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Fundamental Electromagnetic Configuration for Generating
One-Directional Magnetic Field Gradients

J. J. Kosse 1, M. Dhallé1, P. C. Rem2, H. J. M. ter Brake1, and H. H. J. ten Kate 1

1Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
2Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CD Delft, The Netherlands

In this article, electromagnet layouts are presented, which generate a magnetic field with a magnitude gradient that does not
vary significantly in a horizontal plane but decreases monotonically with the vertical height above the magnet. Such a one-direction
magnetic field gradient is a specific requirement for magnetic density separation (MDS), a novel recycling technology that combines
a vertical magnetic field gradient with a ferrofluid to separate a mixture of non-magnetic materials based on their mass density.
We are assembling the first superconducting magnet to be used for this application. In contrast to other separation technologies
that use ferrofluid, multiple products can be separated in a single process step. First, the idealized current distribution is introduced
that produces such a magnetic field with a magnitude that decays only in one direction. This ideal field can be approximated with
practical coil configurations, which are evaluated with a Fourier analysis to derive an optimal cross-sectional layout based on flat
racetrack coils. The analysis concludes with a discussion of the effect of winding pack thickness on the value of the magnetic field
above the magnet system and the peak field inside the winding pack. The conclusions of this study are applicable not just for MDS
but for any application that requires a magnetic field gradient that changes only in one direction.

Index Terms— Ferrofluid, Fourier, harmonics, magnet, magnetic density separation (MDS), racetrack, vertical magnetic field
gradient.

I. INTRODUCTION

AT THE University of Twente, a superconducting NbTi
demonstrator magnet for magnetic density separation

(MDS) is under construction. MDS is a relatively new
recycling technology that allows to separate a mixture of
non-magnetic materials based on their mass density [1]–[6]
and that ideally requires a magnetic field with a magnitude
that only changes in the vertical direction.

The separation or filtration of magnetic materials with
the aid of high-gradient magnetic fields is, of course,
a well-established and widely used technology [7], [8] that
was developed in the 1970s and 1980s [9], [10]. It essen-
tially exploits the attraction of ferromagnetic, ferrimagnetic,
or paramagnetic particles in the direction of the mag-
netic field gradient and is used in the purification of, e.g.,
coal [11]–[13], ores [14]–[16], and wastewater [17]–[20] or
in the manipulation of various organic and biological mate-
rials [21]–[23]. Another widely used magnetic separation
technique is eddy-current repulsion, typically used to extract
non-ferrous metals out of waste streams [24], [25].

However, the separation of non-magnetic particles is
enabled by the use of a ferrofluid in combination with a
high-gradient magnetic field [26], where the magnetic force
on the fluid competes with gravity (or centrifugal forces)
to separate materials based on their specific density [8].
Before MDS, this method was limited to a binary sink-float
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approach. A major advantage of the MDS technology
compared to these other types of magnetic separation is its
ability to separate multiple components in a one-step process.

All these methods require a strong magnetic field gradient.
What distinguishes MDS is that this gradient does not just
need to be strong but ideally also one-directional. As discussed
in Section II, variation of the magnetic field in a horizontal
plane tends to re-mix the feed stream and hence needs to be
minimized. This requirement is unique to MDS and leads to a
specific design of the electromagnet, which is the main topic
of this publication.

In the MDS process, shown in Fig. 1, shredded feed
particles are immersed in a superparamagnetic fluid (fer-
rofluid) that flows over a magnet. The fluid is a colloid of
superparamagnetic nanoparticles (usually water-based) [27],
which is magnetically saturated using a magnet that gener-
ates a vertical magnetic field gradient [1]. The competition
between gravity—acting on the feed particles—and magnetic
attraction—acting on the ferrofluid—leads to a net force on the
feed material that pushes it up, to an equilibrium height zeq,
which depends on its mass density. Different-density particles
thus float at different heights in the fluid bed. A fluid flow
drags the mixed feed stream from its insertion point toward
separator blades that collect the different-density constituent
materials. The ferrofluid is then recovered and the separated
feed products go through further sensor sorting for final
purification [6]. A transport belt moves over the magnet at the
same speed as the fluid to reduce turbulence and to carry away
any magnetic materials that may be present in the feed stream.

