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1
INTRODUCTION

Cancer is a collection of diseases that occurs when cells are altered in such a way as to
stimulate undesirable cell-proliferation. Altered pathways affect factors such as the eva-
sion of growth suppressors, avoidance of apoptosis and stimulation of growth factors [1].
Important DNA repair mechanisms are also deactivated leading to genomic instability
[2]. In this way, a heterogeneous collection of replicating cells undergo an evolution-
ary process, all trying to outcompete each other in a hostile environment comprised
of, amongst other the immune system and other extracellular factors [3]. Tumors that
develop are often heterogeneous where no single clone fully outcompetes others and
through it’s interaction with the tumor microenvironment orchestrates events that even-
tually leads to metastasis [4]. With that said, recent data does suggest that metastatic
dissemination can occur early in the formation of tumors [5]. Nevertheless, the hetero-
geneous nature of tumors partially explains why cancer is so difficult to cure [6]. An
effective single drug treatment, for example, might kill off 99% of cancer cells only to
leave 1% resistant that eventually replicate and render the drug useless.

Oncogenes are key players in the development of cancer. Oncogenes are genes which,
when activated, are causally linked to the development and progression of cancer [7].
There are many types of oncogenes. They can, for example, be mutated and over ex-
pressed growth factor receptors such as ERBB2 in breast cancer and EGFR in glioblas-
toma [8, 9]. Other oncogenes such as MYC code transcription factors that have wide-
spread consequences for the expression of downstream genes related to cell prolifera-
tion and growth [10]. The RAS family of genes are examples of oncogenes whose over-
expression directly effects signalling pathways related to proliferation, growth and sur-
vival [11]. Yet another example is hTERT which codes for a catalytic subunit of the en-
zyme telomerase that maintains telomere stability in almost all cancer cells [12].

Another class of cancer genes are tumor suppressors. These are genes that usually
protect the cell from becoming cancerous and can be grouped into three categories:
caretaker, gatekeeper and landscaper genes [13–15]. In contrast to oncogenes, these
genes are usually inactivated by, for example, point mutations or copy number deletions,
typically resulting in lower protein expression in cancer cells. A class of caretaker genes

1
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code for products that are crucial for maintaining mutational and chromosomal stability.
BRCA1 is an example typically associated with breast cancer and plays a key role in er-
ror free repair of DNA double-strand breaks [16]. In contrast, gatekeeper genes produce
products that inhibit cell proliferation. Examples include RB1 [17] and CDKN1B [18, 19]
that both inhibit the cell cycle. Finally, the landscaper genes do not directly control cellu-
lar growth, but encode for gene products that inhibit the local microenvironments from
becoming conductive to unregulated cell proliferation. Examples include PTEN [20] and
SMAD5 [21]. Tumor suppressor genes can belong to more than one of these categories.
Probably the most important tumor suppressor gene (in cancer) is TP53 [22], who’s prod-
uct, p53, is known as ‘the guardian of the genome’ and is crucial for preventing germline
mutations. On the other hand, p53 also halts the cell cycle when DNA is damaged and
triggers apoptosis in severe cases [23]. With these considerations, it is clear that TP53
behaves as both a caretaker and gatekeeper.

We refer to oncogenes and tumor suppressors collectively as cancer genes. Multiple
cancer genes need to be activated (inactivated) before cancer can develop, but that does
not imply that they are necessarily altered on the genome . There are many epigenetic
factors that can influence the expression of cancer genes. BRCA1, for example, is often si-
lenced in breast cancer due to hypermethylation of its promoter region [24]. It is impor-
tant to note that cancer genes are, by definition, causally linked to cancer. Just because a
gene’s expression level is significantly correlated with a given cancer type does not auto-
matically imply it is a cancer gene. Over expression of the oncogenic MYC transcription
factor will, for example, modulate the expression of genes that are consequently corre-
lated, but not causally linked, to cancer. We refer to genes that are ’along for the ride’ as
passenger genes. It is therefore very difficult to distinguish cancer genes from passengers
when considering gene expression data alone (even across multiple samples).

In contrast to gene expression data, much more can be said about the causal links be-
tween genes and cancer when considering genomic alterations. One can for example do
a genome wide analysis to see if germline single nucleotide polymorphisms (SNPs) sig-
nificantly associate with a cancer type relative to a normal population. This type of anal-
ysis is called a genome-wide association study (GWAS) [25] and due to the large num-
ber of SNP positions considered on the genome and the weak effects associated with
germline variants, these methods typically have low statistical power (reveal low true
positive rates) in complex diseases such as cancer. One therefore requires a large num-
ber of samples (cancer samples and normal samples). With that said, genes containing
significant SNP associations are still not necessarily causally related to the cancer type
at hand due to a phenomena called linkage disequilibrium [26]. This is the phenomena
where SNPs on the genome are non-randomly associated with one another (across in-
dividuals irrespective of disease type). Nevertheless, with conditional analysis [27] it is
possible to identify candidate genomic loci that likely contain causal hereditary cancer
genes.

It is also possible to limit such an analysis to somatic point mutations (acquired dur-
ing the patient’s lifetime) in a tumor when searching for cancer genes. The number of
somatic mutations vary greatly between different tumors and cancer types, ranging from
less than 300 mutations across the genome in cancer types such as pilocytic astrocytoma
and more than 30000 per genome in lung cancers and melanomas [28]. Since these mu-



1.1. MEASURING DNA COPY NUMBER ALTERATIONS

1

3

tations are acquired independently for different patients, linkage disequilibrium is not
an issue and it is possible to identify cancer genes that are significantly enriched for mu-
tations across a patient cohort. Furthermore, we expect to find more cancer genes com-
pared to a germline GWAS approach since we directly measure the somatic mutations
from the tumor. On the other hand, the sparsity of somatic mutations will necessarily
lead to a loss in statistical power. To counter this power loss, it is useful to smooth muta-
tion profiles in a scale space methodology [29]. However this, once again, comes at the
expense of pinpointing cancer genes and only identifying (often broad) loci.

Another source of genomic alterations that can be used to detect cancer genes are
somatic copy number alterations/aberrations (CNAs). Unlike point mutations, these
represent sections of DNA that are deleted or copied mulitple times across the genome.
They can vary from focal indels (less than a kilo-base pair long) to chromosome wide
gains and losses (also referred to as amplifications and deletions, respectively). Copy
number gains of a gene can increase its overall expression and it is therefore possible to
identify oncogenes by searching for genes that show frequent copy number gains across
different tumor samples. Similarly, tumor suppressors can be identified by detecting
genes that are frequently deleted across multiple tumors.

In this thesis we focus only on DNA copy number data and developed computational
approaches that pinpoint cancer genes in recurrently aberrated regions.

1.1. MEASURING DNA COPY NUMBER ALTERATIONS
Due to the diploid nature of human DNA, any given stretch of DNA usually has two
copies in a normal cell. There will always be germline copy number variations, but these
insertions and deletions are typically focal and sparse across the genome of a normal
cell. In contrast, depending on the cancer type, highly unstable cancerous cells are rid-
dled with copy number alterations. These events can be broad, with whole chromo-
some arms being deleted or gained, or focal where only a small section of less than 1 kilo
base pair (kbp) is deleted or amplified. In copy number analysis the goal is to determine
the number of copies available for any given stretch of DNA in a cancerous cell. This
is typically achieved by measuring the quantity of a specific genomic sequence across
the genome using short sequences (also called molecular probes) that are synthesised
to match specific sequences on the genome. There are various platforms available for
performing these tests including fluorescent in situ hybridization, comparative genomic
hybridization and high resolution array-based tests on array comparative genomic hy-
bridization (aCGH) [30, 31]. The SNP array technology is an example of a high resolution
platform that uses both copy number probes and SNP probes which make it possible
to determine the copy number state of both alleles on the genome [32]. Copy number
measurements and allele counts can also be derived from DNA whole genome sequenc-
ing (WGS) and whole exome sequencing (WES) data. Probe measurements are usually
presented as an intensity log ratio between the cancer sample and a normal reference
(often determined on the blood of the same patient). By placing the probe measure-
ments at their appropriate positions on the genome, one obtains a copy number profile
that can be regarded as the sum of a piecewise constant function (a continues stretch
with constant copy number) and additive measurement noise (Fig. 1.1).

A large number of segmentation algorithms exist that are specifically designed to
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Figure 1.1: Illustration of a DNA copy copy number profile for a breast cancer sample. Black dots indicate raw
unsegmented copy number intensity measures. The (coloured) piecewise constant profile is obtained after
applying a segmentation algorithm.

filter out measurement noise from the copy number profile. This is achieved by identify-
ing breakpoints in the piecewise constant copy number signal and estimating the copy
number between adjacent breakpoints. One might expect the segment values to repre-
sent integer values as pieces of DNA are gained and lost in whole integer values. How-
ever, this is often not the case since measurements usually represent an averaged profile
across a large pool of heterogeneous cells. Nevertheless it is often assumed that there
are two signal components mixed in the population, one representing a dominant clone
in the tumor and one representing stromal (normal) DNA. As the stromal component is
assumed to have a normal diploid genome the signal originating from the tumor cells
will be attenuated. In order to obtain high quality profiles, tumor purities (percentage
of cells that represent the tumor) above 70% are typically required. Another complicat-
ing factor that makes it hard to derive integer copy number values is the fact that tumor
cells could be characterized by abnormal ploidy. The ploidy of a tumor cell indicates
the average number of chromosome sets in a cell. This might be significantly different
than that observed in the (diploid) normal reference cell and the actual DNA content in
the tumor is unknown [33–36]. Advanced segmentation algorithms such as ASCAT [37]
and ABSOLUTE [38] estimate tumor ploidy and purities simultaneously and use this to
compute integer copy number values.

1.2. IDENTIFYING ONCOGENES AND TUMOR SUPPRESSORS FROM

DNA COPY NUMBER PROFILES

Sometimes an amplified or deleted piece of DNA can activate or deactivate an onco-
gene or tumor suppressor, respectively. It is believed that the majority of amplifications
and deletions, however, are passenger events, i.e. they result from genomic instability
but do not incur a selective advantage for the tumor cell. For simplicity, we only con-
sider amplifications for detecting oncogenes in this discussion. Similar arguments hold
for deletions and tumor suppressors. It is possible to define a null model for somatic
passenger aberrations and identify significantly recurrent somatic copy number ampli-
fications across multiple tumors in any given cancer cohort. Somatic passenger aber-
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rations occur independently between tumors and if amplifications in a locus occur at a
rate much higher than expected, it is reasonable to assume that at least a subset of these
aberrations are drivers, i.e. contain an oncogene. There exist a diverse set of algorithms
that are specifically designed for detecting recurrent aberrations at specified amplifica-
tion widths [39–50]. The goal is to call regions that are likely to contain oncogenes with
an associated p-value. This has proven to be a very difficult task, since aberrations con-
tributing to a recurrence event can vary greatly in width across tumor samples and might
be strongly entangled with passenger events.

A simple approach for detecting regions containing oncogenes is to aggregate (sum)
segmented copy number profiles across a cohort of tumors and call local maximum
peaks that exceed a specified significance threshold. Many algorithms are too strict
in the way they employ these thresholds. They typically perform multiple test correc-
tion across the genome to avoid over-calling, but fail to account for the high correla-
tion observed between copy number measurement in close proximity. This correlation
occurs naturally due to the segmented nature of copy number data and much statisti-
cal power can be gained by accounting for it. The second problem with this approach
is that driver aberrations are likely to overlap with passenger amplifications (especially
with large sample sizes) resulting in a peak that does not overlap with the oncogene. To
be more specific, even though a local maximum peak in the aggregate profile might be
above the significance threshold, it might be called too focal (i.e. miss the oncogene) due
to one tumor sample containing a focal passenger amplification that happens to overlap
with highly recurrent driver aberrations. Therefore one needs to call wider ’peaks’ to en-
sure that recurrent regions contain the oncogene (Fig. 4.1a,g). This is at the expense of
pinpointing the oncogene, since wider regions might overlap multiple passenger genes.
A good example of an algorithm that attempt to solve this problem by widening peaks is
RegBounder in the GISTIC2 pipeline [42]. Yet another challenge to overcome is the fact
that multiple peaks might be associated with a broad recurrent region and it is not clear
which peak is associated with an oncogene. There are a number of algorithms including
JISTIC [51], GISTIC2 [42] and RAIG [50] that identify independent peaks with what are
called peel-off algorithms (Fig. 4.1b-f). They iteratively peel away amplified segments
from single tumor profiles that overlap with a peak and if a secondary peak remains sig-
nificant, it is called as well.

Although it is clear that the problem at hand is complex, the overall goal is clear.
A powerful algorithm is required to 1) call as many recurrent regions as possible that
contain cancer genes, 2) call recurrent regions as focal as possible without missing the
cancer genes and 3) call as few false positive regions (without cancer genes) as possible.

1.3. OUTLINE OF THESIS
In this thesis we are mainly concerned with detecting cancer genes from DNA copy num-
ber data with high specificity and statistical power. Throughout we employ a powerful
statistic called the expected Euler characteristic that is often used in random field the-
ory [52–57]. This statistic helps us to effectively correct for multiple testing where tests in
close genomic proximity are highly correlated. Although this test is often employed to es-
timate accurate family wise error rates (FWER), we extend the theory to control for false
discovery rates (FDR), which is often more powerful in exploratory algorithms [58]. We
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show that this technique naturally lends itself to our application domain and often pro-
vides us with analytical solutions that would otherwise lead to time consuming permuta-
tion tests. In Chapter 2 we start with a real world diagnostic application of copy number
profiles. Here we use DNA copy number profiles to distinguish between BRCA1-like and
sporadic breast cancer tumors. It has been shown that patients with BRCA1-like profiles
benefit from platinum-based chemotherapies. Unfortunately, measurement platforms
change over time and it is therefore important to ensure that our BRCA1-like classifiers
are robust across different platforms. Here we employ a strategy for mapping any plat-
form to a feature space that can be used by a single classifier. We show that prediction
performance is concordant between platforms. In Chapter 3, we describe an algorithm
called ADMIRE, which employs a scale space methodology for detecting recurrent aber-
rations at different widths (from focal to chromosome-wide recurrent aberrations). In
Chapter 4, we introduce an algorithm called RUBIC which, instead of detecting recurrent
aberrations, detects recurrent breakpoints across tumor samples. This method naturally
avoids many of the complications discussed earlier and is much better at pinpointing
cancer genes in focal loci than ADMIRE or other state-of-the-art algorithms. Neverthe-
less it places less emphasis than ADMIRE on broad recurrent structures. The theoretical
framework for ADMIRE and RUBIC constitute a large part of the thesis and are added as
supplements at the end of the respective chapters. In Chapter 5, we apply and extend
the theory on the expected Euler characteristic for two dimensional (two channel) data
and apply it as a single sample segmentation algorithm on SNP platforms and compare
it to state of the art algorithms.
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Previously we employed bacterial artificial chromosome (BAC) array Comparative Ge-
nomic Hybridization (aCGH) profiles from BRCA1 and -2 mutation carriers and sporadic
tumours to construct classifiers that identify tumour samples most likely to harbour BRCA1
and -2 mutations, designated ’BRCA1 and -2 like’ tumours, respectively. The classifiers are
used in clinical genetics to evaluate unclassified variants and patients for which no good
quality germline DNA is available. Furthermore, we have shown that breast cancer pa-
tients with BRCA-like tumour aCGH profiles benefit substantially from platinum-based
chemotherapy, potentially due to their inability to repair DNA double strand breaks, pro-
viding a further important clinical application for the classifiers.

The BAC array technology has been replaced with oligonucleotide arrays. To continue clin-
ical use of existing classifiers we mapped oligonucleotide aCGH data to the BAC domain,
such that the oligonucleotide profiles can be employed as in the BAC classifier.

We demonstrate that segmented profiles derived from oligonucleotide aCGH show high
correlation with BAC aCGH profiles. Furthermore, we trained a support vector machine
(SVM) score to objectify aCGH profile quality. Using the mapped oligonucleotide aCGH
data we show equivalence in classification of biologically relevant cases between BAC and
oligoucleotide data. Furthermore, the predicted benefit of double strand break inducing
chemotherapy due to a homologous recombination defect is retained.

We conclude that oligonucleotide aCGH data can be mapped to and used in the previously
developed and validated BAC aCGH classifiers. Our findings suggest it is possible to map
copy number data from any other technology in a similar way.

2.1. INTRODUCTION
Inactivating mutations in the BRCA1 and -2 genes cause a large increase in breast and
ovarian cancer risk [2]. The proteins encoded by these genes are important in the ho-
mologous recombination DNA repair pathway. Homologous recombination (HR) is the
only known error-free repair pathway for DNA double strand breaks (DSB). Inactivation
of components of this pathway results in genomic instability [3]. Array Comparative
Genomic Hybridization (aCGH) can be used to analyze this genomic instability. It was
previously reported that BRCA1 and -2 mutation carriers reveal specific tumour aCGH
signatures that differ from non-BRCA-mutated tumours [4, 5].

Classifiers were trained on these patterns in BAC aCGH data to identify potential
BRCA1/2 mutated patients or evaluate BRCA1/2 variants of unknown significance in the
clinical genetics setting. These classifiers can also be used when germline DNA is not
available [6, 7]. Not all cases that are classified as BRCA-mutated possess a pathogenic
mutation that is currently reported by Dutch clinical genetics centers; therefore we term
these profiles BRCA-like. Unidentified mutations or other mechanisms of down-regu-
lation of these genes, such as promoter hypermethylation may also be responsible for
BRCA-like aCGH profiles and be a sign of HR deficiency [8]. Accordingly, we found that
patients with BRCA-like tumours selected from a phase III clinical trial that randomized
patients between a conventional chemotherapy regimen and a DSB-inducing regimen
highly benefitted from the latter [9, 10]. Due to technological advances which allow
analysis of FFPE samples on oligonucleotide based platforms, bacterial artificial chro-
mosome (BAC) based aCGH profiling has been replaced in many laboratories [11]. De-
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spite the variety of manufacturers and platform designs, aCGH platforms are concordant
and robust in detecting large aberrations. None of the platforms seems superior [12–16].
However, none of these studies were performed in the setting with existing genomic clas-
sifiers.

The aim of this study is to validate the application of previously developed and val-
idated BRCA1 and -2 BAC aCGH classifiers using oligonucleotide aCGH data to allow
other labs to use the classifiers. In the clinical setting, classification robustness is imper-
ative to ensure the diagnosis remains the same regardless of the copy number platform
employed. We specifically investigate if and how using copy number data generated by
a different platform influences this classification.

2.2. METHODS

2.2.1. PATIENTS

Patients in this study have been described in earlier reports [6, 7, 9, 10]. Briefly, we hy-
bridized samples that were previously hybridized to BAC arrays when sufficient DNA
was available. Samples were divided into 3 cohorts, BRCA1 (n=20 re-hybridizations) and
BRCA2 (n=39 re-hybridizations) mutation carriers, controls which possess no known
BRCA1/2 mutations that are routinely tested in the clinical genetics setting (83 re-hy-
bridizations). An independent set consisted of a selection of patients that have been
treated in a randomized controlled trial of high dose versus conventional chemother-
apy. The conventional regimen consisted of 5 courses of 500 mg/m2 5-fluorouracil, 90
mg/m2 epirubicin and 500 mg/m2 cyclophosphamide (FEC). Patients in the high dose
treatment cohort were administered 4 courses of FEC, followed by stem cell harvest-
ing and 1 course of 1600 mg/m2 carboplatin, 480 mg/m2 thiotepa and 6000 mg/m2 cy-
clophosphamide. We matched 77 BRCA1 or -2-like cases to 77 non-BRCA-like cases (112
re-hybridizations of patients with sufficient DNA available) on age, pathological T stage,
number of positive lymph nodes and systemic and surgical treatment. Due to strong
correlations it was not possible to match a group of patients that did not significantly
differ in ER positivity and Bloom-Richardson grade.

All patients have given written informed consent to be included in the study [17],
which was approved by the institutional review committee. According to Dutch law, this
implied consent allows for the analysis of residual tissue specimens obtained for diag-
nostic purposes and anonymized publication of the results. (http://www.federa.org/code-
goed-gebruik-van-lichaamsmateriaal-2011).

2.2.2. DNA ISOLATION AND ACGH PROFILES

BAC aCGH profiles were available from previous studies [6, 7, 9, 10]. For the BRCA1/2
and sporadic breast cancer datasets we generated new aCGH profiles on the Nimblegen
135k human aCGH platform for cases that had sufficient DNA available. DNA isolation
was performed as reported before [6, 7, 9, 10].

Tumour DNA was labelled with Cy3 and female pooled reference DNA (G1521, Pro-
mega) was labelled with Cy5 using the ENZO labelling kit for BAC arrays (ENZ-42670,
ENZO Life Sciences). Unincorporated nucleotides were removed with the Qiagen MinE-
lute PCR Purification Kit (28004, Qiagen). Subsequently, tumour and reference DNA
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were pooled and pelleted using an Eppendorf Concentrator (5301, Eppendorf). The pel-
lets were resuspended in hybridisation mix (NimbleGen Hybridization Kit, Roche Nim-
blegen) and the sample loaded on the array. Hybridisation was at 42°C for 40-72 hours
(Maui Hybridization System, BioMicro Systems). Slides were washed three times (Roche
NimbleGen Wash Buffer Kit) and scanned at 2um double pass using an Agilent High
Resolution Microarray Scanner (Scanner model: G2505C, Agilent). The resulting image
files were further analyzed using NimbleScan software (Roche Nimblegen). Grids were
aligned on the picture manually and per channel pair files generated. The Nimblescan
DNACopy algorithm was applied at default settings and the unaveraged DNAcopy text
files used for further analyses.

2.2.3. COMPUTATIONAL ANALYSIS

PREPROCESSING

Raw aCGH profiles as generated by Nimblegen software were processed in Matlab or
R 2.15.0 [18]. Outliers were removed using the algorithm proposed in Circular Binary
Segmentation package employing default settings [19]. Segmentation was performed
with the cghseg package [20] using a modified Bayes information criterion to select the
number of breakpoints [21].

QUALITY ASSESSMENT

We trained a binary support vector machine (SVM) to score the quality of oligonucleotide
aCGH profiles. Training was performed on 138 profiles that were assigned to four quality
categories by an expert, based on impression of overall noise and dynamic range of the
aberrations. The four categories are “very poor”, “poor”, “good” and “very good”. These
labels were later converted to two classes by combining the “very poor” and “poor”, and
“good” and “very good” labels, to reach sufficient numbers to train the SVM. The SVM
was trained using the PRTools toolbox in Matlab [22]. We modified the classifier to report
probabilistic scores ranging from zero (poor) to one (good) with a 0.5 boundary thresh-
old. Features employed include noise variance (we define noise as the difference be-
tween the raw aCGH profile and the segmented profile), the dynamic range of segments,
the signal (segment) to noise power ratio, skewness of the noise and the mean and me-
dian segment sizes. We employed a Gaussian radial basis kernel function and optimized
the kernel width and Hinge loss penalty factors using 10-fold cross-validation. An outer
loop 10-fold cross-validation was performed to assess the predictive performance of the
classifier and an independent test set with 265 samples was employed as a complete in-
dependent validation.

MAPPING

We mapped oligonucleotide probes to BAC clones by assigning oligonucleotide probes
that overlap with a specific BAC clone to that BAC clone. All log-ratio intensities of
oligonucleotide probes that were assigned to a specific BAC were averaged to determine
the oligonucleotide derived copy number value for the associated BAC probe. 430 BAC
clones that were not covered by any oligo probes were ignored. After performing these
steps for all BAC clones, we then treated the resulting oligo-derived aCGH profiles as if
they were generated on a BAC platform and applied the BAC classifiers.
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OPTIMIZING CLASSIFIERS

We retrained shrunken centroid classifiers [23] optimized on oligonucleotide using the
class labels ‘BRCA1 mutated or methylated’ and ‘non-BRCA1 mutated or methylated’ [3–
5]. We chose the classifier with the lowest cross-validation error rate for further analyses.

ASSESSMENT OF PLATFORM SIMILARITY

We used the R packages ClassDiscovery [24], KCsmart [25], to analyse differences be-
tween the original BAC profiles and mapped aCGH profiles. We used the BootstrapClus-
terTest, with Pearson correlation, complete linkage on 5 clusters, sampled 200 times to
assess clustering of BAC and mapped oligonucleotide data.

CLINICAL DATA ANALYSIS

Survival analysis and classification concordance were performed with the R packages
survival [26] and epiR [27]. Cohen’s Kappa values were calculated for concordance be-
tween classification on BAC and oligonucleotide aCGH data. The analyses were per-
formed with the marker by treatment interaction design [28] and reported with REMARK
criteria if applicable (Table 2.4), and with recommendations specific for predictive marker
studies [29–31]. Univariate Kaplan-Meier curves were generated and compared with log
rank statistic. Multivariate Cox models were generated to assess the interaction between
double strand break inducing chemotherapy and BRCA1 or -2-like CGH status. The haz-
ard rates of patients with a BRCA-like tumour were compared with patients with a non-
BRCA-like tumour in a separate model. Both Cox models were corrected for ER status,
tumour size, number of positive lymph nodes, histological grade, and prognostic value
of BRCA-like status.

2.3. RESULTS

2.3.1. MAPPING OF OLIGONUCLEOTIDE DATA TO BAC PLATFORM POSITIONS

After preprocessing, we mapped oligonucleotide probes to BAC clones and averaged the
probes overlapping with the genomic footprint of one clone (mapped profile). 2847 out
of 3277 original BAC clones were covered by oligonucleotide probes.

For the following analyses we use two different profiles, the original BAC aCGH (BAC
profile) and the oligo-nucleotide aCGH derived mapped profile (oligo-mapped profile).
To test the similarity between the oligo-mapped and original BAC profiles we applied
several methodologies. First, we used hierarchical clustering (Pearson correlation, com-
plete linkage) on 112 matched BAC and oligo-mapped profiles (Fig. 2.1). When we clus-
ter unsegmented, log-ratio profiles, partial clustering occurs due to platform differences
rather than biological replicates (red and green dendrogram bars). However, this plat-
form bias is reduced considerably if we segment both the oligo-mapped and BAC pro-
files. We confirmed that we obtain similar clustering results using three additional meth-
ods. First, clustering only the log-ratios of the BAC and mapped profile employed in the
BRAC1/2 classifiers. Second, by principal components analysis and third, by demon-
strating that the fraction of the genome aberrated by the KCsmart algorithm is smaller in
matched pair analysis compared to non-matched pair analysis (Fig. 2.6).
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Figure 2.1: Bootstrapped hierarchical clustering of log ratios CGH profiles (a). Red and green column colors
represent BAC and oligo-mapped oligonucleotide CGH profiles. Heatmap colors range from 0 (never clus-
tered in same cluster, blue) to 1 (always clustered in same cluster, yellow). The blowout shows sample names
to demonstrate clustering of biological pairs. Clustering segmented data shows less clustering by platform,
indicated by blocks of red and green in the columns.
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Figure 2.1: Bootstrapped hierarchical clustering of segmented CGH profiles (b). Red and green column colors
represent BAC and oligo-mapped oligonucleotide CGH profiles. Heatmap colors range from 0 (never clus-
tered in same cluster, blue) to 1 (always clustered in same cluster, yellow). The blowout shows sample names
to demonstrate clustering of biological pairs. Clustering segmented data shows less clustering by platform,
indicated by blocks of red and green in the columns.
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Figure 2.2: Classifier probability scores for the BRCA1 (left) and -2 (right) classifier. On the x-axis the scores
assigned on oligonucleotide aCGH data, on the y-axis the score based on BAC aCGH data. The horizontal and
vertical line represent the cutoff for BRCA-like. Numbers represent the number of patients in the quadrant. For
BRCA1 mutated and methylated tumours are presented by an ×.

2.3.2. CONCORDANCE OF BAC CLASSIFIER WITH OLIGO-MAPPED DATA AND

WITH OPTIMIZED CLASSIFIERS

Probability scores of samples belonging to the BRCA1-like or non-BRCA1-like group can
be obtained [23]. This score ranges from 0 (non-BRCA1-like) to 1 (BRCA1-like). The
cutoff for assigning to the BRCA1-like group is 0.63 and 0.5 for the BRCA2-like group
[7, 9]. We investigated these classifier probability scores assigned to the BAC aCGH data
and oligonucleotide aCGH data (Fig. 2.2). The kappa value for inter-observer agreement
was 0.78 (95% CI: 0.59-0.96) for the BRCA1 classifier and 0.67 (95% CI: 0.49-0.86) for the
BRCA2 classifier. Partly discordant classification is expected, due to the fact that the clas-
sifiers were optimized on BAC aCGH data. This stems from the fact that some features
had to be removed due to non-overlap between BAC and oligonucleotide aCGH platform
in rehybridized samples.

This problem is potentially overcome by training optimized shrunken centroid clas-
sifiers on the oligo-nulceotide data to see whether we could improve performance. We
did this on unsegmented, segmented and mapped data and compared to classification
using BAC data. The results are similar within the confidence interval, although we ob-
serve a slight loss in specificity when employing mapped data (Fig. 2.3). As we observe
similar performances of the classifiers we will use the mapped data approach for further
analysis, since it does not result in a different classifier, only different input data (Fig. 2.2
and 2.7).

2.3.3. DISCORDANT CLASSIFICATION

We investigated whether we could find an obvious bias between BAC and oligo-mapped
profiles. Some of the classifier BAC probes could not be mapped as there were no oligonu-
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Figure 2.3: Misclassification rates (a), kappa (b), sensitivity (c) and specificity (d) with 95% confidence inter-
vals of an optimized classifier trained on unsegmented (oligo + retrain), segmented (segmented + retrain) and
mapped (mapped + retrain) oligonucleotide data, and of using the BAC classifier with mapped data (mapped).
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Figure 2.4: Quality scores predicted by the support vector machine for an independent test set consisting of 265
aCGH profiles. The profiles were visually labeled into four quality groups as shown on the y-axis and classified
by an SVM classifier depicted on the x-axis.

cleotide probes on those locations, and they were therefore removed from the classifier.
When we removed the same probes in the BAC aCGH classifiers, the performance did
not differ for the BAC vs oligonucleotide aCGH comparison (Table 2.1). However, some
loss of information was observed for the BRCA2 classifier when we compared the origi-
nal classifier with the classifier with non-mappable probes removed.

Table 2.1: Kappa value of classification with BAC versus oligonucleotide data compared with BAC without non-
mappable probes vs. oligonucleotide data.

Classifier
BAC non-mappable
removed vs. mapped
oligonucleotide

BAC vs. mapped
oligonucleotide

BAC vs. non-mappable
removed BAC

BRCA1 0.80 (95% CI: 0.61-0.98) 0.78 (95% CI: 0.59-0.96) 1 (95% CI: 0.80-1)
BRCA2 0.64 (95% CI: 0.46-0.83) 0.67 (95% CI: 0.49-0.86) 0.80 (95% CI: 0.62-0.98)

Although we observed high concordance in aCGH profiles, it could be that discor-
dant classification occurs only in the profiles with lower quality. Therefore, we trained a
support vector machine classifier on quality labels (independent of BRCA classification)
assigned to each profile by an experienced molecular geneticist (PMN). The classifier
yields a score between 0 and 1 that represents the profile quality of the experimental
data. Cross-validation on the training set yielded an accuracy of 89.9% and an indepen-
dent test set consisting of 265 profiles (40 very poor, 73 poor, 111 good and 50 very good)
yielded an accuracy of 79.6%. The trend between the score predictions and visually as-
signed labels on the test set is shown in Fig. 2.4.

Classification was not related to aCGH quality score (Fig. 2.8 and 2.9). Combining
this result and the high concordance between BAC and oligo-mapped profiles we con-
clude that despite the quality of FFPE samples in general, both the wet lab experimental
method and the classification method are robust. We therefore continue analyses with-
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out removing samples.
Although the BAC and oligonucleotide aCGH profiles are very similar we observed

that some regions have slightly different amplitudes (Fig. 2.10 and 2.11). These differ-
ences are not necessarily restricted to discordantly classified cases. However, discor-
dantly classified cases already have very similar distances to both classifier centroids in
the BAC aCGH data. In other words, these samples are not convincingly assigned to a
specific class or conversely, the posterior probability of belonging to a specific class is
around 0.5. (Fig. 2.12). This and a mix of experimental noise and removed classifier
features is likely the cause of discordant classification.

2.3.4. PREDICTION OF CHEMOTHERAPY BENEFIT

We previously reported that patients with a BRCA1 or -2-like profile, as determined by
aCGH, derive benefit from double strand break inducing chemotherapy [9, 10]. We tested
whether this benefit is still observed when mapped oligonucleotide data is used.

We matched the group of BRCA1 or -2-like tumours to a non-BRCA1 or -2-like group.
For 112 out of 154 patients enough DNA was available to generate an oligonucleotide
CGH profile. For the analysis of the BRCA1 classifier we excluded patients that scored
BRCA2-like to increase the power of the analysis.

Table 2.2 summarizes the patients for whom enough DNA was present and the pa-
tients in the analysis of BRCA1 classifier performance.

Kaplan-Meier curves of BRCA1 classification of 112 patients on BAC aCGH profiles
and oligonucleotide profiles are shown in Fig. 2.5. Patients that have a non-BRCA-like
tumour do not derive significant benefit from a DNA double strand break inducing reg-
imen. Patients with either a BRCA1- or -2-like CGH tumour have an improved survival
on DNA double strand break inducing chemotherapy (log rank p = 0.007).

In the multivariate analysis we corrected for ER status, stage, number of positive
lymph nodes and tumour grade. Table 2.3 shows the hazard rates for recurrence cor-
rected for these prognostic factors for the BRCA1classifier. The interaction test for a dif-
ferential effect between patients with the marker and without the marker receiving dou-
ble strand break inducing chemotherapy was significant for the BRCA1 BAC classifier. On
oligonucleotide data the interaction test is 0.227 for the BRCA1 classifier. Although some
discordant classification occurred, the classifiers perform similar within the confidence
interval. Results for the BRCA2 classifier are similar (data not shown).

2.4. DISCUSSION
We investigated whether we could robustly map data from an oligonucleotide aCGH
platform to a BAC platform, such that classification of tumours as BRCA1 or -2-like re-
mains largely unchanged [6, 7, 23].

We chose this approach for several reasons. First, aCGH data is very robust and data
generated with different platforms is very comparable [12–16]. However, no data is avail-
able for cross-platform shrunken centroid classification on aCGH data. Secondly, we
observed that classifiers trained on mutation status predict loss of gene function due
to other mechanisms, such as promoter hypermethylation [9]. We lack a gold standard
for these BRCA-like aCGH cases without routine diagnostic BRCA1 or -2 mutations. For
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Table 2.2: Clinical characteristics of the samples that had DNA available from 230 aCGH profiles in [9]. Col-
umn BRCA1 analysis describes the patients in the validation of prediction of double strand break inducing
chemotherapy with the BRCA1 classifier, which excludes BRCA2-like aCGH patients. ER: Estrogen receptor,
PR: progesterone receptor; HER2 : Human Epidermal growth factor Receptor 2; FEC: 5-fluorouracil, epiru-
bicin, cyclophosphamide; CTC: carboplatin, thiotepa, cyclophosphamide.

All Patients BRCA1 analysis
BAC

non-BRCA
BAC BRCA

oligo
non-BRCA

oligo BRCA

ER status
negative 9 38 6 41
positive 42 23 36 7

PR status
negative 16 43 12 45
positive 35 16 30 1
missing 0 2 0 2

HER2 status
negative 51 61 42 48

Pathological T stage
stage I/II 47 49 38 40

stage III 4 11 4 8
missing 0 1 0 0

No. positive lymph nodes
< 10 31 38 28 29

>= 10 20 23 14 19
Bloom-Richardson grade

grade I/II 34 17 29 10
grade III 14 40 10 35
missing 3 4 3 3

BAC BRCA1 status
non-BRCA 51 23 41 11

BRCA 0 38 1 37
BAC BRCA2 status

non-BRCA 51 28 40 33
BRCA 0 33 2 15

Chemotherapy regimen
conventional (5*FEC) 23 31 18 25

DSB inducing (4*FEC+1*CTC) 28 30 24 23
Recurrence, 2nd primary, death

No 28 27 22 21
Yes 23 34 20 27

Oligo BRCA1 status
non-BRCA 45 19 42 0

BRCA 6 42 0 48
Oligo BRCA2 status

non-BRCA 44 29 42 31
BRCA 7 32 0 17
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Figure 2.5: Kaplan-Meier curves of recurrence-free survival of non-BRCA1-like CGH patients and BRCA1-like
CGH patients classified on BAC data (top) and mapped oligonucleotide (bottom) data. Patients that are not
BRCA1-like do not derive significant benefit from double strand break inducing chemotherapy. Patients that
have a BRCA-like CGH tumour derive substantial benefit of the double strand break inducing chemotherapy
regimen compared to a conventional FEC regimen.
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Table 2.3: Multivariate analysis of recurrence free survival of BRCA1-like CGH tumours. HR=hazard rate, 95%
CI = 95% confidence interval, HD=high dose chemotherapy, ~ interaction test: p=0.015; # interaction test:
p=0.227.

BAC Mapped oligonucleotide
HR 95% CI P HR 95% CI P

ER + vs. - 0.869 0.337-2.238 0.771 0.941 0.362-2.448 0.901

pT
3 vs. 1

or 2
3.673 1.552-8.695 0.003 3.755 1.604-8.789 0.002

Grade
3 vs. 1

or 2
1.423 0.539-3.755 0.476 1.301 0.502-3.367 0.588

No. positive
lymph nodes

>= 10
vs. < 10

2.56 1.274-5.146 0.008 2.576 1.302-5.098 0.007

BRCA1 CGH + vs. - 2.675 0.798-8.971 0.111 1.826 0.579-5.760 0.304
BRCA1 CGH &
DSBi chemo

0.13 0.037-0.463
0.002

~
0.311 0.117-0.831

0.02
#

BRCA1 CGH &
Conv chemo

1 1

non-BRCA1
CGH & DSBi
chemo

0.874 0.352-2.169 0.772 0.51 0.205-1.270 0.148

non-BRCA1
CGH & Conv
chemo

1 1

clinical applications this group is interesting as these patients benefit from double strand
break inducing therapy. Retraining the classifier may result in loss of this group of pa-
tients. Third, an important limiting factor is the availability of rare clinical samples. We
encountered loss of patients for whom enough DNA was available, demonstrating the
need to cherish and to reserve them for new questions rather than repeated quality and
technology development steps. Fourth, if it is feasible to use data from other platforms
than were used to train the classifiers, many existing datasets can be used to validate our
findings.

