The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy De Vrieze, Jo; Verbeeck, Kristof; Pikaar, Ilje; Boere, Jos; Van Wijk, Ad; Rabaey, Korneel; Verstraete, Willy DOI 10.1016/j.nbt.2019.09.004 **Publication date** **Document Version** Final published version Published in **New Biotechnology** Citation (APA) De Vrieze, J., Verbeeck, K., Pikaar, I., Boere, J., Van Wijk, A., Rabaey, K., & Verstraete, W. (2020). The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy. *New Biotechnology*, *55*, 12-18. https://doi.org/10.1016/j.nbt.2019.09.004 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. ## Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. FISEVIER Contents lists available at ScienceDirect ## New BIOTECHNOLOGY journal homepage: www.elsevier.com/locate/nbt ## The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy Jo De Vrieze^a, ¹, Kristof Verbeeck^a, Ilje Pikaar^b, Jos Boere^d, Ad Van Wijk^{c,d}, Korneel Rabaey^a, Willy Verstraete^{a,d,e} - ^a Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium - The University of Queensland, The School of Civil Engineering, QLD, 4072, Australia - c Department of Process & Energy, Faculty of Mechanical, Maritime and Materials Engineering, TU Delft, Leeghwaterstraat 39, 2628 CB, Delft, the Netherlands - ^d KWR Watercycle Research Institute, PO Box 1072, the Netherlands - ^e Avecom NV, Industrieweg 122P, Wondelgem, 9032, Belgium #### ARTICLE INFO # Keywords: Bioeconomy Biomethanation Hydrogen gas Microbial protein Resource recovery #### ABSTRACT The carrying capacity of the planet is being exceeded, and there is an urgent need to bring forward revolutionary approaches, particularly in terms of energy supply, carbon emissions and nitrogen inputs into the biosphere. Hydrogen gas, generated by means of renewable energy through water electrolysis, can be a platform molecule to drive the future bioeconomy and electrification in the 21st century. The potential to use hydrogen gas in microbial metabolic processes is highly versatile, and this opens a broad range of opportunities for novel biotechnological developments and applications. A first approach concerns the central role of hydrogen gas in the production of bio-based building block chemicals using the methane route, thus, bypassing the inherent low economic value of methane towards higher-value products. Second, hydrogen gas can serve as a key carbon-neutral source to produce third-generation proteins, *i.e.* microbial protein for food applications, whilst simultaneously enabling carbon capture and nutrient recovery, directly at their point of emission. Combining both approaches to deal with the intermittent nature of renewable energy sources maximises the ability for efficient use of renewable resources. ## Introduction The current rate of energy, chemicals and food/feed consumption is depleting the Earth's natural resources. This is reflected in the fact that "Earth Overshoot Day" is attained earlier each year [1], which was the case on 29th July 2019 (www.overshootday.org). The resulting disturbance of the Earth's long-term carbon cycle, related to the use of fossil fuels [2], emphasizes the human influence on the climate system [3]. This can be summarised in five key Reasons For Concern (RFCs), i.e. risks related to unique and threatened systems (RFC1), extreme weather events (RFC2), distribution of impacts (RFC3), global aggregate impacts (RFC4), and large-scale singular events (RFC5) [4]. Equally important, albeit receiving less attention than climate change, is the unprecedented release of reactive nitrogen and phosphorus into the environment, which has led to the planetary boundaries being exceeded to a level beyond uncertainty [5]. Hence, to sustain the evergrowing world population, while reducing the environmental footprint of humanity, alternative and more sustainable ways of providing energy, chemicals and food/feed are needed. Second-generation biorefineries allow the production of renewable chemicals from organic waste streams, such as crop residues [6], with multiple viable full-scale systems in Denmark [7], Brazil [8], Canada [9], the USA, and China [10]. In this way, a broad range of building block chemicals, not only ethanol, but also others, such as succinic acid, lactic acid, glycerol and sorbitol [10–12], can be produced, while avoiding competition with the agricultural food supply chain [13]. Nonetheless, the biorefinery concept can be challenged on three different levels. First, the photon-to-product conversion efficiency in Abbreviations: CAPEX, capital expenditures; CCU, carbon capture and utilization; CNG, compressed natural gas; COD, chemical oxygen demand; HOB, hydrogen oxidizing bacteria; HHV, higher heating value; MOB, methane oxidizing bacteria; P2G, power-to-gas; RFCs, Reasons For Concern; OPEX, operational expenditures *Corresponding author at: Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Coupure Links 653, B-9000, Gent. Belgium. E-mail addresses: Jo.DeVrieze@UGent.be (J. De Vrieze), Kristof.Verbeeck@UGent.be (K. Verbeeck), i.pikaar@uq.edu.au (I. Pikaar), jos.boere@alliedwaters.com (J. Boere), a.j.m.vanwijk@tudelft.nl (A. Van Wijk), Korneel.Rabaey@UGent.be (K. Rabaey), Willy.Verstraete@UGent.be (W. Verstraete). 1 Webpage: www.cmet.ugent.be. agriculture (photosynthesis) is, in general, very low, with values of merely 1–2% [14], although maximum values of up to 6% for C4 photosynthesis have been reported [15]. Thus, this is a rather ineffective method for active carbon capture. Secondly, the transportation of organic waste streams involves a high energy and monetary cost, ranging from €30-70 per tonne dry matter, depending on the size of, and distance to the biorefining facility [16,17]. Finally, the refining process remains energy intensive [18], which is to a large extent related to the complex nature of these second-generation feedstocks [19]. An alternative concept relies on electrification of the (bio)economy through, e.g., solar power. This involves a shortcut through which solar power can be used directly within the bio-based economy, without the need for (inefficient) biomass production. The incoming solar energy that reaches the Earth's surface averages 161 W m $^{-2}$ [20,21]. At an approximate average of 12 h of daylight, this amounts to 705 kW h m $^{-2}$ year'¹, averaged over the planet. Assuming a commercially available solar panel efficiency of up to 20% [22], this is equivalent to 141 kW h m $^{-2}$ year'¹ or 1.41 × 10 6 kWh ha 1 year'¹. Hence, as a simplified assumption, 1 ha is sufficient to supply the electricity needs for 400 European households [23]. Considering the anticipated developments in the photovoltaics sector, these figures will increase in the coming years, but, although this contributes a partial solution to the energy demand, it cannot directly provide a renewable supply of