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Abstract

Understanding the relationship between mutational processes and gene expression
patterns is essential for gaining insights into tumor heterogeneity. In this study, we
analyze single-cell RNA sequencing data from a breast cancer tumor to investigate as-
sociations between mutational signature exposures and gene expression profiles. We
propose a scoring method that integrates principal component loadings, canonical corre-
lation analysis (CCA) loadings, and signature contributions to quantify gene-signature
associations. Enrichment analysis of the top-ranking genes reveals consistent involve-
ment of extracellular matrix (ECM) receptor interaction, focal adhesion, and immune-
related pathways across multiple mutational signatures. These findings suggest that
different mutational processes converge on pathways involved in cell adhesion, inva-
sion, and immune modulation. Our approach demonstrates the utility of multivariate
statistical methods combined with enrichment analysis to explore the transcriptional
consequences of mutational processes in cancer at the single-cell level.

1 Introduction

Cancer is a complex and heterogeneous disease, characterized by a vast diversity of genetic
alterations and cellular behaviors even within a single tumor. Understanding this het-
erogeneity is crucial, as it directly influences treatment response, disease progression, and
patient outcomes. One emerging approach to characterizing this diversity is the study of
mutational signatures-distinctive patterns of somatic mutations that reflect the underlying
mutational processes active in a tumor. These processes include environmental exposures
(e.g., tobacco smoke or UV light), defects in DNA repair mechanisms, and enzymatic activ-
ities such as those driven by APOBEC proteins. Over time, these processes leave charac-
teristic "footprints" in the genome, known as mutational signatures, which can be identified
through computational analysis.

Previous studies have explored mutational signatures to infer etiological factors in cancer
development [4] and have separately used gene expression data for tumor classification and
prognosis. Correlations between mutational signature exposures and biological processes
have already been discovered [5], and specific genes are already believed to have their activ-
ity impacted by mutational processes [15]. As an example, tobacco smoking has been shown
to activate immune responses [2] However, the processes that cause many of these muta-
tional signatures are still unknown. Mutagenic processes arise from disruptions in normal
molecular pathways, and vice-versa they can disrupt normal cell activities. Consequently,
uncovering the relationship between these processes and the underlying molecular mech-
anisms is essential for understanding their origins and biological impact. A great way of
monitoring a cell’s behavior is through its gene expression data. Therefore, uncovering the
relation between mutational processes and the affected cells’ gene expression is crucial for
understanding their role in carcinogenesis.

This study aims to study the relationships between mutational signature exposure and
gene expression for single cell data. More specifically, we start off by employing multivariate
correlation analysis through CCA (Canonical Component Analysis) [14]. This enables us
to uncover coordinated changes and potential regulatory programs associated with specific
mutational processes.

By analyzing the gene groups that are most strongly associated with individual signa-
tures, we aim to gain insights into the biological pathways potentially influenced by different
mutational mechanisms. To contextualize these associations, we use pathway enrichment



analysis, highlighting functional themes and cellular processes that may be disrupted in the
tumor microenvironment.

Overall, this approach contributes to a deeper understanding of how genomic alterations
interact with gene expression at single-cell resolution, offering potential insights into the
functional consequences of mutational processes in breast cancer.

The remainder of this paper is structured as follows. In Section 2, we describe the neces-
sary preliminaries for preparing and processing the data used in this study. Section 3 details
our multivariate analytical approach, including the application of Canonical Correlation
Analysis (CCA), the development of a custom scoring technique, and gene set enrichment
analysis. Section 4 presents the main results and discusses the biological implications of our
findings in the context of breast cancer. In Section 5, we summarize our conclusions and
outline potential directions for future work. Finally, Section 6 addresses considerations of
responsible research, including ethical aspects and reproducibility.

2 Preliminaries

A foundational concept in understanding cancer evolution lies in the idea of mutational
signatures-distinct patterns of somatic mutations imprinted on the cancer genome by various
mutagenic processes. One of the most influential contributions to this field was made by
Alexandrov et al., who introduced a computational framework based on Non-negative Matrix
Factorization (NMF) to uncover these signatures from large-scale tumor sequencing data [4].