On the first point, we have demonstrated that it is possible to approximate original
data to an extent that unsupervised methods cluster biological replicates rather than
platforms on which the data was generated. Robustness of cross-platform comparisons
of copy number data has been reported before, provided that the resolution and cov-
erage of the platforms are sufficient [12–16]. In concordance with these reports is our
observation that segmented profiles correlate better than non-segmented data. Making
use of the high correlation between neighbouring probes and therefore obtaining robust
estimates of copy number changes at a certain locus in training classifiers could there-
fore improve existing shrunken centroid classifiers that were trained on non-segmented
data.

Only one study proposes methods for preprocessing aCGH data for cross-platform
comparison class discovery. This study was conducted in the setting of new class discov-
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ery based on unsupervised analysis [32]. These methods do not assume a pre-existing
classifier, however the strategy is similar to ours: mapping to a single format combined
with noise reduction, which we do by averaging the noisier oligonucleotide probe mea-
surements located within a BAC clone. We did not apply scaling as the proposed method
involves changing log 2 ratios to Z scores. Neither did we apply interpolation to a com-
mon genomic grid as the features of the classifier (ie. the chromosomal positions of the
BAC clones) are fixed.

On the second point, the lack of gold standard for BRCA-like cases, and optimiz-
ing the existing classifiers we refer to the mRNA expression field, in which the use of
shrunken centroid classifiers is common. Several methods have been proposed and
compared for cross-platform comparisons of gene expression data. However, none of
the cross-platform comparison methods allow for normalization without intrinsically
changing the measurements or distributions of measurements. Applying such a method
would require adjustment of the original classifiers to prevent differential classification
due to different preprocessing methodologies. Adjusting the classifiers would lead to
similar problems as are currently observed in the gene expression field, where discor-
dance between platforms, classifier centroids or gene list and inter-observer variation
prevent robust classification of single tumours [33–35].

In our translation we encountered occurrences of discordant classification. This is
expected for several reasons: experimental noise, optimization on BAC aCGH data and
loss of information due to missing classifier features. We observed high kappa scores be-
tween classification of BAC derived and oligo-mapped aCGH profiles as well as with clas-
sification based on optimized classifiers. We demonstrated that optimization results in
different classifiers with similar performance. Higher resolution platforms, such as copy
number profiling of FFPE samples by next generation sequencing could counter the loss
by non-mappable probes [36] . However, the pattern that we capture is already present
on lower resolution platforms, as the BAC aCGH [6, 7]. The estimates that we present are
conservative, in the sense that they will likely improve when more dense platforms are
used to estimate copy number at a certain genomic location. Furthermore, we assessed
various sources of biases that could lead to discordant classification but could not dis-
cover an obvious bias that would always lead to discordant classification. Discordant
classification seems to occur due to experimental noise for aCGH profiles that are ap-
proximately equally distanced to the BRCA aCGH and sporadic aCGH signature. Given
the high kappa values and the retention of performance in predicting clinical outcome
we deem the classifiers robust for predicting outcome of patients that benefit from dou-
ble strand break inducing chemotherapy likely due to a molecular defect in homologous
recombination DNA repair. Furthermore, these classifiers may be used for prediction
of benefit of PARP1 inhibitors. Validation in independent cohorts is required for further
clinical implementation.

In our attempt to find a source of discordant classification we developed a support
vector machine to capture aCGH quality as visually assessed by experienced molecular
geneticists. This classifier had good classification performance in an independent val-
idation set and can thus be used to determine aCGH profile quality. Previously, either
single variable measures or visual inspection has been used to describe aCGH quality
[16, 30]. Single variables do not adequately describe aCGH profiles and various mea-
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sures to describe quality, and the SVM can thus be viewed as an addition to objectify
aCGH quality assessment.

To conclude, we present a method for mapping between DNA copy number plat-
forms. This method results in highly correlated classification of BRCA1 and -2-like class
in a large cohort of patients for which both BAC and oligonucleotide aCGH-based clas-
sification data are available. For prediction of chemotherapy benefit the mapped data
predicts only slightly worse but with large overlap in the confidence interval. We argue
that this method can be used to map data generated on other platforms such as SNP
arrays and the likely new platform of choice, next generation sequencing data as well.
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2.7. SUPPLEMENTAL METHODS
We used the prcomp function from the R base package stats to plot samples mapped
to the first two principal components to assess clustering of BAC and mapped oligonu-
cleotide CGH data. We used KCsmart to compare 1000 times 50 paired BAC and mapped
oligonucleotide CGH profiles with 50 non-paired profiles at 200 permutations with an
FDR of 5%, kernel size of 1mb and sample density of 50kb. We averaged the size of the
genome called significantly different between both groups and plotted these.

Table 2.4: Supplementary tables.

REporting recommendations for tumour
MARKer prognostic studies (REMARK)
Introduction
1. State the marker examined, the
study objectives, and any pre-specified
hypotheses.

BRCA1 and -2 like classification employ-
ing oligonucleotide array CGH data in-
stead of BAC array CGH data on which
original classifiers were trained results in
similar classification

Materials and Methods
Patients

2. Describe the characteristics (e.g. dis-
ease stage or comorbidities) of the study
patients, including their source and inclu-
sion and exclusion criteria.

Cohorts of BRCA1/2 and non-BRCA1 and
-2 mutated patients described in [6, 7]. Pa-
tients from Randomized Controlled Trial
by [17]. BAC array CGH profiles have been
described in [9].

3. Describe treatments received and how
chosen (e.g. randomised or rule-based).

Randomized between: 5×FEC vs.
4×FEC+1×CTC

Specimen characteristics
4. Describe type of biological mate-
rial used (including control samples), and
methods of preservation and storage.

DNA isolated from FFPE archival tissue

Assay methods
5. Specify the assay method used and
provide (or reference) a detailed proto-
col, including specific reagents or kits
used, quality control procedures, re-
producibility assessments, quantitation
methods, and scoring and reporting pro-
tocols. Specify whether and how assays
were performed blinded to the study end
point.

Array CGH, see methods for precise exper-
imental procedures and quality control

Study design
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6. State the method of case selection, in-
cluding whether prospective or retrospec-
tive and whether stratification or match-
ing (e.g. by stage of disease or age) was
employed. Specify the time period from
which cases were taken, the end of the
follow-up period, and the median follow-
up time.

Rehybridization of the SA Joosse cohorts
[6, 7], for which enough DNA was avail-
able to do array CGH. Rehybridization of
matched sample (BRCA like vs non-BRCA
like) of the Vollebergh cohort [9]. Match-
ing was done on age, T stage, number of
positive lymph nodes, systemic and sur-
gical treatment received. Due to strong
correlations between BRCA status and ER
status and Bloom Richardson grade these
factors could not be matched for, they
have been corrected for in multivariate
analysis

7. Precisely define all clinical end points
examined.

Reported disease free survival; OS results
are similar. Control was analysis based on
BAC data instead of oligonucleotide data

8. List all candidate variables initially
examined or considered for inclusion in
models.

Standard prognostic variables: ER, T
stage, number of lymph nodes, Bloom
Richardson grade

9. Give rationale for sample size; if the
study was designed to detect a specified
effect size, give the target power and effect
size.

All patients with a BRCA like BAC aCGH
tumor were included and matched to a
control

Statistical analysis methods
10. Specify all statistical methods, in-
cluding details of any variable selection
procedures and other model-building is-
sues, how model assumptions were veri-
fied, and how missing data were handled.

Compare results based on BAC data with
results based on oligonucleotide data

11. Clarify how marker values were han-
dled in the analyses; if relevant, describe
methods used for cut-point determina-
tion.

Existing classifiers were used, with dif-
ferent input data. Cutoff determination
has been described in Joosse et al [7] and
Vollebergh et al [9]

Results
Data

12. Describe the flow of patients through
the study, including the number of pa-
tients included in each stage of the anal-
ysis (a diagram may be helpful) and rea-
sons for dropout. Specifically, both overall
and for each subgroup extensively exam-
ined report the numbers of patients and
the number of events.

154 patients were matched, for 112 pa-
tients sufficient amounts of DNA were
available for rehybridization (see Ta-
ble 2.2) 90 patients (exclude patients
with missing data and BRCA2 like aCGH
tumors) for the comparison between BAC
based classification and oligonucleotide
based classification

13. Report distributions of basic demo-
graphic characteristics (at least age and
sex), standard (disease-specific) prognos-
tic variables, and tumour marker, includ-
ing numbers of missing values.

Table 2.2
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Analysis and presentation
14. Show the relation of the marker to
standard prognostic variables.

Table 2.1 (patients were matched, no test
performed) and [6, 7, 9]

15. Present univariate analyses showing
the relation between the marker and out-
come, with the estimated effect (e.g. haz-
ard ratio and survival probability). Prefer-
ably provide similar analyses for all other
variables being analysed. For the effect
of a tumour marker on a time-to-event
outcome, a Kaplan-Meier plot is recom-
mended.

Fig. 2.5

16. For key multivariable analyses, report
estimated effects (e.g. hazard ratio) with
confidence intervals for the marker and, at
least for the final model, all other variables
in the model.

Table 2.3

17. Among reported results, provide es-
timated effects with confidence intervals
from an analysis in which the marker
and standard prognostic variables are in-
cluded, regardless of their significance.

Table 2.3

18. If done, report results of further inves-
tigations, such as checking assumptions,
sensitivity analyses, internal validation.

Interaction test between marker and treat-
ment with confidence intervals to assess
predictive value. Investigations of biases
that could lead to discordant classification
(Fig. 2.2, Fig 2.6-2.11), due to data quality
issues, specific experimental platform bi-
ases and data preprocessing.

Discussion
19. Interpret the results in the context
of the pre-specified hypotheses and other
relevant studies; include a discussion of
limitations of the study.

Within the confidence interval classifica-
tion retains predictive value for mutation
status and benefit of therapy. Lack of
a golden standard for BRCAness leads to
conclusion that classifiers act very similar
and as expected a bit worse due to opti-
malization on BAC data. See further dis-
cussion

20. Discuss implications for future re-
search and clinical value.

See discussion
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Figure 2.6: (a) Bootstrapped hierarchical clustering of log ratios CGH profiles. Only ratios present in the BRCA1
classifier are used. Red and green column colors represent BAC and oligo-mapped oligonucleotide CGH pro-
files. Heatmap colors range from 0 (never clustered in same cluster, blue) to 1 (always clustered in same cluster,
yellow). The blowout shows sample names to demonstrate clustering of biological pairs. Clustering segmented
data shows less clustering by platform, indicated by blocks of red and green in the columns.
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Figure 2.6: (b) Bootstrapped hierarchical clustering of segmented log ratios CGH profiles. Only ratios present in
the BRCA2 classifier are used. Red and green column colors represent BAC and oligo-mapped oligonucleotide
CGH profiles. Heatmap colors range from 0 (never clustered in same cluster, blue) to 1 (always clustered in
same cluster, yellow). The blowout shows sample names to demonstrate clustering of biological pairs. Cluster-
ing segmented data shows less clustering by platform, indicated by blocks of red and green in the columns.
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Figure 2.6: (c) Principal component analysis of log ratios and BAC (red) and mapped (green) profiles.
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Figure 2.6: (d) Principal component analysis of segmented log ratios and BAC (red) and mapped (green) pro-
files.
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Figure 2.6: (e) Density plot of KCsmart analysis of 50 paired BAC-mapped and non-paired log ratio samples
sampled 1000 times. Size of genome called aberrantly was summed for each sample.
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Figure 2.6: (f) Density plot of KCsmart analysis of 50 paired BAC-mapped and non-paired segmented log ratio
samples sampled 1000 times. Size of genome called aberrantly was summed for each sample.
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Figure 2.7: a) BRCA1 probability scores of a classifier optimized on oligonucleotide data plotted against the
scores of the original BAC classifier. (b) BRCA1 probability scores of a classifier optimized on segmented
oligonucleotide data plotted against the scores of the original BAC classifier. (c) BRCA1 probability scores
of a classifier optimized on oligo-mapped data plotted against scores of the original BAC classifier. (d) BRCA1
probability scores of the oligo-mapped data classified by the BAC classifier plotted against the original BAC
classifier.
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Figure 2.8: Quality scores of samples that were discordantly assigned to the non-BRCA or BRCA class per clas-
sifier.
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Figure 2.9: Quality scores assigned by the SVM quality classifier plotted against BRCA1 probability scores. +
are samples with BRCA1 methylation, × are samples with a pathogenic BRCA1 mutation, • are samples without
BRCA1 methylation or a known pathogenic BRCA1 mutation.
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Figure 2.10: Top panel: Averaged BAC profiles (red) of segmented log ratios employed in the BRCA1 classifier
for cases that switch from non-BRCA1 like to BRCA1 like. Averaged mapped profiles (red) and difference of
non-BRCA1 like and BRCA1 like centroids (purple). Blue spots represent log ratios for which a switch to clos-
est centroid occurs and whether the BAC log ratio is closest or the mapped log ratio is closest to the BRCA1
centroid. Bottom panel: Averaged BAC profiles (red) of segmented log ratios employed in the BRCA1 classifier
for cases that switch from BRCA1 like to non-BRCA1 like. Averaged mapped profiles (red) and difference of
non-BRCA1 like and BRCA1 like centroids (purple). Blue spots represent log ratios for which a switch to clos-
est centroid occurs and whether the BAC log ratio is closest or the mapped log ratio is closest to the BRCA1
centroid.
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Figure 2.11: Top panel: Averaged BAC profiles (red) of segmented log ratios employed in the BRCA1 classifier
for cases that switch from non-BRCA2 like to BRCA2 like. Averaged mapped profiles (red) and difference of
non-BRCA2 like and BRCA2 like centroids (purple). Blue spots represent log ratios for which a switch to clos-
est centroid occurs and whether the BAC log ratio is closest or the mapped log ratio is closest to the BRCA2
centroid. Bottom panel: Averaged BAC profiles (red) of segmented log ratios employed in the BRCA2 classifier
for cases that switch from BRCA2 like to non-BRCA2 like. Averaged mapped profiles (red) and difference of
non-BRCA2 like and BRCA2 like centroids (purple). Blue spots represent log ratios for which a switch to clos-
est centroid occurs and whether the BAC log ratio is closest or the mapped log ratio is closest to the BRCA1
centroid.
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Figure 2.12: For each patient the difference between the Euclidean distance of the BAC data to BRCA centroid
and the non-BRCA centroid. Discordant cases are marked in red.
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Tumor formation is partially driven by DNA copy number changes, which are typically measured
using array comparative genomic hybridization, SNP arrays and DNA sequencing platforms. Many
techniques are available for detecting recurring aberrations across multiple tumor samples, includ-
ing CMAR, STAC, GISTIC and KC-SMART. GISTIC is widely used and detects both broad and focal
(potentially overlapping) recurring events. However, GISTIC performs false discovery rate control on
probes instead of events. Here we propose Analytical Multi-scale Identification of Recurrent Events,
a multi-scale Gaussian smoothing approach, for the detection of both broad and focal (potentially
overlapping) recurring copy number alterations. Importantly, false discovery rate control is per-
formed analytically (no need for permutations) on events rather than probes. The method does not
require segmentation or calling on the input dataset and therefore reduces the potential loss of in-
formation due to discretization. An important characteristic of the approach is that the error rate
is controlled across all scales and that the algorithm outputs a single profile of significant events
selected from the appropriate scales. We perform extensive simulations and showcase its utility on a
glioblastoma SNP array dataset. Importantly, ADMIRE detects focal events that are missed by GIS-
TIC, including two events involving known glioma tumor-suppressor genes: CDKN2C and NF1.

3.1. INTRODUCTION
DNA copy number alterations in cancer, typically recorded by array comparative genomic hy-
bridization (aCGH), single nucleotide polymorphism (SNP) arrays and (more recently) sequenc-
ing, can reveal interesting genes that are important for diagnosis, prognosis and targeted thera-
peutics. However, genomic instability typically introduces random or passenger alterations that
make it hard to distinguish recurring alterations (possibly harboring driver genes) from the rest in
single sample (tumor) measurements.

A number of statistical methods have been developed to detect aberrations that recur at high
frequencies across multiple samples. These methods include CMAR [2], Significance Testing for
Aberrant Copy numbers (STAC) [3], Hierarchical Hidden Markov model (H-HMM) [4], Genomic
Identification of Significant Targets in Cancer (GISTIC) [5], GISTIC2.0 [6], JISTIC [7] and Kernel
Convolution: a Statistical Method for Aberrant Region deTection (KC-SMART) [8].

CMAR and STAC require discretized copy number alteration profiles where genomic regions
take on one of three discrete states: a loss, no-aberration or a gain. Although this is partially jus-
tified because copy number changes in DNA are discrete in nature, measurements are typically
performed on DNA extracted from a heterogeneous pool of cell populations, which could cause
deviations from the expected discrete values. Therefore, CMAR and STAC disregard valuable infor-
mation by ignoring the amplitude of gains or losses in single samples. H-HMM does not require
discretized profiles but uses three hidden states to model losses, absence of aberrations and gains.

GISTIC2.0 requires non-discretized, but segmented, profiles. Segmentation (typically per-
formed on single sample profiles) reduces measurement noise, but approximates a signal that
varies across the genome with a piecewise constant signal, requiring selection of segment bound-
aries (breakpoints). Breakpoints can be missed (in noisy profiles), and therefore, segmentation
also introduces a form of discretization.

All methods used to detect recurring aberrations, in one way or another, aggregate (sum) all
the sample profiles either in raw, segmented or discretized form. This results in a significant reduc-
tion in biological noise (passenger events) with respect to signal (recurring events). In addition,
aggregation also reduces measurement noise, justifying an approach followed by, e.g. KC-SMART,
that avoids segmentation all together and performs smoothing on the aggregated profile.

In particular, GISTIC2.0 and KC-SMART use a statistical framework that weighs both the am-
plitude and frequency of recurrence in its detection procedure. JISTIC is an adaptation of GISTIC,
and all arguments used for GISTIC2.0 in this article also apply to GISTIC and JISTIC.
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Possibly the single most desirable property of GISTIC2.0 is its ability to detect focal recurring
events embedded in broader events (such as whole chromosome arms being deleted) through a
peel-off algorithm requiring knowledge of segment boundaries provided by a segmentation algo-
rithm. However, to the best of our knowledge, there are no approaches that analytically (without
resorting to permutation tests) characterize the significance of recurring events and, at the same
time, use a principled approach for automatic scale selection (required level of smoothing) while
guaranteeing a specified error rate (average number of falsely detected recurrent events).

For an extensive review on (many more) methods, see [9].
Here we present ADMIRE (Analytical Multi-scale Identification of Recurring Events), a smooth-

ing methodology, with the following features:

• Segmentation and/or calling are not required for the genomic profiles. Instead, reduction
of measurement noise is achieved by performing smoothing on the aggregated profile;

• Automatic scale selection, or selection of the level of smoothing, is performed on the aggre-
gated profile to increase the power for detecting recurrent events. For example, broad recur-
rent events are detected with higher significance if we allow for a higher level of smoothing.
An important characteristic of the approach is that the error rate is controlled across all
scales and that the algorithm outputs a single profile of significant events selected from the
appropriate scales;

• A recursive procedure to detect statistically significant focal recurrent events that are em-
bedded in broader events;

• An analytical method that controls the expected number of detected false-positive recur-
rent events (and therefore helps avoid time-consuming permutation tests)

3.2. METHODS
The ADMIRE methodology is summarized in Fig. 3.1 and described in subsequent subsections.
In this example, and subsequent simulations, we simulate aCGH profiles, but any technique, such
as SNP arrays (see Results) or sequencing, might be used in principle. In Fig. 3.1, the left column
(Column I) illustrates the methodology on measured profiles, whereas Column II illustrates the
construction of the null distribution (the expected behavior of the aggregated profile if none of the
copy number alterations are recurrent). Multiple aCGH samples are summed [Fig. 3.1B.I (Fig. 3.1,
Row B, Column I)] to obtain a single aggregated profile in which recurrent aberrations reveal high
peaks compared with passenger events. This indicates that in our model, we consider both the fre-
quency and amplitude of events, similar to the approach followed by GISTIC2.0 and KC-SMART.
Next we perform kernel smoothing at different scales (Fig. 3.1C.I) to reduce measurement noise.
Fig. 3.1A.II illustrates how we can simulate profiles that share no recurrent events by performing
cyclic permutations on each profile individually, Fig. 3.1B.II shows the summation of the result-
ing profiles to obtain a representative null hypothesis that closely resembles a stationary Gaussian
random process and Fig. 3.1C.II shows the kernel convolution per scale. In Fig. 3.1 (Column II),
these steps (permutation, summation and smoothing) are repeated 1000 times to obtain an em-
pirical approximation of the null distribution per scale. These distributions are used to derive a
threshold per scale corresponding to the desired false discovery rate (FDR) or family-wise error
rate (FWER) of passenger events. The permutation test is shown for illustration purposes. AD-
MIRE avoids permutations altogether by exploiting an analytical relationship between the desired
threshold and FDR or FWER. We apply the constant thresholds derived at each scale (kernel width)
to obtain recurrent segments for each scale separately (Fig. 3.1D.I). In Fig. 3.1D.I and II, we regard
only detected recurrent segments that are of sufficient resolution (the detected event is large com-
pared with the kernel width) and take the union of all significant segments across all scales. The



3

48 3. ADMIRE

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

s
1

s
2

s
3

s
4

s
5

RecurrentPassenger

∑

w
1

Random o"set

1000 X

Histogram

Select threshold to 

control FWER or FDR

A. Pro�les

B. Sum

pro�les

C. Kernel 

smoothing

Smooth and

z-normalize

In
cr

e
a

se
 k

e
rn

e
l w

id
th

Histogram

Histogram

I) Data II) Null hypothesis

{Union

green

Bad resolution

Detected

event

D. Multi-

scale

detection

∑

w
2

w
3

Smooth and

z-normalize

Null parameters:

μ, σ, r

Figure 3.1: Illustrating the steps involved for detecting recurring aberration in multiple copy number alteration
profiles with the multi-scale ADMIRE approach. All plots in the left column, Column I, represent data with
recurrent events, and Column II shows the exact same procedure when permuting the data to construct a cyclic
shift null hypothesis. Column I: (A) Illustration of five (of 100) simulated aCGH profiles with recurring events
and a number of passenger (random) aberrations. (B) The first step in detecting recurring events is to sum all
profiles (100 samples) to a single aggregated profile. (C) A Gaussian kernel is convolved with the aggregated
profile and z-normalized, as described in the text. This is done with many different kernel widths so that focal
events can be detected with small kernels and broad events with larger kernels. Ultimately, constant thresholds
(derived from the empirical null as outlined in Column II) will be applied on the smoothed signal (both upper
and lower tail), as illustrated by the red dashed lines. (D) Illustration of how we combine all the events found on
multiple scales. Basically, we take the union of all events found on all scales; however, for all kernels (except the
smallest), we perform a filtering procedure to ensure the proper resolution. The procedure is simple in that we
only keep those events that are substantially (20 times) larger then the kernel width (more on this in the text).
Column II: Illustration of the permutation of profiles where each profile’s probes are cyclically shifted with a
random offset (Panel A) and the summation of the resulting profiles (Panel B) to obtain a representative null
hypothesis that closely resembles a stationary Gaussian random process with parameters µ, σ and the auto-
correlation r. Panel C shows the kernel convolution per scale. In this illustration, we propose to repeat the
steps in Panels A, B and C one thousand times to obtain an empirical approximation of the null distribution
and use these distributions to derive a threshold per scale corresponding to the desired control of FDR and
FWER. However, in this article, we derive an analytical relationship between the thresholds and FWER or FDR.
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final step (not shown in Fig. 3.1) involves a recursive procedure to detect focal recurrent events
embedded in broad events. In the following sections, we will run through all these steps in more
detail.

3.2.1. AGGREGATION
Consider an ordered set of small genomic sequences 〈seqi 〉 (〈〉 means the set is ordered) that are
centered at genomic positions 〈pi 〉 on a normal reference genome. Each such sequence has an
average copy number 〈ts,i 〉 across all cells in a specified tumor sample s. Furthermore, for a nor-
mal cell we have a reference copy number for each sequence 〈ni 〉 (typically ni = 2 for a diploid
sequence). From now on we assume that we have an unbiased probe measurement of the log ratio
(the base of the log is irrelevant for the subsequent analysis) as,i = log(ts,i /ni ), where a positive
(negative) value indicates a gain (loss) in the tumor sample.

To find recurring losses or gains, we simply add all sample profiles into one aggregated profile
(Fig. 3.1B.I). The aggregated probe values are given by:

ai =
S−1∑
s=0

as,i , (3.1)

where s ∈ {0,1, ...,S −1} and i ∈ {0,1, ...,P −1} are the sample and probe indices respectively.

This process is the same as that proposed by KC-SMART and GISTIC2.0, with the fundamental
exception that we do not split gains and losses. Little power is lost by doing this, except for clear
cases where a region (of the same size) is recurrently lost and gained. The major advantage of
not splitting gains and losses is that relevant statistics (such as FDR control) become analytically
tractable.

3.2.2. THE NULL-HYPOTHESES
We propose to model the null distribution by performing random cyclic permutations. This im-
plies that for genomic profile s, we push all probes by a random number Us positions to the right.
The Us probes that are pushed out of the genomic profile on the right are cycled around and fill
the Us empty positions that are created on the left of the profile. This process is performed for
each sample independently (Fig. 3.1A.II). We prefer this over random permutation of the probes
in a sample profile because it destroys the recurrence structure but retains the auto-correlation
between probes. After every sample has undergone a random cyclic shift, all the profiles are ag-
gregated (Fig. 3.1B.II). More specifically,

A0
i =

S−1∑
s=0

A0
s,i

A0
s,i = as,Rs,i

Rs,i = i +Us (modP ), (3.2)

where Us is a uniform random variable covering {0,1, ...,P −1}. Note that each individual probe is
identically distributed and identical to the distribution obtained from a permuting null hypoth-
esis, as we randomly select one of the log ratios in each sample. It is also clear that the cyclic
auto-correlation remains unchanged for each sample. Furthermore, A0 = {A0

0, A0
1, ..., A0

P−1} is a
homogeneous random process since the correlation between probes is independent of the probe
labels and depends only on their relative ordering on the genome.
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We can easily obtain analytical expressions for the mean, variance and auto-correlation of A0:

µ=
S−1∑
s=0

µs , µs = 1

P

P−1∑
i=0

as,i

σ2 =
S−1∑
s=0

σ2
s , σ2

s = 1

P

P−1∑
i=0

(as,i −µs )2

r (∆i ) =
S−1∑
s=0

rs (∆i ), rs (∆i ) = 1

σ2P

P−1∑
i=0

[
(as,i −µs )×

(as,i+∆i (modP ) −µs )
]

(3.3)

Alternatively, we can represent the auto-correlation function with a P ×P diagonal-constant cor-
relation matrix r with ri , j = r (i − j ).

Because we are summing multiple profiles, the random process will become multivariate Gaus-
sian (a consequence of the central limit theorem), and the parameters in Eq. 3.3 fully describe the
random process.

Technically, it is more desirable to calculate a homogeneous auto-correlation measure based
on genomic distance instead of probe index, as probes are not equally spaced. Nonetheless, the
proposed scheme provides a good approximation.

3.2.3. SMOOTHING WITH A FIXED KERNEL WIDTH
As we do not assume that the input samples are segmented, and therefore contain substantial
measurement noise, it is desirable to smooth the aggregated profile (Fig. 3.1C). We describe an
optimal kernel smoothing methodology based on the assumption that the null hypothesis is a
random Gaussian process. The idea is that if we fix the kernel type (e.g. Gaussian) and the ker-
nel width (i.e. the number of nearby probes to average, in our case controlled by the standard
deviation of the Gaussian kernel), we can normalize the smoothed (continuous) profile so that
each point on the genome has exactly the same normal distribution (mean zero and variance one)
in the null process. This way we can apply a constant threshold across the whole genome when
detecting recurring aberrations.

Since we do not assume that the input samples are segmented and therefore contain substan-
tial measurement noise, it is desirable to smooth the aggregated profile (Fig. 3.1C). We describe
an optimal kernel smoothing methodology based on the assumption that the null-hypotheses is
a random Gaussian process. The idea is that if we fix the kernel type (for example Gaussian) and
the kernel width (i.e. the number of nearby probes to average, in our case controlled by the stan-
dard deviation of the Guassian kernel) we can normalize the smoothed (continuous) profile so that
each point on the genome has exactly the same normal distribution (mean zero and variance one)
in the null process. This way we can apply a constant threshold across the whole genome when
detecting recurring aberrations.

The first step is to smooth the signal by convolving the aggregated profile with a kernel.

F 0
w (g ) = kw (g )∗

P−1∑
i=0

A0
i δ(g −pi ), (3.4)

where g is the position on the genome, F 0
w (g ) is the smoothed random process, kw (g ) is the kernel

of width w (exp(−0.5g 2/w2) for a Gaussian kernel) and pi is the genomic location of probe i . ∗
represents the convolution operator and δ is the Dirac delta function.

The smoothed function F 0
w (g ) is a linear combination of {A0

0, A0
1, ..., A0

P−1} with coefficients
{kw (g −p0),kw (g −p1), ...,kw (g −pP−1)} for any given point in space g .
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We can calculate the exact mean and variance of F 0
w (g ) as follows:

µw (g ) = µmw (g )

σ2
w (g ) = σ2s2

w (g ), (3.5)

where

mw (g ) = kw (g )∗
P−1∑
i=0

δ(g −pi )

s2
w (g ) = k̄T

w (g )rk̄w (g )

(3.6)

k̄T
w (g ) is a 1×P column vector equal to the kernel coefficients

[kw (g −p0),kw (g −p1), ...,kw (g −pP−1)]T and r is the auto-correlation matrix.
We choose a threshold function such that F 0

w (g ) has the same (single tale) P-value ρ for any
given g . Therefore:

P
(
F 0

w (g ) ≥ t (g )
)= ρ (3.7)

As F 0
w (g ) is Gaussian we get:

t (g ) =µw (g )+σw (g )tρ , (3.8)

where tp is a constant threshold that controls F 0
w (g ) at a P-value ρ.

Equivalently, we can z-normalize F 0
w (g ) to apply a constant threshold tρ represented by the

z-normalized smoothed random process H0
w (g ):

H0
w (g ) = F 0

w (g )−µmw (g )

σsw (g )
(3.9)

It is worth mentioning that H0
w is a differentiable (smooth) normal random process (with mean

zero and variance one for all g ), but is non-homogeneous (unlike the discrete random process
〈A0

i 〉) due to unequal probe spacings.

3.2.4. COUNTING SIGNIFICANT EVENTS
We ultimately seek to provide a list of genomic regions (broad or focal events) that are significantly
recurring and therefore likely to be relevant in cancer development. In providing such a list, we are
interested in controlling the expected proportion of regions that are in error (passenger events).
We call this the event-based FDR. Before we can do this, it is important to first define what we
mean by an event.

For a fixed threshold and kernel width, we define positive and negative excursion sets as fol-
lows:

a+(hw , t ) = {g ∈ a|hw (g ) ≥ t }

a−(hw , t ) = {g ∈ a|hw (g ) ≤−t }, (3.10)

where hw is the smoothed (and z-normalized) aggregate profile (see Eq. 3.9) and a is the set of all
g considered (the genome). a+ and a− represent all genomic regions that are deemed recurrently
gained and lost, respectively (relative to the threshold t ). Due to the Gaussian null hypothesis, we
will focus all attention on a+ and realize that symmetric arguments exist for a−.
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We define positive recurring events to be the connected components of a+. For a smoothed
aggregated profile hw (g ) and fixed threshold t , we represent the total number of detected events
with χ(hw , t ). Note that counting the number of events is equivalent to counting the number
of up-crossing on the threshold and adding one if the left boundary point is above the specified
threshold.

3.2.5. ANALYTICAL RELATIONSHIP BETWEEN THE THRESHOLD AND THE EX-
PECTED NUMBER OF EVENTS FOUND IN THE NULL-HYPOTHESIS

For H0
w (smoothed non-homogenous Gaussian process), we can find an exact analytical expres-

sion that relates any given t to the expected number of events found (E [χ(H0
w , t )]), with the only

restriction being that the kernel selected must be differentiable up to the second order. A large
amount of work has been done on finding E [χ(H0

w , t )] for homogeneous fields [10–13] and little
on non-homogeneous fields [14]. Therefore, we extend the theory for non-homogeneous (one-
dimensional) processes in Section 3.8.1 and show the final result here. More specifically, for a
non-homogeneous process, the expected number of events is given by:

E [χ(H0
w , t )] = 1

2
erfc(

tp
2

)+ e−t 2/2

2π

∫
g∈a

√
vw (g )d g , (3.11)

where

vw (g ) = Var[
d

d g
H0

w (g )]

=
d

d g k̄T
w (g )r d

d g k̄w (g )

k̄T
w (g )rk̄w (g )

− ( k̄T
w (g )r d

d g k̄w (g )

k̄T
w (g )rk̄w (g )

)2 (3.12)

vw (g ) is a function that represents the roughness of the random process (naturally the variance
in the derivative) and depends entirely on the probe locations, smoothing and auto-correlation
r (and is independent of parameters µ and σ because we z-normalized). For a rough random
process (when we perform little smoothing), the integral in Eq. 3.11 will be large and reflects the
severity of multiple testing.

Note that we do not concern ourselves with estimating the full distribution ofχ(H0
w , t ) but only

the mean. E [χ(H0
w , t )] is a sufficient statistic for calculating the FDR (explained later). E [χ(H0

w , t )]
is also an upper-bound for the FWER and becomes tight for practical FWERs (< 0.1) [15].

We specifically used Gaussian kernels in this work, but Eq. 3.11 hold for all kernels that are
twice differentiable. For the application of detecting recurrent events, it is desirable to use a sym-
metric kernel that drops to zero, such as Gaussian, Student t, Cauchy or wavelet kernels. As the
kernel is implemented in a discrete setting, it is also important to ensure that the kernel has a lim-
ited frequency bandwidth so that the smoothed aggregated profile can be sampled at a reasonable
(Nyquist) rate.

3.2.6. MULTI-SCALE DETECTION

Previous sections indicate how we can control E [χ(H0
w , t )] for a fixed kernel width. GISTIC2.0 per-

forms no smoothing on the aggregated profile (or effectively smooth with a small kernel width)
and relies on noise reduction through segmentation on single profiles. Fig. 3.2 shows that for un-
segmented profiles, we can gain power by considering many kernel widths in parallel. For example
if we try to detect broad recurring events, we gain power when increasing the kernel width. On the
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Figure 3.2: Illustration showing how power can be gained by considering multiple scales (levels of smoothing).
(A) A simulated aggregated profile with two broad recurring gains and one focal gain embedded in a broad
event. (B) Significance level of the aggregated profile for little smoothing (small kernel width). Owing to the
small kernel width, the resolution is high and the boundaries on the detected regions are fairly accurate. This
is at the expense of power and results in hundreds of significant segments instead of two broad events. (C)
Significant power is gained for intermediate kernel widths and the two broad events are found as desired. Fur-
thermore, the resolution is high enough (the segment size is much greater than the kernel width) and therefore
the boundaries of the significant events are sufficiently accurate (compared with the aberration size). (D) High
power is observed for large kernel widths (significance level exceeds the threshold by far) but the resolution is
so low that two events are merged into one and boundary estimates are poor. (E) We obtain the final estimate
of recurring segments by taking the union of all detected events on all scales that reveal sufficient resolution.
Note that the focal events embedded in broad events are completely missed. Furthermore, significance in
these figures is represented by the expected number of events E [χ] found across the whole genome (as pre-
dicted by the null hypothesis). The threshold is selected at E [χ] = 0.01, a close upper-bound for the FWER of
0.01.
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other hand, large kernel widths will reduce the resolution of profiles and estimated recurrent re-
gion boundaries will be inaccurate and focal events lost. This is illustrated in Fig. 3.2. In Panel
B, the resolution is high, resulting in accurate boundaries but low power causing the broad event
to be shattered in many small events. In Panel D, the power is high, but the boundaries are in-
accurate. Panel C shows a good compromise between boundary precision and power. Therefore,
it is desirable to restrict the size of allowed kernels based on the size of detected events. To be
more specific, at any given scale (except the smallest kernel width considered, as the resolution
is assumed to be high), all detected events that have a detected width smaller than α = 20 times
the kernel width will be ignored because they result in a poor resolution. Rather, these events are
detected at a smaller scale to ensure a proper accuracy of the event boundaries. In fact, for α= 20,
at least 70% of any detected event will overlap with a real recurrent event (see Section 3.8.2). α can
be set by the user, and in Section 3.9.1 we illustrate how different settings of α influence results
(see Fig. 3.9).

Finally, the union of all the remaining significant regions across all scales represents the recur-
ring events in the data. This multi-scale procedure will more likely merge events that appear on
the smallest scale than create new ones on a larger scale. This enables us to keep control over the
number of detected events (see Section 3.8.2 and Fig. 3.5).

3.2.7. UPDATING THE NULL-PARAMETERS BASED ON KNOWN RECURRENT

EVENTS

Parametersµ,σ and r will, in general, be conservative estimates for the non-recurrent null hypoth-
esis if estimated on all probes, especially if a large proportion of these probes are recurrent. There-
fore, it is desirable to ignore all probes that are known to be recurrent when estimating the null
parameters. This is done iteratively by first calculating conservative parameter estimates (with all
probes considered) and then removing all the probes that are deemed recurrent through the multi-
scale detection procedure. If we re-calculate the null parameters (which will be less conservative)
with the remaining probes only, more recurring events will we found. This process is repeated un-
til no more new recurring events can be found (see Section 3.8.3 commenting on the convergence
behavior). Although this method will drastically increase power, the null parameters will either be
slightly optimistic or remain conservative if some recurrent events remain undetected.

