos θr

, (2.12)

2The analytical global maxima of the Fresnel coefficient Rs(θi) are actually at θi = (2k + 1)π, k ∈ Z, but the incident zenith
angle θi cannot exceed π

2
.
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Figure 2.5: Bidirectional reflectance distribution
function for perfect specular reflection, where θi =
π
3
and ϕi =

π
4
. The plot shows a narrow peak when

θr = θi and ϕr − ϕi = π.

Figure 2.6: Bidirectional reflectance distribution
function for specular reflection off water described
by the Fresnel coefficients, where θi = π

3
and

ϕi = π
4
. The plot also shows a narrow peak when

θr = θi and ϕr −ϕi = π. Although similar to Figure
2.5, notice the large difference in the height of the
peak, also visible in the colorbar.

where ζ depends on the incident angles as shown in Equation 2.3. Figure 2.7 shows a 3-dimensional
plot of the Lommel-Seeliger reflection BRDF for different values of θr and ϕr. As the Lommel-Seeliger
behaves especially interestingly when the planet is in opposition to the Sun. We assume θi = 0 and
ϕi =

π
4 in this plot. We find that the Lommel-Seeliger reflectance is highest for small angles of θr. This

was expected, as empirical data shows the Seeliger effects occurs near normal incidence. However it is
not known why Figure 2.12 shows a maximum for θi. Lastly, the figure shows that the Lommel-Seeliger
BRDF is invariant for different values of ϕr, much like the Lambertian BRDF.

Figure 2.7: Bidirectional reflectance distribution function for Lommel-Seeliger reflection, where θi = 0 and ϕi =
π
4
.

The reflectance drops heavily as θr, but remains unchanged for varying ϕr.
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2.3. Phase functions
In order to further study these reflection models in the context of reflected light from exoplanets in orbit,
we first consider a simplified version of our simulation. Imagine a homogeneous spherical planet with
radius ρ and orbital radius R that scatters all incident light according to some reflection model RM,
in a circular orbit of radius R around its parent star, which emits light in all directions. Furthermore,
this planet is observed edge-on, so γ = π

2 . If the total power or luminocity of the starlight is P∗, then
the power of the light that reached the exoplanet is P∗

4πR2 . Sadly, not all of this intercepted light is
observable. Firstly, only one hemisphere of the planet is illuminated by the star at all times. Secondly,
only one hemisphere of the planet is visible to us at all times. The intersection of these regions, namely
the part of the planet’s surface that is both illuminated and visible to us, is the surface region that actually
contributes to the light-curve we observe, and is therefore called the observable domain, henceforth
denoted as %:

% =
{
ŝ : ŝ · î > 0 ∧ ŝ · ô > 0

}
. (2.13)

The fraction of received stellar power that’s ‘intercepted’ by the planet is proportional to the frontal
surface, given by (ŝ · î)d2ŝ, where d2ŝ = ρ2 sinΘdΦdΘ is a small part of the planet’s surface. The
fraction of reflected stellar power that reaches the observer is proportional to (ŝ · ô)fRMd2Ωo, where
fRM is the reflectance distribution function by which the light is modelled, and d2Ωo is the solid angle of
the observer. Multiplying all these terms gives the contribution of the light reflected a small part of the
surface area:

P∗

4πR2
(ŝ · î)(ŝ · ô)fRMd2ŝd2Ωo. (2.14)

Since we are only interested in the intensity of the observed light relative to the total intensity that
reached the planet (denoted by P∗d

2Ωo

4π ), it is customary to divide by this factor. To obtain the observed
light-curve for a given time, we simply take this result and integrate it over the observable domain%. This shows that the light-curve is simply the prefactor 1

R2 multiplied by some function F that is
dependent on both the position of the planet in orbit3 (parameterized by the phase angle ζ) as well as
the choice of reflection model RM . This new function is called the phase function, and is given by:

FRM(ζ) = 4
x
%

fRM(θi, ϕi; θr, ϕr)(ŝ · î)(ŝ · ô)d2ŝ

= 4
x
%

fRM(θi, ϕi; θr, ϕr) cos(Φ− ζ) cosΦ sin2 Θd2ŝ

= 4
x
%

fRM(θi, ϕi; θr, ϕr) cos θi cos θrd2ŝ.

(2.15)

The prefactor 4 comes from the fact that, for any phase angle ζ, the integral of the phase function F
over a unit sphere should return the surface area of 4π:

{
#

F (ζ)d2̂i = 4π. (2.16)

Here î is a unit vector and not the vector pointing to the star. For Lambertian reflection the phase
function can be derived analytically, see section A.1 in the Appendix for it’s derivation:

FLa(ζ) =
8

3π
[sin ζ + (π − ζ) cos ζ] (2.17)

Figure 2.8 shows both the analytical derivation of the Lambertian phase function for different values
of ζ as well as a numerical approximation for a planet with unit radius, and 50 discrete surface facets,
that reflects all light diffusely. As the plot shows, even with a small number of distinct surface facets,
the numerical approximation fits the analytical curve very well. The phase functions of all our reflection
models for different values of ζ for a totally reflecting planet with unit radius and 20.000 discrete surface
facets are shown in Figure 2.9.
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Figure 2.8: Analytical and numerical phase functions for the Lambertian reflection model. The numerical phase
function is computed by modelling the reflected light off a homogeneous planet with only 50 equi-rectangular
surface facets, while the analytical function is sampled 100 times over the shown range.

Figure 2.9: Phase functions FRM for the different reflection models for a high-resolution, totally reflecting planet in
a circular orbit. Compared to Figure 2.8, the Lambertian phase function is a lot smoother due to the high number
of facets.

When studying Figure 2.9, we see that the reflected intensity off the planet according to the Lam-
bertian and Lommel-Seeliger reflection models is highest for small angles of the phase angle ζ as the
intersection of the visible and illuminated regions of the earth is biggest, or in other words, when the
size of the observable domain % is at its maximum, and so we observe the most diffusely reflected light
in that instance of the planet’s orbit. As we increase ζ, % becomes smaller, and so we the perceived
intensity of the light curve also decreases. When ζ ≈ π, the exoplanet passes between the observer
and the star, which is known as an astronomical transit, and so we don’t observe any reflected light as
expected.

On the other hand, the Fresnel reflection light curve remains quite small for small ζ, but increases
significantly when ζ approaches π. This can be explained by the fact that for large values of ζ the
incident light hits the light at a greater incident zenith angle θi, and for phase angles very close to π θi ≈
π
2 , and so the Fresnel coefficients Rs and Rp are maximized. However, if ζ is too high, then the region
of the planet’s surface able to reflect light mirror-like becomes too small, and the observed intensity
drops steadily again. This drop-off is believed to be caused by the approximation of our Gaussian,
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as a perfect delta function would produce a maximum phase function at ζ = π. There appears to
be an optimal phase angle around ζ = 11π

12 where the balance between high Fresnel reflectance and
sufficiently large % is just right for a maximal phase function FFr.

Figure 2.9 also shows that the chosen BRDF for Lommel-Seeliger reflection produces a phase
function FLS that is consistently smaller than the Lambertian phase function, even for low ζ. This is not
congruent with our expectations, as the Lommel-Seeliger reflection model was implemented to account
for the brighter observations due to the opposition surge. This could be an indication that the current
reflection models are not yet perfectly implemented in our system. Indeed, we still need to verify if the
chosen BRDFs are normalised.

2.4. Normalisation of the BRDFs
Now that we’ve introduced the different reflection models for our light, it’s time to investigate if they
are physically realistic. Recall that one of the fundamental properties of physical BRDFs is energy
conservation, i.e. for all incoming light directions (θi, ϕi) the surface never reflects more light than is
incident, so ∫

Ω

fRM(θi, ϕi; θr, ϕr) cos(θr)dωr ≤ 1. (2.18)

We can rewrite this integral A for our simplified simulation with the unit sphere: for all θi,

A =

∫ π/2

0

∫ 2π

0

sin θr cos θrfRM(θi, θr, ψ)dψdθr ≤ 1, (2.19)

where ψ = ϕr−ϕi. Furthermore, if we assume the sphere reflects all light, then the inequality becomes
an equality. Because of this, the used BRDFs should first be normalised so that they satisfy the energy
conservation property. If we find that the BRDF for a given reflection model cannot satisfy Equation
2.19 for all θi, for instance because the model always assumes some light is absorbed, then we choose
the normalisation factor to be as large as possible while still satisfying the inequality, i.e. such that the
integral ≤ 1 for all θi.

Figure 2.10 shows the numerically computed normalisation integral 2.19 of the different BRDFs as
a function of θi. As we can see, the BRDF of the Lambertian and the purely specular reflection model
are normalised since they are constantly 1, save for some steep drop-offs at very low and very high
angles of θi for the specular model again probably caused by our Gaussian approximation. It follows
that their BRDFs do not need an additional normalisation factor.