chemicals and food/feed [24]. The energy captured from the sun in the form of electricity can be converted with high efficiency (up to 90%) into H2 and O2 through water electrolysis [25]. With a higher heating value (HHV) of 39.4 kW h kg⁻¹ H₂, this allows the annual production of 32.2 tonnes of H₂ per hectare. The current price of electricity production via photovoltaics can be estimated at €0.05 kW h⁻¹, but this will reduce in the coming years to €0.03 kW h⁻¹ by 2020–2025, and even down to €0.01 kW h⁻ by 2030-2040 [26,27]. This allows H₂ production at an electricity cost of €2.2 down to €1.3 and even €0.4 kg⁻¹ H₂. Taking into account also capital (CAPEX) and operational (OPEX) expenditure, the total production cost can come down below $\leq 1.0 \,\mathrm{kg}^{-1} \,\mathrm{H}_2$ by 2030–2040 [27]. This coincides with a decarbonisation of the energy sector, leading to a strong decrease in CO2 emissions [28]. The potential of H2 can be extended beyond the energy sector, because it can act as a key molecule in biological and industrial biotechnological processes, related to biobased building block chemicals and food/feed production. The objective of this study is to provide a new vision on the full potential of $\rm H_2$ in the biotechnology sector. Two different conceptual process lines, including their potential limitations, opportunities and research needs, will be discussed. The first is the role of $\rm H_2$ as central molecule in the production of building block chemicals following the (bio)methane route. Secondly, the direct use of $\rm H_2$ in combination with carbon capture for food/feed production through microbial protein will be examined. A temporal framework combining both process lines will be drafted in the context of the hydrogen gas bio-based economy to maximise its usage efficiency and contribution towards integrated carbon capture and resource recovery. ## Bio-based chemical building block production: hydrogen gas as key molecule In the carbon cycle of a $\rm CO_2$ -neutral world, all anthropogenic $\rm CO_2$ emissions would be captured, and converted back into fuels and chemicals with no net emission of $\rm CO_2$ into the atmosphere [29]. Using concentrated $\rm CO_2$ streams as carbon source in an efficient, fast, and large-scale catalytic chemical production process will require major scientific breakthroughs and technological development efforts, since today mature carbon capture and utilization (CCU) technologies are lacking [30]. Biological routes for fixation of $\rm CO_2$ into valuable biobased products, such as biomethanation, are moving from concept to reality, with various concepts demonstrated at pilot scale [31,32], and several full-scale applications for biomethanation, such as the Electrochaea and ETOGAS approaches [33]. We envision H2 as a key molecule in a future CCU-based bioeconomy, since (1) an extensive variety of microorganisms with a wide plethora of end-product metabolites can use this electron source for bioproduction, and (2) its carbon-free production via water electrolysis enables a CO2-neutral carbon/energy cycle to be achieved. The use of microorganisms as biocatalysts to metabolize CO2 and H2 (and CO) into organic compounds has several advantages over chemical catalytic conversion processes, including higher specificity, lower energy costs (mild operational conditions) and greater resistance to poisoning by e.g., tars, sulphur compounds or chlorine [34–36]. In our opinion, the transition from a fossil carbon-based to a CO₂ -neutral world economy can only be achieved if a massive amount of sustainable (low-carbon or carbon free) energy is available to electrify the production of chemicals and fuels. It is estimated that about 1200 TWh green electrical power would be needed per year as the resource base in a decarbonized basic material industry, based on the values of the 28 European Union (EU) countries in 2010 [37]. Assuming that this energy would be generated with solar technology at a solar panel efficiency of 20%, 8500 km² of installed photovoltaic panels would be needed (0.19% of the EU land area). Lowvalue land areas for installing the panels are available worldwide (e.g., arid zones). It can be estimated that, with a global total energy consumption of 1.64×10^{14} kWh in 2017 [38], about 13% of the Sahara desert surface area can suffice to empower the entire planet. Hence, these values indicate a huge need for increased production capacity of photovoltaic panels. Hydrogenotrophic biomethanation: why (not)? The hydrogenotrophic methanogens are the main representatives in the archaeal domain that can use molecular H_2 as electron donor to produce methane (CH₄) (Eq. (1)) [39,40]. $$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$ (1) This group of chemoautotrophic biocatalysts presents the opportunity of producing an attractive renewable energy carrier with well-established facilities in terms of distribution (e.g., the existing natural gas grid) and use (e.g., road transportation, power, heat or chemical production) [41]. Hydrogenotrophic biomethanation is often discussed in the context of power-to-gas (P2G) technology. The P2G concept links the power grid with the gas grid by converting intermittent or off-peak power into methane through electrolytic H₂ production and subsequent CO₂/H₂ conversion via (bio)methanation [33] (Fig. 1). This has recently gained interest as a scalable option for long-term and large-capacity storage of surplus renewable electrical power within the existing natural gas distribution grid [32]. The P2G technology could address the issue of an existing electricity transmission infrastructure that is found inadequate in transmitting large volumes of renewable power from wind and solar farms to the end users. As the share of renewable energy sources in the electricity mix is increasing rapidly, the need for efficient power balancing technologies becomes more important [42]. Large stationary point sources of CO_2 (such as power plants, (bio-) refineries, steel and cement industries) are often put forward as top candidates for methanation, but relatively small biogas plants can also suit the P2G process. In this proposal, the biomethanation process is used as an alternative strategy for CO_2 removal from biogas [43]. The P2G can be used as a biogas upgrading process unit that results in an increase in the total production of CH_4 from an organic feedstock [44]. Since the first description of the P2G technology, major developments have been achieved that resulted in rapid scale-up and industrialization of various methanation concepts. Two configurations for the conversion of CO_2 from biogas with H_2 have been proposed: (1) H_2 injection inside the anaerobic digester to stimulate the autochthonous hydrogenotrophic archaea (*in-situ* biomethanation) [45,46], and (2) H_2 and