3.2.8. RECURSIVE MULTI-LEVEL DETECTION OF RECURRING ABERRATIONS

The events detected by the procedure as described thus far include focal and broad events, but
we are not yet able to detect focal events that are embedded in broad events. To find those, we
propose a recursive scheme that finds new events that are embedded in earlier detected events.
For example, lets say that we find (among other) one broad recurrent gain that starts (ends) at ge-
nomic location gs (ge ). We re-estimate the null parameters µ, σ and r from all probes between gs
and ge and perform the multi-scale analysis to find smaller events embedded within this broad
event. This procedure for finding a focal event within a broad event is illustrated in Fig. 3.3. Again
we iteratively update the null parameters until the null region converges (a new null region inside
the broad event). Note that the boundaries of the detected broad event (gs and ge ) might be in-
accurate and therefore embedded focal events might be detected at the border of the initial broad
event. As these are a result of the boundary inaccuracy, we simply ignore them (unless, e.g. it is
a focal gain within a gain). We repeat this recursive procedure until no more events can be found
and represent the results in recursive levels.

On a final note, not only does the recursive multi-level detection procedure allow us to detect
recurring events embedded in broad recurring events, but also helps to improve our estimate on
E [χ], as explained in Section 3.8.4.
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Figure 3.4: Probe-based versus event-based FDR control. Illustration on how controlling the probe-based FDR
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focal events simply due to the presence of broad chromosomal recurring aberrations.

3.2.9. FDR CONTROL
As we are able to predict the expected number of events found in the null hypothesis, we can also
control the event-based FDR, the expected proportion of detected events that are false discoveries.

To see this, consider the Benjamini-Hochberg procedure [16] that controls the FDR at level q
for m independent or positive dependent tests: Let p(1) ≤ p(2) ≤ ... ≤ p(m) be the ordered observed
P-values and m0 the number of true null hypotheses. If we reject the null hypotheses for tests
p(1) ≤ p(2) ≤ ... ≤ p(k), where

k = max{i : m0p(i ) ≤ i q}, (3.13)

then FDR ≤ q . If we reject all tests with a P-value lower than ρ, then the expected number of
false-positive tests Eρ(#F P ) = m0ρ (irrespective of the correlation that might exist between tests).
Therefore, Eq. 3.13 can be rewritten:

k = max{i : Ep(i ) (#F P ) ≤ i q} (3.14)

For our application, Eq. 3.14 is intuitive. For the i ’th detected event, if the ratio between the ex-
pected number of false-positive events (E(χ)) and the number of events i detected is smaller than
the FDR (q), then the FDR will be in control. We can lower the detection threshold until the in-
equality in Eq. 3.14 is violated.

We propose the following procedure to find an appropriate value for E [χ] to control the FDR
at level q :

• Set n = 1, E1[χ] = q and i1 = 0;

• REPEAT:
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− Detect recurrent events using ADMIRE with thresholds corresponding to En [χ]. Count
the number of detected events in+1;

− IF in+1 ≤ in : BREAK;

− Set En+1[χ] = (in+1 +1)q ;

− Set n = n +1

This methodology is different from that performed in GISTIC2.0. GISTIC2.0 regards each
probe as an independent test (owing to the random permutation scheme) and uses the methodol-
ogy proposed by Benjamini and Hochberg [17] to control the probe-based FDR (i.e. the proportion
of false-positive probes). In contrast, ADMIRE performs event-based FDR, and this subtle, yet pro-
found, difference is illustrated in Fig. 3.4.

3.3. RESULTS
This section starts with an artificial, simulated dataset to illustrate several properties of ADMIRE.
We start off by demonstrating that the theoretical estimate of the expected number of events, E [χ],
is indeed a good approximation of the empirically observed number of events under a wide range
of experimental conditions. Then we move on to show that E [χ] is a close upper-bound of the
FWER and that the ADMIRE algorithm does control event-based FDR at the desired level. Finally,
we demonstrate the properties of ADMIRE on a real-world glioma dataset.

3.3.1. DATASETS

SIMULATED DATASETS

We simulate aCGH profiles on a genome consisting of 2.4× 108 bps and randomly select 12 000
probe positions for measurements. For each profile, we select 159 random breakpoints (160 seg-
ments) on the genome, of which a random selection of 50% of the segments take on log ratios of 0
(all probes in these segments). The remaining segments randomly take on log ratios of +1 and −1,
representing passenger gains and deletions, respectively. We also add random Gaussian (measure-
ment) noise to each profile (with variance σ2

n ) for a specified signal to noise ratio (SNR) defined as
SNR = 1/σ2

n . For example, an SNR of 1099 implies negligible measurement noise.
When recurrent events are added, we typically specify a width, location and frequency of re-

currence across samples. For simplicity, probes covered by recurrent events take on values of +1
or −1 to represent recurrent gains or losses, respectively. For example, we might decide to add a
recurrent event centered at 1.2× 108 bps, 1× 106 bps wide with a 30% frequency of occurrence
across all samples.

In total, there are three global parameters that will be varied across experiments: (i) the num-
ber of samples to aggregate (S), (ii) the SNR and (iii) the number of recurrent aberrations. For every
recurrent aberration, we also specify the width, genomic location and frequency of occurrence.

For a detailed description on how we typically generate such a dataset, see Section 3.9.2.

THE GLIOMA DATASET

To demonstrate the properties of ADMIRE on real data, we used the dataset described by Beroukhim
et al. [5] consisting of 141 high-quality glioma samples (107 primary Glioblastoma multiforme
(GBM), 15 secondary GBMs and 19 lower-grade gliomas) to aggregate. DNA was hybridized on a
Affymetrix ≈ 100,000 SNP array platform. Batch effects and systematic errors were removed us-
ing the exact methodology described by Beroukhim et al. [5] (see their Supporting information).
All samples were segmented using Gain and Loss Analysis of DNA (GLAD) [18] to reduce measure-
ment noise (this was done for both GISTIC2.0 and ADMIRE), and all known copy number variation
probes were removed from the analysis.
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Figure 3.5: Illustration of the relationship between the analytical estimates of E [χ] (x-axis) and that measured
across 1000 simulations (y-axis) of aCGH profiles containing only passenger events. (A) We fix the kernel width
to be small (40 kb) and the SNR at 1 to represent measurement noise. We vary the number of samples to ag-
gregate for each simulation experiment. (B) A similar experiment on simulated aCGH profiles where we added
no measurement noise (SNR = 1×1099) and therefore effectively work with segmented samples. The black line
depicts the result obtained when using cyclic permutation to create a null hypothesis on the glioma dataset.
(C) The number of simulated samples to aggregate is fixed at 100 and the kernel width is varied, showing good
theoretical predictions for all kernels. The black line indicates the mean number of events detected when we
apply multi-scale selection. (D) Similar results are depicted when using cyclic permutations to create a null
hypothesis on the glioma dataset. The genome size for the simulated data is only 12× 108 bps, whereas the
glioma dataset consists of all probes stretching from chromosome 1 to 22. Error bars indicate the standard
error of the empirical E [χ].

3.3.2. E [χ] SIMULATIONS

We simulate aCGH profiles using the methodology proposed earlier; however, we do not add any
recurrent aberrations.

To investigate whether our theoretical model of the expected number of detected events (E [χ])
is accurate for different thresholds, noise levels and kernel widths, we performed the following
experiments. We varied the number of samples to aggregate, S, such that S ∈ {2,5,10,50,100};
the SNR assumed two values, SNR ∈ {1,1× 1099} and the Gaussian kernel width was set to w ∈
{4× 104,8× 104,1.6× 105,3.2× 105,6.4× 105,1.3× 106}. For combinations of these variables, we
simulated 1000 artificial datasets.
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Figure 3.6: (A) A representative plot of the power for detecting a recurring aberration as a function of the aber-
ration size and kernel width for the SNR fixed at 1. In this experiment, we added only a single recurring aberra-
tion per experiment and fixed E [χ] at 5%. The black line indicates the maximum allowed kernel width at which
an aberration can be detected if we apply filtering with α= 20 in the multi-scale methodology. See Fig. 3.11 for
similar plots at different SNRs. (B) The empirical FWER. The green regions indicate that the measured FWER
is within 1 standard deviation of the expected 5% FWER.

In Fig. 3.5A, we show the relationship between the analytical and empirical E [χ] as the detec-
tion threshold is varied for a fixed kernel width of 4× 104 bps (two probes per kernel width, on
average) and an SNR of 1 (σ2

n = 1 per sample). We show this result for all values of S.

Fig. 3.5B is similar to Fig. 3.5A, except that we do not add measurement noise. This serves to
illustrate that our approach can also be applied to segmented data.

The main conclusion drawn from Fig. 3.5A and B is that the analytically predicted E [χ] be-
comes more accurate as we increase the number of aggregated samples due to the central limit
theorem. For smaller sample sizes, the theoretical estimate is conservative.

In Fig. 3.5C, we fix S to 100 and the SNR to 1×1099 and vary the kernel widths to show that the
analytical estimate of E [χ] remains accurate for all kernel widths. We also show that the empirical
E [χ] is smaller than the analytical E [χ] if we perform the multi-scale detection.

Next we investigated the relationship between the empirical and theoretical estimate of E [χ]
on the glioma dataset. To obtain an empirical estimate of E [χ], we constructed a null hypothe-
sis by repeating the cyclic permutation procedure, aggregation and kernel smoothing as outlined
in Fig. 3.1II, one thousand times on the glioma dataset. The results for S = 141 and all kernel
widths including the multi-scale analysis are depicted in Fig. 3.5D. Overall, the theoretical predic-
tion serves as a relatively tight upper-bound for the empirical estimate, but depends on the kernel
width. More specifically, the estimate of E [χ] becomes more accurate for larger kernels owing to
adjacent probes being averaged (and again the central limit theorem suggests better convergence).

Overall, this experiment shows that the analytical E [χ] is sufficiently accurate and that the
multi-scale procedure produces conservative results.
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3.3.3. FWER SIMULATIONS
We observed earlier that E [χ] is a close upper-bound for the FWER [15], and in this section, we
perform simulations to verify this fact. We simulated aCGH profiles using the same methodology
proposed earlier.

We fix the number of samples to aggregate to 100 and only add one recurrent event centered
at 120 Mbps with a given width, wa , and a 30% chance of occurrence per sample.

In every simulation, we also fix the kernel width and therefore do not perform a multi-scale
analysis. Neither do we search for embedded events through recursion. However, we do update
the null parameters iteratively based on known recurrences. See Section 3.9.3 for a detailed de-
scription of the experiment.

Fig. 3.6A depicts a typical power plot as a function of aberration size and kernel width - for an
elaborate collection of these plots for different SNRs, see Fig. 3.11. This plot shows how the power
changes (for the analytical FWER fixed at 5%) for detecting recurring aberrations of different sizes
(one event per simulation) while varying the kernel width. We can observe that for a fixed kernel
width, the power decreases as the aberration size decreases. In fact, there is an abrupt drop in
power when the aberration size equals the kernel width, as indicated by the diagonal ridge in the
panel. In general, we can conclude that as long as the aberration is larger than the kernel width
(region above the diagonal line), we have more power to detect the aberration. Fig. 3.6B shows that
the measured FWER (the chance of detecting one or more false-positives) is close to that predicted
by E [χ], as expected. From these simulations it is clear that for any recurrent aberration of a fixed
width, a fixed kernel width can be selected to gain optimal power. If the kernel width becomes too
large, we observe a drastic loss in power, as indicated by the lower right corner in Fig. 3.6A. Note
that in contrast, Fig. 3.2 suggests that larger kernels increase the power, but if we extend Fig. 3.2 to
show even larger kernels, the significance levels will drop drastically.

3.3.4. FDR SIMULATIONS
For the FDR experiments, we expanded the simulated dataset described previously to include re-
current events of different sizes and to have overlapping recurrent events. This will allow the possi-
bility to estimate the capacity of the complete ADMIRE algorithm to control the FDR. More specif-
ically, we expanded the simulated dataset by adding Nb = 2 broad (20×106 bps, 1000 probes, on
average) and Nm = 5 medium-size (2×106 bps, 100 probes, on average) non-overlapping recurrent
events at random locations (albeit consistent between samples) on the genome. Furthermore, we
added a varying number (N f ) of recurrent focal events (100 kb, five probes, on average) across the
genome (potentially overlapping with the broad- and medium-size events). For each recurrent
event, we select a random frequency (between 0 and 1) of occurrence across samples.

The complete ADMIRE algorithm has been applied with a specified analytical FDR. The num-
ber of samples to aggregate (S) is varied, as well as the SNR and the number of focal recurring
events (N f ). An event is considered a true-positive if at least 70% of the detected region overlaps
with a true recurrent region (the multi-scale detection procedure with α= 20 filtering guarantees
an overlap of at least 70%). The number of true-positive events is then the sum of the number
of true recurrent broad (maximum two), medium (maximum five) and focal events found. The
empirical FDR is calculated by averaging the proportion of falsely detected events across 1000
simulation experiments. Likewise, the empirical power is the average proportion of true recurring
events that are detected. For example, when we add only one recurring focal event, we hope to
detect eight true events (two broad, five medium and one focal). If, for example, we detect four of
the eight recurrent events and one extra false event in one simulation, the measured FDR would
be 20% and the power 50%.

In Fig. 3.7A, we fix the number of samples to aggregate to 200 and the SNR is set high (zero
measurement noise and profiles are segmented). We vary the number of focal events and the
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Figure 3.7: The relationship between the theoretically predicted analytical FDR and empirical FDR and power
for a simulated dataset. (A) The empirical FDR (left panel) and power (right panel) as a function of the ana-
lytical FDR (varied between 1 and 25%) for the number of true focal recurrent events assuming the following
values, N f ∈ {1,10,50,100}, while keeping the number of samples to aggregate per simulation fixed at 200, i.e.

S = 200. Furthermore, we do not add any noise, as the SNR = 1099, implying that all samples are segmented.
(B) The empirical FDR (left panel) and power (right panel) as a function of the number of samples to aggre-
gate S for the SNR assuming the following values, SNR ∈ {0,0.1,1,3,9,1099}, while keeping the number of focal
recurrent events and FDR fixed at 50 (N f = 50) and 5%, respectively.
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analytical FDR and represent the measured FDR and power. In Fig. 3.7B, we fix the number of
focal recurrent events to 50 and the analytical FDR to 5%, while varying the number of samples
that are aggregated and the SNR.

From Fig. 3.7A and B, it is clear that the empirical FDR is smaller than that predicted analyti-
cally. The three main reasons for this are the following:

• Inaccurate estimation of the null random process parameters µ, σ and r. The higher the
number of true positives missed, the more conservative the null parameter estimates are
and the true FDR will be smaller than predicted. Ultimately, this estimate will be most con-
servative if we estimate null parameters across the whole genome. In Fig. 3.7A, we can
clearly see that the FDR decreases when we increase the number of recurrent events. This
is because for a fixed threshold, the expected number of undetected events is proportional
to the total number of events (this is a simple consequence of how we generated the data).
Therefore, for a larger number of recurrent events, the expected number of events that go
undetected will be large and therefore the null parameters will be more conservative. This is
especially noticeable in Fig. 3.7B, where the FDR is fixed at 5% and we vary the SNR. For an
SNR of zero, the null parameters will be accurate (as recurrent events do not exist) and we
expect the FDR estimate to be close to the predicted value, whereas for an SNR of one, the
null parameters will include a significant proportion of the recurrent signal. This situation
improves again for higher SNRs owing to an increase in power;

• The multi-scale procedure in Fig. 3.2 also ensures a conservative estimate on E [χ], as illus-
trated in Fig. 3.5C (and D);

• If the number of samples to aggregate (S) is small, the Gaussian model becomes inaccurate
for the null hypothesis. This explains the reduced FDR for small values of S in Fig. 3.7B. Note
that for SNR = 0, the Gaussian model is accurate no matter how many profiles we aggregate.

The power curves in Fig. 3.7A (right panel) counterintuitively suggest that we lose power when
increasing the number of focal events. However, if we consider that medium-size (Nm = 5) and
broad-size (Nb = 2) events are detected with much higher power, it becomes obvious. For example,
if we add only one focal event, then 7/8 of all recurrent events are of medium or broad size, whereas
for 100 focal events, this ratio is only 7/107.

3.3.5. APPLICATION ON GLIOMA DATA
We compare the recurring events found by both ADMIRE and the latest version of GISTIC2.0 at
25% FDR on the glioma dataset described earlier. The results in Fig. 3.8 reveal that ADMIRE finds
many more events (in total 223 focal and broad events) than GISTIC2.0 (50 focal and broad events).
All the known glioma tumor suppressors and oncogenes found by GISTIC2.0 are also recovered by
ADMIRE. Although GISTIC2.0 performs probe-based FDR, and is therefore expected to be opti-
mistic (see Fig. 3.4), there are many sources of power loss that are overcome by ADMIRE as follows:

• Substantial power is gained, as regions that are known to be significantly recurrent are ig-
nored when estimating the null parameters;

• We account for the auto-correlation in the genomic profiles (in the null hypothesis), and as
nearby probes reveal high positive correlations, the severity of multiple testing is reduced;

• By considering multiple scales (levels of smoothing), we gain substantial power for detect-
ing broader events.

We give a multi-level representation of the events found by both ADMIRE and GISTIC2.0 in
Fig. 3.8. GISTIC2.0 dichotomizes events into focal and broad (chromosome arm-length) recur-
rences. All events found by GISTIC2.0 on a chromosome-arm level are indicated on the first level



3.4. DISCUSSION

3

63

(+1 for gains or -1 for losses). After removing aberrations that stretch across whole chromosome
arms, GISTIC2.0 also finds probes that are significantly recurrent with q-values below the 25%
probe-based FDR level. All regions defined by these probes are represented on a second level (+2
for gains and -2 for losses). GISTIC2.0 uses an arbitrated peel-off algorithm to identify multiple
potential target regions inside each significant region below the q-value threshold. The bound-
aries of these regions are then fine-tuned using an algorithm called RegBounder [6]. These regions
are then represented on the third level. In contrast, ADMIRE makes no such distinction and sim-
ply adds levels until convergence. ADMIRE only adds more focal regions on a higher level if it
can be proved significantly recurrent (below 25% event-based FDR) with respect to its immediate
background (the level below).

Visually it is clear that ADMIRE shows an increase in power for detecting broad events (due to
the multi-scale approach), as can be seen, for example, when looking at the third level of recurrent
deletions in chromosome 1p in Fig. 3.8B.III (containing CHD5). In contrast, GISTIC2.0 only finds
a focal recurrent aberration (close to CHD5). The aggregated profile in Fig. 3.8B.II reveals that
indeed the broad event (third recursive level) detected by ADMIRE is likely a real event (of the
same width), but it is difficult to prove significance of the focal event found by GISTIC2.0 relative
to this background. It is possible to look for maximal peaks inside the broad event to help guide us
towards genes that are likely relevant, but cannot be significantly distinguished from neighboring
genes. In this sense, ADMIRE is more conservative at detecting focal events than GISTIC2.0.

One can argue that it is important to detect broad events with high power (justifying the multi-
scale methodology). To see why, consider a single scale analysis (with little or no smoothing).
One might not have the necessary power to detect some broad events; however, random (passen-
ger/measurement noise) focal events that surpass the threshold (in combination with the broad
event) will lead to shattered positives. In contrast, the multi-scale procedure will likely detect the
broad event, and if not, we regard the overlapping focal events (that surpass the threshold) to be
non-random (with respect to its immediate background).

ADMIRE detects a number of focal events that are missed by GISTIC2.0, including two events
involving known glioma tumor suppressor genes: CDKN2C and NF1. The focal recurrent event
overlapping with CDKN2C is showcased in Fig. 3.8D. NF1 is showcased in Fig. 3.12.

3.4. DISCUSSION
ADMIRE is an algorithm designed to assist in the discovery of broad and focal (potentially over-
lapping) recurring events. It does not require segmentation of single sample genomic profiles and
therefore admits heterogeneous samples that do not display clear breakpoints in copy number.
ADMIRE performs a kernel smoothing methodology on the aggregated profile that optimizes the
power for detecting recurring events if the null hypothesis closely resembles a Gaussian random
process. Our previous algorithm, KC-SMART, is an example of another kernel smoothing method-
ology. Compared with KC-SMART, ADMIRE shows a drastic increase in power, especially for focal
aberrations, when we fix the FWER at 5% (see Fig. 3.10).

Furthermore, ADMIRE performs analytical event-based FDR control instead of probe-based
FDR. The user thus receives a list of recurrent regions for which the expected proportion of false
regions is lower than that specified by the FDR.

From a technical perspective, ADMIRE gains power in detecting recurring events by account-
ing for the auto-correlation between probes (reduces the severity of multiple testing), performing
a multi-scale smoothing methodology (especially helps for detecting broad events) and perhaps
most importantly by estimating the behavior of passenger events (the null hypothesis) in regions
that do not contain known recurrent events. Although it might be regarded as unimportant to de-
tect broad events with high power (as focal events are expected to be of greater importance when
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Figure 3.8: Comparison of detected recurring events detected by ADMIRE and GISTIC2.0 on the glioma dataset.
(A) Summary of the recurrent aberrations found by both ADMIRE and GISTIC2.0 on the entire genome. (A.I)
The SNP array profiles for 141 glioma samples. Red (green) represents amplifications (deletions). (A.II) The
sum of all the SNP array profiles. (A.III) A multi-level representation of the recurring events found by ADMIRE
at 25% event-based FDR. The first recursive level shows all the broad and focal events that are not embedded in
broad events. The second level shows more focal (or less broad) events embedded in broad first-level events,
etc.(A.IV) Results found by GISTIC2.0 at 25% probe-based FDR. The first level (+1/-1 for gains or losses, respec-
tively) represents all the broad recurrent events found at the chromosome arm level. After removing segments
that stretch across whole chromosome arms, all segments with q-values below 0.25 are represented on the
second level. Finally, focal regions are detected using the RegBounder algorithm and represented on the third
level. Therefore, red events (positive levels) represent recurring gains (levels move upwards) and black (nega-
tive levels) represents deletions (with levels moving downwards). (B) A zoom of the result in Panel A, showing
the first part of chromosome 1p. (C) The top recursive level (most focal) event found by ADMIRE containing
the CHD5 gene. It is interesting to note that GISTIC2.0 finds a much more focal area close to CHD5; however,
with careful observation of the aggregated profile in (B.II) it is obvious that no focal event can be called with
high significance by ADMIRE at this point. (D) Shows the recurring region found by ADMIRE containing the
known glioma tumor suppressor gene CDKN2C that was missed by GISTIC2.0.
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searching for relevant genes), we argue that this is of central importance, as one might expect that
for every broad event missed, a number of potentially false focal events might be detected in this
region simply due to passenger events revealing peaks in an elevated region (shattered events) in
the aggregated profile.

We introduced an analytical expression for the expected Euler characteristic, which simply
counts up-crossings and not explicitly how long the signal remains above the amplitude thresh-
old (the so-called sojourn time). Intuitively this could present a problem, but ADMIRE solves the
problem by using the scale space to automatically tune the power to match the aberration width.

We also introduced a method that allows us to control the FDR (based on the expected Euler
characteristic) without resorting to time-consuming permutation tests. We are therefore able to
perform complex procedures, such as updating the null-process parameters in the recursive multi-
level detection scheme, within a realistic time frame.

The methodology is justified from a theoretical perspective and justified with empirical simu-
lations. Also when we test the method on a glioblastoma dataset, we find many more potentially
interesting recurrent events (including two known glioma tumor suppressors CDKN2C and NF1)
that approximately form a superset of those found by GISTIC2.0. Note that ADMIRE does not
make a binary distinction between broad and focal events since multiple levels of increasingly
focal events are derived from the data.

On a final note, the amount of primary memory used by ADMIRE depends on the probe lo-
cations and the minimum kernel width specified. If the whole human genome is covered with
probes (say 3 million or more probes) and the minimum kernel width specified is 1 kb, the max-
imum memory usage will be 2 GB, which might be smaller than the dataset itself. Computation
time is largely influenced by the number of recurrent aberrations detected, which might take up
to 8 h on an Intel Core i7-950 processor for a dataset consisting of 3 million probes, 200 samples
and 200 recurrent events.

3.5. AVAILABILITY
ADMIRE can be downloaded at http://bioinformatics.nki.nl/admire/ . This includes a zipped file
with the required Matlab code and glioma dataset.
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3.8. SUPPLEMENTARY METHODS

3.8.1. ANALYTICAL EXPRESSION FOR THE EULER CHARACTERISTIC
In this section we derive an analytical expression for the expected number of events (E [χ]) found
above a fixed threshold and kernel width (see Eq. 3.11 in the main text) for a suitably regular (as
defined later) non-homogenous Gaussian (multi-variate) random process H(g ) in a compact do-
main a = {g : bl ≤ g ≤ br }, where bl and br are constant boundaries (for example, the boundaries
of a chromosome arm). Furthermore, we assume that H(g ) has mean zero and variance one at
any given location g . Therefore the random process is uniquely defined by the non-homogenous
correlation function r (g1, g2) or alternatively rg (∆g ) = r (g , g +∆g ). From now on, any realization
of the random process H(g ) will be represented with a lowercase h(g ).

The null process derived in Eq. 3.9 meets the required criterion. However, as will be shown
later we do not need an explicit solution for rg (∆g ). Instead, the same information is captured by
the expected variation in the derivative of H(g ) (see Eq. 3.12).

Much work has been done on finding the expected number of events above a fixed thresh-
old for homogeneous Gaussian random fields of any dimensionality [11, 12]. Little work has been
done on treating non-homogenous fields except for work done in neuro-imaging [14]. Unfortu-
nately, this work is not directly compatible with our application and therefore we derive the nec-
essary equation to relate E [χ] with the desired threshold.

To start, we defined the excursion set a+ of any realization h(g ) as the region (a subset of a)
where h(g ) is higher than or equal to the fixed threshold t :

a+(h, t ) = {g ∈ a : h(g ) ≥ t } (3.15)

We define the ‘number of events’ in a to be the number of maximally connected subsets (or-
dered by inclusion) of a+ and denote it with the one dimensional Euler characteristic χ(h, t , a).
It is clear that χ(h, t , a) is related to the number of up-crossings on t if h(g ) is continuous. If, for
any sample function h(g ), h(bl ) is smaller than t (on the left boundary), the Euler characteristic
is equal to the number of up-crossings. On the other hand if h(bl ) is higher than or equal to the
threshold the Euler characteristic will be the number of up-crossings plus one. We denote the
number of up-crossings with χDT(h, t , a) since this is exactly the differential topology (DT) char-
acteristic for a one dimensional function [12]. χ(h, t , a) and χDT(h, t , a) are related as follows:

χ(h, t , a) = I (h(bl )− t )+χDT(h, t , a), (3.16)

where

I (x) =
{

1 if x ≥ 0

0 if x < 0
(3.17)

We are interested in evaluating the expected Euler characteristic:

E [χ(H , t , a)] = P [H(bl ) ≥ t ]+E [χDT(H , t , a)]

= 1

2
erfc(

tp
2

)+E [χDT(H , t , a)] (3.18)

SUITABLY REGULAR PROCESSES

We denote the first and second order derivatives (if they exist) of the process H(g ) by H ′(g ) and
H ′′(g ) respectively. We define a random process to be suitably regular on a (for a fixed thresh-
old t ) if the following conditions hold as described by [11] and adapted for our one dimensional
application:
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1. A sample function h(g ) has a.s. (almost surely) continuous derivatives up to second order
with finite variance in an open neigbourhood of a. This condition is satisfied if we use
kernels for smoothing with the same requirements (such as a Gaussian kernel).

2. The set {g ∈ a : h(g ) = t ∧h′(g ) = 0} is a.s. empty. In other words the probability density
function p[H ′(g )|H(g ) = t ] should be finite at zero and the set {g ∈ a : h(g ) = t } a.s. finite.

3. The set {g ∈ {bl ,br } : h(g ) = t } is a.s. empty.

A random process is therefore considered to be suitably regular if any realization h is a.s. suffi-
ciently smooth (ensured by the kernel convolution) and consist of a finite number of points where
t are crossed, the derivative being non zero at each point.

First we observe that a suitably regular Gaussian random process has a differentiable correla-
tion function rg (∆g ) with respect to ∆g up to second order. We also observe that:

Var[
d

d g
H(g )] = lim

∆g→0
Var

[ H(g +∆g )−H(g )

∆g

]
= lim

∆g→0

1

(∆g )2
E

[(
H(g +∆g )−H(g )

)2]
= lim

∆g→0

2
(
1− rg (∆g )

)
(∆g )2

= − lim
∆g→0

r ′g (∆g )

∆g

= − lim
∆g→0

r ′′g (∆g ), (3.19)

where r ′g and r ′′g represent the first and second order derivative rg with respect to ∆g . In the last
two steps we consecutively applied L’Hôpital’s rule.

Therefore, rg comply with the following properties:

rg (0) = 1

r ′g (0) = 0

r ′′g (0) = −Var[
d

d g
H(g )] (3.20)

THE EXPECTED NUMBER OF UP-CROSSINGS

Before we derive an analytical expression for the expected number of up-crossing, lets first derive
a few useful lemmas.

Let us define a function q : F→R:

q(r ) = lim
∆g→0+

(k ◦ r )(∆g )

∆g
, (3.21)

where

k(r ) = 1

2π|Σ(r )|1/2
×∫ ∞

t

∫ t

−∞
e−

1
2 [x,y]Σ−1(r )[x,y]T

d xd y

Σ(r ) =
[

1 r
r 1

]
(3.22)

and F is the set of all functions r for which the limit is finite.
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Lemma 1. Consider a suitably regular random Gaussian process H with ∀g ∈RH(g ) ∼ N (0,1) and
correlation function rg (∆g ) = r (g , g +∆g ). If ∀g ∈ a, rg ∈ F, then

E [χDT(H , t , a)] =
∫ br

bl

q(rg )d g (3.23)

Proof. The DT characteristic is simply the number of points g ∈ a satisfying the following condi-
tions:

1. h(g ) = t

2. h′(g ) > 0

Note that the number of points satisfying h(g ) = t for g ∈ a representing up and down crossings
(say c1 < c2 < ... < ck ) are a.s. finite and distinct due to the regularity conditions. Let us define grid
points via sequences an : 2n → a such that:

an (0) = bl

an (i +1) = an (i )+∆g n , (3.24)

where ∆g n = br −bl

2n and denote the set of grid points by {an } = {an (i )|i < 2n }. It is easy to prove

by induction that for any k, l ∈N,k < l implies that {ak } ⊂ {al }.
Next, let us define the infinite sequence 〈χn |n <N〉, with elements

χn =
n−1∑
i=0

f n(
h, t , an (i )

)
∆g n , (3.25)

where

f n (h, t , g ) =


1

∆g n if h(g ) < t ≤ h(g +∆g n )

0 otherwise
(3.26)

It is rather easy to show that the sequence 〈χn |n <N〉 is:

• increasing;

• bounded from above by χDT(h, t , a);

• there a.s. exist an n ∈N for whichχn =χDT(h, t , a), since there exist a.s. only a finite number
of crossings;

Therefore we conclude that:

lim
n→∞χn = lim

n→∞
n−1∑
i=0

f n(
h, t , an (i )

)
∆g n

= χDT(h, t , a) (3.27)

Now let us consider the expected value of and given χn :

E [χn ] =
n−1∑
i=0

E [ f n(
H , t , an (i )

)
]∆g n , (3.28)
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It is clear at this point that the sequence 〈E [χn ]|n <N〉will converge to E [χDT(h, t , a)] since, for any
realization of the process, 〈χn |n <N〉 converges to χDT(h, t , a). Therefore we set out to compute

E [χDT(h, t , a)] = lim
n→∞E [χn ]

= lim
n→∞

n−1∑
i=0

E [ f n(
H , t , an (i )

)
]∆g n

=
∫ br

bl

lim
n→∞E [ f n(

H , t , g )
)
]d g (3.29)

if the limit inside the integral is finite for all g ∈ a. Therefore the problem is reduced to finding the
expectation of f n(

H , t , g
)
, which is fully determined by the joint probability density function of

x = h(g ) and y = h(g +∆g n ) with correlation r = rg (∆g n ) (see Eq. 3.26):

p(x, y) = 1

2π|Σ(r )|1/2
e−

1
2 [x,y]Σ(r )−1[x,y]T

, (3.30)

where

Σ(r ) =
[

1 r
r 1

]
(3.31)

From Eq. 3.26 we get:

E [ f n (H , t , g )] = 1

∆g n P [x < t , y ≥ t ]

= (k ◦ rg )(∆g n )

∆g n , (3.32)

We are interested in finding an expression for (if it exists):

q(rg ) = lim
n→∞E [ f n (H , t , g )] = lim

∆g→0+
(k ◦ rg )(∆g )

∆g
(3.33)

This concludes the proof of lemma 1.

Lemma 2. Consider two functions r1 and r2 that are differentiable up to the second order in open
intervals (0,δ1) and (0,δ2) respectively, where δ1,δ2 > 0. Let us assume that r1 ∈ F and that :

lim
g→0+

r1(g ) = lim
g→0+

r2(g ) = 1

lim
g→0+

r ′1(g ) = lim
g→0+

r ′2(g ) = 0

lim
g→0+

r ′′1 (g ) = lim
g→0+

r ′′2 (g ) < 0 (3.34)

If these conditions hold, then r2 ∈ F and q(r1) = q(r2).

Proof. Note that there exist δ3 and δ4 such that 0 < δ3,δ4 < min(δ1,δ2) such that r1 and r2 have
negative first and second order derivatives in the intervals (0,δ3) and (0,δ4) respectively and fur-
thermore the images are equal r1[(0,δ3)] = r2[(0,δ4)] = (ε,1) for some ε ∈ (0,1). Since r2 is decreas-
ing in the interval (0,δ4), its inverse exists and we define a function with domain (0,δ3) and range
(0,δ4):

w(g ) = (r−1
2 ◦ r1)(g ) (3.35)
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First note that w(g ) is an increasing function, since both r1 and r−1
2 are decreasing. Also, as ex-

pected:

lim
g→0+

w(g ) = lim
g→0+

r−1
2 (r1(g ))

= lim
r1→1−

r−1
2 (r1)

= 0 (3.36)

Furthermore, for g ∈ (0,δ3):

d w

d g
=

dr1
d g

dr2
d w

(3.37)

Note that the denominator ( dr2
d w ) and its derivative (with respect to g ) is strictly non-zero in the in-

terval g ∈ (0,δ3) since r2 have negative first and second order derivatives. Also note that limg→0+
dr1
d g =

limg→0+
dr2
d w = limw→0+

dr2
d w = 0 (See Eq. 3.34). Therefore we can apply L’Hôpital:

lim
g→0+

d w

d g
= lim

g→0+

d 2r1
d g 2

d 2r2
d w2

d w
d g

= 1/ lim
g→0+

d w

d g

∴ lim
g→0+

d w

d g
= 1 (3.38)

Where we noticed that limg→0+
d 2r1
d g 2 = limg→0+

d 2r2
d w2 = limw→0+

d 2r2
d w2 < 0 (see Eq. 3.34).

To summarize,

• w has domain (0,δ3) and range (0,δ4);

• w is an increasing function with first and second order derivatives;

• limg→0+ w(g ) = 0;

• limg→0+ w ′(g ) = 1;

On a different note, k is clearly differentiable in in the domain (ε,1) since Σ is positive definite.
Now we have everything we need to prove the lemma. For any function r2 (including r1) sat-

isfying Eq. 3.34:

lim
g→0+

(k ◦ r2)(g ) = 0 (3.39)

since r2 → 1− and Σ becomes singular. Therefore by L’Hôpital:

q(r2) = lim
g→0+

dk

dr2

dr2

d g
(3.40)

if the limit exist.
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We know that q(r1) is finite (since r1 ∈ F) and again by L’Hôpital:

q(r1) = lim
g→0+

(k ◦ r2 ◦w)(g )

g

= lim
g→0+

dk

dr2

dr2

d w

d w

d g

= lim
g→0+

(
dk

dr2

dr2

d w
) lim

g→0+
d w

d g

= lim
w→0+

(
dk

dr2

dr2

d w
)

= q(r2) (3.41)

which concludes the the proof for lemma 2.

Lemma 3. For a stationary correlation function r :

q(r ) = e−t 2/2

2π

√
−r ′′(0) (3.42)

Proof. Consider a suitably regular stationary random Gaussian process H with correlation func-
tion r and ∀g ∈RH(g ) ∼ N (0,1). Lemma 1 states that if q(r ) is finite then

E [χDT (H , t , [0,1])] =
∫ 1

0
q(r )d g

= q(r ) (3.43)

In the second step we used the fact that r is constant for all g in a stationary process.
Also, by Eq. 3.2 of Theorem 3.1 in [11] when applied to a one dimensional field:

E [χDT (H , t , [0,1])] = e−t 2/2

2π

√
−r ′′(0) (3.44)

Theorem 1. Consider a suitably regular (non-stationary) random Gaussian process H with ∀g ∈
RH(g ) ∼ N (0,1) and correlation function rg (∆g ) = r (g , g +∆g ). Then

E [χDT (H , t , a)] = e−t 2/2

2π

∫ br

bl

√
Var[

d

d g
H(g )]d g (3.45)

Proof. According to Lemma 1, we simply need to find an expression for q(rg ) for all g . The prop-
erties specified in Eq. 3.20 hold for all rg . Certainly for each such rg there exist a stationary r s

g with
the same properties. By Lemma 2 and 3:

q(rg ) = q(r s
g )

= e−t 2/2

2π

√
−r s

g
′′(0)

= e−t 2/2

2π

√
−rg ′′(0)

= e−t 2/2

2π

√
Var[

d

d g
H(g )] (3.46)
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3.8.2. DETAILS ON MULTI-SCALE DETECTION

RESOLUTION PARAMETER α:
The filter parameterα is related to the minimum possible spatial overlap between a detected event
D and a real recurrent event R, which we indicate with the similarity coefficient J1:

J1(D,R) = |D ∩R|
|D| (3.47)

To see this, consider for example a Gaussian kernel truncated at ±3w (the kernel weights after
±3w are negligible and can safely be ignored for computational purposes) and a true recurrent
event R with unknown boundaries gs and ge . Clearly at a fixed scale w the smoothed signal is
influenced by the recurrent event on the interval [gs − 3w, ge + 3w]. Therefore if we detect a re-
current event larger than αw we are guaranteed that J1(D,R) ≥ α−6

α 100% unless a false positive
occurs. For a symmetric kernel that is decreasing with distance from the center, the minimum
overlap is restricted to α−2κ

α 100%, where we choose κ such that:∫ ∞
κw kw (g )d g∫ ∞
−∞ kw (g )d g

¿ 1 (3.48)

The idea is simply to keep the kernel weights low at a distance κw (κ= 3 for a Gaussian kernel) so
that the contribution from a significant recurrence at that distance is negligible in the null region.