State-of-the-art MDS systems use permanent magnets
(PMs), usually in the form of Halbach arrays [2], [29], [30],
which imposes limits in terms of pole size and magnetic field
strength. Superconductivity can enhance separation resolution
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Fig. 1. Schematic of an MDS system. Feed material is shredded, wetted,
and immersed into a ferrofluid flow. A magnet creates a vertical magnetic
field gradient in the ferrofluid [2]. Particles move toward a height z that
corresponds to their mass density. They can then be collected in different
groups by separator blades.

while allowing for feeds of wider density ranges or more
dilute ferrofluids, resulting in cost reduction. We are currently
constructing a conduction-cooled NbTi-based MDS demon-
strator for the separation of electronic material, e.g., shredded
motherboards, that will constitute the first superconducting
MDS system.

This magnet will consist of three NbTi/Cu racetrack coils
with a width of 0.3 m each and a length of 1.4 m. The peak
magnetic field in the coils is 5.2 T and the operating current
300 A. The magnet system will operate at 4.5 K, cooled
by a closed-cycle cryocooler. The coils generate an average
magnetic field of 2.0 T at the bottom of the fluid bed, with
a vertical magnetic field gradient of magnitude 20 T/m [31].
The fluid bed is 0.9 m long in the flow direction, 1 m wide,
and 0.3 m deep. Compared with the current PM-based MDS
systems, which have a 0.6 T magnetic field at the fluid bed
bottom and a pole size of 0.12 m [3], this design offers an
increase in the separation resolution with a factor of 2.5.
While superconducting systems have been developed for a
variety of other separation systems [33]–[37], the required
magnetic field profile is essentially different from that of
MDS.

This article outlines how the electromagnetic design of the
magnet relates to the desired field profile for this application.
In Section II, the MDS operating principle is briefly presented,
sketching how the forces on a feed particle are affected by
the magnetic field profile and showing why the field mag-
nitude ideally should change only with the vertical distance
to the magnet, but not in a horizontal plane. The discussion
also further clarifies how superconducting electromagnets may
enhance this new technology.

In Section III, it is shown analytically how the generation
of such an ideal field profile in principle requires an infinitely
extended harmonic sheet current.

In Section IV and the Appendix, it is shown how such
an ideal current distribution can best be approximated with
a real magnet system. First, the Fourier analysis is used to
optimize the 2-D current patterns that represent a system of
flat racetrack-type magnets of varying complexity, and then,
the thickness of the winding pack in a real 3-D implementation
is considered, maximizing the magnitude of the useful field

Fig. 2. Forces acting on a non-magnetic particle that is submerged in a
magnetized ferrofluid in a vertical magnetic field gradient. The buoyant force
and gravity are independent of height, whereas the magnetic force decays
with increasing height.

above the magnet and minimizing the peak field within the
winding pack.

II. MDS OPERATING PRINCIPLE

Consider a particle with volume V and mass density ρp,
submerged in a ferrofluid with density ρfl (see Fig. 2). In the
absence of a magnetic field H , a particle denser than the
ferrofluid will sink to the bottom of the fluid bed because
the sum Fz + Fbuoyancy of the gravitational and buoyant
forces is downward. When a magnet underneath the fluid is
switched ON, the ferrofluid is attracted toward it. This causes
an additional upward force Fmag on the non-magnetic particle.