Figure 2.10: Normalisation integral A of the different BRDFs as a function of θi.

3Also on its rotation, but we’ll discuss that in Chapter 4 for planets with irregular surface maps.
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Moreover, from Figure 2.10 we also find that the normalisation integral for Fresnel and Lommel-Seeliger
are not constant, but depend on incident angle θi. For the Fresnel model, this is caused by the Fresnel
coefficients, as those are the only difference between the Fresnel and the purely specular reflection
model. For the Lommel-Seeliger model, it is believed that the odd normalisation curve is caused by
BDRF’s dependence of the planet’s phase angle ζ, which is not the case for the other reflection models.
We can conlude that empirical model of Lommel-Seeliger reflection is quite hard to simulate, as an
analytical derivation for its BRDF has yet to be found. The Fresnel normalisation curve was found to
have a maximum of about 0.68, while the Lommel-Seeliger normalisation curve had a maximum close
to 0.5. Therefore the proper normalisation factors for for those BRDFs should are equal to 1.47 and 2
respectively. It follows that the normalised BRDFs of our considered reflection models are:

fLa(θi, ϕi; θr, ϕr) =
1

π

fFr(θi, ϕi; θr, ϕr) = 1.47R(θi)
δ (θr − θi) δ (ϕr − ϕi − π)

cos θr sin θr

fLS(θi, ϕi; θr, ϕr) =
4

3π2

sin ζ + (π − ζ) cos ζ
cos θi + cos θr

.

(2.20)

Figure 2.11 shows the normalised phase functions for our homogeneous spherical planet. As ex-
pected, the Lommel-Seeliger phase function now more closely resembles the Lambertian one. Note
that the planet already fully scatters all light, and so the Seeliger effect is minimal in this case. Going
forward, when discussing or implementing our BRDFs, we will always use their normalised versions.

Figure 2.11: Normalised phase function for the totally reflecting unit sphere.



3
Surface maps generation

To find out if we can retrieve surface maps of terrestrial exoplanets from their observed light curve, we
first need a sample of planets and their maps to try out our method. As the number of terrestrial planets
in our Solar System is small and the current data of light curves of directly observed exoplanets is also
not sufficient, we propose to create our own fictional exoplanets, simulate their light curves from their
fabricated surface maps, and investigate if we are able to retrieve their surface maps using our method.
To generate these surfaces, we first create a pseudo-randomly generated 3D altitude map with finite
resolution using amethod known as tetrahedral subdivision, as proposed in Mogensen (2009). We then
use this altitude map to divide the planet’s surface into different types of terrain likely to be found on
habitable planets, like vegetation and liquid oceans. For each terrain type, we give a standard albedo
as a measure of light reflectance. To incorporate our composite reflection model, we also assign a
distribution to each surface type to indicate how much of their reflected light is scattered according
to Lambertian reflection, Lommel-Seeliger reflection, or the Fresnel equations. Finally we are able to
produce three distinct surface maps per planet, with each map indicating the measure of Lambertian,
specular, and Lommel-Seeliger reflection per unit of area.

3.1. Altitude maps
There are some properties about the nature of landscapes one should respect when generating height
maps. Firstly, real landscapes are continuous, i.e. small changes in position should give small changes
in altitude. This means that picking random heights for each unit surface would bring about large dis-
continuities and consequently superficial maps. Secondly, landscapes have roughly the same degree
of detail at all levels of magnification (Mandelbrot and Mandelbrot, 1982), so the map should be self-
similar to a degree. Furthermore, to create a 3-dimensional map for the surface of an exoplanet with
a discrete number of facets, we can’t simply generate a 2D height map and ’wrap’ it around a sphere,
as that wrapping would also bring about discontinuities or artefacts in at least one or two points on the
sphere, e.g. near the poles. Instead we will create 3-dimensional spherical height maps, that can be
projected onto a flat surface for display purposes.

3.1.1. Tetrahedral subdivision
To generate multiple convincing natural maps we need a method to consistently produce random 3D
height-maps that meet the aforementioned properties. The method (as described in Mogensen (2009))
used in this thesis is known as tetrahedral subdivision. It returns a pseudo-randomly generated alti-
tude for each point pj of a spherically distributed set. The algorithm starts by constructing a tetrahe-
dron around the set of points, and assigning an altitude value hj to each vertex vj of the tetrahedron,
pseudo-randomly generated by a predetermined seed sj . Next, the longest edge of the tetrahedron is
halved by creating a new vertex point, with its own altitude and seed being determined by the altitudes
and seeds of its adjacent vertices. Thereafter, the tetrahedron is halved by joining the new vertex with
its nonadjacent vertices, thereby creating two new tetrahedra. The process is then repeated for the
tetrahedron that contains the point pj , until the length of the longest edge passes below a predeter-
mined value. The altitude hj is then calculated by averaging the altitudes of the vertices of the final

14
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tetrahedron. After all points pj are given an altitude, these values are scaled between 0 and 1. A more
detailed description of the subdivision algorithm can be found in section A.2 of the Appendix. A visual
representation of algorithm’s first step is shown in Figure 3.1. Here the longest edge lies between
v1 and v2, so that edge is halved by creating a new vertex vnew, thereby forming two new tetrahedra.
Furthermore, pj lies in the tetrahedron constructed by v1, v3, v4 and vnew, so for the next step, v2 = vnew.

pj

O

v4

v2

v3

v1

vnew

Figure 3.1: First step of the tetrahedral subdivision to generate random altitude maps. Note that pj lies on the
surface of the unit sphere. In the next step, the tetrahedron constructed by v1, v3, v4 and vnew will be further
subdivided.

One advantage of this method is that points that lay close to each other on the sphere share the
same sequence of tetrahedra up to a certain iteration of the algorithm. Therefore their altitudes will not
differ that much when compared to the altitude of a point on the other side of the sphere, which has
a completely different sequence of tetrahedra. This result solves the problem of discontinuities at the
poles and edges that 2-dimensional height maps would have brought about, and so we can produce
continuous landscapes as discussed in section 3.1. Furthermore, although the altitudes of the point
on a sphere are all randomly generated, they all fully depend on the original set of four seeds sj of the
vertices of the first tetrahedron. This means that repeating the algorithm always produces the same
height map, provided the seeds stay the same. The ability to reproduce the same altitude maps during
the span of our research is necessary for making observations and attempting to retrieve the surface
maps from their generated light curves. In total we will generate 4 planets with different altitude maps
for our research.

Figure 3.2 shows the projected 2-dimensional altitude maps of two generated planets. The used
scheme to map the spherical facets to the flat map is by projecting the facets equirectangularly, which
preserves the verticality of meridians on the map at the expense of a distortion of the equal areas of the
facets, especially towards the poles. Unless otherwise stated, we let the number of different longitudes
NΦ = 80 and the number of latitudes NΘ = 40, as a good midway point between a high resolution
map and a low computing time. The corresponding Mollweide projections of the maps, which we will
use henceforth to visualize our surface maps, are shown on the right. Note that we manually set the
altitudes of facets near the poles of the planet to 1 to later emulate snowy polar caps.



3.2. Terrestrial surface types 16

A

D

Figure 3.2: Left: the generated altitude maps for planets A and D using tetrahedral subdivision. Right: Their
corresponding Mollweide projection.

3.2. Terrestrial surface types
After generating the 3D altitude map, we use these varying altitudes to divide the exoplanet’s surface
into different types of terrains. The ultimate goal of our research is to see if we can retrieve these
terrains accurately from the light reflected off our planet. As the most interesting exoplanets are those
where life exists (or could exist), we primarily want to discern surface types akin to habitable terrestrial
planets such as our own Earth, especially bodies of liquid water1. The chosen surface types are, in
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increasing order of elevation: ocean, grasslands, forest, regolith, and snow. The order of these terrain
types is chosen to imitate the landscape of the Earth: liquid water is attracted by Earth’s gravity and
flows to the lowest parts of the spheroid’s surface, while snowy peaks only occur on the tips of mountain
ranges, where temperature drops below the freezing point.

Table 3.1 shows the different terrestrial types S studied in our simulation, combined with the distri-
bution of (normalised) altitude values hj that are mapped to this surface type. Figure 3.3 shows the
Molleide projections of our 4 planets with added pseudocolors to distinguish the 5 surface types

S L U
Ocean 0 0.5
Grasslands 0.5 0.625
Forest 0.625 0.75
Regolith 0.75 0.875
Snow 0.875 1

Table 3.1: List of surface types and the part of the altitude values that are mapped to it. If L ≤ hj < U , then pj is
mapped to surface type S.