Small α means that the aberration widths are allowed to be comparable in size to the kernel
width. Fig. 3.6 in the main text shows that the power increases when we allow for the kernel width
to be similar in size of the aberration. However, the resolution (J1) decreases.

If we let α→∞ we gain good resolution, but the power would be equivalent to that in a single
scale analysis (at the smallest scale). As a compromise we choose α = 20 that guarantees a min-
imum overlap J1 of 70% (a parameter that the user can vary). In the final step of the multi-scale
selection we take the union of all recurrent events surviving the α filtering and as a consequence
all maximally connected regions resulting from the union also have a minimum overlap of 70% (or
whatever specified by the user) with true events. If the smallest kernel width considered is suffi-
ciently small, we do not particularly care whether this overlap is high since we expect the detected
event to be sufficiently zoomed into potentially interesting driver genes.

Usually, it is not a good idea to sacrifice power for a high resolution by letting α→ ∞ (sin-
gle scale analysis), because large events might be shattered into smaller pieces as illustrated in
Fig. 3.2B. Although shattered events are strictly not false positives, we might employ a more strict
overlap condition such as the Jaccard similarity coefficient to call true positives:

J2(D,R) = |D ∩R|
|D ∪R| (3.49)

For a small shattered event D , J1 = 1.0 and J2 would be small. We therefore define two different
types of undesirable events for an overlap threshold o (e.g. 70%):

• False positives: Events for which J1 < o;

• Shattered positives: Events for which J1 ≥ o and J2 < o;

For a fixed threshold o the shattered positive rate will decrease for a decreasing value ofα, whereas
the FDR will remain unchanged (for false positives) as long as α remains large enough to ensure a
high J1.

Simulation results where we vary the α parameter is illustrated in Section 3.9.1. Here we also
observe the effect that α has on the shattered positive rate.
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THE EXPECTED NUMBER OF EVENTS

It is important to ask what effect the proposed multi-scale detection has on the expected number
of significant regions (from now on referred to as E [χ]) found in the null-hypothesis if we keep
E [χtheory] = E [χ(H0

w , t )] constant and the same on each scale. First note that if we consider a
very small kernel (say 1 kbp) then we are performing almost no smoothing and any region above
a fixed threshold is considered significant with a high resolution. In this case our estimate on
E [χ(H0

1kbp, t )] will be accurate (since we don’t remove any segments that don’t survive the 20w

filter rule). On the other hand, if for larger kernels, we only retain regions that are at least 20w in
size, our estimate E [χ(H0

w , t )] will be much higher then the actual expectation on that particular
scale. For any region a = [gs , ge ] let us define χa to be the total number of events found in [gs , ge ]
on the smallest kernel considered. Furthermore, let G(a) be the property ‘a is a detected event
for some Hw (g ) and survives the 20w filtering rule’. We make the following assumption on the
null-hypothesis:

P [χa > 1|G(a)] > P [χa = 0|G(a)] (3.50)

In effect we assume that if there exist a large region that is considered significantly elevated,
then we expect the chance to be higher for this region to contain multiple significant ‘hits’ on a
small scale then no ‘hits’ at all.

If this assumption holds, then clearly the multi-scale procedure will more likely merge events
on the smallest possible scale than create new ones on a larger scale, and since we control the
expected number of events on the smallest scale at E [χtheory], we expect:

E [χ] < E [χtheory] (3.51)

and therefore have E [χ] under control.

3.8.3. DETAILS ON UPDATING THE NULL-PARAMETERS
Consider a smoothed aggregated profile with no recurrent events which can be modeled with a
Gaussian random process with parameters µ, σ and r. In the main text we proposed a methodol-
ogy to iteratively update these null-parameters by detecting peaks that surpass a given threshold
t and re-estimating the parameters by ignoring these significant regions. Even with no recurrent
events there is always a possibility of detecting false positives and consequently an updated esti-
mate onσwill be biased (and generate optimistic results) after one or more iteration. We set out to
prove that this bias (assuming there are no recurrent events) will converge after infinite iterations
and that the effect on the estimated number of false events (E [χ]) will be negligible for reasonable
thresholds t . If recurrent events are present, σ will be a conservative estimate and therefore we
consider only the worst case scenario with no recurrences.

Consider the variance of the random Gaussian process σ and the respective threshold t to
control E [χ]. Furthermore, assume that ti is the expected threshold on iteration i . If there are no
recurrent events (unknown for real data), t1 = t , the desired threshold. On the second iteration,
all measurements larger than t1 will be ignored when calculating a new variance estimate and will
therefore be biased. In fact, we can predict how ti changes across each iteration:

ti+1 = t

√
1−erfc(

tip
2σ

)−
√

2

π

ti

σ
e−

1
2 (

ti
σ )2

(3.52)

Using Eq. 3.11 we can also predict how the estimate on E [χ] increase with each iteration. There-
fore, for a fixed starting threshold t we can predict the ratio between the predicted E [χ] after infi-
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nite iterations and the E [χ] for the desired threshold t :

R(t/σ) = e
1
2 [( t

σ )2−( t∞
σ )2] (3.53)

R is a decreasing function of t strictly larger than one that only converge for values t/σ > 2.1617.
In practice we are typically interested in thresholds t/σ> 3 and therefore R < 1.1632 (for a typical
value t/σ = 4,R = 1.0092). This illustrates that the iterative procedure only leads to a slight over-
estimation of E [χ] by a factor of maximally 1.1632 (if no recurrent events are present). In real data,
where many recurrent events are present, our estimate on E [χ] will likely remain conservative.

3.8.4. DETAILS ON RECURSIVE MULTI-LEVEL DETECTION
Not only does the recursive multi-level detection procedure described in the text allow us to detect
recurring events embedded in broad recurring events, but also helps to improve our estimate on
E [χ] (the expected number of false recurring events found) when not all parts of the genome (the
recurring events) can be described by the null-hypothesis. We illustrate this concept in Fig. 3.3 in
the main text. Note that the region in which we estimate the null-parametersµ,σ and r is restricted
to H0

L1 in Fig. 3.3A as illustrated by the dotted line at the top of the figure. However in Eq. 3.11
(in the main text) we integrate across the whole genome and therefore the expected number of
detected events in H0

L1 will be lower than E [χ] (the expected number of events if the null-model
held across the whole genome) by a factor

∫
H 0

L1
/
∫

G (the erfc term is small). In the second recursion

step (Fig. 3.3B) we follow the exact same procedure except this time estimate the null-parameters
in the broad event H0

L2. This allows us to detect embedded focal events inside broader events.

Again we make sure the test is genome wide (although we only estimate and detect events in H0
L2

we still integrate across the whole genome in Eq. 3.11 in the main text) and therefore the expected
number of null-events found inside H0

L2 will differ from E [χ] (the expected number of events if
the null-model held across the whole genome for the new parameters) by a factor

∫
H 0

L2
/
∫

G . The

total number of expected random events found in both recursion steps will be

∫
H 0

L1
+∫

H 0
L2∫

G
E [χ]. In

fact, if we consider all recursion steps the expected number of falsely detected events (focal, broad
and embedded) will approach E [χ] and we effectively avoid the need for step up/down multiple
testing procedures. The only added assumption here is that the expected number of false focal
events discovered inside false broad events is insignificant.

3.9. SUPPLEMENTARY RESULTS

3.9.1. RESOLUTION PARAMETER α ON SIMULATED DATA

SUMMARY

We investigated the effect that the resolution parameter α (which is related to the accuracy of
event boundaries) has on the FDR and the power for detecting recurrent aberrations of different
genomic lengths. We generated simulated data using the methodology proposed in Section 3.3.4.
Specifically, we added Nb = 2 broad (20× 106 bps), Nm = 5 (2× 106 bps) medium and N f = 50

(100× 103 bps, with an average of five probes) focal recurrent events. For each simulation, the
recurrent events were placed at random locations (potentially overlapping) with a recurrence fre-
quency (across the samples) randomly selected between zero and one. Passenger events and noise
were simulated using the procedure described in Section 3.3.1. We fixed the number of aCGH sam-
ples to aggregate to S = 200 and the analytical FDR level to 5%. We vary the SNR and α parameter.
Finally, we distinguish between true and false positives based on an overlap threshold o = 70%



3.9. SUPPLEMENTARY RESULTS

3

75

10
0

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10
0

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10
0

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.50.5

 

 

SNR = 1

SNR = 3

SNR = 9

SNR = 1e+99

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.50.5

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.50.5

E
m

p
ir

ic
a

l F
D

R

   Alpha                  Alpha              Alpha

E
m

p
ir

ic
a

l P
o

w
e

r

A

B)

     I) False positives (J
1
 < 0.7)                                                      II) Scatter positives (J

1
 >= 0.7, J

2
 < 0.7)                     III) Scatter + false positives  (J

2
 < 0.7)

      I) Focal events                                                                     II) Broad events                        III) All events 

   Alpha                  Alpha              Alpha

S = 200, Analytical FDR = 0.05, N
b
 = 2, N

f
 = 50

Figure 3.9: Simulation results illustrating the effect that the resolution parameter α (on x-axis of each plot) has
on FDR and power for a simulated case study. Simulations were performed for SNR ∈ {1,3,9,1e99} and repeated
1000 times. In each experiment we add two broad, five medium and 50 focal recurrent events. In each plot,
the vertical black line indicates α = 20. (A.I) All detected events that are covered by less than 70% (J1 < 0.7)
of all true recurrent regions is considered a false positive. The y-axis represents the average ratio of detected
events that are false positives (measured FDR). (A.II) All detected events that are covered by more than 70%
of a true recurrence (J1 ≥ 0.7), but with a Jaccard similarity coefficient below 70% is considered a shattered
positive. The y-axis represents the average ratio of detected events that are shattered positives. (A.III) All
detected events that have a Jaccard similarity coefficient below 70% for all recurrent regions are considered
a strict false positive. The y-axis represents the average ratio of detected regions that are strict false positives
(B.I) The y-axis represents the power for detecting focal events with a Jaccard similarity coefficient above 70%.
B.II) This is the same as (B.I) except that we show the power for detecting broad events. (B.III) Here we show
the power for detecting all events (focal, medium and broad).
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RESULTS

Fig. 3.9 illustrates the empirical FDR and power for detecting recurrent aberrations (on 1000 simu-
lations) of different sizes, for different SNRs andα parameters.True and false positives are discrim-
inated based on an overlap threshold o = 70%. Before we continue it is important to realize that
for large α values we are effectively ignoring all scales except the smallest (i.e. we perform little
smoothing), since none of the events detected at a larger scales will survive the α filtering. This is
in contrast to α= 0, where all detected events on all scales are combined.

In Fig. 3.9A.I we measure the expected proportion of detected events for which J1 < 70% (false
positives). As predicted in Section 3.8.2, for α value above 20, this proportion is below 5% (the
FDR). For α values smaller than 20 the accuracy on event boundaries become poor and the mea-
sured FDR grows high.

In Fig. 3.9A.II we measure the expected proportion of detected events that are true positives,
but J2 < 70% (shattered positives). It is important to observe that these errors are reduced when
we allow for α to grow small (and effectively use the full scale space). This effect is observed even
for segmented samples (SNR = 1e99). This illustrates that the scale space methodology is not only
useful for reducing measurement noise, but also biological noise (i.e. passenger events).

In Fig. 3.9A.III we illustrate the measured FDR if we consider shattered positives to be false.
That is, we regard all detected events with a Jaccard similarity index below 70% as false positives.
It is interesting to note that forα= 20, the FDR is close to minimal, but still higher than the desired
FDR level of 5%. This is because the shattered positive rate cannot be controlled, but reduced
due to the multi-scale analysis - an aspect ignored by single-scale methods. Furthermore, it is
not surprising that α = 20 is close to the minimum FDR, since we chose a corresponding overlap
threshold of o = 70%.

In Fig. 3.9B.I we illustrate the average proportion of recurrent focal events (of which there are
50 per simulation) that are detected (Jaccard similarity coefficient above 70%) while varying α.
Note that for small α values we lose power. This is mainly due to low precision on event bound-
aries. For large α values we see a minimal reduction in power. This is because little value is added
by the scale-space for such small events, since they are detected at small scales only.

In Fig. 3.9B.II we illustrate the power for detecting broad events. Again for lowα values we lose
considerable power due to low precision on event boundaries. However, for very largeα values we
also see a drastic decrease in power. This is mainly due to scattering and the multi-scale procedure
becomes invaluable.

Finally, in Fig. 3.9B.III we illustrate the power for detecting all events (focal and broad in-
cluded). The power observed is similar to that in Fig. 3.9B.I since most events are focal per simu-
lation (50 as apposed to two).

DISCUSSION

Not only do we reduce the shattered positive rate with the multi-scale procedure if we select α
properly (α= 20 for an overlap of 70%), but we also increase the power for detecting true positives
(especially broad events). This is true even for segmented samples, which illustrates that smooth-
ing not only reduces measurement noise but also biological noise (passenger events).

Furthermore, in Fig. 3.5C and D, we see that the multi-scale procedure reduces our estimate on
E [χ] which will result in a conservative FDR estimate. However, this does not imply that the power
for detecting recurrent events are reduced compared to a single-scale analysis (since we join events
on all scales, you cannot lose events found at the smallest scale). This simulation study serves to
illustrate that the multi-scale procedure (with proper selection of α) can drastically increase the
power for detecting events (especially broad events), which makes a conservative estimate on the
FDR well worth it.
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3.9.2. KC-SMART VS. ADMIRE SMOOTHING METHODOLOGIES

SUMMARY

Both KC-SMART [8] and the newly proposed method performs kernel smoothing on aggregated
profiles and applies a constant threshold on the smoothed signal to decide which locations rep-
resent recurring aberrations or not. To make these methods directly comparable, we do not split
positive and negative aberrations into two problems for KC-SMART.

The new method performs smoothing with Eq. 3.9 (in the main text) and relies on data de-
pendent parameters µ, σ and r (defined in Eq. 3.3 in the main text) and the platform dependent
probe locations, whereas KC-SMART uses only probe locations to normalize the smoothed signal.
KC-SMART uses the following normalization scheme:

hKC (g ) = fw (g )

kw (g )∗∑P−1
i=0 δ(g −pi )

(3.54)

The purpose of this experiment is to show that the new smoothing method increases the power
of detecting recurring aberrations if we apply a constant threshold (theoretically justified by Eq. 3.7
in the main text). We do this by simulating 1000 aggregated profiles (with only one recurring aber-
ration) and calculate the proportion of these tests that reveal the recurring aberration with both
smoothing methods (new and KC-SMART) when controlling the (two-tailed) FWER at 5%. Since
we know the location of the recurring aberration, we do not need to rely on the cyclic-shift null
hypotheses and estimate the required threshold from these 1000 simulations to control the FWER.
Therefore the power of KC-SMART can be compared directly to the newly proposed method.

SIMULATED DATA

• Genome size: 240 Mbps, a = {g |0 ≤ g ≤ 120Mbps};

• Number of probes: 12000;

• Probe positions: Random positions on the genome (each probe has only 1 bp width);

• Number of samples to aggregate: 100;

• Segmentation: Each sample is considered to consist of 160 segments with 159 random
breakpoints;

• Segment amplitudes: All probes within a segment takes on a value of either −1, 0 or +1
with probabilities 25%, 50% and 25% respectively. Therefore, for each sample we expect 80
aberrated segments (with amplitude −1 or +1) that are not recurring;

• Recurring segment center: ca = 120 Mbps;

• Recurring segment widths: We perform parallel experiments with widths (wa ) 40 kbps, 80
kbps, 160 kbps, 320 kbps, 640 kbps, 1.28 Mbps, 2.56 Mbps, 5.12 Mbps and 10.24 Mbps;

• Recurring segment amplitude: +1;

• Probability of recurring segment per sample: Each sample (of the 100 samples to aggregate)
has a 30% chance of containing a recurring aberration;

• Signal to noise ratio (SNR): For a given SNR, Gaussian noise is added to each sample with
mean zero and variance 1/SNR. Parallel experiments are performed at SNRs of 0 (no ran-
dom or recurring aberrations), 0.1, 1.0, 3.0, 9.0 and 1099 (no noise);
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EXPERIMENTAL PROCEDURE

For each parallel experiment (for data sets with a given recurring aberration width and SNR) we
perform smoothing across multiple scales. We do this for kernel widths wk = 10 kbps, 20 kbps, 40
kbps, 80 kbps, 160 kbps, 320 kbps, 640 kbps, 1.28 Mbps, 2.56 Mbps, 5.12 Mbps and 10.24 Mbps;

Define the recurring aggregated region to be ar = [ca −wa /2−3wk ,ca +wa /2+3wk ]. Define
the non-recurring aggregated region to be an = a −ar . We perform the following steps.

• STEP 1: Generate an aggregated profile using the methodology proposed earlier;

• STEP 2: Smooth the aggregated profile using a specified kernel width (estimate null param-
eters from an );

• STEP 3: Calculate and store the maximum peak of the smoothed profile in the region an
and ar ;

• STEP 4: Repeat steps one to three 1000 times. Therefore we will have 1000 maximum peak
values for both an and ar ;

• STEP 5: Define t to be the 97.5th highest maximum peak in an . This will be the thresholds
that approximately controls the FWER (two tail) at 5%;

• STEP 6: Define p (the power) to be the proportion of maximum peaks in ar above t ;

• STEP 7: Repeat steps one to six for the two different smoothing methods (KC-SMART and
the new method);

RESULTS

Fig. 3.10 shows the power obtained for all combinations of SNR, aberration width and kernel width
for KC-SMART and the new smoothing method. The main conclusion from these results are that
Eq. 3.9 (in the main text) improves the power for detecting recurring aberrations when compared
to KC-SMART for the proposed simulation data. This is especially true for small kernel widths if we
observe data with low signal to noise ratios. From these figures we can also observe that changing
the kernel width allows us to focus on an aberration with the appropriate size for maximal power.

3.9.3. FWER CONTROL FOR SIMULATED DATA

SUMMARY

This test is very similar to the one proposed in the KC-SMART comparison. The big difference
is that we do not use our knowledge of the recurring aberration locations in order to control the
FWER. In other words we can only find estimates on the recurrent (ar ) and null (an ) regions. We
treat the method as a black box which outputs a smoothed aggregated profile and a threshold that
is analytically determined to control the FWER at 5%.

EXPERIMENTAL PROCEDURE

• STEP 1: Generate an aggregated profile using the methodology proposed in Section 3.9.2;

• STEP 2: Set the null-region estimate equal to the whole genome ân = a;

• STEP 3: Estimate null-parameters µ,σ2 and r using only probes in ân ;

• STEP 4: Smooth the aggregated profile using a specified kernel width (wk ) and calculate the
analytical threshold t that controls E [χ] at 2.5% (remember we are performing a two tailed
test);

• STEP 5: Set âr = {g ∈ a|hwk (g ) ≥ t }. Set ân = a − âr ;

• STEP 6: Repeat steps 3 to 5 until ân converges. Now we have a final estimate for t ;
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Figure 3.10: KC-SMART and the new method (ADMIRE) are similar in the sense that both perform kernel
smoothing on an aggregated profile and then apply a constant threshold to decide whether an aberration is
recurring or not. We simulated aCGH profiles with a know recurring aberration as described earlier and test
the power of detecting this aberration with a) KC-SMART and b) the new method (ADMIRE) when fixing the
FWER at 5%. Each plot represents the power (proportion of recurring aberration detected in 1000 simulations)
while varying the aberration width (wa ) and kernel width (kw ). Inspection reveals an increase in power with
ADMIRE (especially for small kernels).
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• STEP 7: Determine whether any peaks are above t in the non-recurring region an and the
recurring region ar ;

• STEP 8: Repeat steps one to seven 1000 times;

• STEP 9: Define p (the power) to be the proportion of simulations that reveal one or more
peaks in ar above t ;

• STEP 10: Define FWER (empirical) to be the proportion of simulations that reveal one or
more peaks in an above t ;

RESULTS

Fig. 3.11 shows the power obtained for all combinations of SNR, aberration width and kernel width
from the proposed smoothing method and the measured FWER (which was controlled analyti-
cally).

It is interesting to note that for segmented data (no Gaussian noise on any segments) the ana-
lytical FWER control becomes conservative. This is mainly due to the fact that the expected Euler
characteristic is an upper bound on the FWER and nearby peaks are highly correlated (since the
measurement noise is small). To see why, consider:

E [χ] = P [χ= 1]+2P [χ= 2]+3P [χ= 3]+ ...

FWER = P [χ= 1]+P [χ= 2]+P [χ= 3]+ ... (3.55)

If the correlation between probes extend much further than the kernel width (for example, smooth-
ing with a small kernel on segmented samples), we get situations like:

P [χ= 1] ≈ P [χ= 2] ≈ P [χ= 3],etc (3.56)

and therefore the expectation becomes conservative.
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Figure 3.11: In this experiment we again simulate 1000 aggregated profiles. Then for different recurring aber-
ration widths, kernel widths and SNRs we calculate a) the power and b) the estimated FWER. The color bar
in the FWER plots should be interpreted as follows: green represents one standard deviation from 5% FWER,
cyan and yellow represent FWERs within two standard deviations, blue and red represent extremes below or
above two standard deviations and black represents a FWER below 1%.
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Figure 3.12: Example of ADMIRE on a part of Chromosome 17 where no recurrent aberrations are found by
GISTIC2.0. (A.I) The SNP-array profiles for 141 Glioma samples. Red (green) represents amplifications (dele-
tions). (A.II) The aggregated (sum) of all the samples. (A.III) A multi-level representation of the recurring
events found by ADMIRE at 25% event-based FDR (across the whole genome). The first recursive level shows
a broad deletion. If we re-estimate the null-parameters in this broad event we find two extra focal events. (B)
Shows that the left most focal event overlaps with the NF1 Glioma tumor suppressor gene. (C) The second focal
recurrent loss is located in the ASIC2 gene. High-grade glioma tumors are associated with the low functional
expression of ASIC2 [19, 20].
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The frequent recurrence of copy number aberrations across tumor samples is a reliable hallmark of
certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations
fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects re-
current copy number breaks, rather than recurrently amplified or deleted regions. This change of
perspective allows for a simplified approach as recursive peak splitting procedures and repeated re-
estimation of the background model are avoided. Furthermore, we control the false discovery rate on
the level of called regions, rather than at the probe level, as in competing algorithms. We benchmark
RUBIC against GISTIC2 (a state-of-the-art approach) and RAIG (a recently proposed approach) on
simulated copy number data and on three SNP6 and NGS copy number data sets from TCGA. We
show that RUBIC calls more focal recurrent regions and identifies a much larger fraction of known
cancer genes.

4.1. INTRODUCTION
Due to genomic instability, cancer cells often exhibit a large number of somatic copy number aber-
rations (SCNA) many of which are believed to play a pivotal role in tumor development or progres-
sion. Specifically, SCNAs represent one of the mechanisms to activate oncogenes and inactivate
tumor suppressors[2, 3].

Given a large collection of somatic copy number profiles of tumors, an important challenge
is to distinguish driver from passenger aberrations. The exact genomic locations of somatic pas-
senger aberrations are expected to be variable across different tumor samples. In contrast, driver
aberrations often recur on the same locus across tumor samples, which allows them to be identi-
fied in a properly defined statistical framework. Identification of driver aberrations is important
as it allows us to identify (new) oncogenes and tumor suppressors.

Many algorithms have been developed for detecting recurrent copy number aberrations [4–
15], highlighting the relevance of discovering novel oncogenes and tumor suppressors. However,
this problem is still far from being solved as state-of-the-art approaches fail to identify known
oncogenes and tumor suppressors in large sample sets. For example, while EGFR is one of the most
frequently amplified oncogenes in Glioblastoma [16], neither RAIG and especially not GISTIC2
detects the complete recurrently amplified region harboring EGFR.

One of the main difficulties in detecting recurrent copy number aberrations arises from the
heterogeneous nature of driver aberrations across samples, ranging from focal aberrations cove-
ring a single gene to broad aberrations spanning a whole chromosome arm. Algorithms should call
recurrent regions as focally as possible to pinpoint the driver genes and hence maximizing speci-
ficity. Conversely, too much emphasis on focality could result in driver genes being confused with
passengers in close proximity, simply due to off target focal passenger aberrations overlapping
with a broader recurrent locus. This results in reduced sensitivity. Therefore, a proper approach
should strike a good balance between sensitivity and specificity.

The great majority of algorithms, including the algorithm we propose, start by splitting copy
number gains and losses into separate data sets and therefore detect oncogenes and tumor sup-
pressors separately. Throughout, we will only consider the copy number gains - deletions are
treated in a symmetric fashion. When considering gains, the first step of existing algorithms is
to detect broad loci that are amplified at a significant frequency. Subsequently, heuristics are ap-
plied to identify separate focal recurrences within these loci (Fig. 4.1a-g). This so-called peak
splitting is achieved in two possible ways. In the first approach, the null model is adapted [13, 17]
based on the local background to determine whether a smaller locus is recurrently amplified in
an already recurrent locus. This requires the re-estimation of many parameters on smaller loci,
resulting in a loss of statistical power. The second approach employs greedy peel-off algorithms
[6, 7, 12] that call local maximum peaks in recurrent loci (Fig. 4.1b,c) and then remove all aberrated
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segments that overlap with the identified maximum peak (Fig. 4.1d). Subsequently, new maximal
peaks are identified (Fig. 4.1e) based on a reduced data set, and this loss in power can result in
potentially missing important driver genes in close proximity to the original maximum peak. After
iterating these steps, a list of independent peaks are generated (Fig. 4.1f). The boundaries of these
peaks are sensitive to passenger aberrations and a post processing step is employed (e.g. the Reg-
Bounder algorithm [7]) to broaden the peaks and improve the probability of including the correct
driver genes (Fig. 4.1g).

With RUBIC (Recurrent Unidirectional Break Identification by Clustering) we follow a com-
pletely different approach. Specifically, RUBIC detects recurrent copy number breaks instead of
recurrent amplifications or deletions. A recurrent break marks a region where a significant portion
of the samples show transitions in copy number from neutral to gain (positive break) or from gain
to neutral (negative break) (Fig. 4.1i). RUBIC is based on a simple idea: if we can prove significant
recurrence of breaks that occur in close proximity of each other, a subset of these breaks are most
likely associated with driver aberrations. Regions enclosed between recurrent positive breaks on
the left and recurrent negative breaks on the right will most likely harbor a putative oncogene.
This new approach has several advantages. First, it simplifies the identification of recurrent re-
gions significantly: there is no need for complicated peak splitting or peel-off algorithms. Second,
power is maximized as the recurrent breaks are identified based on all samples and by employing
a null model based on the behavior of passenger aberrations on the complete genome. This is in
contrast to peak splitting approaches that require recursive re-estimation of the null model on an
ever-decreasing locus width or recursive identification of maximal peaks on an ever-decreasing
number of samples in peel-off algorithms.

In summary, by focusing on recurrent breaks, RUBIC becomes independent of the regions
between the breaks. Specifically, RUBIC circumvents the difficulties of current algorithms outlined
above which stem from aiming to call regions at the right size. RUBIC is simple, computationally
efficient and outperforms existing methods on both simulated and real data sets. It calls more
true positive regions (between 1.4 and 3.6 times more than GISTIC2) at more (appropriate) focal
widths thus pinpointing the responsible driver genes. Finally, the algorithm only requires a single
parameter, controlling the false discovery rate of called regions.

4.2. RESULTS

4.2.1. OVERVIEW
RUBIC detects significantly recurrent breaks in the aggregate copy number profile of a collection
of tumor samples (Fig. 4.1h-k). Essentially, RUBIC performs hierarchical clustering on the ag-
gregate profile (Fig. 4.1j, red line). It starts with segments spanning a single measurement probe
and iteratively joins neighboring segments until a significant break between segments in the ag-
gregate profile is encountered. As only neigboring segments can be joined, the complexity of the
clustering problem is significantly reduced. Due to the nature of hierarchical clustering, this im-
plies that all remaining breaks between segments in the aggregate profile are significant. All sig-
nificant breaks in the aggregate profile represent segment boundaries, and the average aggregate
copy number profile between breaks represents the segment amplitude (Fig. 4.1j, black line). To
determine the significance of a break, we require a break recurrence measure and a significance
test. The break recurrence measure, which scores a break between two adjacent segments, is equal
to the difference in segment amplitudes. Intuitively, this makes sense, since a high frequency in
breaks (across samples) result in a large jump in the aggregate (Methods). Significance of the re-
currence measure is represented by the expected Euler characteristic (Methods), and we employ a
null model obtained through cyclic permutation of the tumor profiles (Methods). During the hi-
erarchical clustering, RUBIC employs the expected Euler characteristic as similarity measure, thus
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Figure 4.1: Algorithmic steps of competing approaches and RUBIC. (a) A heat map of the gains in simulated
copy number profiles for 20 samples. Segments that activate oncogenes (driver aberrations) are shown in red
and passenger aberrations in grey. (b) The copy number profiles in a are aggregated (summed) to produce the
aggregate gain profile. The dashed line represents a significance threshold based on a null model, obtained
by, for example, permutation of the probe indices in a. (c) The calling of the maximum peak in the aggregate
profile within the genomic region where the aggregate profile exceeds the significance threshold. (d) Copy
number segments overlapping with the maximal peak are removed from the data set. (e) Based on the adapted
data set, a new aggregate profile and significance threshold are computed. (f) As in c, a maximum peak is
called in the adjusted aggregate profile. (g) Finally, a post processing step is employed to broaden the peaks
and improve the probability of including the correct driver genes. (h) The same input data set depicted in a.
(i) Positions of recurrent breaks in the copy number profiles. Neutral-to-gain breaks are depicted in red and
gain-to-neutral breaks in blue. (j) The segmented profile (in black) resulting from performing hierarchical clus-
tering on the aggregate profile (in red). During clustering, RUBIC employs the expected Euler characteristic as
similarity measure, thus allowing termination of the clustering when all segments are separated by significant
breaks with similarity measures below a fixed, predetermined threshold (green dashed line). The dendrogram
resulting from clustering the aggregate profile is also depicted, with the significance threshold used as cutoff to
produce the depicted segmentation. (k) Local maximum segments are called and such segments are expected
to contain putative oncogenes.
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allowing termination of the clustering when all segments are separated by significant breaks with
similarity measures below a fixed, predetermined threshold, E . We choose to use the expected Eu-
ler characteristic as a significance measure because it directly links the global threshold, E (used
to terminate clustering) to the expected number of false positive regions called in Fig. 4.1k (Meth-
ods). This results in error control at the segment level, rather than the probe level, as in competing
approaches. The clustering produces a segmented aggregate profile, where the positions of the
breaks in the aggregate profile indicate regions of significantly recurrent breaks in the sample pro-
files (Fig. 4.1j). Finally local maximal segments are called (Fig. 4.1k). Such segments are expected
to contain putative oncogenes as only gains were employed in this example. Our implementation
of RUBIC can be downloaded at http://ccb.nki.nl/software/.

4.2.2. BENCHMARKING ON SIMULATED DATA SETS
In order to benchmark RUBIC and competing approaches we generated a simulated data set of
copy number profiles. In contrast to most available simulation approaches that artificially insert
recurrent copy number aberrations of fixed widths at any given locus, we employed a preselected
set of 100 driver genes as starting point. We generated a copy number profile for each sample
based on an idealized evolutionary model. Briefly, we simulate genomic instability by inserting
random amplifications and deletions across the genome for many individual cells. In some cells,
amplifications activate oncogenes and deletions inactivate tumor suppressors. Such driver aber-
rations modulate the proliferation rate of an individual cell. The cell with the highest score is then
regarded as the dominant clone which we use to represent the sample. This process is repeated for
each sample in our analysis. Simulated copy number profiles exhibit complex recurrence patterns
developing on both focal and broad scales. For more information on the model and the simulated
profiles see the Methods.

We systematically compared RUBIC to GISTIC2 (a state-of-the-art approach) and RAIG (a re-
cently proposed approach) on simulated data sets generated using our evolutionary model. We
employed all three algorithms to separately detect recurrent amplifications and deletions.

For GISTIC2 and RAIG we used exactly the same parameter settings as for the real tumor data
sets (Supplementary Methods in [1]). RUBIC requires only a single parameter to be set: the FDR.
For all algorithms, results were generated at an FDR level of 25%. Each algorithm reports a list
of regions and genes (partially) overlapping with these regions. We removed all called regions that
did not overlap with any genes. Such regions were never reported by RUBIC or RAIG. Only GISTIC2
reported four such regions in all simulations performed, and suggested nearby genes in brackets,
none of which were drivers. We also removed regions larger than 10 Mega base pairs (Mbp), since
they usually contain many genes and that makes it difficult to pinpoint the drivers. Although rare,
such broad regions are sometimes called by GISTIC2 and RUBIC, but not RAIG.

We evaluated the performance based on three measures: 1) the proportion of driver genes
that overlapped with called recurrent regions (true positives); 2) the proportion of called regions
that do not overlap with any of the driver genes (false positives) and 3) the average driver density
in called regions. The third measure scores the ability of algorithms to call regions as focally as
possible, i.e. the capacity to pinpoint drivers.

We varied the number of samples from 10 to 1000, and for each number of samples we gener-
ated five simulated data sets from which we extracted recurrent regions. RUBIC outperforms both
GISTIC2 and RAIG in terms of the number of drivers detected as well as the driver density while
controlling the FDR (Fig. 4.2). Both RUBIC and GISTIC2 achieve an FDR well below the set rate of
25%. For RUBIC, the measured false discovery rate is stable at 5% across sample sizes, but much
lower than the 25% FDR selected. This is due to the fact that the cyclic shift null model is conserva-
tive. Even though RAIG performs fairly well on previously reported simulation studies, it performs



4

90 4. RUBIC

Figure 4.2: Performance on simulated data. The performance of RUBIC, GISTIC2 and RAIG at recovering driver
genes in simulated data for different sample sizes (represented on the x-axes). (a) Proportion of (known) driver
genes that overlapped with called recurrent regions. (b) Proportion of called recurrent regions that overlapped
with none of the driver genes. (c) Average (across called regions) proportion of genes that are drivers within
each called recurrent region. Error bars represent the standard error based on five samplings.
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significantly worse than RUBIC and GISTIC2 on all measures for this evolutionary model. In addi-
tion, RAIG does not scale well computationally with regard to the number of samples. In Fig. 4.2
we only show RAIG results for up to 300 samples as we only depict results for processes that took
less than two weeks to complete.

4.2.3. COMPARISON ON THREE TCGA SNP6 DATA SETS
We compared RUBIC, RAIG and GISTIC2 on SNP6 copy number profiles of three cancer data sets
from TCGA: 1080 Breast Invasive Carcinoma (BRCA) samples, 577 Glioblastoma Multiforme (GBM)
samples and 450 Colon Adenocarcinoma (COAD) samples. We used optimized parameters for
GISTIC2 and RAIG as specified in the Supplementary Methods in [1]. We set the FDR at 25% and
extracted both recurrent amplifications and deletions with all three algorithms. As in the simula-
tion experiments, we only report regions that overlapped with at least one gene and excluded all
regions larger than 10 Mbp.

Unlike the simulation study, we do not know which genes are drivers and therefore we selected
463 genes (Supplementary Data 1 in [1]) as positive controls from the Sanger Institute Cancer Gene
Census (referred to as ‘Census genes’) [18]. We score each algorithm based on four measures: 1)
the total number of focal recurrent regions detected (‘No. regions’); 2) the number of regions that
overlap with Census genes (‘No. Census regions’); 3) the total number of Census genes detected
(‘No. Census genes’) and 4) the average driver density in the called regions. The driver density of a
region is defined as one divided by the number of genes overlapping the region and is therefore a
measure of how good the respective algorithms are at identifying drivers. While this (conservative)
measure is optimal when every region contains a single driver, we do not rule out the possibility of
multiple weak drivers in a region. If the data supports the presence of multiple (weak) drivers, as
suggested in the literature [19], RUBIC will detect these. Table 4.1 summarizes the results obtained
for the three algorithms on all three data sets. Each entry has two values (separated with a slash)
representing recurrent gains and losses, respectively.

RUBIC calls more recurrent regions than both GISTIC2 and RAIG on all three data sets. Given
that the FDR was set at 25% the majority of these regions are expected to contain true driver genes.
In fact, the larger number of recurrent regions called by RUBIC also results in a larger yield of
Census genes. RAIG calls fewer amplified regions than GISTIC2 on the BRCA data set, but none of
these regions contain a Census gene. On the GBM and COAD data sets, RAIG calls more regions
than GISTIC2, however, the called regions contain fewer Census genes. These results suggest that
the RAIG error rate is high, which is consistent with our observations in the simulation study. The
superior ability of RUBIC and GISTIC2 to recover Census genes was also confirmed by a global
analysis. Specifically, by employing a cyclic permutation test, we found an enrichment for Census
genes (p < 0.05, permutation test) in all data sets for both RUBIC and GISTIC2, but not for RAIG. In
fact, only the amplified regions called by RAIG on the GBM data set showed significant enrichment
for Census genes.

While the average driver density estimates for RUBIC are smaller than those obtained by GIS-
TIC2 for the gains, these values are not strictly comparable since RUBIC calls many more regions.
This is because recurrent regions that are only detected by RUBIC do not recur as frequently as
those that were detected by both algorithms. Regions of lower recurrence will necessarily be called
broader and therefore result in a lower average driver density for RUBIC. Specifically, if we only
look at the 27 amplified regions where RUBIC and GISTIC2 overlap in BRCA, the average driver
densities are comparable, with 0.29 and 0.35 for RUBIC and GISTIC2 respectively. Of these 27
amplified regions, 16 were called (slightly) more focally by GISTIC2. However, 6 of these regions
called by RUBIC included extra Census genes. In contrast, none of the 11 regions that were called
more broadly by GISTIC2 included any extra Census genes. These results suggest that GISTIC2 in-
deed tends to call amplified regions too focally. Perhaps the best example illustrating that GISTIC2
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tends to call amplifications too focally is EGFR in glioblastoma. The skeptical reader might suspect
that we ran GISTIC2 with sub-optimal parameters, but in fact we downloaded the GISTIC2 results
(with optimized parameters) from http://firebrowse.org/. Counter-intuitively, if we run GISTIC2
on smaller subsets (< 577) of the Glioblastoma data set, we do actually detect EGFR. The reason
is that GISTIC2 calls regions wider for smaller sample sizes (Fig. 4.2c), but ironically falls prey to
passenger aberrations that ‘distract’ from the true driver aberration at larger sample sizes.

