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Summary

The mathematical model presented describes the flow in rivers of which

i the depth is small compared with the width,

ii the width is small compared with the radius of curvature,

iii the horizontal length scale of the bottom variations is of the
order of magnitude of the width.

Within these limits, the channel alignment can be arbitrary and it is

not necessary that the width is constant. Furthermore, it is assumed

that

iv the flow is mainly friction controlleé,

v the longitudinal component of the velocity is predominant,

vi the Froude number is small.

The final set of differential equations accounts for the longitudinal

convection (Bernoulli effect), the bottom friction, the flow

curvature and the transverse convection of momentum by the secondary

flow. The numerical integration procedure is straightforward and

requires little computation time. Computational results are presented

for a large hydraulic model which fulfils the above .conditions.
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1. Introduction

The flow and the bed topography in curved alluvial rivers play an
important part in various aspects of river engineering, such as river
regulation, navigability, bank protection, dispersion of heat and
polutants and the like. Hitherto, engineering problems in this field
were mostly studied using hydraulic scale models. At present, however,
the increased possibilities of electronic computers and the progress
in numerical fluid dynamics enable the development of mathematical
models of this complicated case of flow and sediment transport.

The basic idea underlying such models is that the flow can be

considered quasi-stationary, i.e. the time needed for the flow to

adapt to a change in the bed level is much smaller than the time
needed for the bed level change itself. In that case the process of
bed level development can be divided into small time intervals, during
which the bed is kept fixed and the flow and the sediment transport
rate are computed as if they were stationary; the corresponding rate
of change of the bed level is used to predict the bed level in the
next interval, etc.

Mathematical models of this kind comprise a computational procedure

for steady flow in curved channels with a fixed, but arbitrary

bed configuration. Two groups of suchprocedures have been developed,

viz. ‘

. procedures based on the integration of the depth-averaged main flow
equations {]-6]; these procedures are simple and economic, but
hitherto all of them disregard the convective influence of the
secondary flow on the main flow; this leads to errors in the main
velocity distribution, as will be shown hereafter;

. procedures based on the integration of the complete three-dimensional
flow equations [7—10] ; these procedures yield good predictions of
the main and secondary flow (so far only for rectangular channels,
but the extension to more arbitrary geometries must be possible),
but they are complicated and expensive.

The errors in the velocity predictions make procedures of the first




group unsuited for the present purpose. On the other hand, the use of

a procedure of the second group, if existing at all, seems somewhat

overdone for the many rivers that are shallow and have bends of

moderate curvature. In that case simplifications are likely to be

possible and the use of expensive fully three~dimensional flow

computation methods seems to be unnecessary. A depth—averaged

computation procedure including the convective influence of the

secondary flow would be more appropriate then.

The present paper deals with such a depth-averaged procedure, for

rivers of which:

i the depth is small compared with the width;

ii the width is small compared with the radius of curvature;

iii the horizontal length scale of the bottom variation is of the
order of magnitude of the width;

iv the flow is mainly friction controlled;

v the longitudinal component of the velocity dominates the other
ones;

vi the Froude number is small.

Depth-averaged balance equations for mass and momentum are derived

in channel-fitted coordinates, the influence of the secondary flow

on the main flow is analysed and the results of a simple, straight-

forward computation method are compared with experimental data.



2. Mathematical modelling

2.1. Coordinate system

Since the alignment of the river sections to be considered is
curvilinear, it is rather obvious to use a curvilinear coordinate
system which follows the alignment of the river. To that end the
differential equations describing the conservation of mass and
momentum will be formulated using a coordinate system (y,4,z), where

Y and ¢ are orthogonal curvilinear coordinates in the horizontal plane

and where the z-axis is vertical and positive in the upward direction.