biogas injection in an external anaerobic reactor containing a pure Fig. 1. Schematic overview of how H_2 can play a central role in the bio-based economy in the context of power-to-gas (P2 G) approach. or mixed hydrogenotrophic culture (ex-situ biomethantion) [47,48]. Current volumetric methane production rates of both concepts are still low compared to industrially established biogas formation in anaerobic digestion plants [49]. As recently reviewed, in-situ biomethanation is, at present, not considered a suitable option for industrial biomethanation, due to various operational challenges, such as pH control [43,44]. For both strategies, the key limitation of methanogenesis is the H2 gas-toliquid mass transfer. This limitation is typically addressed by (1) vigorous mixing, gas recirculation or fine-bubble gas distributors that increase the volumetric mass transfer coefficient (k_La), and (2) enhancing the solubility of H2 by increasing the partial pressure of H2 (pH2) through an elevated headspace pressure [48,50]. Recently, the direct introduction of an electrode into the biomethanation reactor was proposed to increase production rates, and lower the power input for biomethanation via the in-situ supply of electrons or H2 from the (microbially catalysed) cathode to the biocatalysts [51]. This strategy that enables the conversion of electrical current into methane is often referred to as electromethanogenesis [52], and although it is an intriguing concept, several challenges, such as uncontrollable side reactions and overall system complexity, hamper its further development. Assuming a current H_2 production electricity cost of $\mathfrak{C}2.2\,\mathrm{kg}^{-1}$ H_2 , and a hydrogen-to-methane efficiency of 90%, hydrogenotrophic biomethanation allows CH_4 production at $\sim \mathfrak{C}1.2\,\mathrm{kg}^{-1}$ CH_4 . Because the current wholesale price of natural gas is below $\mathfrak{C}0.25\,\mathrm{kg}^{-1}$, methane from biomethanation, at present, cannot compete with inexpensive fossil methane. These estimates highlight that the process would hold economic potential at a projected electricity cost for H_2 production of $\mathfrak{C}0.4\,\mathrm{kg}^{-1}$ H_2 by 2030–2040. Increasing power production from intermittent renewable sources can lead to temporarily low electricity prices, offering an opportunity for the application of biomethanation for energy storage. Biomethane as origin for the bio-based petroleum industry Grid injected biomethane could play a major role in the decarbonisation of the flexible energy system of the future. In particular, the ability to transport gas to be used elsewhere adds flexibility to the system, as not only the share of renewables in the transport and the heating sectors can be increased, but potentially also chemical production can be supplied with renewable ("green") methane produced through anaerobic digestion or biomethanation. The prospect of using biomethane as carbon and energy source for chemical production initiates new utilization options for biogas, i.e., not just for heat and power production or as fuel for vehicle use (compressed natural gas. CNG) [53,54], but also as a feedstock to produce bio-based commodity chemicals. Different biomethane utilization routes for production of platform chemicals are being proposed, starting from "green" C1 based products with subsequent (bio)catalytic synthesis [55,56]. For example, the upgrading of biogas to biomethane via different possible routes [57], subsequent conversion to syngas through steam reforming [55,56] and methanol production from syngas allows the production of dimethyl ether [58], which is an example of a bio-based commodity chemical. Hence, the notion of producing platform chemicals, conventionally derived from natural gas, from biomethane instead opens a path to a plethora of molecules that can be generated in a carbonneutral way [59]. Carboxylic acids and alcohols as alternatives to methane Not only methanogens, but also acetogenic bacteria are well-known for their ability to fix CO2 with electrons from H2 and produce acetate, ethanol, butyrate, butanol and 2,3-butanediol as natural end-products under chemolithoautotrophic growth [60]. Acetogenic gas fermentation is a novel and rapidly growing platform for bioproduction from industrial off-gases [61]. Its feasibility has been demonstrated at pilot scale [36,62], with the production of ethanol from CO-rich waste streams currently being scaled up to a commercial scale [61]. Key to the further development of this microbial production platform is the establishment of more efficient metabolic pathways from CO2. Most studies on CO2/H2 fermentations report acetate as sole product, with only traces of other higher-value organics, such as formate, butyrate or caproate [60,63]. Hence, higher-value products should be targeted at high rates to evolve towards economically feasible technologies. To achieve this, research is warranted to overcome the energetic limitations, related to thermodynamic constraints, by optimising gas composition and other operational parameters [64]. ## Microbial protein production driven by solar power coupled with carbon capture The ability of different micro-organisms to use H_2 as electron donor transcends the different domains of life. Under anaerobic conditions, H2 can be used by sulphate reducing [65] and homoacetogenic [66] bacteria. Under aerobic conditions, e.g., hydrogen oxidising bacteria (HOB) via the Knallgas reaction [67] and cyanobacteria [68] can use H2 as electron donor. In contrast to the hydrogenotrophic methanogens of the archaea domain, the aerobic HOB (Knallgas bacteria), so far, received little attention in the framework of engineering applications. Their ability to use H2 as electron donor and O2 as electron acceptor with the formation of H2O, whilst simultaneously incorporating CO2 autotrophically for biomass production and utilizing recovered nutrients can empower them with an important role in the bio-based economy. The idea of using HOB to produce microbial biomass rich in protein for food/feed applications originates from the 1970s [69]. This can be done either with pure cultures of e.g., Cupriavidus necator, or mixed populations enriched on H2. This perception recently gained renewed interested [70], mainly related to the pressing need for alternative protein sources, surpassing first (animal meat) and second (soy) generation proteins [71]. As both animal meat and soy production require considerable energetic and high inorganic fertiliser inputs, and have a high land footprint, the need for a transition to a more renewable protein source is apparent. ## Microbial protein production through hydrogen oxidizing bacteria The first key advantage of HOB lies in their ability to use $\rm H_2$ as single electron donor. One kilogram of $\rm H_2$ is equivalent