Deletions called by RUBIC are more focal than those called by GISTIC2 (higher average driver
density in Table 4.1), while the opposite is true for amplifications. The asymmetry between achieved
average driver densities (gains vs. losses) in the RUBIC results makes sense from a biological per-
spective: while tumor suppressors can be inactivated by deletions of sub-genic size, aberrations
resulting in over-expression of oncogenes typically cover the whole gene and are therefore ex-
pected to be wider. RUBIC only called 8%, 15% and 9% of the amplified regions based on a break
inside a gene for the BRCA, GBM and COAD datasets, respectively. In contrast, 34%, 65% and 53%
of all called deletions were based on a break inside a gene for the same respective datasets.

When considering the overlap in the Census genes retrieved by the three approaches (Fig. 4.3)
we notice that RUBIC returns the largest number of Census genes and that the majority of the
Census genes retrieved by GISTIC2 and RAIG are a subset of the Census genes retrieved by RUBIC.
In the breast cancer data set, GISTIC2 was able to call a single unique broad amplified region that
was not detected by RUBIC. This region resides at the end of Chromosome 1q and contains a single
Census gene. For the deletions, GISTIC2 called 11 unique regions that were not detected by RUBIC.
Three of these regions overlapped with Census genes. One of these regions on Chromosome 9q is
very broad (9 Mbp) and contains seven Census genes. This single region explains most of the
disparity between the results of RUBIC and GISTIC2 in Fig. 4.3a. RUBIC did call this region, but it
was filtered out as it just exceeded 10 Mbp.

Some known oncogenes and tumor suppressors are only captured by RUBIC, such as MDM4
in breast, APC in colon and EGFR in Glioblastoma (Fig. 4.3). EGFR is the most frequently amplified
gene in Glioblastoma, yet neither GISTIC2 nor RAIG detects it. GISTIC2 missed EGFR because it
called a false focal peak (containing no overlapping genes) near EGFR and peeled away most of
the segments overlapping with the false peak that also overlap with EGFR (Fig. 4.4). Interestingly,
RUBIC calls two regions, consistent with the observation that 24%-67% of all glioblastoma’s are
Type III deletion mutants where Exons 2-7 are deleted [20]. This result also suggests that EGFR-
AS1 might be an oncogene in its own right.

4.2.4. FOCUSED ANALYSIS OF THE BREAST CANCER DATA SET
We analyzed the BRCA data set more closely and show a genomewide overview of called regions
by all three algorithms in Fig. 4.5. Here we also highlight (in red) a small subset of bona fide and/or
recently validated oncogenes (52 in total) and tumor suppressors (12 in total) specifically associ-
ated with breast cancer. The list is constructed based on strong evidence for the involvement of
each of the genes in breast cancer, and is largely based on two published lists [17, 21]. See Sup-
plementary Table 1 in [1]. A subset of the oncogenes in this list were only recently validated [17].
RAIG, GISTIC2 and RUBIC were able to recover, respectively, 0, 13 and 34 of these bona fide onco-
genes and 2, 5 and 5 of these tumor suppressors. All five regions containing the tumor suppressors
were called more focally by RUBIC as compared to GISTIC2. A global enrichment test with a cyclic
permutation scheme shows that all RUBIC and GISTIC2 regions are highly enriched for bona fide
oncogenes and tumor suppressors (all p-values < 10−3, permutation test).

Zooming in on some loci, we illustrate examples in which RUBIC outperforms both GISTIC2
and RAIG. First, we find that RUBIC is able to recover four validated oncogenes missed by both
GISTIC2 and RAIG (Fig. 4.5b). In the second example, GISTIC2 called an amplification peak too
focally and missed MIR21 (Fig. 4.5c). Finally, we show an example where GISTIC2 called a too
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Table 4.1: Summary of detected regions on SNP6 data set. Recurrent copy number regions predicted by RUBIC,
GISTIC2 and RAIG on BRCA, GBM and COAD. For each subtable containing the results of a specific cancer
type, the rows represent the following: the first row (labeled ’No. regions’) represents the total number of focal
recurrent regions detected by each algorithm. The second row shows the number of regions that overlap with
Census genes. The third row represents the total number of Census genes detected. The last row shows the
average driver density in the called regions. Each entry has two values (separated with a slash) representing
recurrent gains and losses, respectively.

Breast cancer (BRCA) (n = 1080)
Methods RUBIC GISTIC2 RAIG
No. regions (gains/losses) 100/58 28/31 11/41
No. Census regions (gains/losses) 48/16 15/17 0/5
No. Census genes (gains/losses) 63/26 16/33 0/5
Avg. driver density (gains/losses) 0.21/0.41 0.34/0.10 0.80/0.57

Glioblastoma (GBM) (n = 577)
Methods RUBIC GISTIC2 RAIG
No. regions (gains/losses) 40/152 22/36 25/58
No. Census regions (gains/losses) 23/26 14/13 7/6
No. Census genes (gains/losses) 33/34 15/15 7/6
Avg. driver density (gains/losses) 0.29/0.71 0.39/0.19 0.59/0.56

Colon adenocarcinoma (COAD) (n = 450)
Methods RUBIC GISTIC2 RAIG
No. regions (gains/losses) 23/72 17/31 27/50
No. Census regions (gains/losses) 11/12 8/9 6/5
No. Census genes (gains/losses) 16/14 10/10 6/7
Avg. driver density (gains/losses) 0.14/0.58 0.21/0.20 0.36/0.46
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Figure 4.3: Detected Census genes. Venn diagram of Census genes that overlapped with called recurrent re-
gions in RUBIC, GISTIC2 and RAIG. (a,b and c) illustrates this for the breast (BRCA), glioblastoma (GBM) and
colon (COAD) cancer data sets, respectively. The numbers separated by a slash (in brackets) represent Census
gene counts for gains and losses, separately.
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Figure 4.4: Recurrence at the EGFR locus. Genomic representation of EGFR and called recurrent regions in its
proximity by RUBIC, GISTIC2 and RAIG on the Glioblastoma data set. The cyan profile represents the aggregate
copy number profile. The RUBIC segmented aggregate is depicted in red. The rows with labels RUBIC, GISTIC2
and RAIG show the genomic locations of regions called by each of these algorithms. The row with label ’Census’
shows the location of EGFR (in red) and EGFR-AS1 (in blue).
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Figure 4.5: Genome-wide overview of detected regions in breast cancer. Genomic representation of recurrent
regions found by RUBIC, GISTIC2 and RAIG in the breast cancer data set. (a) RUBIC segmented aggregate
profiles (in red) across the whole genome for gains and losses in the top and bottom halves respectively. The
rows with labels RUBIC, GISTIC2 and RAIG show the genomic locations of called recurrent regions. The row
with label ’Census’ shows the locations of Census genes in blue. Validated breast cancer genes are represented
in red (in the Census row). (b - d) Example (zoomed in) loci with validated gene names added in red. The cyan
profiles represent the aggregate of all samples before RUBIC segmentation depicted in red.
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broad deletion in MAP2K4 (Fig. 4.5d). More generally, for regions overlapping with RUBIC, GIS-
TIC2 consistently calls broader deletions without introducing any extra known tumor suppressors
or Census genes, while the broader amplifications called by RUBIC do include more oncogenes
and Census genes as compared to those called by GISTIC2. This suggests that the smaller dele-
tions and larger amplifications called by RUBIC improve driver detection.

4.2.5. COMPARISON ON NEXT GENERATION SEQUENCING
In order to investigate the applicability of RUBIC to copy number profiles derived with Next Gen-
eration Sequencing (NGS) technology we compared RUBIC and GISTIC2 on two additional NGS
data sets. The first data set consists of copy number profiles of 90 breast cancer samples (not over-
lapping with TCGA samples) derived from low coverage (< 1x average) whole genome sequencing
(lcWGS) [22]. The second set contains 383 TCGA breast cancer copy number profiles derived from
whole exome sequencing (WES). Since all comparisons indicated that RAIG is not a competitive
approach, we only benchmarked RUBIC against GISTIC2 on the NGS data sets. We used optimized
parameters for GISTIC2 as before, set the FDR at 25% and extracted both recurrent amplifications
and deletions with both algorithms. As before, we only report regions that overlapped with at
least one gene and excluded all regions larger than 10 Mbp. The results indicate that both RUBIC
and GISTIC2 can be successfully applied to NGS data, as we recover recurrent regions containing
known drivers, albeit at a lower average driver density. The lower density is a direct consequence of
the fact that the sample size of the NGS data is lower compared to the SNP6 data, resulting in larger
called regions and hence a lower average density. The results also indicate that the observations
we made based on the SNP6 data regarding the relative performance of RUBIC and GISTIC2 can
be extrapolated to NGS data (Table 4.2). Specifically, we show that RUBIC consistently identifies
more recurrent regions, more Census genes and more bona fide breast cancer genes at compara-
ble or higher driver densities. On the lcWGS data set, RUBIC detects a larger number of Census
genes, in spite of the fact that the sample size is much lower than the SNP6 breast cancer data
set. This is most likely caused by two factors. First, the lcWGS set contains many BRCA-like sam-
ples, characterized by BRCA1/2 specific but highly unstable copy number profiles, increasing the
likelihood of detecting recurrent aberrations. Second, due to the smaller sample size, the regions
called by RUBIC are larger, hence increasing the likelihood of detecting more Census genes. While
the overlap of amplified regions identified on lcWGS profiles with the SNP6 recurrent regions is
around 50%, it is consistent at that level for both RUBIC and GISTIC2. There are two reasons why
we expect this overlap to be low. First, the collection of samples used for lcWGS is highly enriched
for the BRCA-like samples compared to the TCGA SNP6 dataset. Second, the collection of patient
samples used for the lcWGS does not overlap with the TCGA data set and the obtained overlap is
therefore consistent with an FDR of 25%. In contrast, 87% of the amplifications detected by RU-
BIC in the WES dataset overlap with those found in the SNP6 dataset. The patient samples in the
WES dataset are a subset of those comprising the SNP6 dataset and there is no enrichment for any
particular subtype (the 383 samples were selected randomly). This suggests that RUBIC is robust
against the platform differences, in contrast to GISTIC2 that obtains only 61% overlap.

4.2.6. FRAGILE SITE ANALYSIS
Since RUBIC calls recurrent breakpoints, it is reasonable to ask whether we are not simply calling
breakpoints at fragile sites. To answer this, we would have to test whether the recurrent regions
called by RUBIC are enriched for fragile sites. We employed a published list [23] of fragile sites
and combined that with an unpublished list obtained from the Sanger Institute to construct a
list of 127 rare and common fragile sites and performed a permutation-based enrichment test
(Supplementary Methods and Supplementary Data 2 in [1]). We could not find any enrichment
for fragile sites in recurrent regions called by RUBIC for either the SNP6, lcWGS or WES profiles in
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Table 4.2: Summary of detected regions on NGS data sets. Recurrent copy number regions predicted by RU-
BIC and GISTIC2 for BRCA datasets derived from low coverage whole genome sequencing (lcWGS) and TCGA
whole exome sequencing (WES). For each subtable containing the results of a specific sequencing platform the
rows represent the following: the first row (labeled ‘No. regions’) represents the total number of focal recurrent
regions detected by each algorithm. The second row shows the number of regions that overlap with Census
genes. The third row represents the total number of Census genes detected. The fourth row shows the number
of BRCA bona fide oncogenes / tumor suppressors detected. The fifth row shows the enrichment p-values for
bona-fide drivers in regions based on a cyclic permutation test. The sixth row shows the average driver density
in the called regions. The final row shows the proportion of regions detected in NGS data that overlap with
regions found for the SNP6 TCGA data set. Each entry has two values (separated with a slash) representing
recurrent gains and losses, respectively.

BRCA (lcWGS) (n = 90)
Methods RUBIC GISTIC2

1 No. regions (gains/losses) 80/43 26/29
2 No. Census regions (gains/losses) 47/10 17/7
3 No. Census genes (gains/losses) 90/21 25/20
4 No. bona fide genes 32/3 10/2

(52 oncogenes/12 tumor suppressors)
5 Enrichment p-values for bona fide genes 2×10−4/0.022 < 1×10−4/0.083
6 Avg. driver density (gains/losses) 0.12/0.24 0.09/0.13
7 Region overlap with SNP6 0.50/0.42 0.42/0.33

BRCA (WES) (n = 383)
Methods RUBIC GISTIC2

1 No. regions (gains/losses) 46/9 13/3
2 No. Census regions (gains/losses) 32/4 10/1
3 No. Census genes (gains/losses) 58/ 14 16/1
4 No. bona fide genes 28/2 10/1

(52 oncogenes/12 tumor suppressors)
5 Enrichment p-values for bona fide genes < 1×10−4/0.018 < 1×10−4/0.021
6 Avg. driver density (gains/losses) 0.07/0.25 0.08/0.21
7 Region overlap with SNP6 0.87/0.56 0.61/0.33
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Table 4.3: Percentage of called regions overlapping with fragile sites and the associated enrichment p-values
computed with permutation tests.

RUBIC regions on SNP6 profiles
Recurrence type BRCA (n = 1080) GBM (n = 577) COAD (n = 450)
Gains: % overlap (p-value) 20% (0.91) 38% (0.10) 17% (0.95)
Losses: % overlap (p-value) 36% (0.10) 19% (0.68) 29% (0.52)

RUBIC regions on lcWGS and WES profiles
Recurrence type lcWGS (n = 90) WES (n = 383)
Gains: % overlap (p-value) 34% (0.43) 33% (0.61)
Losses: % overlap (p-value) 35% (0.52) 33% (0.59)

any of the cancer types considered, as indicated in Table 4.3.

4.3. DISCUSSION
To identify cancer genes residing in recurrently aberrated genomic regions, we follow a completely
different approach from current state of the art approaches. Rather than focusing on the recur-
rence of regions, we introduced RUBIC, an approach that considers the recurrence of breaks. This
results in a significant simplification of the algorithm as there is no need for recursive identifica-
tion of smaller recurrent regions in broader regions via complicated peak splitting approaches. An
added advantage of the fact that RUBIC focuses on breaks reflecting the relative change in copy
number between segments, rather than the cumulative strength of an aberration across samples,
is that the need for an arbitrary reference state is diminished. RUBIC requires only a single in-
put parameter (the FDR) and controls the FDR at the level of regions, rather than probes as most
competing approaches. Although users are discouraged from inputting raw unsegmented copy
number data into RUBIC, we do expect RUBIC to be less sensitive to the choice of a segmentation
algorithm since our theoretical approach does not explicitly require piecewise constant segments.
In contrast, algorithms like GISTIC2 that directly peel-off segments when calling peaks will be sen-
sitive to the specific choice of segmentation algorithm. In a comparison with GISTIC2 and RAIG,
we show that RUBIC calls significantly more recurrent regions and identifies a much larger fraction
of regions containing known cancer genes (from the Cancer Gene Census).

We developed a gene centric simulation model to employ in our benchmarking studies. In this
model, we define hypothetical driver genes, simulate genomically unstable copy number profiles
and apply evolutionary pressure which results in driver genes being selectively aberrated. We be-
lieve this is an improvement over existing simulation approaches as 1) it focuses on genes rather
than aberrations; 2) it is an approximation (albeit quite rough) of the evolutionary processes going
on in real tumors and 3) it produces recurrence patterns that closely resemble patterns in real data
sets. It is therefore suited for revealing shortcomings in existing approaches. For example, RAIG
reports a very high recall and precision rate in a previous simulation study [15] which simulated
driver aberrations, rather than driver genes. However, it commits many false positives when call-
ing driver genes in data generated with our simulation model. On simulated data from this model,
RUBIC outperforms both GISTIC2 and RAIG on all measures: it finds more driver genes, calls very
few regions that don’t overlap with driver genes and calls these regions more focally. Nonetheless,
RUBIC does tend to call fewer false positive regions than expected based on the set FDR due to
its conservative null-model. This is because many copy number breaks belong to driver aberra-
tions that are not provably recurrent. Yet we include these breaks in our null-model which should
ideally only contain breaks associated with passenger aberrations.
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On the three TCGA data sets we employed, we selected 463 genes from the Cancer Gene Cen-
sus to employ as positive controls. It should be noted that one should not expect all of these genes
to be involved in tumor development and maintenance specifically in breast cancer, glioblastoma
and colon cancer, since they have been found to be somatically mutated in a much broader vari-
ety of cancer types. Nor should we expect all of them to be activated or inactivated through copy
number aberrations, as most of these genes were identified based on the occurrence of other aber-
rations, such as point mutations. In fact, in some cases we do not even know the status (oncogene
or tumor suppressor) of the genes. We therefore also considered a much smaller subset of bona
fide or validated breast cancer oncogenes (n = 52) and tumor suppressors (n = 12).

As stated in the introduction, algorithms should strive to accurately pinpoint drivers by calling
recurrent regions as focally as possible. On the other hand, as we have shown, too much emphasis
on focality results in calling passengers (only) in close proximity to drivers (EGFR in Glioblastoma
being a good example). This problem is threefold. First, it results in the driver genes being missed,
reducing the true positive rate. Second, passenger genes are called erroneously, increasing the
false positive rate. Finally, these erroneously called passengers are often reported as highly signif-
icant, since they do occur in highly recurrent regions.

Finally, we have demonstrated that RUBIC is not only applicable to SNP6-derived copy num-
ber profiles, but can also successfully be applied to copy number profiles derived from NGS data.
We showed that the results obtained in the comparison with GISTIC2 on the SNP6 data also hold
for NGS data, both in the setting of copy number profiles derived from low coverage whole genome
sequencing as well as whole exome sequencing.

While it is beyond the scope of this work, the methodology of RUBIC can be applied to other
application domains. For example, large-scale projects such as The Encyclopedia of DNA Ele-
ments (ENCODE) are generating large amounts of ChipSeq data. Typically these profiles are sub-
jected to peak calling to identify, for example, binding sites of transcription factors or domains
characterized by a specific chromatin mark. The segmentation approach we proposed here can be
employed to segment ChipSeq profiles in order to identify binding peaks and domains. Note that
this will amount to the application of the segmentation to a single sample. However, as ChipSeq
is also being applied in tumor material on a more regular basis, we foresee that RUBIC will also be
applied to patient cohorts to detect recurrently occurring peaks or domains.
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4.4. METHODS

4.4.1. THE BREAK RECURRENCE MEASURE
Suppose we have a genomic region R of width w and cut it at position g0 into two regions: RL and
RR . Let the widths of these regions be denoted by wL and wR , respectively. Let the average of the
aggregate profile for regions RL and RR be denoted by µ̂L and µ̂R , respectively. Positive breaks near
g0, that significantly recur across samples, will result in µ̂R > µ̂L . In contrast, under the null model
(which models passengers) positive and negative breaks are equally likely to occur anywhere in R.
From this it follows that, under the null, the expected means will be equal, i.e. E [µ̂R ] = E [µ̂L ]. It
is important to note that this equality holds even if R is fully contained within a recurrent region.
It is this observation that removes the need to employ the peak splitting algorithms mentioned in
the introduction.

It can be shown that a recurrent break occurs at g0 in R by showing that the value of t (g0) =
µ̂R − µ̂L is significant according to the null model. This is similar to performing a two-sample t-
test where the two samplings are represented by the aggregate log ratio measurements in RL and
RR respectively. Formally, t (g ), is also a function of w = (wL , wR ), and will be denoted by tw (g ).
The larger wL and wR , the more statistical power one attains. However, if these regions are too
large and extend beyond loci in which recurrent breaks of the opposite sign occur, the power will
decrease considerably.

In Section 4.4.4 we show how hierarchical clustering based on the significance of tw can be
employed to simultaneously find appropriate values for wL and wR and identify recurrent breaks
based on the break recurrence measure, t .

4.4.2. THE NULL MODEL
We employ a null model to describe passenger breaks and hence identify recurrent breaks by eval-
uating the significance of the break recurrence measure. We use a cyclic shift permutation scheme
described in detail in the literature [13, 14] to define a null model. To sample from the null distri-
bution, we shift probe indices by a random offset for each copy number profile independently. In
this scheme, all break locations become independent across samples, while the inherent genomic
dependencies within each sample, for example chromothripsis patterns, are retained. As with the
real data, we sum all cyclically shifted sample profiles per probe (locus) to form one realization
of the aggregate profile under the null. (For notational convenience, a specific realization will be
denoted by the index i .)

By repeatedly permuting profiles one can estimate the probability that breaks recur at ob-
served frequencies by chance alone. This null model is conservative, since we would ideally only
model passenger breaks, whereas many of the breaks in our data contribute to driver events. To
reduce this bias, we first detect driver breaks with RUBIC and then update the null model after
deleting these breaks. We repeat these two steps iteratively (see Section 4.7.2).

4.4.3. MEASURING THE SIGNIFICANCE OF BREAK RECURRENCE
For a fixed w , each tw can be associated with a (two-tailed) p-value derived from the null model.
We will, instead, use a different measure of significance called the expected Euler characteristic
[13, 24, 25]. This measure is more natural in our application and will allow us to directly control
the false discovery rate on called recurrent regions rather than probes, as explained later. The idea
is as follows: for any fixed realization of the null model (indexed with i ), a fixed w and a fixed
non-negative threshold t , we define positive and negative excursion sets: A+

w,i = {g : tw,i (g ) ≥ t }
and A−

w,i = {g : tw,i (g ) ≤ −t }, respectively. We count the number of disjoint regions in each and

denote these with χ+w,i and χ−w,i , respectively. The sum of these counts, χw,i (t ) = χ+w,i +χ−w,i , is
known as the Euler characteristic. We can then compute the expected Euler characteristic across
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realizations: χ̄w (t ) = ∑
i∈I χw,i (t )/|I |, where I represents the set of all possible permutations (see

Section 4.7.1 and Fig. 4.6).
On actual data, for a fixed scale w0 and position g0, we can compute a value t0 = tw0 (g0).

χ̄w0 (|t0|) can be interpreted as a measure of significance (small values being significant). In fact,
it is an upper bound for the familywise error rate (FWER) if we regard each locus g as a separate
test and it is a tight bound for small values: χ̄w < 0.1 [24]. It is important to note that the Euler
characteristic allows us to link the value of the break recurrence measure at a specific locus and
a fixed scale, t0 = tw0 (g0), to the significance of the number of called recurrent regions in the
aggregate profile.

There are two major advantages of using χ̄w as a significance measure. First, there exists an
analytical approximation that relates t = tw (g ) to χ̄w (|t |) that is highly accurate for the majority
of scales (see Eq. 4.3 in Section 4.7.1). This means that we can avoid time consuming permutation
tests for many choices of w (see the subsection entitled ’RUBIC segmentation based on both the
permutation and analytically derived expected Euler characteristic’ in Section 4.7.1). The second,
and more important reason, is that we can directly compute the false discovery rate on called
recurrent regions (not breaks) using χ̄w . We clarify this in Section 4.4.5.

4.4.4. SEGMENTATION
Ultimately, RUBIC is a segmentation algorithm on the aggregate profile. We essentially approxi-
mate the aggregate profile with a piecewise constant function with jump discontinuities at signif-
icantly recurrent breaks. The jump discontinuities represent significant breaks in the aggregate
profile. The jump height at position g is exactly equal to tw (g ), where w = (wL , wR ) represents
adjacent segment widths. We regard breaks in the aggregate profile as significant if χ̄w is small.

RUBIC segmentation is an agglomerative hierarchical clustering algorithm that starts with the
most fine-grained segmentation, where each probe is a unique segment, and iteratively merges
adjacent segments. As a measure of the similarity of two segments, we use χ̄ws , where ws corre-
sponds to the widths of the segments under consideration. In each iteration, we merge segments
with the highest (least significant) χ̄ws score. We continue merging segments until all remaining
χ̄ws scores are less than or equal to a fixed global threshold, E . This implies that the jump discon-
tinuities separating the remaining segments are all significant (< E) and hence represent recurrent
breaks. In the segmented profile, segments residing between recurrent breaks are represented by
a single value, the average of the aggregate profile in that segment. Since all segments are naturally
sorted on the genome, and we only need to consider adjacent segments for merging, we can effi-
ciently perform the clustering in P log(P ) time, where P is the number of probes on the genome.
Fig. 4.1j shows the resulting segmentation when we perform this procedure for a fixed significance
threshold, E .

4.4.5. CALLING
The final step in the algorithm is to simply call all the local maximum segments in Fig. 4.1j produc-
ing the result illustrated in Fig. 4.1k. A segment is defined as a local maximum when it is bordered
by positive and negative jump discontinuities on its left and right, respectively. One can then ex-
pect to find oncogenes inside these called segments since positive (negative) jump discontinuities
correspond to significantly recurrent (< E) positive (negative) breaks, i.e. recurrent amplifications.

The remaining question is: how to choose the global threshold E? The benefit of using the
Euler characteristic as similarity measure is that E/2 is an upper bound on the expected num-
ber of false positive local maximum segments (called regions) that result in the data (see Sec-
tion 4.7.5). Since there is a direct correspondence between the number of false positive regions
and the threshold E , we can directly apply the Benjamini-Hochberg procedure [26] to control the
false discovery rate on recurrently amplified called segments [13]. We illustrate the Benjamini-
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Hochberg procedure with an example. Suppose we specify the FDR level at 25%. We then start by
setting E = 2×0.25, knowing that the expected number of false positive called regions will be below
0.25. We then count the number of called regions after clustering, say there are 70. At this point we
choose E = 70×2×0.25. We continue adapting E until the number of called regions remain un-
changed. Say, for example, we end up with 100 called regions. At this point E = 100×2×0.25 = 50.
The expected number of false positives will be below E/2 = 25, which is 25% of the 100 called
regions.

4.4.6. SIMULATING COPY NUMBER EVOLUTION WITH KNOWN DRIVER GENES
Given the lack of a real copy number data sets for which all the oncogenes and tumor suppressors
are known, it is very hard to compare algorithms in terms of specificity and sensitivity on real
data. This type of analysis can only be achieved through simulation. The majority of simulation
studies are performed by artificially inserting numerous recurrent copy number aberrations of
fixed widths for any given locus [10]. Such simulations are not designed to give a direct answer to
how good algorithms are at pinpointing driver genes, since they define driver aberrations rather
than driver genes. In fact, it is questionable whether amplifications of a fixed width recur across
multiple samples in real data sets, except for events occurring on the chromosome arm level.

Since real copy number aberrations are subject to selective pressure, we expect oncogenes
(tumor suppressors) to be found in recurrently amplified (deleted) regions without the need for
fixed recurrent segment widths. For example, an oncogene can be frequently amplified across
samples even though the associated aberration widths vary considerably. A small subset of these
amplifications might be focal enough so as to cover only this one gene. With enough samples,
it is likely that there is a sufficient number of these focal aberrations to unambiguously call the
oncogene as being recurrently aberrated. Consequently, finding driver genes is not the same as
finding recurrent aberrations of a fixed width.

For that reason, we simulated copy number profiles based on an idealized evolutionary model
in which a fixed number of oncogenes and tumor suppressors are known. We assigned a prolifera-
tion coefficient to each gene which indicates the influence of that gene on cell proliferation. More
specifically, the contribution of a gene to cell proliferation is the product of the coefficient and the
average copy number fold change of that gene with respect to the normal diploid state (see Sec-
tion 4.7.3). In our performance study, we selected 100 random genes from the human genome as
drivers and assigned to each a proliferation score drawn from a normal distribution. Positive (neg-
ative) coefficients represent oncogenes (tumor suppressors). During the simulated evolutionary
process, copy number changes were introduced in the profile, resulting in copy number changes
in several genes, including oncogenes and tumor suppressors.

We started the simulation by creating a copy number neutral (diploid) dominant clone, with
a genome of the same size as the human genome. We then evolved the copy number profile of a
single sample by repeating the following randomization and selection steps 20 times:

• Randomization: derive 100 descendants from the dominant clone by adding 10 random
copy number aberrations at random locations on the genome. The width and copy num-
ber log ratios of the aberrations are extracted from the TCGA breast cancer data set (see
Section 4.7.3).

• Selection: based on the proliferation coefficients and copy number values of the 100 se-
lected driver genes, compute the overall proliferation of each descendent, select the de-
scendent with the highest proliferation score and define it as the new dominant clone.

The final dominant clone represents the final copy number profile of a single sample. This process
is repeated for every sample. Simulated copy number profiles resemble what we observe in real
data, with complex recurrence patterns developing on both focal and broad scales.
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4.5. DATA AVAILABILITY
The lcWGS and simulated DNA copy number data that support the findings of this study are avail-
able in GitHub, https://github.com/ewaldvandyk/RUBIC-datasets.git. The TCGA SNP6 and WES
data that support the findings of this study are available from TCGA but restrictions apply to the
availability of these data, which were used under license for the current study, and so are not pub-
licly available. We provide full details on the TCGA data that we employed as well as the processing
steps that were applied to these data to obtain the input profiles employed in our analyses. Hence,
after obtaining the data from TCGA under licence our results can be reproduced. All of the remain-
ing data are available within the Article and Supplementary Information files or available from the
authors upon request.
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4.7. SUPPLEMENTARY METHODS

4.7.1. COMPUTING THE EXPECTED EULER CHARACTERISTIC IN RUBIC SEG-
MENTATION

OVERVIEW

RUBIC segments the aggregate copy number profile using agglomerative clustering. It starts by
considering each probe to be a unique segment and continues merging adjacent segments until
a stopping criteria is met. For each pair of adjacent segments we compute a similarity measure
called the expected Euler characteristic and in each step we merge adjacent segments with the
highest similarity measure. This process continues until all similarity measures are below a fixed
threshold E . In this section we describe in detail how to estimate the expected Euler characteristic
between adjacent segments (which generally depends on the widths of the segments). First, we
describe a method involving a permutation scheme that is accurate but is computationally ineffi-
cient. Second, we describe an analytical approximation that is often (but not always) accurate and
otherwise conservative. Finally, when clustering it is important to decide which approximation to
use. We discuss this in the final part of this section. A derivation of the analytical approximation
and the reason why the expected number of local maximum segments in the null model will be
below the threshold E is discussed in the last two sections of the chapter (Sections 4.7.4 and 4.7.5,
respectively).

ESTIMATING THE EXPECTED EULER CHARACTERISTIC WITH PERMUTATIONS

In Fig. 4.6a, we give a detailed breakdown on exactly how to estimate the expected Euler character-
istic with a permutation scheme for a fixed scale w = (wL , wR ) and fixed non-negative threshold
t .

In one realization of the null (illustrated by the dashed box in Fig. 4.6a), we shift probe indices
by a random offset for each sample independently. Probes that are shifted beyond chromosome
boundaries are shifted into adjacent chromosomes’ start positions and probes shifted beyond the
end of the last chromosome are shifted into the start positions of the first chromosome. In this
scheme, all break locations are independent between samples, while the inherent genomic de-
pendancies (for example chromothripsis) between breaks are retained within each sample. The
next step is to simply sum all the cycled samples’ profiles.

To compute the Euler characteristic for a fixed realization, we need to compute tw (g ) at every
genomic position g . To efficiently do this we define a wavelet kernel as follows:

kw (g ) =


+1/wR −wR ≤ g < 0
−1/wL 0 ≤ g ≤ wL

0 elsewhere
(4.1)

tw (g ) is computed using this kernel with a computationally efficient operation called convolution
(indicated by the symbol ∗ in Fig. 4.6). Essentially, for each locus g0, it computes tw (g0) by 1)
reversing and shifting the kernel to location g0, kw (g0−g ), and 2) multiplying it with the aggregate
profile (using the scalar product). The resulting convolved profile is shown in the lower right of
Fig. 4.6a. This is equivalent to first convolving the individual samples’ profiles with the kernel and
then summing (because convolution is distributive over addition).

For the fixed realization i , we can count the number of disjoint regions of χ+w,i (χ−w,i ) above
the threshold t (below −t ) as illustrated by the red (green) numbers in Fig. 4.6a. The Euler charac-
teristic for i is then simply the sum of these counts.

If we repeat this permutation scheme many (N ) times, we can estimate the expectation across
realizations as indicated by the formula at the bottom of Fig. 4.6a.
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Figure 4.6: Illustration on how to compute the expected Euler characteristic. We assume a fixed scale
w = (wL , wR ) and fixed positive threshold t in the null-model. Throughout, ∗ represents the convolution op-
erator. (a) Illustration on how to approximate the expected Euler characteristic with the permutation scheme.
In one realization of the null, we cyclicly shift each sample’s probes with a random offset (independently for
each sample). Each sample is convolved with the wavelet kernel corresponding to w = (wL , wR ) and the re-
sults are shown in the curves in the column on the right in a. We sum the resulting convolved profiles to obtain
the curve in the lower right corner in a. Equivalently, we can first sum all the cyclicly shifted samples to pro-
duce a realization of the aggregate in the lower left corner and then convolve it with the wavelet. The Euler
characteristic is computed by counting disjoint regions above (below) the threshold t (−t ). This procedure is
repeated N times and estimates the expected Euler characteristic using the equation at the bottom of a. (b)
We can accurately approximate the expected Euler characteristic analytically without the permutation scheme
if wL and wR are large enough. We compute the histogram of each sample’s convolved profile. We compute
the variance in each histogram and note that they are symmetric. Since all samples are cyclicly shifted inde-
pendently, we can compute the distribution (variance) on the aggregate by convolving (adding) the histograms
(single sample variances). Finally, we approximate the null as a Gaussian process with an analytically derived
expected Euler characteristic as shown by the bottom equation in b.
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AN ANALYTICAL APPROXIMATION OF THE EXPECTED EULER CHARACTERISTIC

For many scales w (when wL and wR are large), we can accurately approximate χ̄w (t ) analytically
as illustrated in Fig. 4.6b. We present our copy number data as a S ×G matrix of copy number log
ratios [cs,g ], where S is the number of samples and G the number of probe measurements on the
genome. Each row in the matrix represents a single sample profile cs , where probes are sorted on
the genome. Each sample profile can be convolved with the kernel to produce tw,s = kw ∗ cs .

First we compute the histogram for each sample’s convolved profile (tw,s ). Note that these his-
tograms remain unchanged for cyclically shifted profiles. These histograms have mean zero (the
kernel integrates to zero) and are somewhat symmetric (positive breaks are as likely to occur as
negative breaks in every sample). Due to independence between samples in the null, we can com-
pute the histogram on the aggregate convolved profile by convolving all the sample histograms.
It is then a consequence of the central limit theorem that allows us to approximate the convolved
aggregate profile as a multivariate Gaussian random process with zero mean. Furthermore, this
process will be stationary due to the cyclic shift hypothesis (all probes behave in the same way
everywhere, since we randomly offset them for each realization). For a stationary zero-mean mul-
tivariate Gaussian process there are only two parameters that need to be estimated: The variance
σ2

w and auto-correlation rw . The auto-correlation is a function of ∆g with rw (∆g ) equal to the
Pearson correlation between probe measurements separated by ∆g probes. It turns out that, in
order to relate χ̄w to a threshold t , we only need to compute ρw = rw (1), i.e. the Pearson corre-
lation between adjacent probe measurements. We explicitly compute the variance σ2

w and ρw as
follows:

σ2
w =

S∑
s=1

σ2
w,s , σ2

w,s =
1

G

G∑
g=1

t 2
w,s (g )

ρw = 1

σ2
w

S∑
s=1

ρw,s , ρw,s = 1

G

G∑
g=1

tw,s (g )tw,s
(
(g +1)/GZ

)
(4.2)

We can then accurately relate the expected Euler characteristic to a positive threshold t for a
stationary Gaussian process as follows:

χ̄w (t ) = (G −1)Vw

π
exp

(− 1

2
(t/σw )2)

, where

Vw = arccos(ρw ) (4.3)

RUBIC SEGMENTATION BASED ON BOTH THE PERMUTATION AND ANALYTICALLY DERIVED EXPECTED

EULER CHARACTERISTIC

In RUBIC segmentation, we need to compute χ̄w for many different scales. To do so purely based
on the permutation scheme is computationally prohibitive and it is desirable to use the analytical
estimate instead.

The Gaussian assumption does hold for the majority of kernel choices w . However, when
wL and wR are small, the approximation becomes inaccurate. For example, suppose we choose
w = (1,1). In this case, tw,s will be zero everywhere except at locations where copy number breaks
occur. Due to the sparsity of tw,s , the Gaussian assumption fails and the analytical prediction will
be liberal.

Due to these considerations we need to perform segmentation using a hybrid between these
estimates. The methodology is simple: We cluster segments based purely on the analytical model
at first. After segmenting with this methodology, there will only be a small number of jump discon-
tinuities in the segmented profile. All of these jump discontinuities will be significant according
to the analytical estimate. It is only at this point where we recompute significance values (on the
small set of jump discontinuities remaining) based on the permutation scheme. After we did so,
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we continue segmenting with the analytical estimates. We iteratively continue until all jump dis-
continuities are significant based on the permutation estimate.

With this procedure, we are always ensured that the expected number local maximum seg-
ments (that we end up calling) in the aggregate segmented profile is below or equal to E/2, where
E is the global threshold used to stop clustering. This is true no matter what analytical approxima-
tion we use for χ̄w . If this analytical approximation is conservative, we end up merging segments
with jump discontinuities that should have been called significant and therefore the number of
local maximum segments will be lower than E/2. On the other hand, if the analytical approxima-
tion is liberal, we do not lose power or incur more false positives. Instead, we end up testing many
jump discontinuities with the permutation scheme. The analytical approximation we use tend to
be liberal for small kernel sizes (and we should not expect to lose power because of it). Neverthe-
less, by the time we stop merging segments, the majority of jump discontinuities remaining define
larger kernels, where the analytical approximations hold well.

Due to the overall accuracy of our analytical estimate, we rarely need to iterate these steps.
Usually after segmenting the aggregate profile with the analytical approximations, the permuta-
tion scheme also calls the jump discontinuities significant and we stop.

4.7.2. ITERATIVELY UPDATING THE NULL-MODEL
Generally, we consider a copy number aberration to be a driver if it provides a selective advantage
in tumor initiation and progression. Driver aberrations are likely to effect (and therefore overlap)
with oncogenes and tumor suppressor genes (driver genes). Passenger aberrations on the other
hand are believed to provide no significant selective advantage and occur due to genomic insta-
bility. It is not necessarily true that all aberrations that overlap with driver genes are driver aberra-
tions. For example, it could happen that an aberration amplifies an inactive allele of an oncogene.
Nevertheless, if we can prove that neutral-to-gain (or gain-to-neutral) breaks recur significantly
across samples, then we have good reason to believe that at least a subset of them belong to driver
aberrations.

