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A B S T R A C T

The carrying capacity of the planet is being exceeded, and there is an urgent need to bring forward revolutionary
approaches, particularly in terms of energy supply, carbon emissions and nitrogen inputs into the biosphere.
Hydrogen gas, generated by means of renewable energy through water electrolysis, can be a platform molecule
to drive the future bioeconomy and electrification in the 21st century. The potential to use hydrogen gas in
microbial metabolic processes is highly versatile, and this opens a broad range of opportunities for novel bio-
technological developments and applications. A first approach concerns the central role of hydrogen gas in the
production of bio-based building block chemicals using the methane route, thus, bypassing the inherent low
economic value of methane towards higher-value products. Second, hydrogen gas can serve as a key carbon-
neutral source to produce third-generation proteins, i.e. microbial protein for food applications, whilst si-
multaneously enabling carbon capture and nutrient recovery, directly at their point of emission. Combining both
approaches to deal with the intermittent nature of renewable energy sources maximises the ability for efficient
use of renewable resources.

Introduction

The current rate of energy, chemicals and food/feed consumption is
depleting the Earth’s natural resources. This is reflected in the fact that
“Earth Overshoot Day” is attained earlier each year [1], which was the
case on 29th July 2019 (www.overshootday.org). The resulting dis-
turbance of the Earth’s long-term carbon cycle, related to the use of
fossil fuels [2], emphasizes the human influence on the climate system
[3]. This can be summarised in five key Reasons For Concern (RFCs),
i.e. risks related to unique and threatened systems (RFC1), extreme
weather events (RFC2), distribution of impacts (RFC3), global ag-
gregate impacts (RFC4), and large-scale singular events (RFC5) [4].
Equally important, albeit receiving less attention than climate change,
is the unprecedented release of reactive nitrogen and phosphorus into

the environment, which has led to the planetary boundaries being ex-
ceeded to a level beyond uncertainty [5]. Hence, to sustain the ever-
growing world population, while reducing the environmental footprint
of humanity, alternative and more sustainable ways of providing en-
ergy, chemicals and food/feed are needed.

Second-generation biorefineries allow the production of renewable
chemicals from organic waste streams, such as crop residues [6], with
multiple viable full-scale systems in Denmark [7], Brazil [8], Canada
[9], the USA, and China [10]. In this way, a broad range of building
block chemicals, not only ethanol, but also others, such as succinic acid,
lactic acid, glycerol and sorbitol [10–12], can be produced, while
avoiding competition with the agricultural food supply chain [13].
Nonetheless, the biorefinery concept can be challenged on three dif-
ferent levels. First, the photon-to-product conversion efficiency in
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agriculture (photosynthesis) is, in general, very low, with values of
merely 1–2% [14], although maximum values of up to 6% for C4
photosynthesis have been reported [15]. Thus, this is a rather in-
effective method for active carbon capture. Secondly, the transportation
of organic waste streams involves a high energy and monetary cost,
ranging from €30-70 per tonne dry matter, depending on the size of,
and distance to the biorefining facility [16,17]. Finally, the refining
process remains energy intensive [18], which is to a large extent related
to the complex nature of these second-generation feedstocks [19].

An alternative concept relies on electrification of the (bio)economy
through, e.g., solar power. This involves a shortcut through which solar
power can be used directly within the bio-based economy, without the
need for (inefficient) biomass production. The incoming solar energy
that reaches the Earth’s surface averages 161W m−2 [20,21]. At an
approximate average of 12 h of daylight, this amounts to 705 kW h
m−2 year-1, averaged over the planet. Assuming a commercially avail-
able solar panel efficiency of up to 20% [22], this is equivalent to
141 kWh m−2 year-1 or 1.41× 106 kWh ha-1 year-1. Hence, as a sim-
plified assumption, 1 ha is sufficient to supply the electricity needs for
400 European households [23]. Considering the anticipated develop-
ments in the photovoltaics sector, these figures will increase in the
coming years, but, although this contributes a partial solution to the
energy demand, it cannot directly provide a renewable supply of che-
micals and food/feed [24].