A B

C D

Figure 3.3: Pseudo-color map of planets A,B,C, and D. For this map, blue = ocean, light green = grasslands, dark
green = forest, brown = regolith, and white = snow.

3.3. Albedo assignment and reflectance distribution
The penultimate step in our map generation is to assign a quantity of reflectance to each surface type
S. This will allow us to later discern the different surface types by sampling the observed reflected light
curve. When simulating the phase function in Chapter 2, we have only considered the case where
our planet is homogeneous and reflects all light exactly the same. However, our generated planets
have irregular surfaces, and not all surface types reflect light equally. For example, white snow reflects
more incident light than dark blue water of oceans. One quantity of reflectance is the ratio of the stellar
intensity of the light reflected diffusely off a particular surface to the total intensity of the light from the
planet that reaches the planet’s surface. This ratio is also known as the average stellar reflectance or
(bond) albedo (McCluney, 2014), and is scaled from 0, for a black body that absorbs all incident light,
to 1 for a body that reflects all light. Since more reflective material (e.g. snow) has a higher albedo than
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absorbing material (e.g. water), the intensity of the light that different terrain types reflect will also be
different, and so a planet with an irregular surface will also have a varying light curve. This will form the
basis of our retrieval method. The surface reflectance for different terrain types is not only governed by
the properties of the surface itself, but also by the wavelength of the spectral distribution of the incident
radiation 2, and so for each wavelength a spectral albedo can be analyzed. However this exceeds the
scope of our thesis, and so when discussing albedo we consider the average reflectance of the entire
spectrum of incident radiation. Table 3.2 shows the albedo for each of the generated terrain types S.

S a0
Ocean 0.06
Forest 0.15
Grasslands 0.25
Regolith 0.5
Snow 0.8

Table 3.2: List of the generated surface types, along with their average reflectance or typical albedo a0 (NSIDC
(2022) and Markvart and Castaner (2003)).

The typical bond albedo allows us to distinguish the different surface types based on their ability to re-
flect light diffusely. However we also want to incorporate other reflection models, and different surface
types reflect light in different ways. For instance, liquid oceans reflect light more according to Fres-
nel reflection, while regolith reflects light more according to the Lommel-Seeliger model. This means
that the simple albedo a0 alone will not suffice, and we also need to incorporate model-dependent re-
flectance. To solve this issue, we introduce a distribution to each surface type to indicate how much
of the reflected light is scattered in accordance with each of the three reflection models. To calculate
how much reflected light scatters off a certain surface facet according to a certain reflection model, we
simply multiply the bond albedo a0 of the type of the facet with the appropriate reflectance fraction PRM .
Therefore, the quantity of model-dependent reflectance aRM is given by:

aRM (pj) = a0(pj)PRM . (3.1)

The reflectance distribution, along with the different values of the bond albedo, are shown in Table
3.3. Note that the bond albedo for oceans of 0.06 denoted the incorrect diffusive reflectance of water,
and so for specular reflectance we slightly increased it to 0.1.

S a0 PLaL PFr PLS

Ocean 0.1 0 1 0
Forest 0.15 1 0 0
Grasslands 0.25 0.5 0 0.5
Regolith 0.5 0.3 0 0.7
Snow 0.8 0.9 0 0.1

Table 3.3: List of the generated surface types, along with their standard albedo a0 and the fraction of reflected
light that is scattered in accordance with Lambertian diffusion PLa, the Fresnel equations PFr, or Lommel-Seeliger
diffusion model PLS .

Finally we are able to generate three different surface maps per planet, with each map showing the
fraction of light each unit surface reflects according to each reflection model. These surface maps will
allow us to generate a time-dependent light curve of the planet, and the goal of our research will be
to see if we can retrieve all three maps from the observed light curve. The three reflectance maps for
each of the 4 planets are shown in Figure 3.4.

1The range of orbits around a star within which liquid water can exist on its surface is called the habitable or Goldilocks zone
(Hegner, 2020).

2For example, The spectral albedo of grass for wavelengths of 500 nm is greater than that for 700 nm, and so it reflects green
light better than red light. Therefore we perceive grasslands as green.
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A

B

C

D

Figure 3.4: Reflectance maps of each planet for each of the three reflection models. Left: Lambertian reflectance.
Center: Fresnel reflectance. Right: Lommel-Seeliger reflectance.



4
Reflected light simulation

Now that we can generate planet surfaces with their different reflectance maps, it’s time to simulate
what the observed light of such a planet would look like. As discussed in Chapter 1, the light reflected
off an exoplanet is very dim compared to the emitted light of its parent star, and because the distance
between exoplanet and observer is so great, it is impossible to resolve features of the surface by
direct imaging. Instead, the only quantity we would be able to measure is the total intensity of the
reflected light that reaches the observer. This intensity, henceforth denoted as I(t), depends on the
observable domain % as defined in Chapter 2, which itself depends on the exoplanet’s location, given
by ζ = ωt, and its orientation, given by Ωt. Furthermore, since each studied reflection model deals with
its own reflectance map, we prefer to calculate the observed intensity for these models separately. The
total intensity for the composite model is then simply the sum of the three calculated intensities. The
energy conservation property of Section 2.2 is then satisfied as a consequence of the distribution of
the reflectances in Section 3.3.

We will first formulate a complete analytical expression for the time dependent intensity for irregular
planets by combining our results about the different phase functions obtained in Section 2.3 and our
analysis of the surface reflectances obtained in Chapter 3. Next, we discretize this to form a numerical
expression to be able to work with a finite number of surface facets during a finite number of time
steps. This step requires us to describe the planet’s rotation in terms of our fixed coordinate system.
Thereafter we apply this expression to our own generated surface maps. Finally, we investigate how
artificial noise can disturb the light curve.

4.1. Analytical expression for the reflected light curve
In Section 2.3 we showed that the light curve for an exoplanet with unit albedo and radius 1 in a circular
orbit with radius R for some BRDF f and for some time t is simply the (normalised) BRDF multiplied
by the prefactor 1

R2 and integrated over the visible domain:

IRM(t) =
1

R2

x
%(t)

fRM(θi, ϕi; θr, ϕr) cos θi cos θr sinΘdΘdΦ. (4.1)

In order to derive the analytical expression for the reflected light curves of more complex planets
with radius ρ and possessing three surface mapsMRM, we need to multiply each unit surface facet d2ŝ
by the reflectance aRM at that particular surface. Note that d2ŝ now also gives rise to a prefactor ρ2, as
the planet no longer has unit radius:

IRM(t) =
1

R2

x
%(t)

fRM(θi, ϕi; θr, ϕr)(ŝ · î)(ŝ · ô)aRM(ŝ)d2ŝ

=
ρ2

R2

x
%(t)

fRM(θi, ϕi; θr, ϕr) cos θi cos θraRM(Θ,Φ) sinΘdΘdΦ
(4.2)

The total light intensity ITOT (t) is then found by adding ILa, IFr, and ILS .
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4.2. Numerical expression for the reflected light curve
For simulating light curves reflected off discrete surface maps MRM generated in Chapter 3, we need
to adjust the above integral in order to carry out numerical integration over a finite amount of surface
facets d2ŝ for a finite number of time steps ti. If we letNΦ×NΘ be the number of surface facets, i.e. the
longitudinal resolution times the latitudinal resolution, and we let Nt denote the number of performed
observations, then we can represent IRM(t) as a vector IRM ∈ RNt given by:

IRM[t] = TRMMRM, (4.3)

where M ∈ RNΦ×NΘ is the vector containing the reflectance of all the facets on the planet:

M = [a(1, 1), . . . , a(1, NΘ), a(2, 1), . . . , a(NΦ, NΘ)]
T
, (4.4)

and T ∈ RNt × (RNΦ×NΘ) a transformation matrix. The next step is to find the entries of T.

4.2.1. Daily rotation of planet
Up to this point, we have assumed that the observable domain % of the exoplanet only changes due
to the planet’s revolution around its parent star, determined by its phase angle ζ = ωt. However, as
discussed earlier, we also expect the planet to rotate about some axis n̂, defined by equinox angle
α and obliquity β, with some angular frequency Ω. This means that for planets with irregular surface
maps the observable domain % also depends on the planet’s time-dependent rotation, and therefore
we need to implement the axial tilt in our transformation matrix T.