é;n—axis

Yoz o+ dy

d = d,+do

y:$—axis

Figure 1. Coordinate system
The distance along the coordinate curves ¢ = constant and Yy = constant
is indicated by s and n, respectively, and the metric functions

Z](¢,¢) and Zz(w,¢) are defined such, that the length of the

infinitesimal arcs ds and dn is given by
ds = Z,(w,¢)dw and dn = Zz(w,¢)d¢ (D

Correspondingly, the spatial derivatives of a function f(¥,$,z) are
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If the local curvature of the s-line is taken positive when the

positive n—lines diverge and inversely, these curvatures are given

by (cf. [11])
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2.2. Governing differential equations

Without relating the horizontal coordinates to the channel geometry

yet, the equation of continuity for steady incompressible flow reads

(see [}l] and [12]):
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, where u , u and u, denote the velocity components in Y- (s~),
¢— (n—-) and z—direction, respectively. Making use of (2) and (3),

this equation can be rewritten as
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In the same way, the momentum equations can be written as
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, in which p is the pressure, p is the mass density of the fluid and
g is the acceleration due to gravity.

For small Froude numbers the water surface can be considered as if it
were a rigid frictionless plate at z=0. At the fixed boundaries the
usual conditions of impermeability and no-slip apply.

In shallow channels with only large-scale variations of the bed level
and with gently sloping banks implying a gradual decrease of the depth
to zero at the lateral bounds of the flow, the friction in vertical
planes will be negligible compared with the friction in horizontal
planes. Furthermore, the pressure can be assumed hydrostatic, as

the convection terms and the friction terms in equation (8) will be
much smaller than the pressure gradient term and the gravitation term.
Taking account of these simplifications, integrating equations (5)
through (7) from the bottom at z = ~h(s,n) to the surface at z=0
yields (cf. [6])

shu hu 3hu hu
S hal

s n _
s YR T w7 (9
2 1
T2 S 7 7
shu ohu u hu u h(u™=u") nap T
+ sn, L CIR U gL .. (10)
ds an R R p 3s o}
1 2

ohu u Bhu2 hu u h(u2~u2) T

sm, n,, sn, ~ns , hoP, n_y, (1)

3s on R, R1 o dn  p o

, in which the overbars denote depth-averaging; Ty and T, are the s-—
and n-wise components of the bottom shear stress and P is the total

pressure p+pgz.




2.3. Main and secondary flow

The flow pattern in river bends is known to be fairly complex: instead
of moving more or less parallel to the channel axis, the fluid
particles follow a helical path. This helical flow can be considered
as asuperposition of a more or less parallel main flow and a

secondary circulation. If the orthogonal curvilinear coordinate system
(s,n) is formed by the streamlines (s) and the normal lines (n) of

the depth—averaged horizontal velocity field, the main flow is defined
by the horizontal velocity component iu the s-direction (stream—wise
direction), whereas the secondary flow is defined by the horizontal
component in the n-direction (normal direction).

As a first approximation. likely to hold good for the present mildly
curved flows [13], the main velocity is assumed to have the logarithmic
distribution along the vertical that is commonly used for uniform
rectilinear shear flow:

u, = {1 +é%+{%ln(l+%)}=ﬁsfl(§-, -“%—) L (12)
A widely applied procedure to determine the horizontal component of
the secondary flow, u s is to solve the momentum equation in the
n-direction, disregarding all lateral friction terms and all inertia
terms except the centrifugal one. Introducing the eddy viscosity
concept for the vertical friction terms, this equation reads

(see also [4] and [5])

du

1 3P _ 3 7
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, in which RS is the local radius of curvature of the streamlines and
A is the eddy viscosity.

The omission of the lateral friction terms from equation (13)
corresponds with the physical idea that the depth of flow is the

characteristic length scale for the turbulent processes in the



present type of flow. It implies that abrupt changes of the depth and/
or the existence of vertical sidewalls cannot be accounted for. In
order to make the secondary flow tend to zero at the banks, the depth
should gradually approach to zero there. In addition, the streamwise
inertia of the secondary flow is neglected, so that abrupt changes

of the flow curvature should be avoided, as wellﬂ If all these
conditions are satisfied, equation (13) holds good and the strength

of the secondary flow is determined exclusively by the local
properties of the main flow.

This becomes even more evident if the pressure is assumed hydrostatic

and equation (13) is elaborated to
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The vertical distribution of A corresponding with the logarithmic
distribution of u in uniform rectilinear shear flow reads ([14]

and [15])

Vg z, -
A= - KT z(l + E) u, .. (15)
As the vertical distribution of u, in the présent curved flow is

taken the same as in uniform rectilinear shear flow, it is obvious

to apply this parabolic distribution of A in equation (14). In

that case the solution reads:

L—lsh z Vg
u = §;~.f2 o EE) .. (16)

,» in which f2 is a complicated function of the vertical coordinate
and the friction parameter. Figure 2 represents some of the curves

according to the expression for f_ derived by De Vriend [4, 5] as

2
a modification of Rozovskii's theory [13].
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Figure 2. Secondary flow curves for various values of

the friction parameter.