The energy captured from the sun in the form of electricity can be
converted with high efficiency (up to 90%) into H2 and O2 through
water electrolysis [25]. With a higher heating value (HHV) of 39.4 kW h
kg−1 H2, this allows the annual production of 32.2 tonnes of H2 per
hectare. The current price of electricity production via photovoltaics
can be estimated at €0.05 kW h−1, but this will reduce in the coming
years to €0.03 kW h−1 by 2020–2025, and even down to €0.01 kW h−1

by 2030–2040 [26,27]. This allows H2 production at an electricity cost
of €2.2 down to €1.3 and even €0.4 kg−1 H2. Taking into account also
capital (CAPEX) and operational (OPEX) expenditure, the total pro-
duction cost can come down below €1.0 kg−1 H2 by 2030–2040 [27].
This coincides with a decarbonisation of the energy sector, leading to a
strong decrease in CO2 emissions [28]. The potential of H2 can be ex-
tended beyond the energy sector, because it can act as a key molecule in
biological and industrial biotechnological processes, related to bio-
based building block chemicals and food/feed production.

The objective of this study is to provide a new vision on the full
potential of H2 in the biotechnology sector. Two different conceptual
process lines, including their potential limitations, opportunities and
research needs, will be discussed. The first is the role of H2 as central
molecule in the production of building block chemicals following the
(bio)methane route. Secondly, the direct use of H2 in combination with
carbon capture for food/feed production through microbial protein will
be examined. A temporal framework combining both process lines will
be drafted in the context of the hydrogen gas bio-based economy to
maximise its usage efficiency and contribution towards integrated
carbon capture and resource recovery.

Bio-based chemical building block production: hydrogen gas as
key molecule

In the carbon cycle of a CO2-neutral world, all anthropogenic CO2

emissions would be captured, and converted back into fuels and che-
micals with no net emission of CO2 into the atmosphere [29]. Using
concentrated CO2 streams as carbon source in an efficient, fast, and
large-scale catalytic chemical production process will require major
scientific breakthroughs and technological development efforts, since
today mature carbon capture and utilization (CCU) technologies are
lacking [30]. Biological routes for fixation of CO2 into valuable bio-
based products, such as biomethanation, are moving from concept to
reality, with various concepts demonstrated at pilot scale [31,32], and
several full-scale applications for biomethanation, such as the

Electrochaea and ETOGAS approaches [33]. We envision H2 as a key
molecule in a future CCU-based bioeconomy, since (1) an extensive
variety of microorganisms with a wide plethora of end-product meta-
bolites can use this electron source for bioproduction, and (2) its
carbon-free production via water electrolysis enables a CO2-neutral
carbon/energy cycle to be achieved. The use of microorganisms as
biocatalysts to metabolize CO2 and H2 (and CO) into organic com-
pounds has several advantages over chemical catalytic conversion
processes, including higher specificity, lower energy costs (mild op-
erational conditions) and greater resistance to poisoning by e.g., tars,
sulphur compounds or chlorine [34–36]. In our opinion, the transition
from a fossil carbon-based to a CO2 -neutral world economy can only be
achieved if a massive amount of sustainable (low-carbon or carbon free)
energy is available to electrify the production of chemicals and fuels. It
is estimated that about 1200 TWh green electrical power would be
needed per year as the resource base in a decarbonized basic material
industry, based on the values of the 28 European Union (EU) countries
in 2010 [37]. Assuming that this energy would be generated with solar
technology at a solar panel efficiency of 20%, 8500 km² of installed
photovoltaic panels would be needed (0.19% of the EU land area). Low-
value land areas for installing the panels are available worldwide (e.g.,
arid zones). It can be estimated that, with a global total energy con-
sumption of 1.64×1014 kWh in 2017 [38], about 13% of the Sahara
desert surface area can suffice to empower the entire planet. Hence,
these values indicate a huge need for increased production capacity of
photovoltaic panels.

Hydrogenotrophic biomethanation: why (not)?