For each time step ti, the planet rotates about its rotational axis, and all facets rotate with it. This
means that, in order for the same spherical coordinates Φ and Θ to always describe the same facet,
we need to rotate the vector ŝ pointing to that facet on each time step so that it always points to the
same facet with respect to the fixed orbital coordinate system. We accomplish this by first rotating the
planet Ωti radians about the z-axis of our fixed planetary system (i.e. that doesn’t rotate along), then
rotating it β radians about its fixed y-axis, before rotating it α radians about its fixed z-axis again. Using
this sequence of extrensic rotations, the formula for the new facet vector ŝ′ is given by:

ŝ′ = Rz(α)Ry(β)Rz(Ωti)ŝ

=

 cosα − sinα 0
sinα cosα 0
0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 cosΩti − sinΩti 0
sinΩti cosΩti 0

0 0 1

 ŝ (4.5)

Note that the same resulting tilt can be also achieved by first rotating the planet α radians about
the z-axis of the mobile XYZ-frame attached to the planet, then rotating β radians about the rotated
y-axis before rotating Ωti radians about the rotated z-axis again, the latter now being equivalent to
the rotational axis n̂. This intrinsic rotation sequence is done with so-called Euler angles (See Taylor
(2005)), and is illustrated in Figure 4.1.

4.2.2. Structure of the transformation matrix
After having rotated the surface vectors ŝ to ŝ′, we can construct the entries of the different transfor-
mation matrices TRM. If we take a single facet of the planet, defined by ŝ′j , at certain time ti, and we
assume it lies in %, then the reflected intensity for that point for a certain reflection model RM is given
by:

TRM,i,jaRM =
ρ2

R2
(ŝ′j · î)(ŝ′j · ô)fRM sinΘ∆Φ∆ΘaRM (4.6)

The last step is to check if our discrete facet actually lies in %. Using equation 2.13, we define the
following indicator function 1% to determine if a facet lies in the observable domain:

1% =

{
1 if ŝ′ · î > 0 and ŝ′ · ô > 0

0 otherwise
(4.7)

Combining 4.6 and 4.7, we can compute the entry of TRM,i,j for a single point pj at a certain time ti:
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Figure 4.1: Schematic illustrating the ZY’Z” intrinsic rotation sequence implemented to rotate the facet vectors ŝ
with respect to the original orbital coordinate system, here depicted in black. The resulting coordinate system for
ŝ is depicted in violet. Figure source code: Dorian (2022).
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NΦ
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2π

NΦ
, ∆Θ =

π

NΘ

(4.8)

As every column of TRM corresponds to a different point pj on the exoplanet’s surface, and every row
corresponds to a different time ti, it follows that the columns and rows of TRM are all linearly independent,
and therefore the rank of TRM is simply the lesser of the number of rows and columns:

rank(TRM) = min {Nt, NΦ ×NΘ} . (4.9)

By multiplying TRM with the surface mapMRM, we obtain the intensity for one reflection model, as stated
in 4.3. To calculate the total intensity ITOT of the composite light curve, we simply add ILa, IFr and ILS

together. Furthermore, we can also rewrite this as a bigger matrix multiplication by concatenating the
transformation matrices and the surface maps:

ITOT =
[
TLa

... TFr

... TLS

]

MLa

. . .
MFr

. . .
MLS

 . (4.10)
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In that case, the rank of the concatenated transformation matrix TTOT becomes:

rank(TTOT ) = min {Nt, 3(NΦ ×NΘ)} . (4.11)

4.3. Application to generated surface maps
Now that we have a numerical expression for the observed intensity, we can apply it to our generated
maps. To do this, we have to make some assumptions regarding the properties of the exoplanet and
its orbit around the parent star. Since we’d like to study planets similar to Earth, we set the planetary
radius ρ and the radius R of it’s circular orbit to that of the Earth, namely 6.378 · 103 m and 1.496 · 106
m respectively. One might object to this by stating that planetary orbits are actually elliptical. However,
Earth’s eccentricity is only about 0.06 (Berger and Loutre, 1991), which makes its orbit essentially
circular, and so a low-eccentricity orbit for our exoplanet is justified. For the rotational and orbital period
( 2πΩ and 2π

ω , we also emulate the Earth, i.e. 365 sidereal days per year and 24 hours per sidereal day.
As discussed in Chapter 3, we let NΦ = 80 and NΘ = 40, as a reasonable trade-off between resolution
and computing time. Furthermore, in the most ideal case, we effortlessly sample the intensity every
hour throughout the exoplanet’s year, so ∆t = 1 hour, and therefore Nt = 8760. We compare this with
the less ideal case with less frequent sampling, namely only sampling in 200 periods spread evenly
across the planet-year for 17 hours per period, so Nt = 3400. In Chapter 5 we’ll also see how our
model fares retrieving the surface maps if the light curve I[t] is sampled less frequently.

4.3.1. Noiseless light curves
Frequent observations
We first simulate our observed light curve for edge-on observations in the ideal situation, i.e. no noise
and hourly observations. Figure 4.2 shows the reflected intensity I off planet A for the different reflection
models during a complete orbit around its parent star. Note that just as in Chapter 2, the observations
start when the planet’s phase angle ζ is 0, which means the planet is opposite its star, and so its
illuminated light is entirely visible from Earth. When ζ ≈ π, the exoplanet passes in an astronomical
transit between the observer and the star.

Figure 4.2: Relative intensities of the different light curves IRM of planet A for one full planet-year as a function of
time, sampled Nt = 8760 times evenly from noiseless edge-on observations. Sampling starts at ζ = 0.

As expected, the intensity for the Lambertian and Lommel-Seeliger reflection model is highest for
ζ close to 0 and close to 2π, as that is when the observable domain % is at its maximum. During
the astronomical transit (ζ ≈ π), % is nearly vanished, and so there is practically no diffuse reflection.
On the other hand, the intensity for the Fresnel reflection model IFr increases significantly when ζ
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approaches π, since in this case the incident zenith angle θi ≈ π and so the Fresnel coefficients Rs

and Rp are at their maximum.
Figure 4.3 shows the total reflected intensity ITOT for the ideal situation, sampled every hour in

the exoplanet’s year. We can clearly see that the noiseless intensity can be described by 2 significant
oscillations. The larger oscillation with a period of 1 year is caused by the exoplanet’s orbit around the
star, and the smaller oscillations are caused by the planet’s daily rotation. To demonstrate this more
clearly, Figure 4.4 shows an enhanced version of the composite light curve for planet D during the
7th and 8th day of its orbit around its parent star. In this plot we can clearly distinguish two peaks of
different intensity that recur each exoplanet-day. When comparing this to the surface map of planet D,
we can see that these peaks are a result of the two continents on the planet. The larger intensity peak
is caused by the starlight reflected off the bigger continent, while the smaller peak is produced by the
reflected light off the smaller island.

Figure 4.3: Relative intensity of the composite light curve ITOT of planet A for one full planet-year as a function of
time, sampled Nt = 8760 times evenly from noiseless edge-on observations.

Less frequent observations
Figure 4.5 shows the total reflected intensity ITOT when sampled only 3400 times. Compared to 4.3 we
clearly the change in sampling rate, and so we obtain fewer datapoints and therefore less information
about the exoplanet’s surface.

4.3.2. Light curves with shot noise
In order to make the observed intensities more realistic, we consider the faint light rays reflected off
our exoplanet. These rays are composed of a finite number of discrete photons, which are emitted
from the star at random intervals, and therefore also observed by us at random intervals. This random
occurrence can be described by a Poisson distribution, with its parameter λ denoting the average
number of photons that reach the observer, henceforth denoted as Nph. This average is dependent of
the type of telescope, and in the case of the recently launched James Webb Telescope it is calculated
thatNph = 187 (Stuger, 2021). This means that the possibility of measuring a certain number of photons
per hour is given by:

P (n observed photons in one hour) =
Nn

phe
−Nph

n!
(4.12)

As the planet is several light-years away, only a handful of photons eventually reach our telescope
every hour, and so the observed intensity will vary significantly due to this randomness. This effect is
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Figure 4.4: Above: Enhanced view of the composite intensity curve for planet D during the 7th and 8th day of its
orbit. Below: the generated pseudo-colormap of planet D. The two periodic peaks in the light curve correspond to
the two continents on the surface.

known as shot noise, and it will be implemented our simulation to study how our model performs with
actual observations of the reflected light curves.

If we let PsNph
∈ RNt be a vector that draws the number of observed photons for each time t from

a Poisson distribution with mean Nph, it follows that the total intensity for a particular reflection model
disturbed by shot noise can be described by:

IRM,N =
IRMTPsNph

Nph
(4.13)

Figure 4.6 and Figure 4.7 shows the total reflected intensity with added shot noise for Nt = 8760
and Nt = 3400 respectively. In each case, Nph = 187.



4.3. Application to generated surface maps 26

Figure 4.5: Relative intensity of the composite light curve ITOT of planet A for one full planet-year as a function of
time, sampled Nt = 3400 times evenly from noiseless edge-on observations.