to 8 kg of chemical oxygen demand (COD), derived from the fact that the Knallgas reaction requires 0.5 mol (16 g) $\rm O_2$ per mole (2 g) $\rm H_2$ (Eq. (2)). In contrast, 1 kg glucose, for example, coincides with 1.06 kg COD (Eq. (3)). $$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$$ (2) $$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$ (3) As the total production cost is expected to come down below a value of $\pounds 1.0 \text{ kg}^{-1} \text{ H}_2$ by 2030–2040, it can compete with inexpensive carbon sources, such as methanol $(\pounds 0.8 \text{ kg}^{-1})$ and starch $(\pounds 0.3\text{-}0.5 \text{ kg}^{-1})$, due to the high COD content of H_2 , relative to organic carbon sources [10]. Considering a minimum safe protein intake of 60 g per person per day [72], and taking into account a world population of 7.2 billion in 2018, this amounts to an annual protein consumption of $1.6 \times 10^{11} \text{ kg}$ protein in the world. Based on a 75% protein content per gram cell dry weight for microbial protein [73] and a yield of 2.4 kg cell dry weight per kg of H_2 supplied [74], this leads to an annual H_2 consumption of $8.8 \times 10^{10} \text{ kg}$. Based on the HHV of 39.4 kW h kg $^{-1}$ H_2 and a 90% efficiency for water electrolysis [25], this amounts to $3.8 \times 10^{12} \text{ kWh year}^{-1}$, which reflects 2.3% of global total energy consumption in the year 2017 [38]. Secondly, while carbon sources, such as methanol and sugar, are partially converted to CO2 through a heterotrophic metabolism, the autotrophic HOB allow CO2 capture from industrial point sources, based on renewable H2 as energy source. Assuming a heterotrophic biomass yield of 0.4 kg biomass dry weight per kg organic substrate (e.g., sugar), 1 kg of dry biomass, containing on average about 50% carbon corresponds to 2.75 kg CO2 produced. In contrast, 1 kg of autotrophic dry biomass corresponds with about 1.83 kg of CO₂ fixated. The current CO₂ market price is, however, reaching a historic low, with values not exceeding €10 ton⁻¹ in the years 2014 to 2018, related to the imbalanced emission trading in the framework of the economic downturn of 2009, though a steady increase was observed in the second half of 2018 [75]. With the anticipated economic revival, the CO2 market price is predicted to increase to €30-50 ton⁻¹ by 2030 [76,77]. With a market price of €50 ton⁻¹ CO₂, the CO₂ fixating HOB could yield a revenue of €0.23 kg dry biomass in carbon credits, compared to CO₂ producing heterotrophs. Third, the ability to use recovered nutrients, with nitrogen (N) and phosphorus (P) as the most relevant in terms of recovery potential, can be considered an important advantage of microbial protein production through HOB [73]. Different "waste" streams can act as a source of N, such as anaerobic digestate, source-separated urine and fresh animal manure, as each can contain over 4 g of total ammonia nitrogen per litre [78–80]. Nitrogen recovery from each of these waste streams can take place through different techniques of which ammonia stripping [81-83], electrochemical extraction [84] or a combination thereof [85,86] are the most promising approaches. An excellent example of such an integrated approach is reflected in the direct coupling of microbial protein production through HOB by directly introducing recovered ammonia from urine, combined with electrochemically produced H₂ [87]. Such an integrated electrochemical approach allows combining N recovery with H2 production to increase the efficiency of the system. Although N is ubiquitous in the atmosphere, its recovery preserves energy needed for (1) fixation by the Haber-Bosch process (10–12 kW h $\,\mathrm{kg^{-1}}\,$ N), and (2) removal through nitrification/denitrification (2.8 kW h kg⁻¹ N) or partial nitritation/anammox (1.4 kW h kg^{-1} N) [80,88]. This would justify a N recovery cost of up to 15 kW h kg^{-1} N, due to the energy savings for N fixation and removal. This value can be obtained by most recovery technologies [84,87,89], although their transition from lab-scale proof-of-concepts to full-scale applications requires validation. The recovery of P commonly takes place from the same waste streams through struvite precipitation, often combined with electrochemical systems [90–93]. The economic potential of P recovery, like N, will depend strongly on the market price of P, which reached a value of $\&pointsize 61.6 \, kg^{-1}$ P (triple super phosphate) in 2018 [94]. This market price, in contrast to N, relates strongly with geopolitical constraints, due to the global disparity in phosphate rock reserves [95]. The low market value of recovered P, e.g., $\&pointsize 60.38-0.46 \, kg^{-1}$ P for struvite [96], in addition to the total costs for P recovery, which are often a factor 5–10 higher than the recovered product market value [88,95], make P recovery from waste streams, at present, economically infeasible. ## Microbial protein: challenges and application Although the production of microbial protein appears to be very promising as a third-generation protein product, several challenges need to be addressed to evolve towards full-scale applications. First, the low solubility of H_2 (1.6 mg L^{-1}) is in important issue that needs to be addressed to increase efficiency of H2 usage. Different strategies can be used to maximise H2 availability to the HOB, as discussed above. Second, the availability of suitable concentrated gaseous CO2 streams is essential to provide sufficient CO2 to the HOB. Key candidate gas streams are biogas from anaerobic digestion or other large industrial stationary point sources. The anaerobic digestion plant can act as provider of recovered nutrients, renewable energy for electricity production through the combined heat and power unit, and CO2. Because biogas, next to CH₄ and CO₂ as main components, also contains H₂S and NH₃, the potential toxicity, especially of H₂S, to the HOB requires special attention. The presence of H₂S in the biogas can also be advantageous, as a valuable source of sulphur for protein production. The use of biogas as source of CO2 also opens the potential to consider a combined supply of CH₄ and H₂ to create a system that relies on methane oxidizing bacteria (MOB) and HOB for microbial protein production. This suggests novel possibilities for the combined use of H2 and CH₄ as source for food/feed [97,98]. An interesting aspect that warrants further research is tuning the CH₄/H₂ ratio to modify the microbial composition and, ultimately, the quality of the final product in terms of protein quality (amino acid composition) and quantity, as well as digestibility. Incineration and steel plant off-gases may provoke similar issues as biogas, due to the presence of nitrogen oxides, carbon monoxide or other components, which may inhibit the HOB. The targeted