The hydrogenotrophic methanogens are the main representatives in
the archaeal domain that can use molecular H2 as electron donor to
produce methane (CH4) (Eq. (1)) [39,40].

CO2 + 4H2 → CH4 + 2H2O (1)

This group of chemoautotrophic biocatalysts presents the opportu-
nity of producing an attractive renewable energy carrier with well-es-
tablished facilities in terms of distribution (e.g., the existing natural gas
grid) and use (e.g., road transportation, power, heat or chemical pro-
duction) [41]. Hydrogenotrophic biomethanation is often discussed in
the context of power-to-gas (P2 G) technology. The P2 G concept links
the power grid with the gas grid by converting intermittent or off-peak
power into methane through electrolytic H2 production and subsequent
CO2/H2 conversion via (bio)methanation [33] (Fig. 1). This has recently
gained interest as a scalable option for long-term and large-capacity
storage of surplus renewable electrical power within the existing nat-
ural gas distribution grid [32]. The P2G technology could address the
issue of an existing electricity transmission infrastructure that is found
inadequate in transmitting large volumes of renewable power from
wind and solar farms to the end users. As the share of renewable energy
sources in the electricity mix is increasing rapidly, the need for efficient
power balancing technologies becomes more important [42].

Large stationary point sources of CO2 (such as power plants, (bio-)
refineries, steel and cement industries) are often put forward as top
candidates for methanation, but relatively small biogas plants can also
suit the P2G process. In this proposal, the biomethanation process is
used as an alternative strategy for CO2 removal from biogas [43]. The
P2G can be used as a biogas upgrading process unit that results in an
increase in the total production of CH4 from an organic feedstock [44].

Since the first description of the P2G technology, major develop-
ments have been achieved that resulted in rapid scale-up and in-
dustrialization of various methanation concepts. Two configurations for
the conversion of CO2 from biogas with H2 have been proposed: (1) H2

injection inside the anaerobic digester to stimulate the autochthonous
hydrogenotrophic archaea (in-situ biomethanation) [45,46], and (2) H2

and biogas injection in an external anaerobic reactor containing a pure
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or mixed hydrogenotrophic culture (ex-situ biomethantion) [47,48].
Current volumetric methane production rates of both concepts are still
low compared to industrially established biogas formation in anaerobic
digestion plants [49]. As recently reviewed, in-situ biomethanation is, at
present, not considered a suitable option for industrial biomethanation,
due to various operational challenges, such as pH control [43,44]. For
both strategies, the key limitation of methanogenesis is the H2 gas-to-
liquid mass transfer. This limitation is typically addressed by (1) vig-
orous mixing, gas recirculation or fine-bubble gas distributors that in-
crease the volumetric mass transfer coefficient (kLa), and (2) enhancing
the solubility of H2 by increasing the partial pressure of H2 (pH2)
through an elevated headspace pressure [48,50]. Recently, the direct
introduction of an electrode into the biomethanation reactor was pro-
posed to increase production rates, and lower the power input for
biomethanation via the in-situ supply of electrons or H2 from the (mi-
crobially catalysed) cathode to the biocatalysts [51]. This strategy that
enables the conversion of electrical current into methane is often re-
ferred to as electromethanogenesis [52], and although it is an intriguing
concept, several challenges, such as uncontrollable side reactions and
overall system complexity, hamper its further development.

Assuming a current H2 production electricity cost of €2.2 kg−1 H2,
and a hydrogen-to-methane efficiency of 90%, hydrogenotrophic bio-
methanation allows CH4 production at ∼ €1.2 kg-1 CH4. Because the
current wholesale price of natural gas is below €0.25 kg-1, methane
from biomethanation, at present, cannot compete with inexpensive
fossil methane. These estimates highlight that the process would hold
economic potential at a projected electricity cost for H2 production of
€0.4 kg-1 H2 by 2030–2040. Increasing power production from inter-
mittent renewable sources can lead to temporarily low electricity
prices, offering an opportunity for the application of biomethanation
for energy storage.