In Fig. 4.7 we show an example of 20 DNA copy number samples (only the gains). In the top
panel we show all the driver aberrations in red, whereas passenger aberrations are shown in grey.
Note that we generally don’t have prior knowledge on which aberrations are drivers and we show
it here only for illustrative purposes. The important point here is that not all driver aberrations (or
breaks) will necessarily recur significantly. Therefore it is not possible to fully discriminate drivers
from passengers in the data.

The cyclic shift null-model describes the behavior of passenger aberrations and is based on
the assumption that they occur randomly on the genome. Unfortunately, this scheme will be con-
servative, since the overall break density will be higher in the cyclic null model than the true pas-
senger break density. Although the break locations are random in the null, a large portion of the
breaks that are scatter across the genome originate from drivers that are concentrated in fixed ge-
nomic loci in the data (see the lower panel in Fig. 4.7). Therefore, the cyclic shift null-model will
over estimate the background break density. Nevertheless, we can significantly reduce this bias by
iteratively detecting recurrent break points with RUBIC and then remove the concentrated breaks
from our null model. Notably, this will also automatically remove the apparent breaks between
adjacent chromosome boundaries.

At each iteration we perform RUBIC segmentation on the aggregate profile with family wise
error (FWER) control (it is not particularly natural to do FDR control for updating the null). Family
wise error control is straight forward and achieved by setting the clustering threshold at E = FWER
without applying the Benjamini-Hochberg procedure. We set the family wise error rate equal to the
FDR level. We segment each sample using the break locations detected by RUBIC (with segment
amplitudes equal to the mean in that particular sample’s copy number ratio). From each sample,
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Figure 4.7: Illustrating an example with 20 DNA copy number profiles. The top panel shows copy number
gains as they occur across the genome (x-axis) for each sample (y-axis). Driver aberrations are shown in red and
passengers in grey. The bottom panel shows the copy number break points for each sample. Neutral-to-gain
breaks are shown in red, while gain-to-neutral breaks are shown in blue.

we subtract this segmented profile and update the null accordingly (i.e. cyclically permute based
on the new sample profiles). As a result, all frequently recurrent breaks are canceled. Note that
the ’cancellation’ of breaks will not necessarily align perfectly with the correct driver breaks. This
leads to a slight power loss (slightly more conservative than need be) since we are technically in-
troducing new breaks locally (and therefore increase the break density in the null). Nevertheless
they will occur in close proximity (and be of opposite sign) to the true driver breaks and greatly
improves statistical power (especially for larger kernels).

At each iteration, we re-segment the aggregate of the original dataset (not the profiles with the
cancelation breaks) based on the updated null-model. We continue iterating until no new breaks
can be detected at the specified FWER level.

We use the resulting null-model (after convergence) to finally segment the aggregate with FDR
control.

4.7.3. EVOLUTIONARY MODEL FOR SIMULATING COPY NUMBER PROFILES

SIMULATING PASSENGER ABERRATIONS

When we simulate tumor instability in our simulation model, we randomly add copy number aber-
rations that were extracted from the TCGA breast cancer datasets. Each copy number sample in
the Level 3 TCGA data is represented as a list of segments with start and end positions and the
average copy number log ratio of each segment. A copy number aberration does not typically
correspond to these segments directly. For example, suppose there are only two aberrations in
chromosome 1q, one focal amplification and one broad gain of the whole chromosome arm. We
want to extract these two events separately, but in the level 3 data at our disposal there will be
three segments corresponding to 1q. To extract aberrations we follow a simple strategy. In each
sample and in each chromosome, we extract the segment with the highest (positive or negative)
copy number log ratio. We then merge adjacent copy number segments that border the chosen
segment into one large segment. We take care to associate the merged segment with a log ratio
that is the weighted average of the two segments contributing (the weights depend on the sizes of
the segments). We iteratively extract segments in this fashion until no more segments remain.
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This procedure is performed for each sample and each chromosome in our TCGA breast can-
cer dataset. Since we use these segments to simulate passenger aberrations that are located at
random positions and samples, we need not record their locations nor which samples they are
from, but only their genomic widths and log ratio values. We do add a flag indicating whether the
segment is as wide as the chromosome, i.e. was the last segment extracted from a complete chro-
mosome. Therefore we end up with a large aberration list with three fields: the width, log ratio and
chromosome wide flag.

When we add a passenger aberration to an existing profile, we select a random chromosome
(the probability of each chromosome is weighted by its length) and a random aberration from the
list described above. If the chosen segment is flagged as chromosome wide, we change its size
to the chromosome width and center it to cover the whole chromosome. Otherwise, we center
the aberration at a random position in the chromosome and clip the segment at chromosome
boundaries if necessary. Finally, we add the segment to the existing profile.

COMPUTING THE PROLIFERATION SCORE

We defined a list of oncogenes and tumor suppressors di (1 ≤ i ≤ D). For each we assigned a
proliferation coefficientαi where positive (negative) values are associated with oncogenes (tumor
suppressors). From this we can compute a proliferation score P for any fixed copy number profile
by assuming that cell proliferation is linearly related to the average copy number dosage ( fi ) (of
gene di ) and αi :

P = ∑
i∈{1,...,D}

αi fi (4.4)

The dosage fi of gene di is based on the average copy number log ratio c̄i of the gene and is a
measure of the fold change relative to a normal reference:

fi = sign(c̄i )(A|c̄i |−1), (4.5)

where A = 2 is the log base.

4.7.4. DERIVATION OF THE ANALYTICAL APPROXIMATION OF THE EXPECTED

EULER CHARACTERISTIC
We will now derive an accurate analytical expression relating the expected Euler characteristic to
a fixed non-negative threshold t for a discrete Gaussian random process with constant variance
σ2, zero mean and non-stationary correlation function r (g ). In our application we have a discrete
stationary Gaussian random process defined at a finite number of probes

(
Ti : i ∈ {0,1, ...,G}

)
, but

the theory applies to non-stationary processes too. Much work has been done on estimating the
expected Euler characteristic in stationary and discrete processes [27–29]. These estimates are
typically not very accurate when adjacent probes are weakly (or negatively) correlated. On the
other had, for smooth stationary Gaussian processes, there exist exact expressions for the expected
Euler characteristics [25]. Our strategy will be to interpolate discrete processes with a smooth (in
the sense that it is continuously differentiable up to any order) Gaussian random process H(g )
(Fig. 4.8). From the smoothed process we can derive an extremely simple and exact expression for
the expected Euler characteristic.

Without loss of generality, we will assume that the discrete process has a variance equal to
one for all probes. For simplicity, we assume that the Euler characteristic is equal to the sum of
the up-crossings (the red circles in Fig. 4.8) and down-crossings (the green circle in Fig. 4.8) at the
thresholds t and −t respectively. We refer to these up-crossings and down-crossings collectively
as the level-crossings of t . Strictly, if |t0| > t , where t0 is the left most probe measurement, the
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Figure 4.8: Smooth approximation of a discrete Gaussian process. We interpolate a discrete stationary Gaus-
sian process (indicated with blue dots) with a smooth and non-stationary Gaussian process (in red). Counting
regions above (below) a fixed threshold t (−t ) can be accomplished by counting up-crossing (down-crossings)
in the smoothed profile as indicated by the red (green) circles.

Euler characteristic will be equal to the number of crossing points plus one. Although it is easy to
correct for this boundary effect, it is usually negligible and we will not consider it any further in
this section.

Traditionally, the expected Euler characteristic is only computed for up-crossing above a pos-
itive threshold. In our application, we also count the down-crossings. Since a Gaussian random
process is symmetric with respect to the zero line, the expected number of level crossings will be
double the number of up-crossings.

The reason we prefer to work with a smooth random process is due to Theorem 1 in Sec-
tion 3.8.1. We restate the theorem here for convenience:

Theorem 2. Consider a non-negative threshold t , a closed interval R = [gL , gR ] and a suitably regu-
lar (non-stationary) random Gaussian process H with ∀g ∈RH(g ) ∼ N (0,1). The expected number
of level crossings for a threshold t in R is equal to:

χ̄(t ) = e−t 2/2

π

∫
R

√
Var

[ d

d g
H(g )

]
d g (4.6)

For the definition of a suitably regular process, see the subsection entitled ’Suitably regular
processes’ in Section 3.8.1.

To smooth the discrete process, we convolve it with a particular bump function f satisfying
the following properties:

• It is smooth (continuously differentiable up to any order).

• {g : f (g ) = 0} = (−∞,1]∪ [1,∞)

• {g : f (g ) > 0} = (−1,1)

• f (0) = 1

• ∀0 ≤ g ≤ 1, f(g) + f(g - 1) = 1

The exact choice of this function is not important, however a good example is illustrated in
Fig. 4.9 and is defined as follows:

f (g ) = Γ(g )/Γ(0), where

Γ(g ) =
∫ g

−1
β(2u +1)−β(2u −1)du

β(g ) = γ(1− g )γ(1+ g )

γ(g ) =
{

e−1/g g > 0
0 g ≤ 0

(4.7)
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Figure 4.9: Illustrating the properties of the Bump function used for smoothing the discrete Gaussian pro-
cess.

We convolve a realization of the discrete process
(
ti : i ∈ {0,1, ...,G −1}

)
with f to produce the

smoothed profile:

s(g ) = f (g −bg c)tbg c+
(
1− f (g −bg c)

)
tbg c+1 (4.8)

Note that at any particular position g , s only depends on the two adjacent random variables tbg c
and tbg c+1. The covariance matrix of two variables ti and ti+1 is presented as follows:

Σi =
[

1 ρi
ρi 1

]
, (4.9)

where ρi = Cov(ti , ti+1). Using this, we can easily compute the variance of S at any position g :

Var[S(g )] = [ fg ,1− fg ]Σbg c[ fg ,1− fg ]T , where

fg = f (g −bg c) (4.10)

Generally, Var[S(g )] is equal to one at integer values, but strictly smaller at intermediate values.
Therefore, our final step in smoothing the discrete process is to z-normalize. The final smoothed
interpolation function of a realization of the discrete random process is therefore defined as fol-
lows:

h(g ) = s(g )√
Var[S(g )]

(4.11)

In Fig. 4.8 we show an example realization of a discrete process (with blue dots) and the resulting
smoothed function h(g ) in red.

Theorem 3. Consider a non-negative threshold t , a non-stationary discrete random Gaussian pro-
cess (Ti : i ∈ {0,1, ...,G −1}) with ∀i ∈ {0,1, ...,G −1} Ti ∼ N (0,1). The Expected number of level cross-
ings of the interpolation process H(g ) in the region [0,G −1] is equal to:

χ̄(t ) = e−t 2/2

π

G−2∑
i=0

arccos(ρi ) (4.12)

Proof. Since f is smooth and h is an algebraic expression of f , h is itself smooth and ∀g ∈ [0,G −
1],Var[H(g )] = 1. As a consequence, all the conditions in Theorem 2 are satisfied. The only part
that needs a proof is: ∫ 1

0

√
Var

[ d

d g
H(g )

]
d g = arccos(ρ0), (4.13)
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For any g ∈ [bg c,bg c+1], only the variables Tbg c and Tbg c+1 are involved in an analogous manner
as T0 and T1 are involved for g ∈ [0,1]. From this observation and Eq. 4.13, Theorem 3 immediately
follows.

In all subsequent steps, we only consider g ∈ [0,1]. First we can simplify Eq. 4.10:

C = Var[S(g )] = [ f ,1− f ]Σ0[ f ,1− f ]T

= 2α f 2 −2α f +1, (4.14)

where α= 1−ρ0. Next we rewrite Eq. 4.11 as follows:

h = f t0 + (1− f )t1p
C

= fp
C

(t0 − t1)+ 1p
C

t1 (4.15)

Taking the derivative yields

h′ = (p +q f )(t0 − t1)+qt1, (4.16)

where

p = f ′C−1/2, q =−1

2
C−3/2C ′ (4.17)

It is easy to show that:

Cov(t0 − t1, t1) =
[

2α −α
−α 1

]
, (4.18)

As a consequence,

Var[H ′] = [p +q f , q]

[
2α −α
−α 1

]
[p +q f , q]T , (4.19)

After a long, but straightforward, derivation we obtain the following:

√
Var[H ′] = r ′

r 2 +1

r =
√

1−ρ0

1+ρ0
(2 f −1) (4.20)

If we set r0 =−
√

1−ρ0
1+ρ0

and r1 =
√

1−ρ0
1+ρ0

,

∫ 1

0

√
Var[H ′]d g =

∫ r1

r0

r ′

r 2 +1
dr

= arctan(r1)−arctan(r0)

= arccosρ0 (4.21)
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4.7.5. THE CLUSTERING THRESHOLD E CONTROLS THE EXPECTED NUMBER

OF FALSE POSITIVES

OVERVIEW

If we perform hierarchical clustering on a realization of the null model and stop merging segments
when all similarity measures (χ̄) between adjacent segments are below a global threshold E , then
there will be a certain number of local maximum segments. The purpose of this section is to show
that the expected number of local maximum segments resulting across realizations will be less
than or equal to E/2. In this section it is not necessary to assume that the null process (describing
the aggregate) is Gaussian. However, there are a number of properties that are required for the
null model. Unfortunately we need to introduce some details and therefore we introduce these
properties gradually. All these properties hold in the cyclic permutation scheme that we use. We
start with the first two properties

• Property 1: The distribution of the aggregate of a probe (across realizations) is independent
of the probe index, i.e. all probes have the same distribution.

• Property 2: The aggregate process is stationary, i.e. the covariance between probe mea-
surements in the aggregate depends only on the index distance between them and not the
actual probe indices

THE EULER CHARACTERISTIC AT A FIXED SCALE w = (wL , wR ) AND FIXED POSITIVE THRESHOLD t IN

THE NULL MODEL

For a fixed scale we convolve the aggregate profile of a fixed realization of the null with a kernel
kw which results in values (tg : 0 ≤ g ≤G −1), where G is the number of probes. Strictly, tg = tw (g )
is a function of the scale w = (wL , wR ) and we drop this for convenience. The corresponding null
process (Tg : 0 ≤ g ≤G−1) is stationary and have mean zero everywhere, since the kernel integrates
to zero. Next, we introduce the third property of the null:

• Property 3: The distribution of each Tg is symmetric with respect to zero.

This assumption holds, since our null model describes the behavior of passenger aberrations on
the genome. Positive (neutral-gain) breaks are as likely to occur as negative (gain-neutral) breaks
in each sample and their locations are also random on the genome.

For a fixed threshold t we can compute the Euler characteristic by counting crossings as indi-
cated in Fig. 4.10. There are two possible ways in which (tg : 0 ≤ g ≤ G −1) can cross the positive
threshold t :

• Up-crossings: probe g is considered an up-crossing when tg ≥ t and tg−1 < t . In Fig. 4.10
we mark these events with green circles.

• Down-crossings: tg ≤ t and tg−1 > t . These are the blue circles in Fig. 4.10.

By convention we never count a crossing at probe index 0, since there is no probe to the left for
comparison.

We count the number of up-crossings and down-crossings and denote it with χ↑w (t ) and χ↓w (t )
respectively. Similarly we can count the number of crossings at threshold −t and denote it with

χ
↑
w (−t ) (red circles) andχ↓w (−t ) (orange circles). In this notation, the expected Euler characteristic

that we use as a similarity measure is equal to χ̄w (|t |) = E
[
χ
↑
w (t )+χ↓w (−t )

]
, where the expectation

is across realizations. As a consequence of Property 3 and the fact that expectation is a linear
operator, we can see that:

E
[
χ
↑
w (t )

]= E
[
χ
↓
w (t )

]= E
[
χ
↑
w (−t )

]= E
[
χ
↓
w (−t )

]= 1

2
χ̄w (|t |) (4.22)
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Figure 4.10: Illustrating the type of t-level crossings that exist. t up-crossings and down-crossings are repre-
sented by green and blue circles respectively. −t up-crossings and down-crossings are represented by red and
orange circles respectively

Counting up-crossing at t across the whole genome is equivalent to summing up-crossings in
sub-intervals as follows:

χ
↑
w (t ) =χ↑w,{0,...,g0}(t )+χ↑w,{g0,...,g1}(t )+ ...+χ↑w,{gn ,...,G−1}(t ) (4.23)

Note that we include g0 in both the intervals {0, ..., g0} and {g0, ..., g1}. This is because we never
count the crossing in the left most probe of an interval (to stay in accordance with our definition).

From this observation, properties 1, 2 and, again, linearity of expectation, we see that

χ̄
↑
w,{g1,...,g2}(t ) = E

[
χ
↑
w,{g1,...,g2}(t )

]= g2 − g1

2(G −1)
χ̄w (|t |) (4.24)

We can define χ̄
↓
w,{g1,...,g2}(t ), χ̄↓w,{g1,...,g2}(−t ) and χ̄

↑
w,{g1,...,g2}(−t ) in a similar fashion and

note that these expectations are all equal.
It is convenient to work with a density measure on the expected Euler characteristic. This

density is exactly equal to the expected number of crossings at one probe (or the expected Euler
characteristic at one probe). A single probe cannot be more than one type of crossing and we are
therefore computing the expectation of a Bernoulli trail which is therefore also exactly equal to the
probability of a probe to be a crossing. Due to the previous equation and Eq. 4.22 we can compute
these densities as follows (setting g2 = g1 +1):

∆χ̄w (|t |) = 1

G −1
χ̄w (|t |)

∆χ̄
↑
w (t ) =∆χ̄↓w (t ) =∆χ̄↑w (−t ) =∆χ̄↓w (−t ) = 1

2
∆χ̄w (|t |) (4.25)

As an application, say we wish to compute the expected number of up-crossings at the nega-
tive threshold -t over P probes. Then we simply compute P−1

2 ∆χ̄w (|t |).
It is also convenient to transform the vector (tg : 0 ≤ g ≤G −1) into a new vector (τg : 0 ≤ g ≤

G −1), where each τg represents a significance measure in terms of the expected Euler character-
istic. For each tg we can compute χ̄w (|tg |), which is always positive and is uninformative with
respect to the sign of tg . Furthermore, a large value tg will correspond to a low value for χ̄w (|tg |).
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For the sake of convenience, we would like τg to be an increasing function of tg , i.e. large values
in τg represent highly significant. With these considerations in mind, we define τg as follows:

τg = τw (g ) =−sign(tg ) log(
χ̄w (|tg |)

G −1
) (4.26)

We should note that for any scale w and value tg , χ̄w (|tg |) ≤ G −1, since the number of crossing
points can never exceed the number of probes minus one (probe zero is never a crossing). There-
fore the log will always be non-positive. τg will always have the same sign and be an increasing
function of tg . By convention, we also set sign(0) = 0.

Counting crossing in (tg : 0 ≤ g ≤ G −1) with respect to a positive threshold t is equivalent to

counting crossings in (τg : 0 ≤ g ≤ G −1) with respect to the threshold T = − log(
χ̄w (t )
G−1 ). We can

also express the expected Euler characteristic density in Eq. 4.25 in terms of the threshold T :

∆χ̄(T ) =∆χ̄w (|t |) = e−T

∆χ̄↑(T ) =∆χ̄↓(T ) =∆χ̄↑(−T ) =∆χ̄↓(−T ) = 1

2
∆χ̄(T ) (4.27)

This form is extremely convenient, since ∆χ̄ only depends on T and not the scale w .
As before, we can also count the number of crossing in a restricted interval and denote them

by χ↑{g1,...g2}(T ), etc. We can compute the expected number of up-crossings at T in a restricted

interval {g1, ...g2} as follows: χ̄↑{g1,...g2}(T ) = g2−g1
2 ∆χ̄(T ).

COUNTING LOCAL EXTREMA IN THE SEGMENTED AGGREGATE

In agglomerative clustering, we continue merging segments until all similarity measures between
adjacent segments are smaller than a global threshold E . A hypothetical realization of the null
after segmenting the aggregate is illustrated in Fig. 4.11a. The blue dots represent the aggregate
of each probe, while the piecewise constant red graph represent the aggregate profile after clus-
tering. Each segment has a height equal to the mean aggregate. By convention, we define a local
extremum as a segment that is supported by two jump discontinuities of opposite sign. As a con-
sequence, we do not count segments on the boundaries as local extrema. In Fig. 4.11a, there are
exactly three local extrema.

In Fig. 4.11b we computed the difference between adjacent probes in the segmented profile.
This results in a sparse function that is equal to zero everywhere except perhaps at the jump dis-
continuities. The height of a jump discontinuity at location gn is exactly equal to tgn = t(ωn ,ωn+1)(gn ).
In Fig. 4.11c, we map each tgn to its corresponding expected Euler characteristic χ̄(ωn ,ωn+1)(|tgn |).
These are the similarity measures that we used for clustering and are all below the threshold E
since this is the point at which we stopped merging. In Fig. 4.11d we show the τ profile, where
each tgn is converted to its respective τgn value as explained earlier. Note that the threshold E in

Fig. 4.11d corresponds exactly to the threshold T =− log( E
G−1 ).

The green ellipses in Fig. 4.11d illustrates a different way in which we count local extrema.
Counting local extrema is performed in exactly the same way we compute the Euler characteristic
for a fixed scale, except that we:

• use the τ profile in Fig. 4.11d,

• use the threshold T , and

• ignore all the probes where there are no jump discontinuities, i.e. we collapse the profile
with new indices corresponding to the jump discontinuities.
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Figure 4.11: Illustrating how we count local maximum segments. (a) Illustration of the aggregate profile (in
blue) and the segmented profile (in red). (b) The size of the jump discontinuities in the segmented profile is
represented with t-scores. (c) Each t-score is transformed into a significance score known as the expected Euler
characteristic. (d) Each significance score is finally converted to a signed tau-score)
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We represent this number with χ(T ). Note that χ(T ) does not depend on any of the scale param-
eters, since we are counting on the segmented profile and not just any particular scale. Also note
that for all τ values at the jump discontinuities it follows that |τ| ≥ T (again because this is where
we stop clustering). The above definition of χ(T ) is only valid in this case. In the next section we
show how to compute χ(T ) in cases where |τ| < T .

At the end of clustering, χ(T ) will always be equal to the number of local extrema in the seg-
mented profile (which equals three in Fig. 4.11a). Generally, the number of local maximum seg-
ments will be approximately equal to half of the number of local extrema. To be exact:

• χ(T )/2 if χ(T ) is even,

• (χ(T )+1)/2 if χ(T ) is odd and the left most jump discontinuity t(ω0,ω1)(g0) has a positive
sign (this is the case in Fig. 4.11), and

• (χ(T )−1)/2 if χ(T ) is odd and the left most jump discontinuity has a negative sign.

When segmenting a realization of the null, the chance that the left most break is positive is ex-
actly 50%. The expected number of local maximum segments across realizations will therefore be
exactly half of E [χ(t )].

The goal of this section is therefore to show that E [χ(T )] ≤ E .

COMPUTING χ(T ) WHEN SOME τ VALUES ARE BELOW T
We just showed how to compute χ(T ) when all jump discontinuities |τgn | ≥ T . However, this is
only the case at the terminal stage of clustering. For intermediate stages, there will be discontinu-
ities where |τgn | < T . In general, the count χ(T ) is computed in a slightly different manner than
for a fixed scale.

We count crossings on the vector (τgn : 0 ≤ n ≤ S −1), where S is the number of breaks in the
segmentation. We define a discontinuity at index n as a T up-crossing if τgn ≥ T and τgn−1 < T .
By convention, the first discontinuity at index 0 will never be an up-crossing. We denote the set of
indices that correspond to T up-crossings with C+. Similarly, we define a discontinuity at index n
as a −T down-crossings if τgn ≤−T and τgn−1 >−T . We denote the set of indices that correspond
to −T down-crossings with C−. Note that C+ and C− are disjoint.

We now introduce new types of crossings that we collectively refer to as switch crossings. We
define a discontinuity at index n as a T switch-crossing if:

n ∈C+ and max{i ∈C− : i < n} ≥ max{i ∈C+ : i < n} (4.28)

Similarly, n is a −T switch crossing if:

n ∈C− and max{i ∈C+ : i < n} ≥ max{i ∈C− : i < n} (4.29)

By convention, we define the max of an empty set to be equal to 0, i.e. max{} = 0. We denote
the sets of T and −T switch-crossings with S+ and S−. Notably, S+ ⊆C+, S− ⊆C−. Also note that:
min(C+∪C−) ∈ S+∪S−, i.e. the left most crossing (at T or −T ) is automatically a switch crossing.
This is because the max will be 0 in both cases and the ‘≥‘ statement becomes true.

The Euler characteristic is defined as the cardinality of C+∪C−. However, we define χ(T ) as
the cardinality of S+∪S−. Note that if ∀n ∈ {0, ...,S −1}, |τgn | ≥ T , χ(T ) will be equal to the Euler
characteristic, otherwise it will be less than or equal.

We can also compute χ(T ) when segmenting on a restricted number of probes {m,m+1, ...,n}
and we denote it with χ{m,...,n}(T ). We should be careful to note that we only segment on this
restricted set of probes. Generally, the resulting segmentation will not be the same as when per-
formed on {0, ...,G −1}, since there is no guarantee that jump discontinuities will result at m and
n. Later on, however, we will only compute χ{m,...,n}(T ) when the global segmentation have jump
discontinuities at m and n.
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MERGING ADJACENT SEGMENTS IN ONE ITERATION OF CLUSTERING

Fig. 4.12 illustrates the step in agglomerative clustering where two segments are merged with the
lowest |τ| separating them at location gn . The red graph in Fig. 4.12a shows the segmented ag-
gregate before merging segments of widths ωn and ωn+1 at iteration k. The black graph shows
the segmented aggregate after merging the segments at iteration k +1. In Fig. 4.12b we show the
lag-one difference profile of the segmented aggregate (similar to Fig. 4.11b) before merging and
in 4.12c we show the corresponding tau plot (similar to Fig. 4.11d) before merging. In Fig. 4.12b
we show the thresholds in the diff graph that corresponds to T =− log( E

G−1 ) in the τ profile. Note
that these thresholds differ between discontinuities, since they are all at different scales. Fig. 4.12d
and 4.12e are the same as 4.12b and 4.12c respectively, except that these relate to the segmented
aggregate after merging segments (iteration k + 1). The only differences between Fig. 4.12c and
4.12e are:

• We remove the jump discontinuity corresponding to τk
gn

= τ(ωn ,ωn+1)(gn )

• We replace τk
gn−1

= τ(ωn−1,ωn )(gn−1) with τk+1
gn−1

= τ(ωn−1,ωn+ωn+1)(gn−1)

• We replace τk
gn+1

= τ(ωn ,ωn+1)(gn+1) with τk+1
gn+1

= τ(ωn+ωn+1,ωn+2)(gn+1)

In this specific example, the new value τk+1
gn+1

is above the threshold T . If τk+1
gn−1

was also significant,
we would stop merging at this point.

JUMP DISCONTINUITIES CAN BECOME SIGNIFICANT AFTER MERGING. CASE 1: BORDERING A SIGNIF-
ICANT DISCONTINUITY OF THE OPPOSITE SIGN

In Fig. 4.12d we show t(ωn+ωn+1,ωn+2)(g ) evaluated at every g (not just gn+1). The important point
to note here is that although t(ωn+ωn+1,ωn+2)(gn+1) is above the threshold χ̄−1

(ωn+ωn+1,ωn+2)(E), it
is short lived with a crossing in close proximity. It is extremely likely that such a crossing will
occur in the region {gn+1, ..., gn+1 +ωn }. This is illustrated in Fig. 4.12f. Here we show the ker-
nel (in black) k(ωn+ωn+1,ωn+2) when shifted to gn+1 +ωn , i.e. k(ωn+ωn+1,ωn+2)(gn+2 +ωn − g ).
t(ωn+ωn+1,ωn+2)(gn+2 +ωn ) is evaluated by computing the average aggregate in the right lobe of
the kernel and subtracting the average in the left lobe. These averages are shown by the dotted
lines in Fig. 4.12f.

As a consequence of this observation, we specify yet another property of the null model. Given
a segmentation with jump discontinuities
{τ(ωn ,ωn+1)(gn ),τ(ωn+1,ωn+2)(gn+1),τ(ωn+2,ωn+3)(gn+2)} and an arbitrary positive thresholds T .

• Property 4: If τ(ωn ,ωn+1)(gn ) < T , τ(ωn+1,ωn+2)(gn+1) < T and τ(ωn+2,ωn+3)(gn+2) ≤−T , then:

P [∀g ∈ {gn+1, ..., gn+1 +ωn },τ(ωn+ωn+1,ωn+2)(g ) ≥ T ] ¿ (4.30)

P [τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ],

where P [] represents the probability.
Although it is possible to think up pathological examples in which

∀g ∈ {gn+1, ..., gn+1 +ωn },τ(ωn+ωn+1,ωn+2)(g ) ≥ T , we have never observed it in any realization of
the null-model or the real data for that matter. In contrast, it often happens that
τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T .

JUMP DISCONTINUITIES CAN BECOME SIGNIFICANT AFTER MERGING. CASE 2: BORDERING A DIS-
CONTINUITY THAT IS NOT SIGNIFICANT

Next we introduce a property of the null model similar to Property 4.
Given a segmentation with jump discontinuities

{τ(ωn ,ωn+1)(gn ),τ(ωn+1,ωn+2)(gn+1),τ(ωn+2,ωn+3)(gn+2)} and an arbitrary positive thresholds T .
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a. Segmented pro�le before (red) and after (black) merging two segments

b. t measurements before merging (scale dependent thresholds)

c.  tau measurements before merging (constant thresholds)

e.  tau measurements after merging (constant thresholds)

Signi�cant
Not 

signi�cant

f.  Kernel shifted 

Down-crossing

d. t measurements after merging (scale dependent thresholds)

Figure 4.12: Merging segments in one iteration of clustering. (a) Illustrating the segmented profile before
and after merging two segments. (b) and (c) illustrates the t- (lag-one difference) and tau-scores respectively
before merging. (d) and (e) are the same as (b) and (c) respectively after merging. In (d), we also shows what
the aggregate profile looks like after convolving with a fixed kernel. (f) We show why the t-score drops below
the significance threshold when we shift the kernel.



4.7. SUPPLEMENTARY METHODS

4

121

• Property 5: If τ(ωn ,ωn+1)(gn ) < T , τ(ωn+1,ωn+2)(gn+1) < T and τ(ωn+2,ωn+3)(gn+2) < T , then

P [∀g ∈ {gn+1, ..., gn+1 +min(ωn +ωn+1,ωn+2)},τ(ωn+ωn+1,ωn+2)(g ) ≥ T ]

¿ P [τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ], (4.31)

Note that this scenario is quite similar to the one in Property 4. The major difference here is
that we don’t require τ(ωn+2,ωn+3)(gn+2) to be below the threshold −T . Due to the relaxed con-
straint, we need to extend the domain in which we search for a down-crossing from the width wn
to min(ωn+ωn+1,ωn+2). The threshold T is large in the sense that segmentation at iteration k only
resulted in jump discontinuities lower than T in the neighborhood of gn+1. min(ωn +ωn+1,ωn+2)
is equal to the width of one of the lobes in the kernel corresponding to the scale w = (ωL ,ωR ),
where ωL =ωn +ωn+1 and ωR =ωn+2. Without loss of generality, let us assume it is wL . Property
5 is justified by the fact that tg0 and tg0+wL is weakly correlated in the null and because T is high
in the neighborhood. The weak correlation stems from the fact that the kernel is anti-correlated
with itself when shifted by wL probes:∫ ∞

−∞
kw (g0 − g )kw (g0 +wL − g )d g < 0 (4.32)

As with Property 4, it is possible to think up pathological examples in which∀g ∈ {gn+1, ..., gn+1+
min(ωn +ωn+1,ωn+2)},τ(ωn+ωn+1,ωn+2)(g ) ≥ T . However we never observed this in realizations of
the null-model.

INVARIANCE IN THE SIGNS OF τ WHEN MERGING SEGMENTS

It is easy to prove that:

t(ωn−1,ωn+ωn+1)(gn ) = t(ωn−1,ωn )(gn−1)+αt(ωn ,ωn+1)(gn ), (4.33)

where α= ωn+1
ωn+ωn+1

< 1. From this it follows that:

• Property 6: If |τ(ωn ,ωn+1)(gn )| < |τ(ωn−1,ωn )(gn−1)| then either:

sign
(
τ(ωn−1,ωn+ωn+1)(gn−1)

) = sign
(
τ(ωn−1,ωn )(gn−1)

)
, or

|τ(ωn−1,ωn+ωn+1)(gn−1)| ≤ |τ(ωn ,ωn+1)(gn )| (4.34)

What this means is that if we merge two segments that differ with the least significance (re-
move the discontinuity at gn ), then for the new jump discontinuity evaluated at
gn−1, τ(ωn−1,ωn+ωn+1)(gn−1) will have the same sign as the old one τ(ωn−1,ωn )(gn−1) or else will be
even less significant than the discontinuity that was removed.

CONTROL ON THE EXPECTED NUMBER OF LOCAL MAXIMUM SEGMENTS WHEN CLUSTERING

We are now finally in a position to prove that the expected number of local maximum segments
will be less than E/2 when clustering until all jump discontinuities have a similarity measure below
E .

We start with iteration k = 0, where every probe is a unique cluster, i.e. the segmented aggre-
gate is exactly the same as the aggregate. At each successive iteration, we merge segments that are
separated with the lowest |τ| < T score. For any threshold T , we can compute χ(T ) at any iteration
k and denote it with χk (T ). We can also segment on an arbitrary interval of probes {q, ...,r } and
denote χ{q,...r }(T ) at iteration k with χk

{q,...r }(T )

We need to prove that:

∀q∀r∀kE [χk
{q,...,r }(T )] ≤ (q − r )∆χ̄(T ), (4.35)
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where T =− log( E
G−1 ).

For the special case where q = 0,r =G −1:

E [χk
{0,...,G−1}(T )] ≤ (G −1)∆χ̄(T ) Eq. 4.35

= (G −1)e−T Eq. 4.27

= (G −1)e log(E/(G−1))

= E (4.36)

If we then choose the smallest k for which all τ values at the jump discontinuities are significant,
we know that the expected number of local extrema is less than or equal to E . As we observed, the
expected number of local maximum segments will be less than or equal to E/2.

To prove Eq. 4.35 we use double induction. First on the number of probes P = r −q +1:
Induction hypothesis 1:

r −q +1 < P =⇒ ∀kE [χk
{q,...,r }(T )] ≤ (q − r )∆χ̄(T ) (4.37)

From this we need to prove that it also holds for r −q +1 = P . We do so by induction on k.
Suppose k = 0. This is the case where we have not yet started merging segments. Every probe

is a unique segment. At this point all τ’s are at the same scale w = (1,1). It follows directly from the
definition of the expected Euler characteristic at a fixed scale that:

E [χ0
{q,...,r }(T )] ≤ (q − r )∆χ̄(T ) (4.38)

Now suppose the statement is true for a fixed k.
Induction hypothesis 2:

r −q +1 = P =⇒ E [χk
{q,...,r }(T )] ≤ (q − r )∆χ̄(T ) (4.39)

We need to prove that it also holds for k +1. For this we will consider three unique scenarios in
which segments are merged from iteration k to k +1. All other possible scenarios that can be con-
ceived are either straight forward or strictly symmetric. Without loss of generality we will assume
q = 0 and r = P −1 (we simply relabel the indices and this is legal due to Property 1 and 2), that the
discontinuity locations at iteration k will be at {g0, g1, ...gn−1, gn , gn+1, ...} and that it is disconti-
nuity gn that will be merged in iteration k +1.

SCENARIO 1
This scenario is depicted in Fig. 4.13. This scenario is based on two criterion. First, we assume that
the right most significant discontinuity gL before gn−1 (L = max{i < n−1 : |τ(ωi ,ωi+1)(gi )| ≥ T }) has
τ(ωL ,ωL+1)(gL) ≥ T . Second, we assume that τ(ωn+2,ωn+3)(gn+2) ≤−T .

If |τ(ωn−1,ωn )(gn−1)| ≥ T and |τ(ωn+1,ωn+2)(gn+1)| ≥ T , χk+1
{0,...,P−1}(T ) ≤ χk

{0,...,P−1}(T ) (property

6) and by induction hypothesis 2, E [χk+1
{0,...,P−1}(T )] ≤ (P −1)∆χ̄(T ). Therefore, without loss of gen-

erality, let us assume |τ(ωn+1,ωn+2)(gn+1)| < T . In this case:

χk+1
{0,...,P−1}(T ) ≤ χs

{0,...,gn−1}(T )+
χt

{gn ,...,P−1}(T )+
2U (τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ) (4.40)

Here, s and t are the number of iterations required to segment on the intervals {0, ..., gn−1} and
{gn , ...,P − 1} respectively when considered as separate problems. U () is the indicator function
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with range {0,1}. Due to Property 4, we know that τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T implies (with high
certainty) that there will be a down-crossing in the interval {gn+1, ..., gn+1+ωn }. As a consequence,

χk+1
{0,...,P−1}(T ) ≤ χs

{0,...,gn−1}(T )+
χt

{gn ,...,P−1}(T )+
2χ↓{gn+1,...,gn+1+ωn }(T ), (4.41)

Finally, we can compute the expectation:

E [χk+1
{0,...,P−1}(T )] ≤ E [χs

{0,...,gn−1}(T )]+
E [χt

{gn ,...,P−1}(T )]+
2E [χ↓{gn+1,...,gn+1+ωn }(T )]

≤ (gn−1)∆χ̄(T )+ (Induction hypothesis 1)

(P −1− gn )∆χ̄(T )+ (Induction hypothesis 1)

2(gn − gn−1)
( 1

2
∆χ̄(T )

)
(Eq. 4.27)

= (P −1)∆χ̄(T ) (4.42)

SCENARIO 2

This scenario is depicted in Fig. 4.14. This scenario is base on three criterion. First, we assume that
the right most significant discontinuity gL before gn−1 (L = max{i < n − 1 : |τ(ωi ,ωi+1)(gi )| ≥ T })
has τ(ωL ,ωL+1)(gL) ≥ T . Second, we assume that the left most significant discontinuity gR af-
ter gn+2 (R = min{i > n + 2 : |τ(ωi ,ωi+1)(gi )| ≥ T }) has τ(ωR ,ωR+1)(gR ) ≤ −T . The final criteria is
|τ(ωn+2,ωn+3)(gn+2)| < T .