Figure 4.6: Relative intensity of the composite light curve ITOT of planet A for one full planet-year as a function of
time, sampled Nt = 8760 times evenly from edge-on observations with artificial shot noise with Nph = 187.
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Figure 4.7: Relative intensity of the composite light curve ITOT of planet A for one full planet-year as a function of
time, sampled Nt = 3400 times evenly from edge-on observations with artificial shot noise with Nph = 187.



5
Surface map retrieval

In this final chapter, we attempt to replicate the results of several researchers by retrieving the re-
flectance maps based on the observed intensity signal I[t]. However, in contrast to other authors who
have only assumed Lambertian reflection, we attempt to retrieve the 3 distinct reflectance maps MRM
(as introduced in Chapter 3 for each reflection model from the single light curve. We will achieve this
by inverting the transformation of these maps introduced in Chapter 4. As the matrix TTOT is not nec-
essarily square and therefore not invertible, we’ll have to resort to a more general form of the inverse
matrix, namely the Moore-Penrose inverse. We will carry out this transformation inversion for different
values of the obliquity β and equinox angle α, as well as for varying measurement rates of the light
curve. By doing this, we assume we know a priori for each observed planet what these axial tilt angles
are1. Next, we’ll study how our model fares retrieving the reflectance maps when artificial shot noise is
added, both for frequent and less frequent sampling. Lastly, we’ll compare our new composite model
with the traditional model of purely Lambertian reflection. To do this, we’ll first have both models retrieve
the reflectance map of a planet that only reflects Lambertian-like, and compare their retrieved maps
with the original. Next, we’ll do the same, but now for a planet that reflects according to our composite
model as assumed in Chapter 3.

5.1. Inversion of the transformation matrix
5.1.1. Moore-Penrose pseudo-inverse
As concluded in Chapter 4, the observed intensity ITOT can be simply expressed as the matrix multipli-
cation of the (concatenated) transformation matrix TTOT and the concatenated reflectance maps MRM.
In other words, ITOT = TTOTMTOT . Therefore, in order to invert the transformation, one could argue to
just multiply the intensity by the inverse of T to obtain M. However, as the shape of TTOT is defined by
Nt, NΦ and NΘ, it does not necessarily have to be square, and so a perfect inverse matrix T−1 cannot
always be defined. Fortunately, a particular generalization of the inverse for non-square matrices does
always exist, known as the Moore-Penrose inverse T+. This pseudoinverse is unique for every matrix
and can be used to find the best fitting solution for the combined reflectance maps MTOT .

Let T : RNΦ×NΘ → RNt be the linear transformation matrix for a particular reflection model. It’s
corresponding reflectance map map M can be decomposed as the sum of a vector in Row(T), named
Mr and a vector in Null(T), named Mn. Similarly, any observed light curve I can be decomposed as the
sum of a vector in Row(TT ) = Col(T), named Ic, and a vector in Null(TT ), named In. However, since all
our intensities are computed by Equation 4.10, I ∈ Col(T) unless artificial noise is added, so Ic = I. In
this case, TmapsMr to I, whileMn is mapped to 0. If T is not full rank, i.e. if Null(T) ̸=

{
0
}
, any multiple

of Mn ∈ Null(T), and so we cannot find a unique M such that I = TM. However, as any Ic ∈ Col(T) is
the mapping of one and only one Mr ∈ Row(T), the transformation from Row(T) to Col(T) is actually
bijective and therefore invertible. This inverting operator is called the Moore-Penrose pseudoinverse
T+, and is defined as follows:

1See Stuger (2021) for the recovery of the axial tilt in spin-orbit tomography using Euclidean distance.

28
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T+I =
{
Mr if I ∈ Col(T)
0 if I ∈ Null(TT )

(5.1)

Therefore, for any reflectance map M, we have that

T+I = T+(Ic + In) = Mr + 0 = Mr, (5.2)

and since Row(T) and Null(T) are orthogonal vector spaces, it follows thatMr is the best approximation
forM, as it is the solution with minimal Euclidean distance to the true map. Furthermore, surface facets
of the planet that are never observed2 and therefore contribute no information to I will be given zero
reflectance when retrieving the map.

The method for retrieving the different reflectance maps from a composite light curve ITOT is analo-
gous, but in that case we take the pseudo-inverse of the concatenated transformation matrix to obtain
the (closest) solution for the concatenated reflectance map MTOT :

[
TLa

... TFr

... TLS

]+
ITOT =


MLa

. . .
MFr

. . .
MLS


r

. (5.3)

The desired reflectance maps MRM,r can then be obtained by slicing MTOT,r accordingly.

5.1.2. Singular value decomposition and cutoff ratio
The Moore-Penrose pseudo-inverse T+ can be numerically computed by decomposing or factorizing
the Nt × (NΦ ×NΘ) matrix T into three matrices:

T = UΣVT , (5.4)

whereU is aNt×Nt unitarymatrix, V is a (NΦ×NΘ)×(NΦ×NΘ) unitarymatrix, andΣ is aNt×(NΦ×NΘ)
diagonal matrix with non-negative real numbers on its diagonal. These diagonal entries are uniquely
determined by T, and are called the singular values of T, henceforth denoted as σi. This is also why this
factorization is called the singular value decomposition or SVD. The number of non-zero σi is equal
to the rank of T, which is just min {Nt, 3(NΦ ×NΘ)}, since the rows and colunms of T are linearly
independent, as we have seen in Chapter 4. Figure 5.1.2 shows a schematic of the singular value
decomposition of a matrix T, where r denotes the rank of T.

T = UΣV T

=




· · · · · ·

u1 ur ur+1 um

Col(T) Null(T+)

σ1
. . .

σr

0

. . .

0









vT1

vTr

vTr+1

vTn

Row(T)

Null(T)

Using the decomposition, the pseudo-inverse of the real matrix T can be easily computed by the
following equation (Golub and Van Loan, 2013):

2For instance, if α = 0, β = π
2
, we would only ever observe the northern hemisphere of the planet, so the entire southern

hemisphere would be mapped to 0 reflectance.
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T+ = VΣ+UT . (5.5)

For the diagonal matrixΣ, it’s pseudo-inverseΣ+ is computed by taking the reciprocal of every non-zero
singular value and then transposing the matrix.

When numerically computing the SVD and the subsequent pseudo-inverse of a transformation ma-
trix T, it’s possible due to rounding errors that some singular values σii that are actually equal to 0
are instead very small positive numbers. These small non-zero values will then erroneously produce
extremely large diagonal entries when calculating Σ+, which causes additional errors in the calculation
of T+. As such, In no longer gets mapped to 0, but instead to some other vector in RNΦ×NΘ . This
can lead to enormous errors in the retrieval of the reflectance maps MRM, especially if the observed
light curve has added noise or isn’t measured frequently. To counteract this, we propose to truncate
Σ before inverting, i.e. to reassign all singular values of Σ smaller than some fraction of max {σi} to
0, such that the number of non-zero singular values lies close to the actual rank of T. This threshold
is called the Singular Value Cutoff Ratio or SVCR and lies between 0 and 1. One has to be careful
when choosing the SVCR. Setting it too low will not get rid of all the ’bad’ singular values, and so noise
or faulty rounding errors will still disturb reflectance map retrieval. Setting it too high, and some of the
’good’ singular values determined by T will also be set to 0, which will result in a loss of information
and a less resolved reflectance map. As we will see, the correct choice of SVCR is very dependent of
situational circumstances, such as the spread of Gaussian noise, the amount of measurements made,
and the axial tilt. Therefore, one has to resort to manually adjusting the SVCR to obtain the clearest
reflectance map possible.

5.2. Noiseless retrieval
Figure 5.1 and Figure 5.2 show the resulting retrieval when using our method for frequent edge-on
noiseless observations of our exoplanet with equinox angles α = π

6 and α = π
2 respectively. In this

case, the number of sampling points Nt = 8760 is slightly smaller than three times number of surface
facetsNΦ×NΘ = 3200. The retrieved maps for Lambertian, Fresnel, and Lommel-Seeliger reflectance
are shown for different values of the obliquity β, and in each case the optimal SVCR that produces the
clearest image is used. Figure 5.3 and Figure 5.4 show the same figures for less frequent observations,
when the number of sampling points Nt = 3400 is much smaller than 3(NΦ ×NΘ).

As can be seen in Figure 5.1 and 5.2, our model is able to retrieve the reflectance maps very
accurately from the noiseless light curves when we sample frequently, especially the maps indicating
Lambertian and Lommel-Seeliger reflectance. We can easily distinguish the different terrain types
present in the generatedmap. As predicted in section 5.1, the parts of the planet’s surface that are never
in the observable domain are attributed zero reflectance by the Moore-Penrose inverse transformation.
This happens for instance in Figure 5.3 when α = π

6 and β = π
4 , such that the unobservable southern

polar ice caps are not retrieved in our reflectance maps. Apart from this hidden area, the retrieved
maps are nearly identical to the original, save for some scaling errors. Furthermore, if α = π

2 , then the
planet’s rotational axis is perpendicular to ô, and so every point on the planet’s surface is visible to us
at least once, so we are able to retrieve the entire surface.