Biomethane as origin for the bio-based petroleum industry

Grid injected biomethane could play a major role in the dec-
arbonisation of the flexible energy system of the future. In particular,
the ability to transport gas to be used elsewhere adds flexibility to the
system, as not only the share of renewables in the transport and the
heating sectors can be increased, but potentially also chemical pro-
duction can be supplied with renewable (“green”) methane produced
through anaerobic digestion or biomethanation. The prospect of using
biomethane as carbon and energy source for chemical production in-
itiates new utilization options for biogas, i.e., not just for heat and
power production or as fuel for vehicle use (compressed natural gas,
CNG) [53,54], but also as a feedstock to produce bio-based commodity
chemicals. Different biomethane utilization routes for production of
platform chemicals are being proposed, starting from “green” C1 based
products with subsequent (bio)catalytic synthesis [55,56]. For example,
the upgrading of biogas to biomethane via different possible routes
[57], subsequent conversion to syngas through steam reforming
[55,56] and methanol production from syngas allows the production of
dimethyl ether [58], which is an example of a bio-based commodity
chemical. Hence, the notion of producing platform chemicals, con-
ventionally derived from natural gas, from biomethane instead opens a
path to a plethora of molecules that can be generated in a carbon-
neutral way [59].

Carboxylic acids and alcohols as alternatives to methane

Not only methanogens, but also acetogenic bacteria are well-known
for their ability to fix CO2 with electrons from H2 and produce acetate,
ethanol, butyrate, butanol and 2,3-butanediol as natural end-products
under chemolithoautotrophic growth [60]. Acetogenic gas fermenta-
tion is a novel and rapidly growing platform for bioproduction from
industrial off-gases [61]. Its feasibility has been demonstrated at pilot
scale [36,62], with the production of ethanol from CO-rich waste
streams currently being scaled up to a commercial scale [61]. Key to the
further development of this microbial production platform is the es-
tablishment of more efficient metabolic pathways from CO2. Most stu-
dies on CO2/H2 fermentations report acetate as sole product, with only
traces of other higher-value organics, such as formate, butyrate or
caproate [60,63]. Hence, higher-value products should be targeted at
high rates to evolve towards economically feasible technologies. To
achieve this, research is warranted to overcome the energetic limita-
tions, related to thermodynamic constraints, by optimising gas com-
position and other operational parameters [64].

Microbial protein production driven by solar power coupled with
carbon capture

The ability of different micro-organisms to use H2 as electron donor
transcends the different domains of life. Under anaerobic conditions, H2

can be used by sulphate reducing [65] and homoacetogenic [66] bac-
teria. Under aerobic conditions, e.g., hydrogen oxidising bacteria (HOB)
via the Knallgas reaction [67] and cyanobacteria [68] can use H2 as
electron donor. In contrast to the hydrogenotrophic methanogens of the
archaea domain, the aerobic HOB (Knallgas bacteria), so far, received
little attention in the framework of engineering applications. Their
ability to use H2 as electron donor and O2 as electron acceptor with the
formation of H2O, whilst simultaneously incorporating CO2 auto-
trophically for biomass production and utilizing recovered nutrients
can empower them with an important role in the bio-based economy.
The idea of using HOB to produce microbial biomass rich in protein for
food/feed applications originates from the 1970s [69]. This can be done
either with pure cultures of e.g., Cupriavidus necator, or mixed popula-
tions enriched on H2. This perception recently gained renewed inter-
ested [70], mainly related to the pressing need for alternative protein
sources, surpassing first (animal meat) and second (soy) generation

Fig. 1. Schematic overview of how H2 can play a central role in the bio-based
economy in the context of power-to-gas (P2 G) approach.
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proteins [71]. As both animal meat and soy production require con-
siderable energetic and high inorganic fertiliser inputs, and have a high
land footprint, the need for a transition to a more renewable protein
source is apparent.

Microbial protein production through hydrogen oxidizing bacteria

The first key advantage of HOB lies in their ability to use H2 as
single electron donor. One kilogram of H2 is equivalent to 8 kg of
chemical oxygen demand (COD), derived from the fact that the Knallgas
reaction requires 0.5 mol (16 g) O2 per mole (2 g) H2 (Eq. (2)). In
contrast, 1 kg glucose, for example, coincides with 1.06 kg COD (Eq.
(3)).