Experimental verification of these results is rather difficult. The
few data available show that the general behaviour is predicted

rather well [4, 5, 16, 17] but the magnitude seems to be somewhat

underestimated [16, 17].

2.4. Analysis of the depth—averaged main flow

The (s,n) coordinate system used in par. 2.2 can be attached to

the channel geometry in such a way, that the s-lines are
approximately parallel to the banks and the channel axis (see also
[6] and [12]). Such a choice means that the s—lines in this channel-
coordinate system are rather close to the streamlines of the
depth-averaged flow, so that the s-wise component of the main
velocity largely dominates the n~wise one. Furthermore, if the flow
is not sharply curved, the secondary flow will be small compared

with the main flow, so that the following approximations will apply:

i
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n
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the same order of magnitude then.
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Then the most important depth-averaged velocity products in equation

(10) and (11) can be elaborated using (17) and (18), to

2 =27 =2
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.5 - agh
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A graphical representation of ksn as a function of C is given

in figure 3.
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FPigure 3. Factor for transverse momentum exchange by the

secondary flow.
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As u_ is small compared with ugs ui will be disregarded with respect

to ug in the longitudinal momentum equation (19) and all terms
related to u s including the bed shear stress term, will be
disregarded in the transverse momentum equation (11). If, in
addition, the commonly used quadratic relation between the

longitudinal bed shear stress and the longitudinal velocity is

adopted, the depth-averaged system of equations can be written as:
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So, apart from the usual terms representing the main flow inertia,
the pressure gradient and the bottom shear stress, the longitudinal
momentum equation contains two terms that account for the transverse
exchange of main flow momentum by the secondary flow. In order to
have a better insight into the role of these terms, equations (22)

and (23) are combined to

snp dan R
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, holding along the characteristics

u
i‘l=—_ﬂ+2k %- ..(25)
u

Now the effect of secondary flow convection is clearly shown.

Firstly, the characteristics no longer coincide with the streamlines
of the depth-averaged flow, but gradually shift towards the outer
bend (if h tends to zero at the banks, they remain within the bed,

the characteristics at the banks coinciding with the water line then).
Secondly, the secondary flow convection causes a redistribution of

the total flow energy over the cross—section, as illustrated by

figure 4.




outer bend inner bend

Figure 4. Influence of secondary flow convection on the total energy.

The secondary flow convection term in equation (24) is always positive
in the inner part of the bend and negative in the outer part,
irrespective of the sense of curvature (if the channel is curved in the

opposite sense, both n and R, change sign in figure 4). This implies

that along the characteristiis (25) in the inner bend secondary flow
convection tends to reduce the total energy of the flow, whereas along
the ones in the outer bend the energy tends to be enhanced. Consequent-
ly the main velocity distribution tends to be skewed outwards.

Even though the secondary flow convection terms in (24) and (25) will
be rather small for the bends considered here, they steadily act in the
same sense and their effects accumulate. Hence the deformation of the
main velocity distribution due to secondary flow convection can become
considerable.

Essentially the same phenomenon, though somewhat more complicated,
occurs in rectangular channel bends. Without secondary flow convection
the main velocity maximum lies near the inner wall throughout the bend
and in a straight reach downstream of its exit the velocity

. If the effect

distribution soon becomes almost uniform [;, 5, lé:
of secondary flow convection is taken into account, however, an
explanation can be given for the outward shift of the velocity
maximum in a bend and the strongly skewed velocity distribution in a

straight reach beyond it, as observed in many experiments L4, 5, 13,




- 13 -

16 and many others].
Equation (24) shows again that the application of the theory is
limited to cases where the secondary flow convection term

k C (hz/R]) is not systematically (much) larger than the friction

n 9n
parameter g/C”. In sharp bends, for instance, the convection term can
become so large, that the term in brackets in (24) becomes strongly
negative along the outer bamk, which in turn can give rise to an
unlimited growth of the velocity there. It is clear that in practice

this will not occur because of lateral friction effects, which have

been disregarded in the present analysis.