In Alexandrov’s approach, the observed mutational catalog of a tumor cohort is rep-
resented as a non-negative matrix V. € R"™*™ where m is the number of mutation types
(e.g., 96 trinucleotide contexts), and n is the number of tumor samples. NMF factorizes
this matrix into two non-negative matrices: W € R™** which contains the mutational
signatures, and H € RF¥*"™_ which represents the exposure of each sample to each signature,
such that V.=~ WH. Here, k denotes the number of extracted mutational signatures. The
columns of W can be interpreted as probabilistic profiles over mutation types, and the rows
of H describe how strongly each signature is expressed in a given tumor.

These mutational signatures provide a molecular record of past mutational processes,
such as exposure to UV light, tobacco smoke, or deficiencies in DNA repair mechanisms.
Signatures like SBS1, associated with age-related accumulation of C>T mutations at CpG
sites, or SBS5, a common signature with unknown etiology, have been consistently observed
across cancer types. Alexandrov’s NMF-based framework laid the groundwork for cataloging
these signatures and inspired further efforts to refine their biological interpretation.

In the context of single-cell data, mutational signature exposures can vary between cells,
potentially reflecting intratumoral heterogeneity in DNA damage and repair processes. Un-
derstanding how these exposures relate to transcriptional programs is crucial for linking
somatic evolution to phenotypic diversity in cancer. In this study, we build on Alexandrov’s
model by treating the signature exposure matrix (analogous to H) as the starting point
for multivariate correlation analysis, seeking to uncover systematic associations between
mutational processes and gene expression profiles at the single-cell level.

3 Materials and methods

This study investigates the relationship between mutational signature exposure and gene
expression in single cells derived from a single breast cancer tumor. The analysis is conducted



on a multi-modal dataset containing both gene expression profiles and mutational signature
exposures for single cells.

3.1 Dataset

The dataset used in this study includes single-cell RNA sequencing (scRNA-seq) data and
mutational signature exposure estimates for individual cells. All cells originate from the
same breast tumor sample, enabling analysis of intra-tumor heterogeneity. The gene ex-
pression data is derived from a dataset of 750 sorted cells from a human invasive ductal
carcinoma sample provided by 10x Genomics [1]. Gene expression captures the transcrip-
tomic activity of each cell, while mutational signature exposures quantify the contribution of
different mutagenic processes-such as SBS1, SBS5, SBS26, and others-to each cell’s mutation
profile. The mutational signature exposures were inferred using the Non-negative Matrix
Factorization (NMF) framework described by Alexandrov et al. [4]. After performing this
step, the datasets contains entries for a total of 87 different mutational signatures, 36601
genes and 687 cells. Each cell has a certain exposure to each signature and a certain value
for each gene, representing the expression of that gene.

3.2 Preprocessing

The initial dataset consists of single-cell gene expression profiles and associated mutational
signature exposures for cells from a single breast cancer tumor. Before proceeding with any
analysis, a preprocessing step is applied to select informative features.

First, mutational signatures with zero exposure across all cells are discarded. Since these
signatures do not vary and therefore cannot provide any meaningful signal for downstream
correlation or classification tasks, they are excluded from the analysis. After the removal of
the absent signatures, we are left with 6 others: SBS1, SBS5, SBS12, SBS26, SBS40c and
SBS54. It is worth noting that, although all these signatures are detected in at least a few
cells, SBS26 and SBS40c show the highest overall exposure. In contrast, SBS54 displays very
low total exposure. Previous reports have suggested that SBS54 may represent a sequencing
artifact or contamination with germline variants [6], which could explain its limited presence
in the data.

In order to stabilize and reduce the impact of outliers or genes with consistently high
expression values, the gene expression data is transformed using the log transform.

Basic filtering is also applied to the gene expression data to remove genes with low
variance or no expression across all cells, reducing noise and computational complexity in
the analyses that follow.

3.3 Statistical Association Analysis

To investigate the relationship between mutational signature exposures and gene expression,
we first apply Canonical Correlation Analysis (CCA) [14]. CCA identifies pairs of canonical
variables-linear combinations of features from each dataset-that are maximally correlated.
In our context, this reveals coordinated patterns between the transcriptomic landscape and
mutational processes across single cells. Unlike univariate approaches, which examine one
gene or one signature at a time, multivariate statistical techniques such as CCA are well-
suited to uncover high-dimensional relationships where groups of genes may jointly associate
with multiple mutational signatures. This holistic view allows us to account for dependencies



and covariation within and across modalities, offering a more integrated understanding of
how mutational processes shape gene expression programs.