application of the microbial protein will determine strongly the required quality in terms of amino acid composition, presence of trace contaminants and microbial safety. Market prices of highquality protein are variable, ranging from €1.0–2.0 kg⁻¹ protein active substance [99]. Currently, microbial protein can be produced at competitive prices, but much depends on factors relating to the quality of the inputs, the downstream processing facilities and the quantity and quality demands imposed on the final product. Quality requirements for microbial protein for feed, and especially food applications, will be stringent [71], requiring considerable developments and research needs. The presence of potential opportunistic pathogens, antibiotic resistance genes and high concentrations of nucleic acids warrants thorough evaluation. The application of microbial protein as a slowrelease organic fertiliser [74] will not put high demands on protein quality or microbial safety; the main requirement will be the slow-release character that better matches the release of N with plant uptake requirements to replace Haber-Bosch based inorganic fertilisers. Microbial protein can also be formulated in certain packaging and construction materials, noting the current demands for biodegradability and pressing issues concerning plastic debris in the environment **Fig. 2.** Temporal equilibration in function of the available power supply of carbon fixation towards different end products. ## [100,101]. Overall, microbial protein as a third-generation high-quality protein product for food and feed applications, as slow-release fertilizer or as renewable resource for other applications can be produced using H_2 as key compound together with CO_2 capture. The ability to use recovered nutrients and the need for point sources of CO_2 allow a combination with existing full-scale technologies, such as anaerobic digestion (Fig. 1), to make the transition from a "waste-to-energy" towards a "waste-to-food/feed" cyclic bio-based economy. ### Temporal equilibration of power usage and CO₂ fixation Many industries rely on continuous operation, which implies continuous CO_2 emission. Carbon capture and utilization strategies rely heavily on sustainable sources of reducing power, such as photovoltaics. The weather-related and diurnal discontinuity (in case of photovoltaics) of these energy sources in relation to the constant production of CO_2 , and the practical difficulties and economic constraints of temporarily storing large amounts of CO_2 under a pressurized form [102] may require different modes of action towards CO_2 CCU. Current proposals typically involve large-scale generation of H_2 *via* electrolysis, and its subsequent use to produce power, low and high temperature heat or products. In this area, microbial technologies are considered an interesting and attractive solution. During periods of high renewable power supply, e.g., sunny and windy days, electricity can be coupled to $\rm CO_2$ conversion to form an intermediate that can be used to support a diverse array of production processes (Fig. 2). A first option is the production of CH₄. Processes to achieve this are already at demonstration scale, and production rates of $\rm 21~m^3~CH_4~m^{-3}$ reactor $\rm d^{-1}$ have been obtained [47]. The concern with such P2 G schemes is the low market value of CH₄. An important point is that CH₄ not only stores electrons (8), but also CO₂. It can also be compressed and liquefied reasonably easily, and additional supply is possible *via* an existing gas grid. This implies that if renewables cannot supply a set amount of CH₄ to achieve further production processes, it can be topped up. Similarly, basic building block chemicals, such as formate (chemically) or acetate (biologically), can be produced from CO₂. Acetate in particular can be of interest, due to its universal use by microorganisms. The production of high-value compounds that will create economic value for the overall process is essential to equilibrate the costs of the production process of the basic intermediates. The CH_4 can be used by methanotrophs to produce a wide array of outcomes, from fuels to food, such as commercial microbial protein products (e.g., FeedkindTM by Calysta) (www.calysta.com). New metabolic pathways need to be considered that lead to net incorporation of additional CO₂, while consuming CH₄, essentially implying that products with a lower electron density (not fuels) are favoured. This principle can be understood, assuming a reaction not yet engineered, *i.e.* the formation of acetate from CH₄ (Eq. (4)). $$CH_4 + CO_2 \rightarrow CH_3COOH$$ (4) Evidently, acetate will not deliver high economic returns, but could be considered as intermediate in the production of higher-value chemicals, such as 2,3-butanediol [103] or succinic acid [104], some of the key building block chemicals in demand today. The production pathways release part of the incorporated CO_2 relative to the degree of reduction associated with the target compounds, and this can be calculated for many compounds [105]. An alternative to enable diverse production from CH_4 is to perform first a chemical looping process, such as "super-dry" reforming (Eq. (5)) [55] $$CH_4 + 3 CO_2 \rightarrow 4 CO + 2 H_2O$$ (5) This is an outstanding approach to combining previously produced CH_4 with available CO_2 , and to follow this through with a microbial CO-based production process. There are several other options that blend CCU more creatively with other elements than carbon and oxygen. In this conceptual approach, the pinnacle is the production of microbial protein from CO_2 , where the protein-rich microbial biomass is the product itself. Considering today's meat footprint, ranging between 2–150 kg CO_2 equivalents per kg of meat, depending on the LCA study and type of meat [106], such an approach could have a major impact. Hence, it is important to identify processes that can rapidly combine available renewable energy and CO_2 into intermediates, and subsequently use them in a secondary, CO_2 capturing process to obtain an array of attractive products for the current and future bio-based economy. ## Conclusions The full potential of H₂, produced through water electrolysis, driven by renewable energy sources, such as photovoltaics, extends beyond mere use as a fuel. Here, the opportunities of an electricity-driven hydrogen bio-based economy for the future have been highlighted. First, H₂ can be considered a central molecule to produce building block chemicals, following the CH₄-route. Because CH₄ as such, produced *via* biomethanation of CO₂, has insufficient value to compete with inexpensive fossil derived CH₄, it should be used as energy and carbon source to produce bio-based high-value/commodity chemicals. Secondly, H₂ can serve as a carbon-neutral source to produce high-quality third-generation protein products, *i.e.