H2 + ½ O2 → H2O (2)

C6H12O6 + 6O2 → 6CO2 + 6H2O (3)

As the total production cost is expected to come down below a value
of €1.0 kg−1 H2 by 2030–2040, it can compete with inexpensive carbon
sources, such as methanol (€0.8 kg−1) and starch (€0.3-0.5 kg−1), due
to the high COD content of H2, relative to organic carbon sources [10].
Considering a minimum safe protein intake of 60 g per person per day
[72], and taking into account a world population of 7.2 billion in 2018,
this amounts to an annual protein consumption of 1.6× 1011 kg protein
in the world. Based on a 75% protein content per gram cell dry weight
for microbial protein [73] and a yield of 2.4 kg cell dry weight per kg of
H2 supplied [74], this leads to an annual H2 consumption of 8.8× 1010

kg. Based on the HHV of 39.4 kW h kg−1 H2 and a 90% efficiency for
water electrolysis [25], this amounts to 3.8×1012 kWh year−1, which
reflects 2.3% of global total energy consumption in the year 2017 [38].

Secondly, while carbon sources, such as methanol and sugar, are
partially converted to CO2 through a heterotrophic metabolism, the
autotrophic HOB allow CO2 capture from industrial point sources,
based on renewable H2 as energy source. Assuming a heterotrophic
biomass yield of 0.4 kg biomass dry weight per kg organic substrate
(e.g., sugar), 1 kg of dry biomass, containing on average about 50%
carbon corresponds to 2.75 kg CO2 produced. In contrast, 1 kg of au-
totrophic dry biomass corresponds with about 1.83 kg of CO2 fixated.
The current CO2 market price is, however, reaching a historic low, with
values not exceeding €10 ton−1 in the years 2014 to 2018, related to
the imbalanced emission trading in the framework of the economic
downturn of 2009, though a steady increase was observed in the second
half of 2018 [75]. With the anticipated economic revival, the CO2

market price is predicted to increase to €30-50 ton−1 by 2030 [76,77].
With a market price of €50 ton−1 CO2, the CO2 fixating HOB could yield
a revenue of €0.23 kg dry biomass in carbon credits, compared to CO2

producing heterotrophs.
Third, the ability to use recovered nutrients, with nitrogen (N) and

phosphorus (P) as the most relevant in terms of recovery potential, can
be considered an important advantage of microbial protein production
through HOB [73]. Different “waste” streams can act as a source of N,
such as anaerobic digestate, source-separated urine and fresh animal
manure, as each can contain over 4 g of total ammonia nitrogen per litre
[78–80]. Nitrogen recovery from each of these waste streams can take
place through different techniques of which ammonia stripping
[81–83], electrochemical extraction [84] or a combination thereof
[85,86] are the most promising approaches. An excellent example of
such an integrated approach is reflected in the direct coupling of mi-
crobial protein production through HOB by directly introducing re-
covered ammonia from urine, combined with electrochemically pro-
duced H2 [87]. Such an integrated electrochemical approach allows
combining N recovery with H2 production to increase the efficiency of
the system. Although N is ubiquitous in the atmosphere, its recovery
preserves energy needed for (1) fixation by the Haber-Bosch process
(10–12 kW h kg−1 N), and (2) removal through nitrification/deni-
trification (2.8 kWh kg−1 N) or partial nitritation/anammox (1.4 kW h

kg−1 N) [80,88]. This would justify a N recovery cost of up to 15 kW h
kg−1 N, due to the energy savings for N fixation and removal. This
value can be obtained by most recovery technologies [84,87,89], al-
though their transition from lab-scale proof-of-concepts to full-scale
applications requires validation.