2.5. Method of integration

It seems attractive to integrate equations (9), (22) and (23) using
the characteristic relations as given by expressions (24) and (25).
The characteristics, however, still contain the transverse component
of the main velocity Gn, so that their position is not known in
advance. Therefore, in order to simplify the integration procedure,
a modified form of expressions (24) and (25) is used, considering
the terms with En in equation (22) to be known. Then expression (24)
changes into:

2 du uu

P s s |g ) h - s n s
(”p_.{._,..):-.—.ﬁ_.—z--(»ksn—a-g(i—l-) “lu g YR .. (26)

dn h
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, meanwhile satisfying the integral condition of continuity

I hu dn = Q .. (28)
width
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in each normal section of the river. Subsequently, ﬁn is determined
from equation of continuity (9) and the computation of GS from
equations (26) through (28) is repeated, etc.

The advantage of this (iterative) procedure is, that the
characteristics are no longer determined by the flow, but only by the
geometry of the river as given by its depth and curvature. Moreover,
in many practical cases the characteristics remain very close to the
s-lines of the coordinate system because of the small values of

h/R,. In such cases the computations can be simplified even further

1
by considering the s-lines as approximations of the characteristics

27).

In channels of constant width the s-lines can be chosen parallel to
the axis, so that the n-lines will be straight and perpendicular

to the axis. In that case the channel is actually discretized to a
series of infinitesimal parts of circle sectors, each having its

own radius of curvature and its own cross—sectional geometry.

Figure 5. River-oriented coordinate systemn.

Equation (26) can be written as:

—g-s— (P/p + U/2) = -Ua - b .- (29)
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Adopting a computational grid (iAs, jAn), this equation can be

discretized to

= p[1,3+1] - 2 p[i,3] + 5 U[E,5+1] - 5 U[i,5] =
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.. (30)

Substracting this result from the similar result for n = (i+l) An
yields an expression from which the quantity pl P[i+l,j+1{ —é— P{i,jﬂi

can be eliminated using equation (23). This leads to
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%i [b[i,j] + b[i,j+1] - b[i+1,3] - b[i+1,j+1]] ..(31)

Starting from a given boundary value for U and assuming all quantities
in the RHS to be known, U[i,j+1] can be determined from this equation.
Thereby the boundary value of U is chosen such that the integral
continuity condition (28) is fulfilled. After the determination of

the longitudinal velocity GS in a ray, the total pressure in that ray
is solved from equation (29), for instance. After sweeping through

the whole flow region, all velocities Gs are known and the transverse
velocities Gn can be evaluated using the equation of continuity (9).
Next the coefficients b and the flow field can be computed again and
as many iterations can be made as accuracy requires.

This method of integration proves to be very efficient; it does not

show any instability and computer costs were low.

3. Results and discussion

The Delft University of Technology and the Delft Hydraulics Laboratory
have commonly carried out experiments in a hydraulic model which
fulfilled the conditions mentioned before [171. It consisted of a
straight symmetric parabolic cross-section followed by a curved part
(radius 50 m), in which the deepest point of the bottom gradually
shifted from the middle of the channel to the outer bend. The length
of the curved part was about 80 m (fig. 6a). The areas of the wet
cross—section in the straight and curved parts of the channel were
about the same. Figure 6b shows the bottom configuration in detail.
In the same figure the characteristics according to equation (27)
are shown and they illustrate that the deviations from the s—lines
will not give rise to large errors in the flow computation.

The friction coefficient of Chezy was about 60 m%/s. Experiments
were done with discharges of 0.463 m3/s and of 0.212 m3/s , using
the same water depth. The bed of the channel had a small inclination

in order to compensate for friction losses.
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The experimental results for the velocity Gs and the total pressure
(transposed to the water level) are plotted in figure 7. The
velocities for the small discharge have been scaled up to those for
the high discharge. This is possible because of the theoretical
similarity of the velocity profiles. The pressure results are
proportional to Q2, but those of the small discharge are not
represented as it appeared to be impossible to measure them
accurately enough.