However, gene expression data is inherently high-dimensional, typically with far more
genes than mutational signatures. This imbalance can lead to overfitting in CCA. To address
this, we first apply Principal Component Analysis (PCA) to the gene expression matrix to
reduce its dimensionality while preserving most of its variance. The number of principal
components retained is determined using the elbow method, which identifies the point at
which adding more components yields diminishing returns in explained variance. In this
study, we retained enough components to account for 90% of the total variance, which
resulted in 158 principal components being selected for downstream analysis. Both PCA
and CCA were performed using the scikit-learn library [12].

After dimensionality reduction, each cell is represented by its mutational signature expo-
sure profile and its corresponding principal component scores from the gene expression data.
We then apply CCA to these two sets of variables. After applying CCA, we obtained pair of
canonical components, representing linear combinations of the exposure data and the prin-
cipal components that are maximally correlated. For each of these pairs, by examining the
coefficients (loadings) within these components, we can assess the contribution of individual
mutational signatures or gene expression components to each correlated pattern, providing
insights into how specific mutational signatures are linked to transcriptional programs.

3.4 Differential scoring for gene-signature pairs

To further highlight genes that are strongly associated with specific mutational signatures,
we introduce a scoring approach that integrates the structure of the canonical components.
The goal of this approach is to identify pairs of genes and mutational signatures that cor-
relate. For each pair of the canonical components obtained from CCA, we analyze which
mutational signatures and genes contribute most by examining the corresponding canonical
loadings, as explained before.

Since PCA was applied to the gene expression matrix before CCA, the gene-side canoni-
cal components exist in a reduced space. Therefore, to trace contributions back to individual
genes, we also consider each gene’s contribution to each principal component. In order to
differentiate between the genes contributions to correations, we propose the following ap-
proach: We assign a score S, s to each gene g and mutational signature s pair, initialized
to zero. Then, for each pair of canonical components, we examine the loadings on both
sides. The magnitude of these loadings reflects how strongly each principal component or
mutational signature contributes to the canonical correlation. To map this back to indi-
vidual genes, we proceed as follows: For each canonical pair, we iterate over all principal
components and mutational signatures, and for each gene-signature pair, we increment its
score by the product of:

1. the gene’s contribution to a selected principal component (PCA loading),

2. the principal component’s contribution to the gene-side canonical component (CCA
loading),

3. the mutational signature’s loading on the corresponding signature-side canonical com-
ponent, and

4. the correlation between the two canonical components under consideration.



A visual representation of the contribution for one mutational signature and one Principal
Component can be seen in Figure 1.
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Figure 1: Contribution to the CCA of one Mutational Signature and one Principal Compo-
nent.

Specifically, for each canonical component pair k, we update the score as:

Sg,s"’ = Pk - (Z Pg,p ) Up,k) : ‘/;,k
p

where:

e py. is the absolute value of the canonical correlation coefficient for canonical component
pair k,

e P, is the absolute value of the loading of gene g on principal component p (PCA
loading),

o U, j, is the absolute value of the loading of principal component p on gene-side canonical
component k (CCA loading),

o V) is the absolute value of the loading of signature s on signature-side canonical
component k (CCA loading).

Hence, the final score of each pair would be:
Sg7s = Z (Pk : (Z Pg,p : Up,k) . Vts,k)
k P

This composite score quantifies the strength of association between a gene and a mutational
signature, aggregating contributions across both latent spaces. Further analysis of these
scores’ formula is described in the following sections.



3.5 Pathway and Enrichment Analysis

To interpret the biological relevance of genes associated with mutational signatures, we
perform pathway and enrichment analysis using gene set enrichment tools. Specifically,
genes are ranked based on their association scores with each mutational signature, as defined
in the previous section. These ranked gene lists were analyzed using the GSEApy library
to perform pre-ranked Gene Set Enrichment Analysis (GSEA) [13], leveraging curated gene
sets obtained from Enrichr [10], specifically the KEGG 2021 Human [8] collection.

The analysis identifies pathways that are significantly overrepresented among genes
highly correlated with specific mutational processes. This enables the mapping of distinct
mutational signatures to relevant transcriptional programs and cellular processes, poten-
tially revealing the functional consequences of underlying mutational mechanisms. To ensure
statistical robustness, we apply multiple testing correction using the False Discovery Rate
(FDR) and Family-Wise Error Rate (FWER) procedures, and consider pathways significant
when both values are smaller than 0.01, a widely used threshold in enrichment analysis. The
most enriched pathways for each signature are reported and discussed in the results section.