* microbial protein, making use of recovered nutrients and enabling net carbon fixation. Both approaches can be combined in a temporal framework of electrification in the 21st century to maximise the utilisation potential of the discontinuous nature of renewable energy supply. ## Acknowledgments Jo De Vrieze is supported as postdoctoral fellow by the Research Foundation Flanders (FWO-Vlaanderen). Kristof Verbeeck is supported by FWO-Vlaanderen through a Ph.D. scholarship. The authors would like to thank Tim Lacoere for his assistance with the graphics. All authors declare no conflicts of interest. ### References [1] Posthuma L, Bjorn A, Zijp MC, Birkved M, Diamond ML, Hauschild MZ, et al. - Beyond safe operating space: finding chemical footprinting feasible. Environ Sci Technol 2014;48:6057–9. https://doi.org/10.1021/es501961k. - [2] Berner RA. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 2003;426:323–6. https://doi.org/10.1038/nature02131. - [3] IPCC climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: IPCC; 2014. p. 151. - [4] O'Neill BC, Oppenheimer M, Warren R, Hallegatte S, Kopp RE, Portner HO, et al. IPCC reasons for concern regarding climate change risks. Nat Clim Change 2017;7:28–37. https://doi.org/10.1038/nclimate3179. - [5] Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, et al. Planetary boundaries: guiding human development on a changing planet. Science 2015;347:11. https://doi.org/10.1126/science.1259855. - [6] Cherubini F, Ulgiati S. Crop residues as raw materials for biorefinery systems A LCA case study. Appl Energy 2010;87:47–57. https://doi.org/10.1016/j.apenergy. 2000.08.024 - [7] Zhang H, Lopez PC, Holland C, Lunde A, Ambye-Jensen M, Felby C, et al. The multi-feedstock biorefinery - assessing the compatibility of alternative feedstocks in a 2G wheat straw biorefinery process. GCB Bioenergy 2018;10:946–59. https:// doi.org/10.1111/gcbb.12557. - [8] Fuess IT, de Araújo Júnior MM, Garcia ML, Zaiat M. Designing full-scale biodigestion plants for the treatment of vinasse in sugarcane biorefineries: how phase separation and alkalinization impact biogas and electricity production costs? Chem Eng Res Des 2017;119:209–20. https://doi.org/10.1016/j.cherd.2017.01.023. - [9] Mupondwa E, Li X, Tabil L, Sokhansanj S, Adapa P. Status of Canada's lignocellulosic ethanol: part II: hydrolysis and fermentation technologies. Renew Sustain Energy Rev 2017;79:1535–55. https://doi.org/10.1016/j.rser.2016.11. 037 - [10] Posada JA, Patel AD, Roes A, Blok K, Faaij APC, Patel MK. Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 2013;135:490–9. https://doi.org/10.1016/j.biortech.2012.09.058. - [11] Choi S, Song CW, Shin JH, Lee SY. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 2015;28:223–39. https://doi. org/10.1016/j.ymben.2014.12.007. - [12] Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Conv Manag 2010;51:1412–21. https://doi.org/10. 1016/j.enconman.2010.01.015. - [13] Scoma A, Rebecchi S, Bertin L, Fava F. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries. Crit Rev Biotechnol 2016;36:175–89. https://doi.org/10.3109/07388551.2014.947238. - [14] Barber J. Biological solar energy. Philos Trans Math Phys Eng Sci 2007;365:1007–23. https://doi.org/10.1098/rsta.2006.1962. [15] Zhu X-G, Long SP, Ort DR. What is the maximum efficiency with which photo- - [15] Zhu X-G, Long SP, Ort DR. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 2008;19:153–9. https://doi.org/10.1016/j.copbio.2008.02.004. - [16] Graham RL, English BC, Noon CE. A Geographic Information System-based modeling system for evaluating the cost of delivered energy crop feedstock. Biomass Bioenergy 2000;18:309–29. https://doi.org/10.1016/s0961-9534(99)00098-7. - [17] Bennett AS, Anex RP. Production, transportation and milling costs of sweet sorghum as a feedstock for centralized bioethanol production in the upper Midwest. Bioresour Technol 2009;100:1595–607. https://doi.org/10.1016/j.biortech.2008. 09.023. - [18] Resources AfR bioenergy in Germany: facts and figures; Gülzow-Prüzen, Germany. 2014. - [19] Yang XG, Choi HS, Park C, Kim SW. Current states and prospects of organic waste utilization for biorefineries. Renew Sustain Energy Rev 2015;49:335–49. https://doi.org/10.1016/j.rser.2015.04.114. - [20] Trenberth KE, Fasullo JT, Kiehl J. Earth's global energy budget. B Am Meteorol Soc 2009;90:311–23. https://doi.org/10.1175/2008bams2634.1. - [21] Overmann J, Garcia-Pichel F. The phototrophic way of life. The prokaryotes: prokaryotic communities and ecophysiology Vol. 9783642301230. 2013. p. 203–57. - [22] Zhu W, Deng Y, Wang Y, Shen SF, Gulfam R. High-performance photovoltaicthermoelectric hybrid power generation system with optimized thermal management. Energy 2016;100:91–101. https://doi.org/10.1016/j.energy.2016.01.055. - [23] Enerdata global energy statistical yearbook 2015. 2015. Grenoble, France. - [24] Haegel NM, Margolis R, Buonassisi T, Feldman D, Froitzheim A, Garabedian R, et al. Terawatt-scale photovoltaics: trajectories and challenges. Science 2017;356:141–3. https://doi.org/10.1126/science.aal1288. - [25] Fereidooni M, Mostafaeipour A, Kalantar V, Goudarzi H. A comprehensive evaluation of hydrogen production from photovoltaic power station. Renew Sustain Energy Rev 2018;82:415–23. https://doi.org/10.1016/j.rser.2017.09.060. - [26] Fraunhofer ISE current and future cost of photovoltaics. Long-term scenarios for market development, system prices and LCOE of utility-scale PV systems. Study on behalf of Agora Energiewende. 2015. - [27] van Wijk A, van der Roest E, Boere J. Solar power to the people. Amsterdam: IOS Press BV; 2017. p. 98. - [28] Hernandez-Moro J, Martinez-Duart JM. Economic analysis of the contribution of photovoltaics to the decarbonization of the power sector. Renew Sustain Energy Rev 2015;41:1288–97. https://doi.org/10.1016/j.rser.2014.09.025. - [29] Martens JA, Bogaerts A, De Kimpe N, Jacobs PA, Marin GB, Rabaey K, et al. The chemical route to a carbon dioxide neutral world. Chemsuschem 2017;10:1039–55. https://doi.org/10.1002/cssc.201601051. - [30] Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. - Chem Rev 2014;114:1709-42. https://doi.org/10.1021/cr4002758. - [31] Denmark turns excess wind power into gas via Hydrogenics tech. Fuel Cells Bull 2014:8–9. https://doi.org/10.1016/S1464-2859(14)70082-3. 2014. - [32] Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, et al. Renewable power-to-gas: a technological and economic review. Renew. Energy 2016;85:1371–90. https://doi.org/10.1016/j.renene.2015.07.066. - [33] Bailera M, Lisbona P, Romeo LM, Espatolero S. Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO₂. Renew Sustain Energy Rev 2017;69:292–312. https://doi.org/10.1016/j.rser.2016.11.130. - [34] Rabaey K, Rozendal RA. Microbial electrosynthesis revisiting the electrical route for microbial production. Nat Rev Microbiol 2010;8:706–16. https://doi.org/10. 