The recovery of P commonly takes place from the same waste
streams through struvite precipitation, often combined with electro-
chemical systems [90–93]. The economic potential of P recovery, like
N, will depend strongly on the market price of P, which reached a value
of €1.6 kg−1 P (triple super phosphate) in 2018 [94]. This market price,
in contrast to N, relates strongly with geopolitical constraints, due to
the global disparity in phosphate rock reserves [95]. The low market
value of recovered P, e.g., €0.38–0.46 kg−1 P for struvite [96], in ad-
dition to the total costs for P recovery, which are often a factor 5–10
higher than the recovered product market value [88,95], make P re-
covery from waste streams, at present, economically infeasible.

Microbial protein: challenges and application

Although the production of microbial protein appears to be very
promising as a third-generation protein product, several challenges
need to be addressed to evolve towards full-scale applications. First, the
low solubility of H2 (1.6 mg L−1) is in important issue that needs to be
addressed to increase efficiency of H2 usage. Different strategies can be
used to maximise H2 availability to the HOB, as discussed above.
Second, the availability of suitable concentrated gaseous CO2 streams is
essential to provide sufficient CO2 to the HOB. Key candidate gas
streams are biogas from anaerobic digestion or other large industrial
stationary point sources. The anaerobic digestion plant can act as pro-
vider of recovered nutrients, renewable energy for electricity produc-
tion through the combined heat and power unit, and CO2. Because
biogas, next to CH4 and CO2 as main components, also contains H2S and
NH3, the potential toxicity, especially of H2S, to the HOB requires
special attention. The presence of H2S in the biogas can also be ad-
vantageous, as a valuable source of sulphur for protein production. The
use of biogas as source of CO2 also opens the potential to consider a
combined supply of CH4 and H2 to create a system that relies on me-
thane oxidizing bacteria (MOB) and HOB for microbial protein pro-
duction. This suggests novel possibilities for the combined use of H2 and
CH4 as source for food/feed [97,98]. An interesting aspect that war-
rants further research is tuning the CH4/H2 ratio to modify the micro-
bial composition and, ultimately, the quality of the final product in
terms of protein quality (amino acid composition) and quantity, as well
as digestibility. Incineration and steel plant off-gases may provoke si-
milar issues as biogas, due to the presence of nitrogen oxides, carbon
monoxide or other components, which may inhibit the HOB.

The targeted application of the microbial protein will determine
strongly the required quality in terms of amino acid composition, pre-
sence of trace contaminants and microbial safety. Market prices of high-
quality protein are variable, ranging from €1.0–2.0 kg−1 protein active
substance [99]. Currently, microbial protein can be produced at com-
petitive prices, but much depends on factors relating to the quality of
the inputs, the downstream processing facilities and the quantity and
quality demands imposed on the final product. Quality requirements for
microbial protein for feed, and especially food applications, will be
stringent [71], requiring considerable developments and research
needs. The presence of potential opportunistic pathogens, antibiotic
resistance genes and high concentrations of nucleic acids warrants
thorough evaluation. The application of microbial protein as a slow-
release organic fertiliser [74] will not put high demands on protein
quality or microbial safety; the main requirement will be the slow-re-
lease character that better matches the release of N with plant uptake
requirements to replace Haber-Bosch based inorganic fertilisers. Mi-
crobial protein can also be formulated in certain packaging and con-
struction materials, noting the current demands for biodegradability
and pressing issues concerning plastic debris in the environment
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[100,101].
Overall, microbial protein as a third-generation high-quality protein

product for food and feed applications, as slow-release fertilizer or as
renewable resource for other applications can be produced using H2 as
key compound together with CO2 capture. The ability to use recovered
nutrients and the need for point sources of CO2 allow a combination
with existing full-scale technologies, such as anaerobic digestion
(Fig. 1), to make the transition from a “waste-to-energy” towards a
“waste-to-food/feed” cyclic bio-based economy.