Figure 7 also gives the results of the mathematical model if the

influence of the secondary flow on the main flow is disregarded

(kSn = 0, dashed curves). The various results give rise to the

following observations.

i  The similarity between the measured velocity profiles for low and
high discharge is almost perfect. As a consequence, the
discrepancies which can be observed between experimental and
mathematical results can hardly be attributed to errors in the
flow measurements (see also [38]).

ii In general the experiments and computational results for the
velocity compare well. The influence of the secondary flow on
the main flow is significant. As predicted by equation (24),
disregarding the influence of the secondary flow leads to higher
velocities in the inner bend and to lower velocities in the
outer bend. As was shown by Rozovskii [Kﬂ, this effect is even
more pronounced if the channel cross—section has the same symmetric
(i.c. parabolic) shape throughout the flume.

iii In the outer bend a systematic discrepancy between the experimental
and the theoretical velocity profiles can be observed: the
measured velocities close to the outer bank are higher than
predicted. Three reasons for this deviation can be mentioned.
Firstly, the theory tends to underestimate the secondary flow.
The differences amount a factor 1.5 [)f]. Therefore the
computation is repeated with the coefficient ksn multiplied by

1.5. In figure 8a the results of this computation are compared
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with the original ones. The picture shows a further increase of
the velocities in the outer bend and a further decrease in the
inner bend, indeed. Secondly, the computation is based upon the
approximation of the characteristics by the s-lines. The
consequence is, that the shift of the characteristics to the

outer bend is not reproduced. According to fig. 6 this shift is
not very large, but nonetheless it is a systematic effect. Thirdly,
the underwater bank in the outer bend has a slope of 1:3, which

is rather steep. The derivations are based on a gradual change of
the depth without stating explicitly what rate of change of the
depth is permissible. Possibly, the slope is already too steep,
which would imply that the secondary flow is no longer determined
by the local flow properties alome.

Another discrepancy between the measured and theoretical velocity
profiles occurs at the beginning of the transition (s=0). The
measured velocity is somewhat overestimated there. This caused

by the sudden changevof curvature as used in the computation,
whence s=0 m the horizontal water level suddenly gets a transverse
slope. Because of the Bernoulli effect the theoretical velocity
becomes somewhat higher in the inner bend and somewhat lower in
the outer bend. In the next steps this effect disappears.

Similar effects can be observed in the results for the pressure.
At s=0 m the measured fall between outer and inner bend is lower
than predicted. Obviously the curvature of 1/50 m_} is not yet
xeached there. Furthermore, the theoretical pressure result at s=25m
is also less satisfactory. This must be attributed to the effect
of the transition in the bottom configuration between s=0 m and
s=25 m. Near the end of this transition, the curvature of the
thalweg, and hence of the streamlines is higher than the

curvature of the s-lines, so that the transverse pressure gradients
will be higher than predicted. In fact it is not very difficult

to include the local flow curvature (to be derived from the flow

field in the subsequent iteration steps [;] in the numerical
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programme. As yet this has not been attempted since the velocity
profiles are considered satisfactory.

vi In the derivation of the final equations (24) and (25) the
influence of the resulting cross-flow was explicitly taken into
account. That this is important is illustrated by fig. 8b,
showing what happens to the velocities if in equation 29 the
quantity b is set equal to zero. In particular in the transition
the differences are relatively large. Hence it must be concluded

that this effect cannot be disregarded.

4. Conclusion

Steady flow in shallow rivers of moderate curvature and with gradual
depth changes can be adequately described by shallow water equations,
provided that the extra terms accounting for transverse momentum
exchange due to the secondary flow are introduced in the equation(s)
of motion.‘These additional terms are related to the square of the
main velocity, the flow éurvature and the transverse change of the
bottom level. In the characteristic relation (24) their influence can
be compared directly with the influence of friction. Accounting for
the convective influence of the secondary flow on the main flow is
essential to a mathematical model of curved channel flow. Models

that disregard this effect are at best equivalent to the present

one with ksn = 0 (cf. figure 7), even if the flow in regions with
strong variations of the channel curvature is described more

accurately (cf. ref. [1i]).




...23 -

References

1. Van Bendegom, L., Some considerations on river morphology and
river improvement (in Dutch), De Ingenieur, 59 (1947), no. 4,

p. Bi-11.