When studying the retrieved Fresnel reflectancemapsmore closely, we can see that there is a lateral
band surrounding the planet’s equator where the surface is retrieved quite accurately, but outside of
this band the retrieval is more noisy. Remarkably enough, this border lies at about β radians above and
below the equator, which is especially apparent if α = π

2 . This effect can be attributed to the glint-like
behaviour of the Fresnel reflection model, in which the reflected light is only observable if θr = θi and
ϕr = ϕi + π as we discussed in Chapter 2. For edge-on observations, this is only possible on the
latitudes of the planet at which the star can be seen directly overhead, i.e. the subsolar points. The
analogous region on Earth are the tropics, and the latitude of the enclosing tropical circles is equal to
the obliquity β. The fact that regions outside of this tropical band can still be retrieved, albeit with a little
less certainty, can be attributed to the fact that the BRDF for Fresnel reflection is approximated by a
Gaussian as noted in Chapter 2.

In Figure 5.2 we can also see that for larger angles of obliquity β, a smaller strip around the equator
suddenly becomes much more noisy, and we cannot distinguish ocean from continent. This can be
explained by the fact that for β ≈ π

2 the light reflected from this strip according to Fresnel reflection is
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only observed if the phase angle ζ of the planet is very small, i.e. when the planet is directly behind the
star in eclipse. Note that it is brevity of this moment that causes this blind strip, and not the fact that
the star obscures the planet, as we haven’t incorporated that in our model. As expected, the noiseless
retrieval for frequently sampled light curves doesn’t require a high SVCR to obtain a clear picture.

When comparing these results to those when the intensity is sampled less frequently, the first thing
we notice is that the retrieved maps in Figure 5.3 and 5.4 are less accurate than their frequent-sampling
counterparts. This difference makes sense intuitively, as more measurements and data points provides
more information about the planet’s surface, and will subsequently lead to less uncertainty and a clearer
picture of all 3 reflectance maps. In the context of the transformation matrix TTOT , sampling less
frequently than three times the number of surface facets causes the rank of TTOT to be determined by
the number of sampling points Nt. It follows that sampling less frequently reduces the rank of TTOT ,
which in turn increases its nullity, so that the transformation is not injective, i.e. multiple reflectance
mapsMTOT would produce the same composite light curve ITOT . Therefore the retrieved maps are not
necessarily the originals, and so perfect retrieval is not possible. This uncertainty in our map retrieval
decreases as we increase the number of sampling points Nt, up to three times the number of surface
facets 3(NΦ×NΘ), which then becomes the maximum rank of TTOT . As Nt = 8760 lies much closer to
this number, its transformation matrix has a higher rank, and so the Moore-Penrose inversion operates
more like the actual matrix inversion for full rank matrices, and therefore we retrieve less ambiguous
maps. The other peculiarities we observed in the frequent-sampling results, such as the tropical β-band
and the blind strip for β = π

2 are also visible when we sample less frequently, and their explanations
remain the same. Furthermore we can see that larger angles of β provide the best retrieval accuracy for
Lambertian and Lommel-Seeliger reflection. Lastly, even with significantly less samples, we still don’t
need a large SVCR to obtain a coherent set of maps, with a cutoff ratio of 10−5 being the minimum
when α = π

6 and β = π
6 .
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Figure 5.1: The original reflectance maps of Planet A, together with the reflectance maps retrieved from noiseless
composite light curves for different obliquities β where α = π

6
andNt = 8760. The unretrievable part of the surface

on the southerm hemisphere grows as the obliquity β increases. As there is no noise in our signal, the SVCR can
be taken very low while still retreiving near perfect images.
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Figure 5.2: The original reflectance maps of Planet C, together with the reflectance maps retrieved from noiseless
composite light curves for different obliquities β where α = π

2
andNt = 8760. As α = π

2
, every surface is visible to

us at least once, and hence we are able to retrieve the entire Lambertian and Lommel-Seeliger maps. The band
of width 2β around the equator where Fresnel retrieval is possible is also visible. The blind strip near the equator
on the Fresnel map might come from the small time window that this region is illuminated specularly.
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Figure 5.3: The original reflectance maps of Planet B, together with the reflectance maps retrieved from noiseless
composite light curves for different obliquities β where α = π

6
and Nt = 3400. As the amount of samples is lower,

the quality of the retrieved maps is quite worse, however we are still able to discern the different terrain types,
especially from the Lambertian and Lommel-Seeliger maps if β is large, and so the SVCR can remain quite low
for accurate retrieval.
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Figure 5.4: The original reflectance maps of Planet D, together with the reflectance maps retrieved from noiseless
composite light curves for different obliquities β where α = π

2
and Nt = 3400. The 2β band on the Fresnel map

occurs again, as well as the blind strip for large β.
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5.3. Retrieval with noise
Figure 5.5 shows the resulting reflectance maps retrieval when using our method for edge-on observa-
tions of our exoplanets with added photon noise as explained in Chapter 4 for Nt = 8760, while Figure
5.6 shows the same with less information (Nt = 3400). In each case, Nph = 187, α = π

2 , β = π
6 , and

the retrieved reflectance maps are shown for varying values of the SVCR.
When studying both figures, it becomes apparent that even a little bit of noise heavily interferes with

our model. Even when sampling frequently, retrieving the reflectance maps proves to be very difficult.
In the best case, we are only able to resolve the rough outlines of the continent in the Lambertian
and Lommel-Seeliger reflectance maps. Retrieving the Fresnel map that would divide the oceans from
continents is also not possible. It has to be said that the retrieval of the maps with similar accuracy
to that of Figures 5.1 - 5.4 only became possible when the we modeled Gaussian noise instead with
a small variance, which is an approximation for the photon noise for high values of Nph. We believe
this inaccuracy is due to the relatively small rank of the transformation matrix TTOT in each scenario,
which leads to a high uncertainty of the retrieved maps. Furthermore, for the Fresnel map specifically,
it’s true that its contribution to the observed light curve is already quite small3, and so when artificial
noise is added this information is most susceptible to interference.

Another clear result is that truncating the diagonal matrix Σ with the Singular value cutoff ratio now
becomes essential to retrieve a somewhat accurate map, as predicted in 5.1.2. For both sampling rates,
the optimal SVCR for the clearest picture seems to lie around 0.05. It was found that this correlation
also holds for different values of Nph. Any lower than that, and not all the ’bad’ singular values are
removed, such that the retrieval is still not successful. Much higher than, and the information of the
original maps is partly lost as well, which is especially evident in the retrieved reflectance maps of the
low-amplitude Fresnel reflection for SVCR = 0.5 and SVCR = 0.1.

Another interesting question is how the average number of photons Nph affects the retrieval of our
maps. Figure 5.7 shows the retrieved reflectance maps for different values of Nph when α = π

2 , β = π
6 ,

and Nt = 3400. As expected, the accuracy of the retrieved maps increases if the average number of
photons increases, as more photons corresponds with more information about the exoplanet’s surface.
However, this increase in accuracy is not very great, as the shot noise is modelled by the Poisson
distribution, and so a higher average also means a higher variance when sampling, which causes the
intensity to fluctuate more, impeding our retrieval efforts.

3Recall that max {aFr} = 0.1
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Figure 5.5: Reflectance maps of Planet B retrieved from composite light curves with added shot noise with Nph =
187. Furthermore, α = π

2
, β = π

6
and Nt = 8760.
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Figure 5.6: Reflectance maps of Planet B retrieved from composite light curves with added shot noise with Nph =
187. Furthermore, α = π

2
, β = π

6
and Nt = 3400.
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Generated maps
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Figure 5.7: Reflectance maps of Planet B retrieved from composite light curves with added shot noise for different
number of average photons Nph. Furthermore, α = π

2
, β = π

6
and Nt = 3400.
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5.4. Comparing the reflection models
As mentioned throughout this thesis, previous research around Exocartography has assumed com-
pletely diffusive reflection following the Lambertian model, and so the transformation matrices were
constructed according to this simple model. In this thesis, we have introduced a new model of com-
posite reflection that accounts for the mirror-like reflection of water and the bright reflection of rocky
terrains. In this final part, we investigate and compare how well these two reflection models manage
to retrieve the surface maps in different scenarios, to conclude if one model performs better than the
other in general. To achieve this we first let both the simple and the composite model retrieve the maps
from the same sampled noiseless signal of light reflected according to the composite model. We then
compare the relative error in the light curve produced by the retrieved maps against the original light
curve for different values of SVCR and axial tilt angles. Next we do the same for a sampled signal of
light reflected according to the simple model, which earlier research suggests is the correct one.