Temporal equilibration of power usage and CO2 fixation

Many industries rely on continuous operation, which implies con-
tinuous CO2 emission. Carbon capture and utilization strategies rely
heavily on sustainable sources of reducing power, such as photo-
voltaics. The weather-related and diurnal discontinuity (in case of
photovoltaics) of these energy sources in relation to the constant pro-
duction of CO2, and the practical difficulties and economic constraints
of temporarily storing large amounts of CO2 under a pressurized form
[102] may require different modes of action towards CO2 CCU. Current
proposals typically involve large-scale generation of H2 via electrolysis,
and its subsequent use to produce power, low and high temperature
heat or products. In this area, microbial technologies are considered an
interesting and attractive solution.

During periods of high renewable power supply, e.g., sunny and
windy days, electricity can be coupled to CO2 conversion to form an
intermediate that can be used to support a diverse array of production
processes (Fig. 2). A first option is the production of CH4. Processes to
achieve this are already at demonstration scale, and production rates of
21 m3 CH4m−3 reactor d-1 have been obtained [47]. The concern with
such P2 G schemes is the low market value of CH4. An important point
is that CH4 not only stores electrons (8), but also CO2. It can also be
compressed and liquefied reasonably easily, and additional supply is
possible via an existing gas grid. This implies that if renewables cannot
supply a set amount of CH4 to achieve further production processes, it
can be topped up. Similarly, basic building block chemicals, such as
formate (chemically) or acetate (biologically), can be produced from
CO2. Acetate in particular can be of interest, due to its universal use by
microorganisms.

The production of high-value compounds that will create economic
value for the overall process is essential to equilibrate the costs of the
production process of the basic intermediates. The CH4 can be used by
methanotrophs to produce a wide array of outcomes, from fuels to food,
such as commercial microbial protein products (e.g., Feedkind™ by

Calysta) (www.calysta.com). New metabolic pathways need to be
considered that lead to net incorporation of additional CO2, while
consuming CH4, essentially implying that products with a lower elec-
tron density (not fuels) are favoured. This principle can be understood,
assuming a reaction not yet engineered, i.e. the formation of acetate
from CH4 (Eq. (4)).

CH4 + CO2 → CH3COOH (4)

Evidently, acetate will not deliver high economic returns, but could
be considered as intermediate in the production of higher-value che-
micals, such as 2,3-butanediol [103] or succinic acid [104], some of the
key building block chemicals in demand today. The production path-
ways release part of the incorporated CO2 relative to the degree of re-
duction associated with the target compounds, and this can be calcu-
lated for many compounds [105].

An alternative to enable diverse production from CH4 is to perform
first a chemical looping process, such as “super-dry” reforming (Eq. (5))
[55]

CH4 + 3 CO2 → 4 CO+2 H2O (5)

This is an outstanding approach to combining previously produced
CH4 with available CO2, and to follow this through with a microbial
CO-based production process. There are several other options that
blend CCU more creatively with other elements than carbon and
oxygen.

In this conceptual approach, the pinnacle is the production of mi-
crobial protein from CO2, where the protein-rich microbial biomass is
the product itself. Considering today’s meat footprint, ranging between
2–150 kg CO2 equivalents per kg of meat, depending on the LCA study
and type of meat [106], such an approach could have a major impact.
Hence, it is important to identify processes that can rapidly combine
available renewable energy and CO2 into intermediates, and subse-
quently use them in a secondary, CO2 capturing process to obtain an
array of attractive products for the current and future bio-based
economy.

Conclusions

The full potential of H2, produced through water electrolysis, driven
by renewable energy sources, such as photovoltaics, extends beyond
mere use as a fuel. Here, the opportunities of an electricity-driven hy-
drogen bio-based economy for the future have been highlighted. First,
H2 can be considered a central molecule to produce building block
chemicals, following the CH4-route. Because CH4 as such, produced via
biomethanation of CO2, has insufficient value to compete with in-
expensive fossil derived CH4, it should be used as energy and carbon
source to produce bio-based high-value/commodity chemicals.
Secondly, H2 can serve as a carbon-neutral source to produce high-
quality third-generation protein products, i.e.microbial protein, making
use of recovered nutrients and enabling net carbon fixation. Both ap-
proaches can be combined in a temporal framework of electrification in
the 21st century to maximise the utilisation potential of the dis-
continuous nature of renewable energy supply.
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