Together, these methods form a pipeline for linking mutational processes to transcrip-
tomic consequences at the single-cell level, providing a basis for understanding how genomic
alterations shape cellular behavior in cancer.

4 Results and Discussion

4.1 Dimensionality Reduction and statistical correlations

To reduce the high dimensionality of the gene expression data and mitigate overfitting in
subsequent analyses, Principal Component Analysis (PCA) was applied. Using the elbow
method to select the optimal number of components, we retained 158 principal components,
which together explain over 90% of the total variance in gene expression. This dimension-
ality reduction balances data complexity and interpretability while preserving most of the
biological variability (see Figure 2).
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Figure 2: Elbow plot used to determine the optimal number of principal components in gene
expression data. The chosen cutoff retains over 90% of variance with 158 components.



Our analysis focused on six mutational signatures: SBS1, SBS5, SBS40c, SBS26, SBS12,
and SBS54. Since there are six mutational signatures, the CCA produced six pairs of
canonical components linking the reduced gene expression data and the mutational signature
exposures across single cells. The correlations of these pairs can be seen in Figure 4.
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Figure 3: Plot of canonical correlation analysis (CCA) showing the correlations between
gene expression and mutational signature exposures.

Figure 4 illustrates the relative contributions of each mutational signature to the canon-
ical correlation components, highlighting how different signatures are associated with the
multivariate gene expression patterns captured by CCA. These distinct signature-component
relationships underscore the capacity of CCA to disentangle complex, multivariate associa-
tions between mutational exposures and gene expression. Understanding these patterns pro-
vides insights into how mutational processes may influence tumor heterogeneity and gene
regulation at the single-cell level. Although not explored in this study, examining which
signatures contribute simultaneously to the same components could provide insights into
potential relationships or co-occurrence patterns among mutational processes. Such analy-
ses could be extended by comparing mutational profiles or investigating biological overlaps.

4.2 Scoring formula for each gene-signature pair

Using a novel scoring formula that combines contributions from gene PCA loadings, CCA
loadings, and the correlation of canonical components, we derived association scores for
each gene-mutational signature pair. This approach enabled us to quantify the strength and
direction of the relationship between individual genes and mutational signatures.

The scoring formula reflects a decomposition of the multivariate association between
gene expression and mutational signature exposures into interpretable components.

First, dimensionality reduction via PCA expresses each gene g as a linear combination
of principal components, with weights P, , indicating the gene’s contribution to each PC
p. Since Canonical Correlation Analysis (CCA) operates on the reduced PC space, the
gene-side canonical component k is itself a weighted combination of PCs, with weights Up, j.
Therefore, the total contribution of gene g to canonical component k£ can be written as
Zp Py p - Up.k, capturing how much each gene contributed to each principal component and



==SBS1
== SBS5
==SBS12
== SBS26
SBS40c
“ SBS54

cc

cc

Contribution

Figure 4: Magnitudes of each signature’s contributions to each canonical compo-
nent(considering absolute values of contributions). CCA components are numbered 1-6,
with 1 being the highest correlated with the gene expression data and 6 the lowest corre-
lated.

how much each specific principal component contributed to the correlation of the canonical
pair.

Similarly, we also want to account for the contribution the signatures have on the canon-
ical pair, since we are considering gene-signature pairs. This can be quantified by the
canonical loading of that signature in canonical component k.

Rather than using raw loadings, we take their absolute values to emphasize the magnitude
of association, disregarding directionality, which can be investigated separately if relevant.
This approach is motivated by the fact that canonical components across different pairs are
uncorrelated [14], meaning each pair captures distinct and potentially diverse patterns of
association. Including signed loadings in the aggregation could lead to cancellation effects,
where strong but oppositely signed contributions from different canonical components negate
each other, yielding artificially low gene-signature scores. By focusing on absolute loadings,
our scoring method robustly reflects the overall strength of association between genes and
mutational signatures across all canonical components, enabling more reliable identification
of biologically relevant relationships, but losing the direction of correlation.