1038/nrmicro2422 - [35] Seifert AH, Rittmann S, Bernacchi S, Herwig C. Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresour Technol 2013;136:747–51. https://doi.org/10.1016/j.biortech.2013.03. - [36] Liew FM, Kopke M, Simpson SD. Gas fermentation for commercial biofuels production, liquid, gaseous and solid biofuels. In: Fang Z, editor. Liquid, gaseous and solid biofuels conversion techniques. IntechOpen; 2013. p. 125–74. - [37] Lechtenbohmer S, Nilsson LJ, Ahman M, Schneider C. Decarbonising the energy intensive basic materials industry through electrification Implications for future EU electricity demand. Energy 2016;115:1623–31. https://doi.org/10.1016/j. energy.2016.07.110. - [38] Enerdata global energy statistical yearbook 2018. 2018. Grenoble, France. - [39] Zabranska J, Pokorna D. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol Adv 2017. https://doi. org/10.1016/j.biotechadv.2017.12.003. - [40] Liu YC, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Wiegel J, Maier RJ, Adams MWW, editors. Incredible anaerobes: from physiology to genomics to fuels, Vol. 1125. Oxford: Blackwell Publishing; 2008. p. 171–89. - [41] Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol 2010;85:849–60. https://doi.org/10.1007/s00253-009-2246-7. - [42] Ould Amrouche S, Rekioua D, Rekioua T, Bacha S. Overview of energy storage in renewable energy systems. Int J Hydrog Energy 2016;41:20914–27. https://doi. org/10.1016/j.ijhydene.2016.06.243. - [43] Angenent LT, Usack JG, Xu JJ, Hafenbradl D, Posmanik R, Tester JW. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Bioresour Technol 2018;247:1085–94. https://doi.org/10.1016/j.biortech.2017.09.104. - [44] Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, et al. Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 2018;36:452–66. https://doi.org/10.1016/j.biotechadv.2018.01.011. - [45] Luo G, Angelidaki I. Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 2013;97:1373–81. https://doi.org/10.1007/s00253-012-4547-5. - [46] Agneessens LM, Ottosen LDM, Voigt NV, Nielsen JL, de Jonge N, Fischer CH, et al. In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level. Bioresour Technol 2017;233:256–63. https://doi.org/10.1016/j.biortech.2017.02.016. - [47] Martin MR, Fornero JJ, Stark R, Mets L, Angenent LT. A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H₂. Arch Int Microbiol J 2013:11. https://doi.org/10.1155/ 2013/157529. - [48] Kougias PG, Treu L, Benavente DP, Boe K, Campanaro S, Angelidaki I. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresour Technol 2017;225:429–37. https://doi.org/10.1016/j.biortech.2016.11.124. - [49] Geppert F, Liu DD, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A. Bioelectrochemical Power-to-gas: state of the art and future perspectives. Trends Biotechnol 2016;34:879–94. https://doi.org/10.1016/j.tibtech.2016.08.010. - [50] Guiot SR, Cimpoia R, Carayon G. Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas. Environ Sci Technol 2011;45:2006–12. https://doi.org/10.1021/es102728m. - [51] Blasco-Gomez R, Batlle-Vilanova P, Villano M, Balaguer MD, Colprim J, Puig S. On the edge of research and technological application: a critical review of electromethanogenesis. Int J Mol Sci 2017;18:32. https://doi.org/10.3390/ iims18040874. - [52] Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 2009;43:3953–8. https://doi.org/10.1021/es803531g. - [53] Collet P, Flottes E, Favre A, Raynal L, Pierre H, Capela S, et al. Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. Appl Energy 2017;192:282–95. https://doi.org/10.1016/j. apenergy.2016.08.181. - [54] Patterson T, Esteves S, Dinsdale R, Guwy A. An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 2011;39:1806–16. https://doi.org/10.1016/j. enpol.2011.01.017. - [55] Buelens LC, Galvita VV, Poelman H, Detavernier C, Marin GB. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle. Science 2016;354:449–52. https://doi.org/10.1126/science.aah7161. - [56] Charisiou ND, Siakavelas G, Papageridis KN, Baklavaridis A, Tzounis L, Avraam DG, et al. Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO₂ and/or La₂O₃ alumina catalysts. J Nat Gas Sci Eng 2016;31:164–83. https://doi.org/10.1016/j.jngse.2016.02.021. - [57] Munoz R, Meier L, Diaz I, Jeison D. A review on the state-of-the-art of physical/ - chemical and biological technologies for biogas upgrading. Rev Environ Sci Biotechnol 2015;14:727–59. https://doi.org/10.1007/s11157-015-9379-1. - [58] Lee SG, Sardesai A. Liquid phase methanol and dimethyl ether synthesis from syngas. Top Catal 2005;32:197–207. https://doi.org/10.1007/s11244-005-2891-8. - [59] Verbeeck K, Buelens LC, Galvita VV, Marin GB, Van Geem KM, Rabaey K. Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy Environ Sci 2018. https://doi.org/10.1039/ C8EE01059E. - [60] Bengelsdorf FR, Straub M, Dürre P. Bacterial synthesis gas (syngas) fermentation. Environ Technol 2013;34:1639–51. https://doi.org/10.1080/09593330.2013. 827747 - [61] Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Kopke M. Gas fermentation a flexible platform for commercial scale production of low-carbon-Fuels and chemicals from waste and renewable feedstocks. Front Microbiol 2016;7:28. https://doi.org/10.3389/fmicb.2016.00694. - [62] Kundiyana DK, Huhnke RL, Wilkins MR. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. J Biosci Bioeng 2010;109:492–8. https://doi.org/10.1016/j.jbiosc.2009.10.022. - [63] Demler M, Weuster-Botz D. Reaction engineering analysis of hydrogenotrophic production of acetic acid by *Acetobacterium woodii*. Biotechnol Bioeng 2011;108:470–4. https://doi.org/10.1002/bit.22935. - [64] Molitor B, Marcellin E, Angenent LT. Overcoming the energetic limitations of syngas fermentation. Curr Opin Chem Biol 2017;41:84–92. https://doi.org/10. 1016/j.cbpa.2017.10.003. - [65] Muyzer G, Stams AJM. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 2008;6:441–54. https://doi.org/10.1038/nrmicro1892. - [66] Diekert G, Wohlfarth G. Metabolism of homoacetogens. Antonie Van Leeuwenhoek 1994;66:209–21. https://doi.org/10.1007/bf00871640. - [67] Schink B, Schlegel HG. Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria. Biochimie 1978;60:297–305. https://doi.org/10.1016/s0300-9084(78) 80826-8 - [68] Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of Cyanobacteria. Microbiol Mol Biol Rev 2002;66:1–20. https://doi.org/10.1128/MMBR.66.1.1-20.2002. - [69] Repaske R, Mayer R. Dense autotrophic cultures of Alcaligenes eutrophus. Appl Environ Microbiol 1976;32:592–7. - [70] Pikaar I, Matassa S, Rabaey K, Laycock B, Boon N, Verstraete W. The urgent need to Re-engineer nitrogen-efficient food production for the planet. In: Hülsmann S, Ardakanian R, editors. Managing water, soil and waste resources to achieve sustainable development goals: monitoring and implementation of integrated resources management. Cham: Springer International Publishing: 2018. p. 35–69. - [71] Pikaar I, Matassa S, Rabaey K, Bodirsky BL, Popp A, Herrero M, et al. Microbes and the next nitrogen revolution. Environ Sci Technol 2017;51:7297–303. https://doi. org/10.1021/acs.est.7600916. - [72] WHO Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. 