2. Kuipers, J. and Vreugdenhil, C.B., Calculatioms of two-dimensional
horizontal flow, Delft Hydraulics Laboratory, Report S163,
part I (1973).

3. Engelund, F., Flow and bed topography in channel bends, Proc.
ASCE, J. Hydr. Div., 100 (1974), no. HY-1l, p. 1631-1648.

4. De Vriend, H.J., A mathematical model of steady flow in curved
shallow channels, Comm. on Hydraulics, Delft University of
Technology, Report 76-~1 (1976).

5. De Vriend, H.J., A mathematical model of steady flow in curved
shallow channels, J. Hydr. Res., 15, (1977}, no. 1, p. 37-54.

6. Sherenkov, I.A. and Gladyshev, M.T., Mathematical modelling of
two-dimensional plane flows in open channels, Proc. XVIII-th
Congress of the IAHR, Baden-Baden (1977), paper Al05. -

7. Pratap, V.S., Flow and heat transfer in curved ducts, Imp.

Coll. London, Dept. Mech. Eng., Ph.D. thesis HTS/75/25 (1975).

8. Pratap, V.S., and Spalding, D.B., Numerical computations of the
flow in curved ducts, Aeron. Quarterly, 26 (1975), part 3,

p. 219-228.

9. Leschziner, M. and Rodi, W., Calculation of three-dimensional
turbulent flow in strongly curved open channels, Univ. Karlsruhe
Sonderforschungsbereich 80, Report SFB80/T/126 (1978).

10. Leschziner, M. and Rodi, W., Calculation of strongly curved
open channel flow, Proc. ASCE, J. Hydr. Div., 105 (1979),
no. HY10, p. 1297-1314.

11. Rouse, H., Advances Mechanics of Fluids (Appendix A), John Wiley,
New York (1959).

12. Yotsukura, N. and Sayre, W.W., Transverse mixing in natural

channels, Water Res. Research, 12 (1976), no. 4, p. 695-704.




18.

_24_.

. Rozovskii, I.L., Flow of water in bends of open channels, Israel

Program for Scientific Translation, Jerusalem (1961).

. Vanoni, V.A., Transportation of suspended sediment by water,

Transactions ASCE, 111 {1946), p. 67-102.

Jobson, H.E. and Sayre, W.W., Vertical transfer in open channel
flow, Proc. ASCE, J. Hydr. Div., 96, (1970), no. HY3, p. 703-724,
De Vriend, H.J. and Koch, F.G., Flow of water in a curved open
channel with a fixed plane bed, Delft Hydraulics Laboratory/
Delft University of Technology, TOW-report R657-V/M1415-1 (1977).

. De Vriend, H.J. and Koch, F.G., Flow of water in a curved open

channel with a fixed uneven bed, Delft Hydraulics Laboratory/
Delft University of Technology, TOW-report R657-VI/M1415-I1 (1978).
De Vriend, H.J., Accuracy of measurements in a curved open channel,
Delft Hydraulics Laboratory/Delft University of Technology,
TOW-report R657-VII/M1415-111 (1978).




- 25

Notations

a

1’72

o |

bottom friction and secondary Rn

flow convection coeffficient
eddy viscosity

transverse main flow
convection coefficient
Chezy—factor

main flow distribution
function

secondary flow distribution
function

acceleration due to gravity
depth of flow

point index in the
computational grid

secondary flow convection
factor

metric factors in the (P,¢)-

system

distance along the transverse

river coordinate lines
distance along the normal
lines of the depth—averaged
flow field

pressure

total pressure ptpgz
discharge

radius of curvature of the
streamlines of the depth-

averaged flow

An, As

radius of curvature of
the normal lines of the
depth averaged flow
radius of curvature of
the s—lines

radius of curvature of
the n-lines

distance along the
longitudinal river
coordinate lines
distance along the
streamlines of the
depth-averaged flow
velocity components in
the (s,n,z)-coordinate
system

velocity components in

the streamline

coordinate system
vertical coordinate
mesh sizes in the
computational grid
Von Karman's constant
bottom shear stress
components

orthogonal curvilinear
coordinates in the

horizontal plane.