To further characterize the variability of the scores, Figure 5 shows a boxplot of the
distribution of the scores of the genes for each signature. The scores for SBS54 are the
lowest, while the scores for signatures like SBS26 or SBS40c get the highest values. This
pattern likely reflects the relative presence of these signatures in our dataset: SBS54 has
a very low presence, limiting the strength and number of detectable gene associations and
introducing more noise, not allowing genes to acquire particularly high scores. On the
other hand, SBS26 and SBS40c are more prevalent, resulting in stronger gene-signature
associations.

While the scoring formula currently equally integrates contributions across canonical
components, it is flexible and can be adjusted in future work. For instance, one could
introduce weighting schemes that give greater emphasis to canonical components with higher
canonical correlations, under the assumption that this would reflect more accurate scores.
We chose this unweighted approach for the formula in order to avoid introducing subjective
bias into the scoring process. By doing so, we aim to provide an unbiased initial map of
gene-signature associations, which can serve as a foundation for more targeted analyses in
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Figure 5: Boxplot of gene scores per signature

subsequent studies.

4.3 Enrichment Analysis of Signature-Associated Genes

To interpret the biological significance of the gene sets associated with each mutational sig-
nature, we performed gene set enrichment analysis (GSEA) against the KEGG 2021 Human
pathways database. Genes were ranked according to their association scores, normalized by
their total score sum, and subjected to pre-ranked GSEA.

There are however certain limitations that apply to the GSEA framework. Enrichment
results can be highly dependent on the underlying pathways dataset that was used. De-
pending on the dataset, specific biological pathways may be underrepresented or absent.
Furthermore, despite testing corrections being used, they may not completely eliminate the
risk of false positives, especially when dealing with correlated gene sets. However, GSEA
remains a valuable exploratory tool to generate hypotheses and highlight possible pathways
for biological investigation.

Our results revealed distinct pathway enrichments for each signature, highlighting po-
tential functional consequences of mutational processes on cellular transcriptional programs.
Table 1 shows the most relevant pathways for the signatures. Due to the very low presence
of SBS54 and the consequently high p-values observed, we excluded this signature from the
final analyses.

The pathways are ranked according to the FDR p-values, ascendingly. In particular,
the strong enrichment of ECM-receptor interaction and focal adhesion pathways (seen for
all 5 of the signatures) is highly consistent with prior analyses of breast cancer. Naba et
al. (2014) systematically profiled extracellular matrix (ECM) proteins across breast tumors
and demonstrated that distinct ECM signatures are associated with tumor progression and
metastasis [11]. Their analysis identified multiple ECM components (e.g., LTBP3, SNED1,
COL10A1) whose dysregulation contributes to invasive potential. The fact that multiple
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Signature Term

SBS1 ECM-receptor interaction
SBS5 Focal adhesion

Tuberculosis

Systemic lupus erythematosus
SBS12 ECM-receptor interaction

Focal adhesion

Systemic lupus erythematosus
SBS26 Focal adhesion

ECM-receptor interaction

Protein digestion and absorption
SBS40c Phagosome

Systemic lupus erythematosus

Focal adhesion

Table 1: Top 3 enriched terms per mutational signature

mutational signatures in our data point toward ECM and adhesion pathways suggests that
the accumulation of somatic mutations-whether due to aging (SBS1, SBS5), defective repair
(SBS26), or other processes (SBS40c)-can impact key components of the tumor microenvi-
ronment, potentially contributing to invasive and metastatic behavior. Furthermore, Yeh
et al. (2018) demonstrated that overexpansion of several ECM-receptor interaction genes
(including HMMR, SDC1, and ITGAS5) is correlated with poor survival in breast ductal car-
cinoma [16], supporting the idea that mutations in ECM and adhesion pathways are central
features of breast cancer progression.

In SBSI, a signature correlated with age [3], we observed enrichment in the ECM-receptor
interaction pathway. This is consistent with the notion that age-related accumulation of
somatic mutations may impact genes regulating cell-matrix interactions Previous studies
have demonstrated that ECM remodeling is a key feature of breast tumor progression, with
specific ECM components implicated in metastasis and poor clinical outcome [11].

SBS5 is a ubiquitous, clock-like signature whose underlying mutational mechanism is still
incompletely understood [3]. The repeated enrichment of immune-related pathways (tuber-
culosis, SLE) may reflect chronic inflammatory processes in the tumor microenvironment,
while the focal adhesion pathway again underscores the central role of cell-ECM interactions
in tumor progression [16].