2002. - [73] Matassa S, Boon N, Verstraete W. Resource recovery from used water: the manufacturing abilities of hydrogen-oxidizing bacteria. Water Res 2015;68:467–78. https://doi.org/10.1016/j.watres.2014.10.028. - [74] Matassa S, Batstone DJ, Hülsen T, Schnoor J, Verstraete W. Can direct conversion of used nitrogen to new feed and protein help feed the world? Environ Sci Technol 2015;49:5247–54. https://doi.org/10.1021/es505432w. - [75] Egli P, Lecuyer O. Quantifying the net cost of a carbon price floor in Germany. Energy Policy 2017;109:685–93. https://doi.org/10.1016/j.enpol.2017.07.035. - [76] Schjolset S. The MSR: impact on market balance and prices; Thomson Reuters Point Carbon's Trading Analytics and Research division. 2014. - [77] Luckow P, Stanton EA, Fields S, Biewald B, Jackson S, Fisher J, et al. Carbon dioxide price forecast. Cambridge, Massachusetts: Synapse Energy Economics, Inc.: 2015. 2015. - [78] De Vrieze J, Saunders AM, He Y, Fang J, Nielsen PH, Verstraete W, et al. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res 2015;75:312–23. https://doi.org/10.1016/j.watres.2015.02. 025 - [79] Angelidaki I, Ahring BK. Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 1993;38:560–4. - [80] Maurer M, Schwegler P, Larsen TA. Nutrients in urine: energetic aspects of removal and recovery. Water Sci Technol 2003;48:37–46. - [81] Pedizzi C, Lema JM, Carballa M. Enhancing thermophilic co-digestion of nitrogenrich substrates by air side-stream stripping. Bioresour Technol 2017;241:397–405. https://doi.org/10.1016/j.biortech.2017.05.113. - [82] Serna-Maza A, Heaven S, Banks CJ. Ammonia removal in food waste anaerobic digestion using a side-stream stripping process. Bioresour Technol 2014;152:307–15. https://doi.org/10.1016/j.biortech.2013.10.093. - [83] Walker M, Iyer K, Heaven S, Banks CJ. Ammonia removal in anaerobic digestion by biogas stripping: an evaluation of process alternatives using a first order rate - model based on experimental findings. Chem Eng J 2011;178:138–45. https://doi.org/10.1016/j.cej.2011.10.027. - [84] Luther AK, Desloover J, Fennell DE, Rabaey K. Electrochemically driven extraction and recovery of ammonia from human urine. Water Res 2015;87:367–77. https:// doi.org/10.1016/j.watres.2015.09.041. - [85] Tarpeh WA, Barazesh JM, Cath TY, Nelson KL. Electrochemical stripping to recover nitrogen from source-separated urine. Environ Sci Technol 2018;52:1453–60. https://doi.org/10.1021/acs.est.7b05488. - [86] Desloover J, Woldeyohannis AA, Verstraete W, Boon N, Rabaey K. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environ Sci Technol 2012;46:12209–16. https://doi.org/10.1021/ es3028154. - [87] Christiaens MER, Gildemyn S, Matassa S, Ysebaert T, De Vrieze J, Rabaey K. Electrochemical Ammonia recovery from source-separated urine for microbial protein production. Environ Sci Technol 2017;51:13143–50. https://doi.org/10. 1021/acs.est.7b02819. - [88] De Vrieze J, Smet D, Klok J, Colsen J, Angenent LT, Vlaeminck SE. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in fullscale municipal wastewater treatment plants. Bioresour Technol 2016;218:1237–45. https://doi.org/10.1016/j.biortech.2016.06.119. - [89] Kuntke P, Sleutels T, Saakes M, Buisman CJN. Hydrogen production and ammonium recovery from urine by a Microbial Electrolysis Cell. Int J Hydrog Energy 2014;39:4771–8. https://doi.org/10.1016/j.ijhydene.2013.10.089. - [90] Cusick RD, Ullery ML, Dempsey BA, Logan BE. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Res 2014;54:297–306. https://doi.org/10.1016/j.watres.2014.01.051. - [91] Merino-Jimenez I, Celorrio V, Fermin DJ, Greenman J, Ieropoulos I. Enhanced MFC power production and struvite recovery by the addition of sea salts to urine. Water Res 2017;109:46–53. https://doi.org/10.1016/j.watres.2016.11.017. - [92] Munch EV, Barr K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res 2001;35:151–9. https://doi.org/ 10.1016/s0043-1354(00)00236-0. - [93] Wilsenach JA, Schuurbiers CAH, van Loosdrecht MCM. Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res 2007;41:458–66. https://doi.org/10.1016/j.watres.2006.10.014. - [94] World Bank Group. Commodity markets outlook April Washington, DC: World Bank; 2018. License: Creative Commons Attribution CC BY 3.0 IGO. - [95] Chowdhury RB, Moore GA, Weatherley AJ, Arora M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J Clean Prod 2017;140:945–63. https://doi.org/10.1016/j. iclepro.2016.07.012. - [96] Desmidt E, Ghyselbrecht K, Zhang Y, Pinoy L, Van der Bruggen B, Verstraete W, et al. Global phosphorus scarcity and full-scale P-Recovery techniques: a review. Crit Rev Environ Sci Technol 2015;45:336–84. https://doi.org/10.1080/10643389.2013.866531. - [97] Pieja AJ, Morse MC, Cal AJ. Methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol 2017;41:123–31. https://doi.org/10.1016/j.cbpa. 2017.10.024 - [98] Steinberg LM, Kronyak RE, House CH. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass. Life Sci Space Res 2017;15:32–42. https://doi.org/10.1016/j.lssr.2017.07.006. - [99] Matassa S, Boon N, Pikaar I, Verstraete W. Microbial protein: future sustainable food supply route with low environmental footprint. Microb Biotechnol 2016;9:568–75. https://doi.org/10.1111/1751-7915.12369. - [100] Derraik JGB. The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 2002;44:842–52. https://doi.org/10.1016/s0025-326x(02) 00220-5. - [101] Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG, et al. Lost at sea: where is all the plastic? Science 2004;304:838. - [102] Haszeldine RS. Carbon capture and storage: how green can black be? Science 2009;325:1647–52. https://doi.org/10.1126/science.1172246. - [103] Kopke M, Mihalcea C, Liew FM, Tizard JH, Ali MS, Conolly JJ, et al. 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 2011;77:5467–75. https://doi.org/10.1128/aem.00355-11. - [104] Li YJ, Huang B, Wu H, Li ZM, Ye Q, Zhang YHP. Production of succinate from acetate by metabolically engineered *Escherichia coli*. ACS Synth Biol 2016;5:1299–307. https://doi.org/10.1021/acssynbio.6b00052. - [105] Gildemyn S, Rozendal RA, Rabaey K. A gibbs free energy-based assessment of microbial electrocatalysis. Trends Biotechnol 2017;35:393–406. https://doi.org/ 10.1016/j.tibtech.2017.02.005. - [106] Nijdam D, Rood T, Westhoek H. The price of protein: review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012;37:760–70. https://doi.org/10.1016/j.foodpol. 2012.08.002.