If |τ(ωn−1,ωn )(gn−1)| ≥ T and |τ(ωn+1,ωn+2)(gn+1)| ≥ T , thenχk+1
{0,...,P−1}(T ) ≤χk

{0,...,P−1}(T ) (prop-

erty 6) and by induction hypothesis 2, E [χk+1
{0,...,P−1}(T )] ≤ (P −1)∆χ̄(T ). Therefore, without loss of

generality, let us assume |τ(ωn+1,ωn+2)(gn+1)| < T . In this case:

χk+1
{0,...,P−1}(T ) ≤ χs

{0,...,gn−1}(T )+
χt

{gn+1,...,P−1}(T )+
2U (τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ) (4.43)

Note that the only difference between Eq. 4.40 and 4.43 is that we consider the interval {gn+1, ...,P−
1} instead of {gn , ...,P −1} in the second term. Due to Property 5, we can derive E [χk+1

{0,...,P−1}(T )] ≤
(P −1)∆χ̄(T ) following the same strategy proposed in scenario 1.

SCENARIO 3

The final scenario that we will consider is depicted in Fig. 4.15. This is the scenario where
τ(ωn−2,ωn−1)(gn−2) ≤−T and τ(ωn+2,ωn+3)(gn+2) ≤−T .

If either τ(ωn−1,ωn )(gn−1) ≥ T or τ(ωn+1,ωn+2)(gn+1) ≥ T , then χk+1
{0,...,P−1}(T ) ≤ χk

{0,...,P−1}(T )

and by induction hypothesis 2, E [χk+1
{0,...,P−1}(T )] ≤ (P − 1)∆χ̄(T ). Therefore we will assume that
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1

2

1

2

Removed at 

iteration k+1

Figure 4.13: Illustrating Scenario one when merging adjacent segments. When two segments are merged
the encircled break at gn is removed. This depicts the scenario when the tau-score at break gn−2 is above the
threshold T and at break gn+2 is below −T .
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1

2

1

2

Removed at 

iteration k+1

Figure 4.14: Illustrating Scenario two when merging adjacent segments. When two segments are merged
the encircled break at gn is removed. This depicts the scenario when the tau-score at break gn−2 is above the
threshold T , insignificant at gn+2 and below −T at break gn+3.
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1

2

1

2

Removed at 

iteration k+1

Figure 4.15: Illustrating Scenario three when merging adjacent segments. When two segments are merged
the encircled break at gn is removed. This depicts the scenario when the tau-scores at breaks gn−2 and gn+2
are below −T .

neither are above T . In this case:

χk+1
{0,...,P−1}(T ) ≤ χs

{0,...,gn−1}(T )+
χt

{gn+1,...,P−1}(T )+
2U (τ(ωn−1,ωn+ωn+1)(gn−1) ≥ T )+
2U (τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ) (4.44)

Due to Property 4, we have:

χk+1
{0,...,P−1}(T ) ≤ χs

{0,...,gn−1}(T )+
χt

{gn+1,...,P−1}(T )+
2χ↓{gn+1,...,gn+1+ωn }(T )+
2χ↑{gn−1−ωn+1,...,gn−1}(T ) (4.45)

And the result follows when taking expectations.
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A large number of methods exist for segmenting DNA copy number profiles measured on microarray,
SNP and sequencing platforms. Many of these algorithms perform very well on idealized simulation
models. However, on real data sets, the performance varies for different algorithms. This makes it
particularly hard for practitioners to select the appropriate algorithm for their particular needs. Re-
cently, a comparison pipeline called Jointseg was introduced that allows for objective comparison
of algorithms on realistic simulations based on data from specific platforms. An important problem
is that most of these algorithms employ different parameters that need to be tuned to ensure compa-
rable performance. Jointseg resolves this issue to allow for objective comparison and subsequently
suggests that there is no single best segmentation algorithm when comparing the performance on
data from the SNP6 Affymetrix and Illumina platforms or when varying the tumor fraction. We
introduce RUBICseg, a new segmentation algorithm that employs a single intuitive parameter: the
false discovery rate of selected break locations. To perform the segmentation, RUBICseg not only
employs the copy number profile itself, but also the decrease in heterozygosity profile derived from
B-allele frequencies. We illustrate within the Jointseg framework that RUBICseg is consistently one
of the top performing algorithms for samples with tumor fractions above 70%. These results hold
true for both the Affymetrix and Illumina platforms.

5.1. INTRODUCTION

DNA copy number alterations are a hallmark of cancer[1] and many of these aberrations play a
pivotal role in tumor development and progression. As a consequence, it is important to 1) ac-
curately identify the genomic locations of copy number breakpoints and 2) determine the type of
aberrations that occur. These include, but are not limited to homozygous deletions, hemizygous
deletions, copy-neutral loss of heterozygosity and copy number gains. Many different techno-
logical platforms exist for measuring copy number profiles including array-comparative genomic
hybridization (aCGA)[2, 3], single nucleotide polymorphism (SNP) arrays[4] and next generation
sequencing.

Typically, DNA copy number states in a tumor sample are measured at fixed genomic locations
(probes) and the changes are typically expressed as a log ratio relative to a normal cell reference.
The top (c-channel) panel in Fig. 5.1 illustrates a typical copy number profile when probe mea-
surements (in log ratio form) are sorted on a reference genome. Normal human cells are diploid,
which means that each cell contains two copies of DNA inherited from two different biological par-
ents. In tumor cells, DNA segments of varying sizes (from a few kilobases to whole chromosome
arms) are often deleted or copied multiple times[5], which implies that the true biological signal
in the copy number profile should be piecewise constant, where positive (negative) log ratios in-
dicate segments with a net gain (loss) in alleles relative to a normal diploid cell. Many platforms
also have SNP probes that allows one to see exactly which allele gets deleted or amplified. This
extra dimension is usually represented in terms of the B allele frequency (BAF)[6] as indicated in
the middle (b-channel) panel of Fig. 5.1. Note that for any particular copy number segment there
will be two or more modes in the b-channel. This happens because, for any given patient, it is
unknown which chromosome in the diploid pair the B allele belongs to. In any copy number state
there will always be two modes centered close to zero and one, representing the homozygous AA
and BB germline alleles, respectively. BAF measurements associated with germline homozygous
alleles are uninformative and need to be removed from the analysis. We refer to the remaining
SNPs as informative. Probes contributing to other modes can only arise when the germline is het-
erozygous (AB). For example, if a single copy is gained (from only one parental chromosome) in
a heterozygous germline region, there will be two modes in the BAF signal representing AAB and
ABB respectively representing BAF frequencies of 1/3 and 2/3. It should be noted that in such
cases BAF frequency measurements will usually be biased towards 0.5 due to contamination of
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the tumor sample with normal cells[6] (usually represented as the tumor fraction). The contami-
nation of the tumor tissue with normal cells will also result in non-integer copy number measure-
ments. The b-channel should not be directly modelled as a piecewise constant signal due to its
multimodal distribution. Instead, we first transform the informative BAF measurement into what
is called the ‘decrease in heterozygosity‘ d = 2|b − 1

2 | for all SNPs that are heterozygous[7] in the
germline (lower panel in Fig. 5.1).

From Fig. 5.1 it is clear that both the c- and d-channels are piecewise constant. The break
locations in both channels are the same since they belong to the same copy number events. One
should be able to predict break locations better when considering these channels jointly for two
reasons. First, segmenting on the d-channel alone will lead to a loss in statistical power since
not all probes are informative (e.g. those that are germline homozygous) and therefore leads to
a reduction in probe resolution. Nevertheless, the d-channel should not be ignored since it is
sometimes easier to detect sudden jumps in the d-channel than in the c-channel (compare the
top and bottom panel in Fig. 5.1) relative to their respective noise levels. Second, even if it were
possible to attain full resolution for the d-channel, one has more statistical power when jointly
considering two dimensions, instead of either dimension alone.

Various statistical methods (called segmentation algorithms) have been developed in the last
decade to estimate the locations of copy number break points based on the c-channel (overall copy
number), d-channel (derived from BAF) or both[8–16]. Most of these algorithms can be classified
into four categories as explained by Pierre-Jean et. al.[17]:

• Hidden Markov model (HMM) methods. These algorithms are based on the assumption
that there are a limited number of hidden discrete copy number states[16, 18–20].

• Multiple change-point methods where it is assumed that the observed signal is effected by
abrupt changes and that the signal between the changes is homogenous. Cghseg[9] is an
example of such a method.

• Fused lasso methods. These methods assume that successive probe measurements should
mostly have the same estimate and this is achieved by regularizing with an L1 penalty on
successive differences. One example of such an algorithm is GFLars[14, 21].

• Recursive segmentation algorithms. These methods also assume that the copy number pro-
file is a piecewise constant signal and that the segments can be identified by recursively
splitting larger segments into smaller ones. Algorithms in this category include CBS[22],
PSCBS[12] and RBS[13].

Since there are many segmentation algorithms, it is not always clear which one to use for any
given dataset. Recently, Pierre-Jean et. al.[17] developed Jointseg, a comparison pipeline that 1)
accurately simulates copy number profiles from various technological platforms and also 2) intro-
duced a way in which different segmentation algorithms can be compared in a supervised manner.
This provides a useful tool for practitioners to choose the correct segmentation algorithm for their
specific application and also allows for rapid testing of new segmentation methods. Notably, with
JointSeg it was illustrated that there is no single segmentation algorithm that outperforms all oth-
ers for all different technological platforms, but that methods that use both the c- and d-channel
frequently outperform others.

Here we introduce a new multiple change-point segmentation algorithm that jointly segments
on both the c and d channel and relies on only one intuitive parameter: the false discover rate
(FDR) of detected breakpoints. This algorithm employs a powerful statistic called the expected
Euler characteristic that allows us to accurately recover true DNA break locations. We compared
our approach to state of the art algorithms using Jointseg and show that it often outperforms exist-
ing methods for high (but realistic) tumor fractions (> 70%) for both the Affymetrix and Illumina
SNP platforms.
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Figure 5.1: Illustration of a DNA copy copy number profile derived from the Affymetrix SNP6 platform. The
top panel shows the log ratio (with respect to normal) of the copy number measurements for markers sorted
across the genome in black (c-channel). A RUBICseg segmentation is depicted by the piece-wise constant
function in red. The true break locations are indicated by the vertical black lines. The middle panel shows
the B-allele frequency for SNP markers (approximately 1/2 of the markers). Uninformative markers due to
germline homozygosity are shown in cyan. The bottom panel shows the loss in heterozygosity (d-channel) for
the remaining informative markers with RUBICseg segmentation in red.
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5.2. METHODS

5.2.1. Jointseg DATASETS.
We used Jointseg to simulate realistic copy number profiles derived from two copy number plat-
forms:

• Affymetrix SNP6.0 microarray. Simulations were derived from lung cancer data accessi-
ble through the NCBI GEO database[23], accession GSE29172. Lung cancer samples were
mixed with matched blood to simulate tumor fractions of 50, 70 and 100%.

• Illumina HumanCNV-Duo v1. Simulations were derived from breast cancer data accessi-
ble through the NCBI GEO database[23], accession GSE11976. Breast cancer samples were
mixed with matched blood to simulate tumor fractions of 50, 79 and 100%.

Approximately half of the probes in the Affymetrix platform are SNP probes (from which b-
allele frequencies can be derived). Since approximately 1/3 of all SNPs are heterozygous in a given
human’s germline, we can derive decrease in heterozygosity scores (d-channel) for only 1/6 of the
probes. In contrast, the Illumina platform has b-allele frequencies for each probe, and therefore
has informative measurements for 1/3 of the probes. For a detailed description of these datasets
and how DNA copy number datasets are simulated, see Pierre-Jean et. al.[17].

5.2.2. PERFORMANCE MEASURE OF Jointseq EMPLOYED IN COMPARISON.
For each generated copy number profile, segmentation algorithm tested and tolerance threshold
employed, one can compute the true positive and false positive break rates. Unfortunately these
value pairs cannot be compared for different algorithms since they represent different points on
their receiver operating (ROC) curves. Ideally, one would like to compare the area under these
curves (AUC). To tune each algorithm’s parameters by sweeping across the parameter space and
using the ROC as readout is unrealistic. For this reason, Jointseg sweeps across the different num-
ber of called breaks in each algorithm by successively removing breaks in such a way as to min-
imise the mean square error. For example, if CBS called 30 breaks, Jointseg will first select only one
break that minimises the mean square error and record the true and false positive counts. Next,
joinseg selects the two best breaks, etc. This process is repeated until 10 errors are detected. In
this way a partial ROC curve is reconstructed for each algorithm (up to 10 false positives) with
false positive counts on the x-axis and true positive counts on the y-axis. Finally, as a performance
measure, the partial AUCs computed (the area under the partial ROC divided by 10×B , where B is
the number of true positive breaks). In this scheme a pAUC of 0 means that the first 10 best breaks
are false positives, whereas a perfect pAUC of 1.0 means that the top B breaks are true positives.

5.2.3. GAUSSIAN DATASETS.
In addition to the Jointseg datasets, we also simulated artificial copy number profiles with Gaus-
sian measurement noise at different signal to noise ratio (SNR) levels. For each SNR level, we
simulate 10 copy number profiles with 20000 probes and 20 breakpoints uniformly distributed
across probe measurements. Each segment in the c-channel takes on mean log copy number seg-
ment values derived from the Affymetrix SNP6.0 platform for tumor fractions of 100%. Note that
we use tumor fractions of 100% as the Gaussian noise is added to this clean profile. Decrease in
heterozygosity (d-channel) levels were chosen similarly. Specifically, these segment levels were
randomly chosen from the following copy number states: normal, gain of one copy, hemizygous
deletion, homozygous deletion and copy-neutral LOH. This results in noise-free bi-variate piece-
wise constant profiles of the c- and d-channels. We add bi-variate Gaussian noise with zero mean
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and covariance

Σ =
[

σ2
c rσcσd

rσcσd σ2
d

]
,where

σ2
c = Var[c]

SNR

σ2
d = Var[d ]

SNR
r = 0.3 (5.1)

Var[.] represents the variance in the clean c and d profiles. r was arbitrarily chosen and represents
the Pearson correlation between the noise in the c and d channels. Finally, in each profile, we
randomly set 83.3% (5/6) of the probe values in the d-channel to NA to simulate uninformative
measures.

5.2.4. MODEL ASSUMPTIONS.
Many segmentation algorithms assume that a given DNA copy number (c-channel) profile is the
sum of a piecewise constant signal with additive, constant variance, zero mean Gaussian noise and
that the noise is uncorrelated between different probes. Together, the c- and d-channel can also
be regarded as a two dimensional piecewise constant signal. We will also assume that the noise is
additive and a zero mean stationary bi-variate Gaussian process with constant covariance matrix
(between the c- and d-measurements) and is uncorrelated between different probes (i.e. white
noise). We will show that the covariance matrix of the noise can be estimated accurately from
the data and can therefore be regarded as known (i.e. we will not model the uncertainty in the
covariance estimate). The goal of the segmentation algorithm is therefore to recover the piecewise
constant signal. This is equivalent to detecting the location of breakpoints. The piecewise constant
segments are then simply the regions between breakpoints and we estimate the c- and d-channel
amplitudes in each segment by averaging the measurements between the breakoints.

5.2.5. APPROACH.
We perform an iterative clustering approach in which neighboring segments are merged if there
is no indication of a breakpoint between them, starting with every probe as a separate segment.
Segments that are least likely to be separated by a breakpoint are merged first. Hence, to decide
whether two segments need to be merged we need an estimate of the likelihood that they are
separated by a breakpoint. We base this on the difference between the means of the c- and d-
measurements in the two neighboring segments.

The significance of the difference in segment means depends on the noise in the profile and
the length of the segments. As there are many possible break locations to choose from, we need to
correct for multiple testing to calculate the appropriate significance level. For example, for fixed
(adjacent) segment lengths (denoted by wL and wR probes for the left and right segments respec-
tively), there are theoretically G −1 possible break locations, where G is the number of probes in
the profile (we ignore boundary effects since the noise can be modelled beyond the boundaries).
The differences in segment means between adjacent break locations are generally correlated (es-
pecially for large values of wL and wR ) so that a simple family wise error rate (FWER) correction
like the Bonferroni procedure will lead to significant power loss. Therefore, we propose to use a
different correction measure called the expected Euler characteristic that is a tight upper bound
for the FWER, while accounting for the correlation between adjacent break measurements.

To summarize, iterative clustering is performed based on the expected Euler characteristic,
where higher values (least significant) are merged first. Clustering continues until all remain-
ing expected Euler characteristic measures (associated with the remaining break locations) are
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sufficiently low. Finally, the exact locations of the boundaries of the segments are fine-tuned by
minimizing the L2 distance between a fitted piecewise-constant function and the actual measure-
ments. This represents the final segmentation of the profile.

In the following sections, we discuss the different steps in detail (see Fig. 5.2): 1) estimating
the covariance of the measurement noise; 2) defining a break measure based on the difference
in adjacent segment means; 3) computing the dependency between break measures at adjacent
break locations (needed for multiple test correction); 4) choosing a significance measure used for
iterative clustering; 5) computing the expected number of false positive breaks at any given iter-
ative step in clustering 6) introducing the Euler characteristic; 7) computing the expected Euler
characteristic; and 8) fine tuning break locations.

Note that, as stated earlier, we do not have d-measurements for all probes, therefore we can
regard these as missing values. For now, we will only consider the special (albeit unrealistic) case
where all measurements in the d-channel are known. In the supplementary methods, we extend
the method to account for missing data points.
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Figure 5.2: Illustration of the steps involved in computing the break measure τw̄ for the fixed scale w̄ = 〈5,7〉.
In (a), we illustrate an example piecewise constant profile with Gaussian noise added to both the c- and d-
channel. The (piecewise constant) signal is illustrated in solid red, the noise profile is shown as black dots and
the sum of the signal and noise (the measured profile) is shown with red crosses. (Note that this color coding
holds for all panels). In (b), we show the lag-one difference profile where noise and observed measures only
differ at the break locations which allows for accurate estimation of the noise covariance. Note that computing
the lag one difference is equivalent to convolving the profile with a kernel function as indicated between a
and b (the asterisk represent the convolution operator). In (c), we represent (a) in three dimensions. It is
important to note that the c- and d-channel noise measurements are correlated (see the green plane), but
noise measurements between different probes are uncorrelated. In (d), we convolve the example profile with
a kernel representing the scale w̄ = 〈5,7〉. Due to the smoothing, adjacent probes will be correlated. In (e),
we rotate and scale the c- and d-channels to ensure that the resulting noise covariance in each probe is the
identity matrix. The Pearson correlation between adjacent probes is ρw̄ as computed in Eq. 5.10. In (f), we
show the one dimensional τw̄ profile that we use as a break measure.
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5.2.6. ESTIMATING THE NOISE COVARIANCE.
The first step in recovering the piecewise constant signal is to model the noise. We regard the
measurement noise as a zero mean, stationary and bi-variate Gaussian process. We also assume
that the noise is uncorrelated between different probes. Therefore we only have to estimate the
joint covariance matrix of noise measurements on the c- and d-channel. If we assume that the
number of breakpoints (B) in the profile are small compared to the total number of probes, we can
do this accurately by considering the lag-one difference profile (Fig. 5.2a-b). Note that under the
assumption of a small number of breakpoints, the lag-one difference operation removes most of
the signal, retaining mostly noise. Also note that since the noise in adjacent probes is uncorrelated,
the variance in the lag-one difference noise profile will be twice the variance of that in a single
probe. As a consequence, we can accurately (albeit conservatively) estimate the c-channel noise
variance as half the noise variance in the lag-one profile[24]. Similar arguments apply for the d-
channel and the covariance between the c- and d-channel. We estimate the noise covariance Σ̂ as
follows (Fig. 5.2c):

Σ̂ =
[
σ̂2

c ρ̂

ρ̂ σ̂2
d

]
, where

σ̂2
c = 1

2(G −1)

G−1∑
i=1

(ci+1 − ci )2

σ̂2
d = 1

2(G −1)

G−1∑
i=1

(di+1 −di )2

ρ̂ = 1

2(G −1)

G−1∑
i=1

(ci+1 − ci )(di+1 −di ), (5.2)

where ci and di are probe measurements in the c- and d-channel, respectively, at probe index i .
G is the total number of probes in the profile.

5.2.7. DEFINING A BREAK MEASURE BETWEEN ADJACENT SEGMENTS.
In each iteration of the clustering process we need to decide whether two adjacent segments will
be joined or not. We will base this decision on the break measure of adjacent segments. Specif-
ically, to see if there is a break at position g , we need to subtract segment means from the left
and right of g . Therefore, a mean difference measurement for any given profile depends on three
parameters: the break index g and the two adjacent segment lengths denoted by wL and wR . We
represent the width parameters as a single vector w̄ = 〈wL , wR 〉 and refer to this vector as the ‘scale’
at which breaks are detected.

First, for both channels we estimate the mean difference between the left and right segments:

cw̄ (g ) = 1

wR

∑
i∈Rw̄ (g )

ci −
1

wL

∑
i∈Lw̄ (g )

ci

dw̄ (g ) = 1

wR

∑
i∈Rw̄ (g )

di −
1

wL

∑
i∈Lw̄ (g )

di ,

(5.3)

where

Lw̄ (g ) = {g −wL +1, ..., g }

Rw̄ (g ) = {g +1, ..., g +wR } (5.4)
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Second, we estimate the covariance matrix of cw̄ (g ) and dw̄ (g ) under the null hypothesis, i.e.
when there is no break in Lw̄ (g )∪Rw̄ (g ). In this case, cw̄ (g ) and dw̄ (g ) will be zero mean jointly
Gaussian. The covariance matrix of cw̄ (g ) and dw̄ (g ) is then a constant multiple of Σ̂ (Fig. 5.2d):

Σ̂w̄ = αw̄ Σ̂, where

αw̄ = 1

wL
+ 1

wR
(5.5)

Next, we decorrelate and scale cw̄ (g ) and dw̄ (g ) to obtain two new variables tw̄ ,1(g ) and tw̄ ,2(g )
(Fig. 5.2e):

t̄ T
w̄ (g ) = [cw̄ (g ),dw̄ (g )]V D1/2, (5.6)

where t̄w̄ (g ) is a 2×1 column vector with components tw̄ ,1(g ) and tw̄ ,2(g ), V contains the eigen-
vectors in column format of Σ̂−1

w̄ , D is the diagonal matrix with eigenvalue entries and ()T repre-
sents the transposition operation. The advantage of using tw̄ ,1(g ) and tw̄ ,2(g ) instead of cw̄ (g )
and dw̄ (g ) is that they are both normalized (variance one) and identically and independently dis-
tributed under the null.

Finally, we define our break measure as the square of the Euclidean distance of t̄w̄ (g ) from the
origin (Fig. 5.2f):

τw̄ (g ) = t̄ T
w̄ (g )t̄w̄ (g ) (5.7)

Note that τw̄ (g ) follows a chi-square distribution with two degrees of freedom under the null,
i.e. when there are no breaks in Lw̄ (g )∪Rw̄ (g )).

5.2.8. ESTIMATING DEPENDANCY BETWEEN ADJACENT BREAK MEASURES.
Let us assume that w̄ is fixed and we perform a test at every position g for a potential break em-
ploying our break measure. Then we need to correct for multiple testing across g . If the break
measures τw̄ (g ) were independent for different g ’s, a Bonferroni correction would suffice. How-
ever, this is not the case due to overlapping windows and in this section we set out to compute the
dependency between τw̄ (g ) and τw̄ (g +1). In the section describing the expected Euler character-
istic, we show how to correct for multiple testing using this information.

For a fixed w̄ and under the null, let 1) τw̄ (g ) be a realization of T 2
w̄ , a stationary, discrete,

bivariate, two degree of freedom, chi-square random process and 2) tw̄ ,1(g ) and tw̄ ,2(g ) be real-
izations of Tw̄ ,1 and Tw̄ ,2, two independent and identical Gaussian processes with unit variance.
Then, it follows from the definition of τw̄ (g ) that T 2

w̄ is given by

T 2
w̄ = (

Tw̄ ,1
)2 + (

Tw̄ ,2
)2 (5.8)

Since Tw̄ ,1 and Tw̄ ,2 are identical and independent processes and T 2
w̄ is fully determined by

these, the dependency between T 2
w̄ (g ) and T 2

w̄ (g +1) is fully characterised by either Tw̄ ,1 or Tw̄ ,2
and we drop the subscripts and work with a single Gaussian process denoted by Tw̄ . In fact, when
computing the expected Euler characteristic we only need to compute the correlation between
Tw̄ (g ) and Tw̄ (g +1), denoted by ρw̄ .

Under the null, Tw̄ (g ) and Tw̄ (g +1) can be written as a linear combination of i.i.d. Gaussian
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variables Zi , each with zero mean:

Tw̄ (g ) = 1

wR

∑
i∈Rw̄ (g )

Zi −
1

wL

∑
i∈Lw̄ (g )

Zi

Tw̄ (g +1) = 1

wR

∑
i∈Rw̄ (g+1)

Zi −
1

wL

∑
i∈Lw̄ (g+1)

Zi

ρw̄ = E [Tw̄ (g )Tw̄ (g +1)], (5.9)

where E [.] is expectation. Note that E [Zi Z j ] = 0 for every i 6= j and that the variance E [Zi Zi ]

equals
1

1/wR +1/wL
(since the variance of Tw̄ (g ) is unity). From these facts, we can show that:

ρw̄ =
wR−1

w2
R

+ wL−1
w2

L
− 1

wL wR

1
wR

+ 1
wL

(5.10)

5.2.9. A SIGNIFICANCE MEASURE FOR ITERATIVE CLUSTERING.
Note that at a given iteration of the clustering, we would like to compare the significance of breaks
at different scales in order to decide which breaks to merge. As the break measure is not compa-
rable between different scales, we define a p-value, which is comparable between different scales.
Specifically, we define scale dependent decreasing functions pw̄ : R → R which take our break
measure as input and outputs a significance value, with values close to zero representing high sig-
nificance (like a p-value). In the supplementary section, we show that a natural choice for these
functions is:

pw̄ (τ) = P [Mw̄ ≥ τ],where

Mw̄ = max
g∈{1,...,G}

T 2
w̄ (g ) (5.11)

Mw̄ is a scale dependent random variable that tracks the maximum value of the process T 2
w̄ and

P [·] represents probability.

5.2.10. COMPUTING THE EXPECTED NUMBER OF FALSE POSITIVE BREAKS.
Suppose we performed iterative clustering until there are b breakpoints (i.e. b + 1 clusters). La-
bel the break locations g1, g2, ..., gb and their respective scales with w̄1, w̄2, ..., w̄b , where w̄i =
〈wL,i , wR,i 〉 for all i ∈ {1,2, ...,b}. Note that the scales are constrained so that for every i < b,
wR,i = wL,i+1. Furthermore, breaks are associated with break measures τ1,τ2, ...,τb , where for
all i , τi = τw̄i (gi ). Also, for each break measure, we compute a significance pw̄1 (τ1), ..., pw̄b (τb ).
We define a break at index i to be positive if pw̄i (τi ) ≤ e, for some constant significance threshold
e and denote the number of positive breaks by b+ (≤ b). In the next iteration, we merge clusters
associated with the least significant break of index argmaxi pw̄i (τi ).

In the supplementary methods we show that an upper bound for the expected number of false
positive breaks under the null for any level of clustering (any value of b) is directly related to e:

E [B+] ≤ be (5.12)

B+ is the random variable representing the number of called positive breaks (below significance
level e) under the null (i.e. all called breaks are false positive breaks). Eq. 5.12 holds under the
null, but for actual data it is necessary to perform the Benjamini-Hochberg procedure to select the
appropriate number of breaks for a fixed FDR[25–27]. For any level of clustering b, this amounts
to the following procedure:
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• Sort the values pw̄1 (τ1), ..., pw̄b (τb ) in ascending order and re-label them p1, p2, ..., pb .

• Compute q-values: qi =
b

i
pi .

• Set k = min{i : qi > FDR} and call all breaks associated with {p1, p2, ..., pk−1} as positives,
i.e. b+ = k −1.

To select the appropriate level of clustering, we start with b = 1, compute b+ (which is zero or
one). Then we continue to b = 2 and recompute b+. This process is repeated until b+ starts to
decrease. We denote the final value b+ with #breaks. Generally, there is no closed form solution
for the functions pw̄ , however we will use the expected Euler characteristic as a tight upper-bound
for effective control on E [B+].

5.2.11. THE EULER CHARACTERISTIC OF A CHI-SQUARE RANDOM PROCESS.
For a fixed scale, Eq. 5.11 is equivalent to the FWER at a given level of τ. The Bonferroni corrected
p-value at level τ is defined to be the expected number of measurements in the null process above
the constant threshold τ, which is simply equal to the single test p-value for τ times the number
of tests (G). If G is large and all tests are uncorrelated, the Bonferroni corrected p-value is a tight
upper bound for the FWER (if FWER < 0.1).

Since T 2
w̄ might be highly correlated between nearby g (see Eq. 5.10) the Bonferroni correc-

tion might be too conservative and result in significant power loss. For example, if we apply a fixed
high threshold τ on the null chi-square process T 2

w̄ , it might happen that for nine out of ten re-
alizations none of the measurements cross the threshold, and that for the tenth realization, ten
measurements for adjacent g ’s cross the threshold. This means that the average number of single
measurement tests across the ten realizations that exceed the threshold (the Bonferroni FWER es-
timate) will be much higher (1.0 in this case) than the probability of one or more measurements
to exceed the threshold per realization (the true FWER is 0.1 in this example). For this reason it is
more powerful to compute the expected number of regions above the threshold i.e. count adjacent
values for g simultaneously crossing the threshold as one event. In the previous example, the ten
adjacent measurements crossing the threshold would only be counted as one event.

To formalize this, consider the i th realization of the null process τ(i )
w̄ . Assume also that g is

defined on all real numbers [1,G] (not just the integers {1,2, ...,G}). One can linearly interpolate

τ(i )
w̄ for all real g and define a positive excursion set based on a positive threshold τ:

a+(τ(i )
w̄ ,τ) = {g ∈ [1,G] : τ(i )

w̄ (g ) ≥ τ} (5.13)

We define the Euler characteristicχ(τ(i )
w̄ ,τ) to be the number of connected components in a+(τ(i )

w̄ ,τ).

Since τ(i )
w̄ is a realization of the chi-square process T 2

w̄ , we can also regard the Euler characteristic

χ(τ(i )
w̄ ,τ) as a realization of the random variable χ(T 2

w̄ ,τ) that takes on integer values. For short we
denote this random variable with χw̄ (τ).

5.2.12. THE EXPECTED EULER CHARACTERISTIC.
There exists an exact analytical expression that relates a non-negative threshold τ to the expected
Euler characteristic for the chi-square random process[26, 28]:

χ̄w̄ (τ) = E [χw̄ (τ)]

= e−τ/2 + τ1/2e−τ/2
p

2π
Rw̄ (5.14)
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with

Rw̄ =
∫

[1,G]

√
Var[

d

d g
Tw̄ (g )]d g (5.15)

We showed in the Section 4.7.4[27] that Rw̄ can be estimated accurately as:

Rw̄ = (G −1)arccos(ρw̄ ), (5.16)

where ρw̄ is as defined in Eq. 5.10.

5.2.13. THE EXPECTED EULER CHARACTERISTIC IS AN UPPER BOUND FOR

THE MAXIMUM STATISTIC.
Next, we show that χ̄w̄ (τ) is an upper-bound for pw̄ (τ). We know that for a realisation τ(i )

w̄ of T 2
w̄ ,

a g for which τ(i )
w̄ (g ) ≥ τ exist if and only if the Euler characteristic χ(τ(i )

w̄ ,τ) is greater than zero.
Therefore:

pw̄ (τ) = P [χ(T 2
w̄ ,τ) = 1]+P [χ(T 2

w̄ ,τ) = 2]+ ...

≤ P [χ(T 2
w̄ ,τ) = 1]+2P [χ(T 2

w̄ ,τ) = 2]+ ...

= E [χ(T 2
w̄ ,τ)]

= χ̄w̄ (τ) (5.17)

Throughout iterative clustering, we use the upper bound χw (τ) instead of pw (τ).

5.2.14. ESTIMATING BREAK LOCATIONS.
Although the clustering procedure is effective at selecting the appropriate number of breaks, it is
not particularly good at finding their exact locations. This is because if we correctly reject the null
hypothesis at location g , we are only guaranteed that there is a break in the region {g−wL+1, ..., g+
wR }. We therefore only know the proximity of the breakpoints and the number of breakpoints.
When the noise is Gaussian and the number of breaks is known, the best way to find the correct
locations is to fit a piecewise constant function that minimizes the mean square error. This is the
approach employed by algorithms such as cghseg[9]. With dynamic programming, this problem
can be solved in O (G2), where G is the number of probes in the dataset, which is computationally
inefficient for realistic datasets. Nevertheless, when considering only one channel (c-channel),
there are heuristics for which computation time is on average highly efficient[8]. For our algoritm,
we speed up processing for two channels by restricting the search for breaks within the regions
{g −wL +1, ..., g +wR }, where the breaks are likely to be located.

5.3. RESULTS

5.3.1. ESTIMATING THE NUMBER OF BREAKS FOR SIMULATED PROFILES.
For any level of the dendrogram, we know that be is an upper bound for the expected number of
false positive breaks E [B+] in the null (Eq. 5.12). However we are not sure how tight this upper
bound is. Therefore, in this section we simulate piecewise constant profiles with Gaussian noise
and compare the observed error rates with the predicted error rates.

We simulated copy number profiles as described in the methods (Section 5.2.3). We performed
RUBICseg on 10 generated profiles for the following SNR levels: {0.3,0.5,1.0,2.0}. For each simu-
lated profile we vary the FDR level and compute the number of detected breaks (#breaks) and the
expected number of false positives E [#errors] = #breaks×FDR. The number of detected breaks
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Figure 5.3: Illustrating the breakpoint error rates for simulated copy number profiles with Guassian noise.
All results are based on copy number profiles that were generated with 20 breakpoints. Each panel shows 10
lines which correspond to the 10 simulated copy number profiles. Different columns show different signal to
noise ratios as defined in the text. The panels in the top row illustrate the number of breakpoints called while
changing the FDR on the x-axis. On the y-axis we plot the expected number of errors based on the expected
Euler characteristics. In the bottom row of panels, we plot the measured error rates as defined in the text
(x-axis) against the expected number of errors (y-axis).
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(‘#breaks’ on the x-axis) is plotted against the expected number of false positives (‘Expected errors’
on the y-axis) in the top panels of Fig. 5.3. Each panel contains 10 curves representing the results
of the different profiles and results for different SNR levels are represented in different columns.
Note that in all the top panels, the predicted number of errors is close to zero until approximately
20 breaks are chosen (corresponding to the simulated 20 breaks). After this, the predicted number
of errors start to increase linearly with a slope of approximately one, as expected. For low SNRs,
the predicted error rates start increasing for a lower number of breaks, indicative of the reduced
power due to the increased noise variance. This experiment illustrates that RUBICseg is effective
at selecting the appropriate number of breaks while controlling the FDR parameter.

The bottom row of panels in Fig. 5.3 depicts the predicted number of errors (‘Expected errors’
on the y-axis), based on the Euler characteristic, as a function of the measured number of errors
(‘Measured errors’ on the x-axis). A break at location g is classified as a measured error if there are
in fact no breaks within {g−wL+1, ..., g+wR }, where wL and wR represent the widths of the left and
right flanking regions, respectively. Although this is a fairly relaxed definition, it is directly com-
patible with the hypothesis testing performed. Due to this relaxed definition, the ‘true’ number of
false breaks will be slightly higher than the measured number. For example, in the top right panel,
we see that all predicted error rates are slightly below 30 when 50 breaks are called. Since there
can only be 20 correct breaks, we are slightly underestimating the true number of false positives.
Nevertheless, with the relaxed definition, the expected error rates are only slightly conservative.
This shows that we are not sacrificing unnecessary power due to over-conservative FDR control.

5.3.2. Jointseg ANALYSIS.
Although the previous section shows that our error control is accurate when considering Gaussian
noise, it is important to compare RUBICseg against state-of-the-art algorithms on real platforms,
where the noise might not be strictly Gaussian or constant for different copy number states. To
achieved this, we employ the Jointseg comparison pipeline[17] and recreated their experiments
with RUBICseg included.

With Jointseg we simulated profiles with 20000 markers and 20 uniformly selected breakpoints
with copy-number states selected as explained by Pierre-Jean et. al.[17]. We simulated realistic
profiles based on two platforms: the Affymetrix SNP6 microarray and the Illumina HumanCNV370-
Duov1 microarrays (called data set 1 and 2 respectively by Pierre-Jean et. al.[17]). Jointseg also
allows one to select the noise level based on the biologically relevant parameter called the tumor
fraction (fraction of tumor cells).

In this analysis we considered three algorithms that segment based on both the the c- and
d-channel:

• PSCBS[12] with R package PSCBS. Labeled ‘PSCBS’ in Fig. 5.4 and 5.5

• RBS[13] (recursive binary segmentation) with R package Jointseg[17]. Labeled
‘RBS+DP:log(c),d (Kmax=200)’, with Kmax referring to the maximum number of breaks, set
well above the required 20.

• RUBICseg. Labeled ‘RUBIC:log(c),d’, and

four algorithms based on the c- or d-channels alone:

• CBS[11] with R package DNAcopy. Labeled ‘CBS:log(c)’(c-channel) and ‘CBS:d’(d-channel)

• DP[8] (dynamic programming) with R package cghseg. Labeled ‘DP:log(c) (Kmax=200)’and
‘DP:d (Kmax=200)’.

• GFLars[14] with R package Jointseg[17]. Labeled ‘GFLars+DP:log(c) (Kmax=200)’and
‘GFLars+DP:d (Kmax=200)’
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• RBS[13] with R package Jointseg[17]. Labeled ‘RBS+DP:log(c) (Kmax=200)’and
‘RBS+DP:log(c),d (Kmax=200)’.

Parameter choices for all the algorithms (except for RUBICseg) were optimised as in Pierre-
Jean et al.[17]. A full comparison on the performance of existing algorithms are also discussed by
Pierre-Jean et al.[17]. For RUBICseg, we set the FDR parameter at 5% for all experiments.