Although SBS12’s etiology remains less well-characterized, recent studies suggest links
to defective DNA repair processes, potentially involving mismatch repair or transcription-
coupled repair [3]. The enrichment of the SLE pathway may reflect immune dysregulation,
consistent with the known infiltration of immune cells in the tumor environment [7], corre-
latinig this signature with such processes.

SBS26, associated with mismatch repair deficiency [3], showed enrichment for focal ad-
hesion, ECM-receptor interaction, and protein digestion pathways. These results are also
consistent with increased ECM remodeling and altered cell adhesion, which facilitate inva-
sion and metastasis in mismatch repair-deficient tumors [9].

SBS40c, of uncertain etiology, was enriched for phagosome, systemic lupus erythemato-
sus, and focal adhesion. These pathways suggest possible involvement of immune processes
and tumor-immune interactions [7], which are known to influence tumor progression and
therapeutic response in breast cancer.
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Together, these results demonstrate the power of multivariate correlation analyses com-
bined with enrichment testing to uncover coordinated relationships between mutational pro-
cesses and gene expression at the single-cell level.

5 Conclusions and Future Work

This study investigated the relationship between mutational signature exposures and gene
expression profiles in single-cell RNA sequencing data from a breast cancer tumor. The cen-
tral research question was: (1) Can specific gene expression patterns be linked to mutational
processes?.

To address this, we applied dimensionality reduction via PCA, followed by Canonical
Correlation Analysis (CCA) to identify multivariate associations between gene expression
and mutational signatures. We introduced a novel gene-scoring approach that aggregates
PCA loadings, CCA loadings, and canonical correlations, enabling the quantification of gene
contributions to each mutational signature. This score served as a ranking metric for gene
set enrichment analysis (GSEA), revealing multiple biologically relevant pathways across
the identified signatures.

Our results highlighted enrichment of ECM-receptor interaction and focal adhesion path-
ways across multiple signatures, aligning with prior evidence of their role in breast cancer
progression and metastasis. Additionally, immune-related pathways such as systemic lupus
erythematosus (SLE), tuberculosis, and phagosome were enriched for signatures like SBS5,
SBS12, and SBS40c, suggesting a link between mutational processes and tumor-immune
microenvironment interactions.

The scoring approach proved useful in translating multivariate CCA results into inter-
pretable gene-level associations, but has limitations. It currently disregards the direction
of associations and assumes equal contribution of all canonical components. Future work
could refine the scoring by introducing component weighting or polarity to better capture
the biological complexity. Furthermore, validation across larger datasets and tumor types,
as well as integration of complementary omics data, may strengthen the generalizability of
these findings.

Overall, this work provides a foundation for studying how mutational processes shape
tumor cell identity, with potential applications in cancer diagnosis, prognosis, and therapy
development.

6 Responsible Research

This research was conducted entirely on publicly available, deidentified breast cancer single-
cell RNA sequencing data. No new data collection or patient interaction was performed,
ensuring full compliance with ethical standards related to human subjects research, privacy,
and informed consent, as originally managed by the data generators. Consequently, no
ethical risks to participants arise directly from this work.

We recognize that working with real biological data carries the risk of overinterpreta-
tion. Although we applied careful statistical controls, including dimensionality reduction
and multiple testing corrections, the results remain exploratory and should not be inter-
preted as conclusive evidence of causal biological mechanisms without further experimental
validation. In particular, the novel gene-signature scoring approach proposed here is an
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initial methodological contribution that could inform future work, but it may be sensitive to
parameter choices and eventual changes in the importance given to each term in the formula.

To promote reproducibility, we employed widely used and well-documented analysis tech-
niques such as PCA, canonical correlation analysis, and gene set enrichment analysis, which
are described in sufficient detail to allow reimplementation. All methodological steps are
fully described in this paper, and all datasets used are accessible to the research community.

To assist with writing and literature review, we used generative Al tools during the
drafting phase to summarize related work, suggest phrasing and help formatting of the paper.
Prompts used include "summarize papers on [topic]", "help me rephrase this paragraph".
However, the authors conducted the analyses, methodological design, data processing, and
final interpretations.

Overall, this study contributes an initial methodological framework for linking mutational
signatures and gene expression at the single-cell level.
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