5.4.1. Retrieval for composite light curves
First, let’s assume that the light we observe is indeed reflected off the exoplanet in accordance with
our composite reflection model, i.e. a (weighted) combination of Lambertian, Fresnel, and Lommel-
Seeliger reflection. In that case, the real intensity is equal to the total transformation matrix multiplied
with the concatenated reflection maps:

ITOT = TTOTMTOT . (5.6)

Therefore, if we assume composite reflection when retrieving, the retrieved reflectance maps Mr,TOT

can be computed by:
Mr,TOT = T+

TOT ITOT = T+
TOTTTOTMTOT (5.7)

However, if we assume simple Lambertian reflection when retrieving, the retrieved reflectance maps
are now computed by:

Mr,La = T+
LaITOT = T+

LaTTOTMTOT (5.8)

Figure 5.8 shows the retrieved reflectance maps from a noiseless composite light curve, assuming
either simple or composite reflection. In each case, Nt = 3400, α = π

2 , and β = π
3 , and the retrieved

reflectance maps are shown for varying values of the SVCR. In the case of simple retrieval, which only
returns the Lambertian reflected map, the retrieved Fresnel and Lommel-Seeliger maps are manually
assigned to zero to complete the figure.

When studying the retrieved reflectance maps in Figure 5.8, we find that the Lambertian model
does not accurately retrieve the original Lambertian map if the sampled light curve is composite. For
large SVCRs, both the simple and composite retrieval produce unclear Lambertian maps, which appear
nearly identical. However, the light curve is sampled without noise, and so a smaller SVCR should be
warranted. For SVCR = 10−5, the composite retrieval is able to retrieve all three reflectance maps quite
accurately, while the simple model is unable to retrieve the original Lambertian map. As the simple
model assumes all information in the light curve ITOT to only come from a single Lambertian map, it
erroneously interprets the reflected light contributed by the other 2 models as Lambertian, and so it
produces a seemingly random Lambertian map, not unlike those when we attempted to retrieve the
reflectance maps with added noise. It follows that the Lambertian retrieval model does not achieve
accurate retrieval if the sampled light curve is composite.

5.4.2. Retrieval for simple Lambertian light curves
Next, let’s assume that the observed light is reflected off the exoplanet solely according to the simple
Lambertian reflection, as most studies have. In that case, the real intensity is computed by:

ILa = TLaMLa. (5.9)

Therefore, if we assume composite reflection when retrieving, the retrieved reflectance maps Mr,TOT

can be computed by:
Mr,La = T+

LaILa = T+
LaTLaMLa (5.10)
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However, if we assume composite reflection when retrieving, the retrieved reflectance maps are now
computed by:

Mr,TOT = T+
TOT ILa = T+

TOTTLaMLa (5.11)

Figure 5.9 shows the retrieved reflectance maps from a noiseless simple light curve, assuming
either simple or composite reflection. In each case, Nt = 3400, α = π

2 , and β = π
3 , and the retrieved

reflectance maps are shown for varying values of the SVCR. As before, in the case of simple retrieval,
the retrieved Fresnel and Lommel-Seeliger maps are manually assigned to zero to complete the figure.

When analyzing the retrieved reflectance maps in Figure 5.9, we find that the composite model
accurately retrieves the Lambertian surface maps, even if the original light curve was modelled by sim-
ple Lambertian reflection. For large SVCRs, the simple and composite retrieval again produce nearly
identical glossy Lambertian maps, while for a SVCR of 10−5, the simple retrieval retrieves an almost
perfect Lambertian map. Interestingly enough, the composite model also retrieves a clear Lamber-
tian map, albeit a little less accurate. The retrieved Lommel-Seeliger reflectance map, which should
be zero for perfect retrieval, bears some resemblance to the retrieved Lambertian map. This is not
surprising, as the Lommel-Seeliger reflection model is only a variation of diffusive reflection, and so a
part of the Lambertian contribution to the light curve is wrongly interpreted as Lommel-Seeliger light.
The retrieved Fresnel map is even more noisy and bears no resemblance to any map, not even to the
retrieved Fresnel map if the light was reflected compositely. However the retrieved Lambertian map is
accurate enough to distinguish continents from oceans and snowy peaks.
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Original reflectance maps

Simple retrieval, SVCR = 0.1

Composite retrieval, SVCR = 0.1

Simple retrieval, SVCR = 10−5

Composite retrieval, SVCR = 10−5

Figure 5.8: Reflectancemaps of Planet A retrieved using the simple or composite reflectionmodel from a noiseless
composite light curve. Furthermore, α = π

2
, β = π

3
and Nt = 3400.
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Original reflectance maps

Simple retrieval, SVCR = 0.1

Composite retrieval, SVCR = 0.1

Simple retrieval, SVCR = 10−5

Composite retrieval, SVCR = 10−5

Figure 5.9: Reflectancemaps of Planet D retrieved using the simple or composite reflectionmodel from a noiseless
simple light curve. Furthermore, α = π

2
, β = π

3
and Nt = 3400.
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5.4.3. Relative error comparison
In order to determine how accurate the retrieved maps are, apart from just searching for similarities
and differences with the generated maps visually, we simulate the noiseless light curve that these
maps would produce, and compute the (relative) difference between the observed light curve and the
simulated curve to quantitatively determine its error. Suppose a observed light curve I is assumed to
be generated in accordance with a reflection model RM , then the retrieved reflectance map is given
by:

Mr,RM = T+
RMI. (5.12)

It follows that the light curve simulated by the retrieved reflectance map Mr,RM is given by:

Ir,RM = TRMMr,RM = TRMT+
RMI, (5.13)

and therefore the relative error between observed and simulated light curve, henceforth denoted as E
is given by:

E =
|I− Ir,RM |2

|I|2 =
|(1− TRMT+

RM)I|2
|I|2 (5.14)

Figure 5.10 and Figure 5.11 show the relative error E for simulated light curves for noiseless com-
posite light curves, while Figure 5.12 and Figure 5.13 show the same error for noiseless simple light
curves. In each Figure, the upper image is a scatter plot where the relative error E is plotted as a
function of the obliquity β for different values of α, while the lower image is a bar plot for alpha = π

6
and π

2 specifically. In each plot, Nt = 3400, and the relative error is computed for different values of
SVCR. Furthermore, the labelname ’La’ denotes that the signal was treated as a simple Lambertian
light curve when retrieving the reflectance maps and simulating its light curve, while the name ’TOT ’
denotes that the signal was treated as a composite light curve.

As can be seen in the Figures 5.10 to 5.13, the relative error is smallest if the observed light curve
is treated as from the same model as it actually is, e.g. when a Lambertian light curve is retrieved and
simulated according to the Lambertian reflection model and likewise for composite signals. This makes
sense intuitively. Another finding is that E also decreases for smaller values of SVCR, even when the
light curve is retrieved and simulated wrongly. One may believe this implies the retrieved maps are
more accurate for smaller SVCRs, which we know isn’t true from Figure 5.8. Therefore one should
always look to the retrieved maps themselves to conclude if the retrieval was accurate.

When comparing the different cases for the original light, i.e. if the planet actually reflects light
simply or compositely, we can see that the relative errors for simple and composite retrieval are about
the same if the original light curve is reflected according to the Lambertian model, with only some
outliers for β = 0 and β = π

2 . Indeed, if SVCR = 0.1 then the biggest error ratio between composite
retrieval and Lambertian retrieval, i.e. max

{
ETOT (α,β)
ELa(α,β)

}
, is about 4.7 for α = π

6 and β = π
12 . On the

other hand, if the original light curve is composite, then the relative error E is far greater if the curve
is retrieved and simulated according to the Lambertian model than according to the composite model.
This is especially evident in Figure 5.11 (a), where the composite relative errors all seem to lie on the
x-axis. If we compute the maximum error ratiomax

{
ELa(α,β)
ETOT (α,β)

}
4 again for SVCR = 0.1, we get a value

of 7.9 for α = π
3 and β = π

6 . We can conclude from these figures that the retrieval using the composite
retrieval model generally produces the smallest relative error.

The results of these figures, combined with our findings from Figures 5.8 and 5.9, we conclude
that reflectance map retrieval using the composite reflection model outperforms the simple Lambertian
reflection model in general.