For any given algorithm, Jointseg defines true positive breakpoints as those calls that are within
a tolerance threshold (number of probes) from a true breakpoint. To be exact, each true break is
associated with maximally one called break within the tolerance threshold, whereas the rest of
the called breaks are considered false positives. Jointseg computes a specific type of partial AUC
(pAUC) as detailed in the methods.

Fig. 5.4 shows the results of the comparison of RUBICseg to the algorithms listed above while
varying the tolerance threshold. As expected, algorithms generally perform better for higher toler-
ance values. The ranking of tested algorithms also does change significantly for different tolerance
levels. Note that segmentation algorithms do not generally perform equally well on all platforms
[29]. In our experiments, the SNP6 platform is more noisy than the Illumina platform and all the
segmentation algorithms we tested performed significantly better on the Illumina platform. One
striking (and unintuitive) result is that performance curves saturate at a much lower value for the
Illumina platform at 100% tumor fraction (bottom right panel) than for 79% tumor fraction. This
occurs because the noise variance in the d-channel estimates are very high within regions with ho-
mozygous deletions, resulting in additional false positives for most algorithms. This is especially
true for algorithms that segment on the d-channel alone.

Since the order of the algorithms remains the same as a function of tolerance level, we show
box plots at a fixed tolerance of five probes for both platforms and all algorithms in Fig. 5.5. Tumor
fraction has a clear effect on segmentation performance where high tumor fractions are associated
with improved performance. For low tumor percentages, while RUBICseg is still amongst the top
performing approaches, it performs relatively poorly. This occurs because RUBICseg calls too few
breaks for noisy profiles (strict FDR control). This directly effects pAUC scores that tend to favor
algorithms that overcall breaks[17]. For real data, tumor fractions below 70% are typically regarded
as low quality. As the results indicate, RUBICseg often outperforms existing algorithms for tumor
fractions above 70%.

It is also important to notice that segmentation on the d-channel only performs significantly
worse on the SNP6 platform simply because only one in six probes are informative. In contrast,
one in three Illumina probes are informative, which indeed improves performance on the d-channel,
albeit still worse than the c-channel only. It is also interesting to note that segmentation on the
combined c- and d-channel usually only provides marginal improvement when compared to the
c-channel only.

RUBICseg and RBS (combined c- and d-channel) are the best performing algorithms for high
tumor percentages (≥ 70%) on both platforms, with RUBICseg outperforming RBS in three of the
four cases tested.

5.4. DISCUSSION
We developed a new segmentation algorithm called RUBICseg that accurately recovers breakpoints
in DNA copy number profiles derived from both Affymetrix and Illumina SNP6 platforms. There
are a number of reasons why we expect RUBICseg to have high statistical power for detecting
breaks. First, it is one of the few algorithms that jointly segments on the c- and d-channel and that
models the noise covariance directly. Second, RUBICseg does not ignore any of the informative
markers. For example, some algorithms cannot handle missing values and therefore down-sample
the c-channel for compatibility. Third, RUBICseg fine tunes the break locations by minimising the
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Figure 5.4: Comparison of different segmentation algorithms on Jointseg simulations based on data derived
from the Affymetrix (top row) and the Illumina (bottom row) platforms. The columns show the results for
different levels of the tumor fraction. In each subplot, the x-axis represents a tolerance threshold for calling
true positive breaks, i.e. the maximum allowed distance between a true break and a called break. The y-axis
represents the partial area under the curve (pAUC) in the ROC. Each experiment was repeated 20 times and
the average is reported. Each algorithm is shown in a different color. c-channel, d-channel and combined c-
and d-channels are marked with crosses, circles and squares respectively.
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Figure 5.5: Comparison of different segmentation algorithms at a fixed tolerance of five probes. Top (bottom)
panels represent Jointseg experiments performed on the Affymetrix (Illumina) platform. Columns represent
different tumor percentages. In each subplot, the x-axis represents different segmentation algorithms. The
y-axis represents the partial area under the curve (pAUC) in the ROC. Each box plot is constructed from 20
repeats.
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mean square error (for a fixed number of breaks), which is an approach also employed by one of
the top performing methodologies (for example cghseg). Finally, RUBICseg estimates chi-square
values at different and adaptive scales. The larger the widths of segments adjacent to a break, the
larger the statistical power (the chi-square test works better for larger sample sizes) and less severe
multiple testing since the expected Euler characteristic accounts for the high correlation between
noise measurements. For this reason, one should always expect RUBICseg to perform better than
a methodology that, for instance, uses a fixed wavelet kernel to detect breaks.

This methodology outperforms all existing algorithms, albeit not in all situations, for tumor
fractions of 70% or higher for both platforms tested. A tumor fraction above 70% is a reasonable
requirement in practice since lower quality profiles drastically decrease the performance of all
segmentation algorithms. One of the most desirable properties of RUBICseg is that it has only
one intuitive parameter: the expected proportion of false positive breaks. While the other top
performing algorithm, RBS, also only requires a single input paramater (the number of breaks)
we are of the opinion that it has more utility to be able to specify the FDR as this immediately
provides an objective and useful estimate of the accuracy of the results. Moreover, we showed that
in simulations with Gaussian noise, RUBIC does not suffer from unnecessary statistical power loss
due to over-conservative error control.

Although RUBICseg performs very well for both the Affymetrix and Illumina platforms consid-
ered, we highly recommend that users perform extensive tests with the joinseg package for other
platforms and/or lower tumor fractions.
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5.8. SUPPLEMENTARY METHODS

5.8.1. ITERATIVE CLUSTERING ON THE GLOBAL NULL.
We show that we can find an upper bound on the expected number of false positive breakpoints
at any given stage of iterative clustering in the global null using the statistics:

Mw̄ = max
g∈{1,...,G}

T 2
w̄ (g ) (5.18)

For each scale w̄ , Mw̄ is a random variable tracking the maximum value of the random process
T 2

w̄ across all possible locations g .
Suppose we performed iterative clustering until there are b breakpoints (i.e. b +1 clusters) in

the global null. Label the break locations G1,G2, ...,Gb and their respective scales with W̄1,W̄2, ...,W̄b .
Note that the break locations and scales are random variables (which is why we write them in cap-
ital letters) since each realisation of the null will result in different break locations and scales. Fur-
thermore, breaks are associated with break measures T 2

1 ,T 2
2 , ...,T 2

b . These are random variables
describing realisations of the break measures when applied to the global null. For the next iter-
ation (i.e. jumping from b to b − 1 breaks), we choose index I = argmaxi pW̄i

(T 2
i ) and remove

the break at location GI . Then we replace the values T 2
I−1 and T 2

I+1 with new values denoted by

T ′2
I−1 and T ′2

I+1 at scales W̄ ′
I−1 = 〈WL,I−1,WR,I−1 +WL,I+1〉 and W̄ ′

I+1 = 〈WR,I−1 +WL,I+1,WR,I+1〉
respectively.

In general, the distribution of T 2
I+1 is not a chi-square distribution, due to the constraint

pW̄I+1
(T 2

I+1) ≤ pW̄I
(T 2

I ). Furthermore, the newly selected value T ′2
I+1 is positively correlated to

T 2
I+1 and uncorrelated to T 2

I . As a consequence, T ′2
I+1 will also not be chi-square and will in gen-

eral result in higher values then that of a chi-square distribution. Similar arguments apply to T ′2
I−1.

To summarize, the larger the number of iterations we perform (i.e. the smaller the number b), the
closer the values T 2

i will get to MW̄i
= maxg∈G T 2

W̄i
(g ) for all i ∈ {1, ...,b}.

Another important point to note is that the scale W ′
I+1 is fully determined by W̄I−1 and W̄I+1.

As a consequence we do not expect the distribution of the maximum statistic MW̄ ′
I+1

to be effected

by this choice (this is also easy to verify experimentally). Therefore:

P [MW̄ ′
I+1

≥ ζW̄ ′
I+1

|W̄ ′
I+1 = w̄] = P [Mw̄ ≥ ζw̄ ] (5.19)

Since T ′2
I+1 ≤ MW̄ ′

I+1
,

P [T ′2
I+1 ≥ ζW̄ ′

I+1
|W̄ ′

I+1 = w̄] ≤ P [MW̄ ′
I+1

≥ ζW̄ ′
I+1

|W̄ ′
I+1 = w̄]

= P [Mw̄ ≥ ζw̄ ] (5.20)

A similar argument applies for T ′2
I−1:

P [T ′2
I−1 ≥ ζW̄ ′

I−1
|W̄ ′

I−1 = w̄] ≤ P [Mw̄ ≥ ζw̄ ] (5.21)

We now show by induction that for any b (level of clustering):

∀i ∈ {1, ...,b} P [T 2
i ≥ ζW̄i

|W̄i = w̄i ] ≤ P [Mw̄i ≥ ζw̄i ], (5.22)

This statement is clearly true for b = G − 1 since all W̄i = 〈1,1〉, i.e. we are restricted to only
one possible scale. Now let us assume Eq.5.22 holds for iterative level b. We show that it also
holds for iterative level b − 1. In this case, we merge a break at index I and consider statistics
T 2

1 , ...,T 2
2 , ...,T ′2

I−1,T ′2
I+1, ...,T 2

b . Clearly Eq. 5.22 remain true for variables T 2
1 ,T 2

2 , ...,T 2
I−2,T 2

I+2, ...,T 2
b ,
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since they remain unchanged from iterative level b. By Eq. 5.20 and 5.21, the statement also holds
true for T ′2

I−1 and T ′2
I+1, completing the proof.

We can now readily see that for any b (level of clustering):

E [B+|〈W̄1, ...,W̄b〉 = w̄1, ..., w̄b〉] ≤ ∑
i∈1,...,b

P [Mw̄i ≥ ζw̄i ], (5.23)

where B+ is number of indices i for which T 2
i ≥ ζw̄i (i.e. the number of called breaks when cluster-

ing). Note that this summation is an upper bound on the expected number of false positive breaks,
since we are dealing with the global null (i.e. all called breaks are false).

In summary, our methodology for controlling the expected number of false positive break
points in iterative clustering is equivalent modelling the distribution of the maximum statistics
of the chi-square random processes T 2

w̄ for each scale w̄ separately. The natural choices for the
functions pw̄ and thresholds are then represented by:

pw̄ (τ) = P [Mw̄ ≥ τ]

ζw̄ = f −1(e), (5.24)

for some constant significance threshold e. If we use these functional forms for pw̄ and ζw̄ , B+ is
the number of break-points for which pW̄i

(T 2
i ) ≤ e and Eq. 5.23 simplifies to:

E [B+|〈W̄1, ...,W̄b〉 = w̄1, ..., w̄b〉] ≤ be (5.25)

Since the right side of the equation is independent on the scales we condition on, we can simplify
the equation to:

E [B+] ≤ be (5.26)

Therefore we can directly control the expected number of false positive breaks with the signifi-
cance threshold e.

5.8.2. DEALING WITH MISSING DATA.
In the interest of full generality, let us assume that both the c- and d-channel have missing (un-
informative) measurements. Suppose that M = (m1,m2, ...) and N = (n1,n2, ...) are the index se-
quences of informative probe measurements at their respective genomic location on the c- and
d-channels, respectively. Furthermore, we need indices denoting where both measurements are
available O = M ∩N = (o1,o2, ...). We need to compute new estimates for τw̄ (g ) values in the data.
In order to do this, we recompute Σ̂ (Eq. 5.2), cw̄ , dw̄ (Eq. 5.3) and Σ̂w̄ (Eq. 5.5). Eq. 5.6 and 5.7
remain the same.

ESTIMATING THE NOISE COVARIANCE

To compute the covariance of the noise Σ̂, we again use the lag-one difference profile in the c- and
d-channel, except that we ignore probes that have missing data-points in the respective channels.
To compute the covariance between the two channels, we only consider the probes for which both
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measurements are available. The new covariance estimate is as follows:

Σ̂ =
[
σ̂2

c ρ̂

ρ̂ σ̂2
d

]
, where

σ̂2
c = 1

2(|M |−1)

|M |−1∑
i=1

(cmi+1 − cmi )2

σ̂2
d = 1

2(|N |−1)

|N |−1∑
i=1

(dni+1 −dni )2

ρ̂ = 1

2(|O|−1)
×

|O|−1∑
i=1

(coi+1 − coi )(doi+1 −doi ) (5.27)

DEFINING A BREAK MEASURE BETWEEN ADJACENT SEGMENTS

Similary, when computing cw̄ (g ) and cw̄ (g ), we compute averages on the available probes:

cw̄ (g ) = 1

|Rw̄ (g )∩M |
∑

i∈Rw̄ (g )∩M
ci −

1

|Lw̄ (g )∩M |
∑

i∈Lw̄ (g )∩M
ci

dw̄ (g ) = 1

|Rw̄ (g )∩N |
∑

i∈Rw̄ (g )∩N
di −

1

|Lw̄ (g )∩N |
∑

i∈Lw̄ (g )∩N
di ,

(5.28)

The new estimate for Σ̂w̄ is more complex than the one proposed in Eq. 5.5, since it now depends
on g (the number of informative measures in the left and right segments can vary with g ):

Σ̂w̄ (g ) =
[
σ̂2

c,w̄ (g ) ρ̂w̄

ρ̂w̄ (g ) σ̂2
d ,w̄ (g )

]
, where

σ̂2
c,w̄ (g ) = ( 1

|Lw̄ (g )∩M | +
1

|Rw̄ (g )∩M |
)
σ̂2

c

σ̂2
d ,w̄ (g ) = ( 1

|Lw̄ (g )∩N | +
1

|Rw̄ (g )∩N |
)
σ̂2

d

ρ̂w̄ (g ) = ( |Lw̄ (g )∩O|
|Lw̄ (g )∩M ||Lw̄ (g )∩N | +

|Rw̄ (g )∩O|
|Rw̄ (g )∩M ||Rw̄ (g )∩N |

)
ρ̂ (5.29)

ρ̂w̄ (g ) should not be confused with ρw̄ without a hat (Eq. 5.10). ρ̂w̄ (g ) describes the correlation
between cw̄ (g ) and dw̄ (g ) at a fixed g , whereas ρw̄ describe the correlation between adjacent
measurements.

Eq. 5.6 and 5.7 remain the same, expect that the eigen matrices V and D now depend on g
(since Σ̂w̄ depends on g ). Therefore we have everything we need to compute our break measure
τw̄ (g ).
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DEPENDENCY BETWEEN ADJACENT BREAK MEASURES AND THE EXPECTED EULER CHARACTERISTIC

When dealing with missing data, ρw̄ will depend on g and Eq. 5.16 should be replaced with (see
Eq. 4.12):

Rw̄ =
G−1∑
g=1

arccos(ρw̄ (g )) (5.30)

However, we note that the number of regions crossing a fixed threshold for a realization of
the null process T 2

w̄ (with missing datapoints) cannot, on average, be larger then the number of
regions detected at full resolution. In fact, for most kernel widths w̄ these expectations are very
similar. Therefore it is of limited practical use to compute ρw̄ at every value of g and summing
(Eq. 5.30), since this sum will result in values similar to Eq. 5.16.

DEGENERATE CASES

There needs to be at least one informative measure in both the left and right segment when com-
puting dw̄ (g ), i.e. neither Lw̄ (g )∩ N nor Rw̄ (g )∩ N is allowed to be empty. Otherwise we are
forced to work with the c-channel alone. In this case, the matrix Σ̂w̄ (g ) will be degenerate, one
of the eigen values in D will be zero, and tw̄ ,1(g ) (Eq. 5.6) will simply be a scaled version of cw̄ (g )
(with unit variance in the null). We then compute the expected Euler characteristic for the Gaus-
sian process Tw̄ instead of the chi-square field T 2

w̄ (see Eq. 3.11 and Eq. 4.12):

χ̄w̄ (t ) = erfc(
tp
2

)+ e−t 2/2

π
Rw̄ (5.31)

Note that this equation differs by a factor of two compared to Eq. 3.11 since we are performing a
two-tailed test, i.e. we are counting regions above and below the threshold t and −t , respectively.
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6
DISCUSSION

6.1. LINKING ONCOGENES WITH RECURRENT DNA COPY NUM-
BER GAINS

The overall theme of this thesis is to discover driver oncogenes and tumor suppressors using DNA
copy number data. It is intuitively clear that recurrent copy number gains across tumor samples
are associated with oncogenes, but it is important to carefully consider why this happens. When
an oncogene is over expressed in a cell due to an amplification, it experiences a selective advan-
tage above other cells in a tumor. In contrast, when only non-oncogenic genes are overexpressed
due to an amplification, no such advantage is expected. Therefore, when we consider multiple
tumor samples, we expect to see an enrichment for amplifications that overlap with oncogenes.
However, if we consider only a single (highly aberrated) tumor sample, we do not directly know
which amplifications actually activate oncogenes. We define amplifications that activate onco-
genes as driver amplifications and the rest as passengers. We emphasise that it is not sufficient
for an amplification to overlap with an oncogene to be considered a driver amplification. To be a
driver, it needs to activate the oncogene and therefore apply selective pressure. When consider-
ing multiple tumor samples, amplifications might show overlap in a fixed common region and if
this occurs at a significant frequency, there is a good chance that there will be an oncogene in the
common region. Nevertheless, this does not imply that every amplification in every tumor that
overlaps with the common region is a driver amplification (Fig. 4.1a). A statistical test that states
that a region is significantly frequently amplified only gives us confidence that at least one sam-
ple contains a driver amplification and that this amplification overlaps with an oncogene. This
realisation is very important since recurrent aberrations vary substantially in width across tumors.
Hypothetically it might be that there is only one driver amplification in a single sample that hap-
pens to span a whole chromosome arm. In this case it might happen that some overlapping focal
region appear to recur significantly (due to the single broad driver event that decreases the p-
value) even though the oncogene could be anywhere on the arm. To narrow down the location of
the oncogene one might remove such a broad amplification and see if the desired region remains
significantly recurrent. GISTIC2, for example, first removes all arm-wide events before perform-
ing a recurrence analysis since these aberrations are uninformative with regard to the location of
the putative oncogene regardless of whether they are drivers. One strategy for pinpointing the
oncogene is to iteratively remove the broadest remaining amplification until recurrence cannot be
proved anymore and then calling the union of all remaining amplifications to be sure one does
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not miss the oncogene. There are two complications with this scheme. First, amplifications across
tumors might not overlap perfectly, i.e. the intersection between two broad aberrations might be
very small. If removing both leads to a non significant recurrence of the remainder, one has to ac-
cept that either of these two broad events might be the only driver and therefore call a very broad
region. The second problem is that in order for this argument to make sense, one needs to re-
construct the occurrence history of somatic copy number events from the segmented profiles. For
example, a chromosome with three adjacent amplified segments could be explained in different
ways. It might be explained by one broad aberration and a focal amplification inside, or it could
be explained by two partially overlapping broad aberrations. An example of such an algorithm
used by GISTIC2 is Ziggurat Deconstruction (ZD). As one can not unambiguously deconstruct the
history of such events, the strategy of recursively ’peeling’ away events might not be reliable.

Most algorithms perform many different steps in order to resolve the above mentioned issues.
GISTIC2, for example, integrates roughly four steps in a pipeline.

• Use Ziggurat deconstruction which estimates somatic copy number aberrations.

• Removes copy number aberrations stretching across complete chromosome arms.

• Perform peel-off to iteratively identify independent significant recurrent regions (Fig 4.1b-
f).

• Use RegBounder to broaden significant regions to increase the chance of oncogene over-
lap(Fig. 4.1g).

For ADMIRE and RUBIC, we had the mindset that it is probably better to try and resolve the is-
sues mentioned in one statistical framework instead of performing multiple serialized algorithmic
steps (each with associated power losses). For ADMIRE we identified more and more focal re-
current aberrations relative to a hierarchy of recursively updated background models. This recur-
sive procedure eliminates the need for the Ziggurat deconstruction, peel-off and the RegBounder
algorithm, but nevertheless requires a large number of parameters (for each background) to be
estimated which eventually also leads to a loss of statistical power. By looking for recurrent uni-
directional breakpoints (RUBIC), we believe we managed to resolved all the above mentioned dif-
ficulties in a single well-defined statistical framework with a single well-defined null-model (and
therefore fewer parameters to estimate). We believe that this is one of the main reasons why we
enjoy improved statistical power over existing algorithms in not just calling more recurrent events,
but also by calling them more focally and therefore pinpointing the desired oncogenes.

6.2. LINKING TUMOR SUPPRESSORS WITH RECURRENT COPY NUM-
BER LOSSES

We described how oncogenes can be located using copy number amplifications and mentioned
that tumor suppressors are found in a similar way. Indeed both ADMIRE and RUBIC treat tumor
suppressors in a symmetric way, with few exceptions. Instead of looking for recurrent amplifica-
tions (or breaks associated with amplifications) we look for recurrent deletions (or breaks associ-
ated with deletions).

The mechanism by which tumor suppressors are inactivated is, however, quite different. With
oncogenes, driver amplifications likely overlap with them and as we saw with RUBIC, called re-
gions are likely to (but not always) fully contain such genes. With tumor suppressors, however,
only a small subsequence need to be deleted to inactivate a gene. Therefore, in contrast to onco-
genes, we often find recurrent regions with RUBIC that only partially overlap tumor suppressors.
Sometimes, RUBIC also calls multiple recurrent regions inside a single tumor suppressor. This
probably happens because the overall frequency of breaks inside the gene is much higher than
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the background break frequency, but nevertheless somewhat random within the gene (to truncate
and therefore inactivate it). From a statistical point of view, this is not a severe problem. RUBIC
treats multiple called regions (per gene) as a single event and it therefore does not affect FDR con-
trol if the goal is to discover tumor suppressors. Focally called regions within a gene are useful for
identifying it as a tumor suppressor, but one cannot conclude that there is any special meaning
with respect to the region boundaries called by RUBIC. For example, one cannot conclude that a
specific domain or exon of the gene is key to tumorigenesis. To do so, one needs to model the copy
number break frequency (across samples) within the gene itself and not the overall background
frequency.

Unlike amplifications, correctly called deleted regions need not even overlap a tumor sup-
pressor gene. For example, a deleted promoter or enhancer region might also deactivate a tumor
suppressor at a different location. At this moment ADMIRE and RUBIC only call overlapping genes
as possible tumor suppressors and this list should be extended in future versions.

6.3. THE VALUE OF LARGE DATASETS
Probably only a small proportion of driver genes can be unambiguously identified when using
copy number data alone. One obvious reason is that DNA copy number aberrations are only one
of many mechanisms by which a driver can be effected. Other possible mechanisms include point
mutations and epigenetic factors. So let us rephrase the question and ask: "How many of the
drivers that are activated/deactivated by copy number alterations can we pinpoint?" For any given
cancer dataset, it is not possible to give an absolute answer to this question since we do not know
how many drivers there are in the first place. We can only provide a relative comparison with
existing algorithms and perhaps observe convergence with increased dataset sizes.

For very large datasets one might argue that it doesn’t matter if we are able to detect all of the
(copy number activated) driver genes. The argument is that if an oncogene gets amplified in less
than one percent of the tumor samples, how important can it really be? The big problem with this
argument is that a very large proportion of genes are actually amplified and/or deleted in a large
proportion of samples. A chromosome arm might be amplified in 50% of all samples and therefore
activate an important oncogene in half of the tumors, but it is the infrequent focal amplifications
that we rely on to pinpoint the gene. As a consequence increasing dataset sizes doesn’t only allow
one to detect (arguably unimportant) rarely activated oncogenes, but also greatly helps to pinpoint
the appropriate and frequently amplified ones. This illustrates how important it is to robustly call
regions at their appropriate widths (not too focal or broad) for ever increasing sample sizes. We
showed for example how a state-of-the-art algorithm such as GISTIC2 can completely miss EGFR
(by calling too focal) in a large Glioblastoma dataset, even though it is by far the most frequently
amplified oncogene. We conclude that with ever increasing dataset sizes, robust algorithms such
as RUBIC will become more and more important to fine-map the list of important oncogenes and
tumor suppressors.

Currently, whole exome sequencing (WES) datasets are growing rapidly from which copy num-
ber profiles can be derived. In our experience, the resolution of copy number profiles obtained
from WES data currently is frequently much lower that that obtained from SNP6.0 platforms. This
is because many (not all) algorithms such as CopywriteR[1] and CNVkit[2] bin reads into 20 kbp
(or more) regions in order to acquire high enough coverage for accurate copy number estimates.
This means that the density of possible locations at which breaks are called can be low. Neverthe-
less, for very large WES datasets, we expect RUBIC to perform well compared to SNP6.0 datasets
of moderate size, since the major reason for calling wide regions (which leads to driver gene am-
biguity) is limited sample size (and therefore rare focal events required for pinpointing the genes)
and not the resolution of the copy number profiles. Also, for large datasets, the quality of single
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sample profiles become less important, since the aggregate profile ’averages’ the noise.
Increased sample sizes are not the only way to improve driver detection from copy number

data. Algorithms such as Helios[3] further narrow down the list of potential driver genes by inte-
grating other data sources such as point mutations, high-throughput genetic screens and expres-
sion data. The ISAR algorithm[3] which also calls recurrent regions, can easily be replaced with
ADMIRE or RUBIC in the Helios pipeline.

6.4. RECURRENCE ANALYSIS AND ITS SENSITIVITY TO SEGMEN-
TATION ALGORITHMS

In a recurrence analysis we roughly consider two types of noise:

• Measurement noise. Noisy copy number measurements are made per probe (or in bins
for genomic sequence data). Typically, measurement noise can be considered independent
between adjacent probes within a single sample.

• Biological noise. Since we are interested in driver aberrations, all passenger aberrations
(albeit real biological events) are considered to be noise as well. For ADMIRE and RUBIC
we developed null models to describe the biological noise.

Single sample segmentation algorithms are employed to discover the location of copy number
break points on the genome. For our recurrence analysis, these algorithms are nothing more then a
step in the pipeline to reduce measurement noise. If a segmentation algorithm calls too many false
positive break points but correctly identifies the correct breaks as well, we end up with profiles that
contain all the relevant copy number aberrations, but with suboptimal noise reduction. On the
other hand, overly conservative segmentation algorithms will smooth away not only measurement
noise but also true biological signal (driver aberrations).

It stands to reason that a good recurrence algorithm should be robust against measurement
noise and therefore the choice of segmentation algorithm, albeit lose power when smoothing away
true breaks. We believe that this is one of the key reasons why RUBIC not only outperforms peel-off
based algorithms such as GISTIC2.0, but also performs more robustly across different technologi-
cal platforms.

GISTIC2, on the other hand, is highly dependent on the segmentation algorithm being em-
ployed. Peel-off algorithms iteratively remove aberrations from segment-derived copy number
profiles to detect seemingly independent recurrent loci across samples. Such methodologies are
inherently sensitive to the segmentation algorithm employed since broad aberrations might ap-
pear focal due to false positive break points and hence derail the peel-off strategy. When no seg-
mentation is employed, and GISTIC2 is performed on unsegmented profiles, it is equivalent to
telling the algorithm that there is a break located between all adjacent probes on the genome. The
algorithm will break down due to the very large number of one probe events being called.

In contrast, nowhere in the methodology of ADMIRE or RUBIC do we assume that the copy
number profiles are segmented. Both these algorithms smooth aggregate profiles (with kernels)
and therefore reduce both measurement and biological noise. The cyclic null hypotheses, on the
other hand, models both uncorrelated measurement and biological noise. On simulated datasets
where we add uncorrelated measurement noise to segmented profiles, RUBIC calls very similar
recurrent regions, irrespective of whether we segment the samples or not. The fact that RUBIC
performs similarly between the two extremes of "perfect" segmentation and trivially liberal seg-
mentation suggests that the algorithm will behave robustly in any realistic "in-between" scenario.

This raises the question, why do we segment our samples before applying ADMIRE or RUBIC?
There are multiple reasons for this, but the most important reason is that we believe that single
sample segmentation algorithms are more proficient at removing measurement noise than the
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smoothing methodologies employed by ADMIRE and RUBIC, since it explicitly accounts for the
segmented nature of the data. Second, it is important to remove germline copy number variations
before employing ADMIRE or RUBIC. Detecting and removing these copy number variations are
usually performed after segmentation. From a practical point of view it is also more convenient
to input small segmented files that contain only information about breakpoint locations and the
average segment amplitudes than millions of measurement probes.

6.5. THE EXPECTED EULER CHARACTERISTIC
In this thesis we employed the expected Euler characteristic (from differential topology) as a statis-
tic for significance in our algorithms. Our algorithms seek to call peaks in one dimensional datasets
relative to a well defined null-model. For any given threshold and any realisation of our null-
model (i.e. a realisation of a stochastic process), the Euler characteristic equals the number of
up-crossings with respect to the threshold. In other words, it basically counts the number of peaks
above the given threshold. The expected Euler characteristic is then defined to be the expected
number of "peaks" to cross the threshold (across realisations) in the null. We believe that for a
peak calling algorithm, this is a very natural statistic to use since if one performs FDR control on
called peaks, it is the expected ratio between the number of false peaks (modelled by the null) and
true peaks that is of interest. From a theoretical standpoint, the expected Euler characteristic is
also a powerful multiple test corrected statistic since it explicitly accounts for highly correlated
test measurements (probes) in close proximity on the genome and therefore reduces the effective
number of tests to correct for. The final advantage of the expected Euler characteristic is that we
can analytically relate it to our significance thresholds if the null model is multivariate Gaussian
(which is often a good assumption in aggregate experiments).The expected Euler characteristic
has been used in the past for FWER control in applications such as neuro-imaging, where voxel
measurements are highly correlated in space. Our contribution was to extend this theory for scale
spaces (dynamic smoothing) and to adapt its usage to (the less restrictive) FDR control.

6.6. SCALE SPACES
Another central theme was to employ scale spaces. In essence we dynamically changed the level
of smoothing required when detecting peaks at different widths. The idea here is that we can gain
tremendous statistical power for broad peaks since we effectively smooth away (measurement and
biological) noise. Throughout our work we constantly used the expected Euler characteristic as a
multiple test corrected statistic (across the genome) for calling peaks at a fixed scale (fixed kernel
used for smoothing). This statistic on its own was not sufficient in the sense that we needed to
correct for multiple testing across scales as well. For ADMIRE, we introduced a resolution param-
eter α to ensure that FDR control on a single scale also applied to all scales. The introduction of
this parameter was somewhat ad-hoc and, although practically useful in this application, needed
to be fine-tuned to maximise statistical power while maintaining FDR control. For RUBIC and our
single sample segmentation algorithms, this parameter was neatly disposed of. We showed that
when using wavelet kernels to segment aggregate profiles, there exists a direct correspondence be-
tween the expected Euler characteristic (as employed on a single scale) and the expected number
of local maximum segments when considering multiple scales in a clustering scheme.

6.7. CLOSING REMARKS AND OUTLOOK
We developed a statistical framework combining scale spaces and the expected Euler characteris-
tic in the context of peak (or break) calling for DNA copy number data. The scale space methodol-
ogy allows us to gain statistical power for calling peaks at different widths and the expected Euler
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characteristic is, in our opinion, the most natural statistic to use for peak calling. This is because
the Euler characteristic, combined with the scale space methodology, allows us to directly con-
trol the false discovery rate on called peaks (i.e. the expected proportion of false positive peaks),
instead of called probes (i.e. the expected proportion of false positive probes in peaks). Con-
sequently this measure is insensitive to platform resolution, but sensitive to the inherent auto-
correlation in the noise, the latter of which greatly alleviates multiple test correction in coloured
noise. In addition we derived accurate analytical approximations for the expected Euler charac-
teristic which allows us to completely (partially) eliminate time consuming permutation tests in
Gaussian (non-Gaussian) noise profiles respectively.

Although the peak callers in this thesis are applied to copy number data, the theory can be
used in any application, provided we can estimate the variance (or covariance for multidimen-
sional measurements) and auto-correlation (correlation between measurements at different ge-
nomic positions) parameters of the noise. We hope that this framework will pave the way for future
peak callers in other domains including, but not limited to, CIS discovery in insertional mutage-
nesis, ChIP-seq peak callers and border detection in raw sequencing data derived from Oxford
nanopore technologies.
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SUMMARY

Cancer is a genetic disease. The activation, alteration or deactivation of cancer genes can stim-
ulate undesirable cell-proliferation. Cancer genes can be subdivided into oncogenes and tumor
suppressors. Oncogenes, such as growth factor receptors, are altered and/or overexpressed genes
that are causally linked to tumorigenesis. Tumor suppressors, by contrast, are typically under-
expressed or deleted in tumors since they would otherwise serve a protective role.

There are two main genetic mechanism that can activate or deactivate cancer genes: muta-
tions and DNA copy number alterations. In this work, we focus on detecting novel cancer genes us-
ing somatic DNA copy number data. The philosophy is simple: if independently acquired somatic
amplifications or deletions occur frequently across multiple tumor samples, they are likely to har-
bor oncogenes or tumor-suppressors respectively. With a single tumor DNA copy number profile,
it is not possible to know which copy number alterations activate or deactivate cancer genes, since
many of the alterations (referred to as passenger aberrations) occur due to genomic instability and
do not necessarily provide a selective advantage for cancerous cells. However, when aggregating
across many samples, we expect cancer genes to be amplified or deleted more frequently than by
chance, which allows us to detect them.

This application can be regarded as a peak calling problem. We aggregate (sum) copy number
profiles across many tumors and call peaks that are significantly high. To do this we define a null-
model that describes the behavior of an aggregate copy number profile that would arise if only
passenger aberrations occurred. The null aggregate profile (also called the noise profile) exhibits
high autocorrelation across the genome due to the segmented nature of copy number profiles.

We therefore developed a statistical framework for calling peaks (at varying widths) where the
noise profile can exhibit strong autocorrelation. The framework allows us to detect peaks (at vary-
ing widths) with high statistical power while controlling the false discovery rate of detected peaks.
We employ two concepts. First, we take advantage of the fact that broad peaks can be detected
with much higher statistical power when smoothing the profile and we developed techniques for
adaptive smoothing. Second, we use a powerful statistic called the expected Euler characteristic
that is insensitive to platform resolution, directly compatible with our smoothing methodology
and that can be directly used to estimate the expected number of false positive peaks called.

This framework does not rely directly on the inherent properties of DNA copy number profiles
and can therefore be applied in many more applications with suitably defined null-models. Al-
though the mathematics we develop in this framework might be taxing at times, we observe that
the equations that result and that are ultimately used in our peak calling algorithms are simple and
the validity can easily be verified by simulating data and comparing our theoretical expectations
with measured observations.
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SAMENVATTING

Kanker is een genetische ziekte. De activering, mutatie of deactivering van kankergenen kan on-
gewenste celdeling stimuleren. Kankergenen kunnen worden onderverdeeld in oncogenen en tu-
morsuppressoren. Oncogenen, zoals groeifactor-receptoren, zijn veranderde en/of tot overexpres-
sie gebrachte genen die causaal zijn gekoppeld aan tumorigenese. Tumor suppressors, daarente-
gen, zijn meestal ondervertegenwoordigd in tumoren, of ontbreken volledig. Deze genen hebben
immers een beschermende rol.

Er zijn twee belangrijke genetische mechanismen die kankergenen kunnen activeren of deac-
tiveren: veranderingen binnen het gen en wijzigingen in het aantal DNA-kopieën. In dit werk con-
centreren we ons op het detecteren van nieuwe kankergenen met behulp van somatische DNA-
copynumberdata. De filosofie is eenvoudig: als onafhankelijk verworven somatische amplificaties
of deleties vaak voorkomen in meerdere tumormonsters, zullen ze waarschijnlijk respectievelijk
oncogenen of tumoronderdrukkers bevatten. Met een copynumberprofiel van een enkele tumor
is het niet mogelijk om uit te vinden welke copynumberwijzigingen kankergenen activeren of de-
activeren. Dit komt doordat veel van de veranderingen (aangeduid als passagiersafwijkingen) op-
treden als gevolg van genomische instabiliteit en niet noodzakelijkerwijs vanwege een selectief
voordeel voor kankercellen. Wanneer we echter aggregeren over veel monsters, verwachten we
dat kankergenen vaker dan door kans alleen worden gedupliceerd of verwijderd, waardoor we ze
wel kunnen detecteren.

Dit vraagstuk kan als een piekdetectieprobleem worden beschouwd. We sommeren de copy-
numberprofielen van veel tumoren en ontdekken daarmee significant hoge pieken. Hiertoe defi-
niëren we eerst een nul-model dat het gedrag beschrijft van een geaggregeerd copynumberprofiel
dat zou ontstaan als er alleen passagiersafwijkingen zouden optreden. Het nul-aggregaatprofiel
(ook wel het ruisprofiel genoemd) vertoont een hoge autocorrelatie binnen het genoom als gevolg
van de gesegmenteerde aard van copynumberprofielen.

We hebben daarom een statistisch raamwerk ontwikkeld voor het ontdekken van pieken (met
verschillende breedten) waarbij het ruisprofiel een sterke autocorrelatie kan vertonen. Het raam-
werk stelt ons in staat pieken te detecteren (met variërende breedtes) met een hoog statistisch ver-
mogen terwijl de false discovery rate van gedetecteerde pieken wordt beperkt. We benutten twee
concepten. Ten eerste maken we gebruik van het feit dat brede pieken met een veel hoger onder-
scheidend vermogen kunnen worden gedetecteerd na het gladstrijken of afvlakken van het profiel.
Derhalve hebben we technieken voor adaptieve afvlakking ontwikkeld. Ten tweede gebruiken we
de verwachte Euler-karakteristiek, een steekproeffunctie met een hoog onderscheidend vermo-
gen. Deze is ongevoelig is voor de platformresolutie, en is direct compatibel met onze afvlakkings-
methodologie. Bovendien kan de verwachte Euler-karakteristiek direct worden gebruikt om het
verwachte aantal fout-positieve pieken te schatten.

Onze methodologie wordt niet beperkt door de inherente eigenschappen van DNA-copynum-
berprofielen en kan daarom in veel meer toepassingen worden gebruikt, mits het nul-model juist
is gedefiniëerd. Hoewel de wiskunde die we in dit kader ontwikkelen soms lastig is, zijn de vergelij-
kingen die daar uit voortvloeien en uiteindelijk in onze piekdetectie-algoritmen worden gebruikt
juist eenvoudig. Bovendien kan de juistheid van de vergelijkingen gemakkelijk kan worden geve-
rifiëerd door data te simuleren en onze theoretische verwachtingen te vergelijken met gemeten
observaties.
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