4Notice the difference between the two formulas for the maximum relative error ratio.
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(a)

(b)

Figure 5.10: Above: Scatter plots of the relative error of the light curves produced by the retrieved maps for
composite light for different axial tilt angles α and β, where Nt = 3400 and SVCR = 0.1. Here ’La’ stands for
Lambertian retrieval, while ’TOT’ stands for composite retrieval. Below: corresponding bar plot for α = π

6
and π

2
.
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(a)

(b)

Figure 5.11: Above: Scatter plots of the relative error of the light curves produced by the retrieved maps for
composite light for different axial tilt angles α and β, where Nt = 3400 and SVCR = 10−5. Here ’La’ stands for
Lambertian retrieval, while ’TOT’ stands for composite retrieval. Below: corresponding bar plot for α = π

6
and π

2
.
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(a)

(b)

Figure 5.12: Above: Scatter plots of the relative error of the light curves produced by the retrieved maps for
Lambertian light for different axial tilt angles α and β, where Nt = 3400 and SVCR = 0.1. Here ’La’ stands for
Lambertian retrieval, while ’TOT’ stands for composite retrieval. Below: corresponding bar plot for α = π

6
and π

2
.
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(a)

(b)

Figure 5.13: Above: Scatter plots of the relative error of the light curves produced by the retrieved maps for
Lambertian light for different axial tilt angles α and β, where Nt = 3400 and SVCR = 10−5. Here ’La’ stands for
Lambertian retrieval, while ’TOT’ stands for composite retrieval. Below: corresponding bar plot for α = π

6
and π

2
.



6
Conclusion

In this thesis we attempted to retrieve the surface maps of Earth-like exoplanets using temporal varia-
tions in the intensity of the light of the parent star reflected off the exoplanets surface. We expanded
on the known inversion technique of spin-orbit tomography with Lambertian reflection by introducing
two new reflection models, namely Fresnel reflection to account for the mirror-like behaviour of large
bodies of water, and Lommel-Seeliger reflection as an empirical model congruent with observations of
rocky heavenly bodies at low phase angles. These reflection models were studied by analyzing their
bidirectional reflectance distribution functions and their phase functions.

Using the pseudo-random algorithm of tetrahedral subdivision, we were able to generate realistic
altitude maps for multiple planets. Using these altitudes, we then divided the planet’s surface into
different terrain types likely present on habitable planets, such as oceans and grasslands. Next we
assigned a measure of reflectance to each surface type for all 3 reflection models, and so we could
construct three distinct reflectance maps.

Combining the generated reflectance maps with the analyzed phase angles, we were able to suc-
cessfully construct the transformation matrix for discrete surface maps and subsequently generate
mock light curves of the composite intensity of the reflected starlight, in which the contributions of the
different reflection models were clearly visible. The light curve could be simulated for varying angles of
the rotational axis of the planet, as well as for different number of samples taken. In order to emulate
the stochastic nature of photon observation, we also included the option to impose shot noise on the
signal.

We applied theMoore-Penrose pseudoinverse combined with a cutoff for the singular values in order
to invert the transformation matrix and retrieve all three reflectance maps. This expanded approach
proved successful when retrieving the maps from noiseless light curves, even if the the number of
samples was significantly smaller than three times the planet surface’s resolution. The accuracy of the
retrievedmaps for Lambertian and Lommel-Seeliger reflection increased for larger values of the planets
obliquity β, especially if the equinox angle α was large. The retrieved Fresnel reflectance maps were
only accurate on the lateral band around the equator with width 2β, as that is the region from which
the specularly reflected light can reach the observer. Furthermore, for β close to π

2 , the Fresnel map
showed a strip where our model fails to retrieve the surface, as this region is only illuminated head-on
for a very short instance in the planets orbit when the phase angle is nearly zero.

When artificial shot noise was added, the map retrieval was much poorer, and a high cutoff ratio
of the singular values was needed to retrieve glossy reflectance maps for Lambertian and Lommel-
Seeliger reflection. It was found that the optimal cutoff ratio was about 0.05. Retrieving the Fresnel
reflectance map from noisy light curves proved especially difficult, as its contribution to the light curve
is smallest and therefore easiest interpreted as noise.

We compared our new composite model with the one used by earlier research that only implements
Lambertian reflection. We simulated a noiseless light curve assuming only Lambertian reflection, and
then attempted to retrieve the single reflectance map with both the Lambertian and the composite trans-
formation. We found that our composite model correctly retrieved the original Lambertian map, even
for small values of the cutoff ratio, while the erroneously retrieved Fresnel and Lommel-Seeliger maps

49



50

were essentially meaningless. Furthermore, when calculating the relative error of the light curve simu-
lated by the retrieved maps, if the original light curve was produced according to Lambertian reflection,
we found that the relative error of the erroneously simulated composite signal was not bad, with a
maximum relative error ratio of about 4.7

On the other hand, if the original light curve was constructed with our compositemodel, then the Lam-
bertian reflection model was unable to retrieve an accurate Lambertian map for small singular values
cutoff ratios, as the Lambertian retrieval is believed to treat the Fresnel and Lommel-Seeliger intensity
contributions as noise. Moreover, when comparing the re-simulated light curves, it was found that the
Lambertian retrieval produced significantly worse errors than if the if the light curve was retrieved and
re-simulated compositely, with a maximum relative error ratio of 7.9. Therefore we conclude that the
composite reflection model appears to be a viable tool for retrieving exoplanet surface maps, even if
the original light curve is not identical to our expectations.

We have found the following recommendations for further research:

• Introduce the wavelength of the incident and reflected light rays as a parameter for both the
bidirectional reflectance distribution functions as well as the surface albedos and attempt to better
retrieve the different surface types through spectral analysis.

• Include model atmospheres on simulated planets and study how it affects the incident and re-
flected light through diffraction.

• Simulate elliptical orbits and introduce the eccentricity of the planet as a parameter to produce
more realistic light curves.

• Include the Relativistic Doppler effect when the exoplanet approaches or recedes from the ob-
server in edge-on observations, and try to retrieve the duration of its orbital period empirically.

• Study how the composite model fares retrieving the reflectance maps for different inclination
angles, e.g. when the planet’s orbit is observed face-on.

• Let each surface type have a range of reflectance values for each reflection model, instead of
only 1 value per surface type.

• Implement an equal-area pixelization scheme for the surface facets, such as HEALPIX or the
Fibonnaci spiral, instead of the equi-rectangular facet scheme used in this thesis.
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A
Appendix

A.1. Derivation of Lambertian phase function.
The derivation for the phase function for Lambertian reflectance, as described in Section 2.3, can be
found below.

FL(ζ) = 4
x
%

fL(θi, ϕi; θr, ϕr) cos(Φ− ζ) cosΦ sin2 Θd2ŝ

=
4

π

∫ π/2

−π/2+ζ

∫ π

0

cos(Φ− ζ) cosΦ sin2 Θ sinΘdΘdΦ

=
4

π

∫ π

0

sin2 Θ sinΘdΘ
∫ π/2

−π/2+ζ

cos(Φ− ζ) cosΦdΦ

=
4

π

∫ π

0

(1− cos2 Θ) sinΘdΘ
∫ π/2

−π/2+ζ

cos(Φ− ζ) cosΦdΦ

=
4

π

∫ −1

1

(u2 − 1)du

∫ π/2

−π/2+ζ

cos(Φ− ζ) cosΦdΦ

=
4

π

[
u3

3
− u

]−1

1

[
2Φ cos ζ − sin(ζ − 2Φ)

4

]π/2
−π/2+ζ

=
16

3π
(
sin ζ + (π − ζ) cos ζ

2
)

=
8

3π
[sin ζ + (π − ζ) cos ζ]

(A.1)

53



A.2. Tetrahedral subdivision algorithm 54

A.2. Tetrahedral subdivision algorithm
The detailed description of the tetrahedral subdivision algorithm, as introduced in Section 3.1.1, can be
found below.

Algorithm 1 Tetrahedral subdivision
Input: A target point p on the sphere and four vertices v1, . . . , v4 of a tetrahedron, each with the
following information:

• Coordinates (xi, yi, zi)
• Seed si for the pseudo-random generator
• Altitude value hi

Repeat:
1. Re-order the vertices so that the longest edge emax of the tetrahedron is between v1 and v2
2. Create new vertex vm by:

• (xm, ym, zm) = ((x1 + x2)/2, (y1 + y2)/2, (z1 + z2)/2)
• sm = random((s1 + s2)/2)
• l = |emax|
• hm = (h1 + h2)/2 + 0.01× random(sm)× l

3
2

where random(s) generates a pseudo-random value from a seed s
3. if p is contained in the tetrahedron defined by vm, v1, v3 and v4 then
4. set v2 = vm
5. else
6. set v1 = vm
7. end if
Stop if: l is small enough
Output: (h1 + h2 + h3 + h4)/4, the final altitude for point p.

A.3. Code
All of the code that has been used in this report is available on request via mail to: S.W.S.M.Blanken@
student.tudelft.nl

S.W.S.M.Blanken@student.tudelft.nl
S.W.S.M.Blanken@student.tudelft.nl
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