This upward force is the opposite of the magnetic force that
would act on the same volume of ferrofluid placed at the same
location. It is given by [38]

Fmag = −∇(m · B) (1)

with m the magnetic dipole moment of the displaced ferrofluid
volume and B the local magnetic flux density. The ferrofluid
is assumed to be magnetically saturated to a value Ms in the
direction of the local magnetic field, so

m · B = V Ms B(z). (2)

With ∇Ms = 0 and ∇B(z) = μ0∇H (z), the magnetic force
on the particle becomes

Fmag = −μ0 MsV ∇H (z). (3)

Note that this force is exerted on the non-magnetic particle by
the surrounding fluid, not directly by the magnetic field. It can
thus be regarded as a height-dependent buoyancy force.1

1The separation of materials with a density lower than that of the ferrofluid
can be achieved by placing an (additional) magnet on top of the fluid bed [1].
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At a certain equilibrium height zeq, the net force on the
particle in the vertical direction is zero [1], yielding

0 = Fz + Fbuoyancy + Fmag(z = zeq) (4a)

= (ρfl − ρp)V g − μ0 MsV ∇z H (z = zeq) (4b)

where g is the gravitational acceleration. This expression
can be simplified further by assuming a magnetic field with
a magnitude that decays exponentially with height, with a
characteristic decay length λ

H (z) = H0 exp

(
−2π

λ
z

)
. (5)

The reasoning behind this choice is made clear in Section III.
By inserting the (vertical) gradient of this magnetic field in
the force balance [see (4b)], one obtains a closed expression
for the equilibrium height

zeq = λ

2π
ln

[
2πμ0 Ms H0

(ρp − ρfl)gλ

]
. (6)

For such an exponentially decaying field, zeq does not depend
on the horizontal coordinates (x, y) so that particles do not
“wiggle” up and down as they are moving through the fluid
bed. Also, as the magnetic force changes with the verti-
cal coordinate, different-density particles will indeed float at
different heights, which is the basis of the MDS process.
In Section III, it is shown that an exponential field as in (5)
is actually the only possible solution that meets these require-
ments perfectly.

The saturation magnetization Ms and the field strength H0

appear in (6) as a product. This allows finding an optimal bal-
ance between capital expenditure and operational expenditure
of an MDS installation. The first is dominated by the cost
of the magnet system, and the second is dominated by the
price of the ferrofluid [39]. Note that even though the fluid is
recirculated, a fraction is lost during the cleaning of the sorted
feed particles. Since superconducting magnets can generate
stronger fields than PM systems, more dilute ferrofluids can
be used. Also, a stronger field allows to lift—and thus to
separate—heavier materials.

From (6), the vertical distance between the equilibrium
heights of two different materials with densities ρ1 and ρ2 and
the separation distance �z can straightforwardly be derived as

�z = zeq(ρ2)− zeq(ρ1) = λ

2π
ln

(
ρ1 − ρfl

ρ2 − ρfl

)
. (7)

This distance gives an indication of the obtainable separation
resolution. As discussed in Section III, the decay length λ of
the magnetic field strength scales with the size of the poles of
the magnet, which is relatively limited for PM. Electromagnets
in principle have no inherent size limitation since coils can be
wound in arbitrary dimensions. A larger λ-value allows for an
increased separation distance �z for feed streams with a given
density range [ρ1, ρ2], enhancing the separation resolution
compared to magnets with a more limited λ.

Section III considers the relation between the current distri-
bution, i.e., the layout of an electromagnet, and the magnetic
field profile in more detail.

III. IDEAL MAGNETIC FIELD AND THE REQUIRED 2-D
CURRENT DISTRIBUTION

In this section, it is shown how the optimal magnetic field
for MDS is indeed described by (5). The vertical gradient
of the magnetic field magnitude should not depend on the
horizontal coordinates (x, y) so that the equilibrium height
of the feed particles is constant in the horizontal plane. This
minimizes particle “wiggling” and thus improves separation
accuracy. We refer to such a magnetic field profile as the
“ideal” field.2 Mathematically, this requirement is expressed
as

∂2 H

∂x∂z
= 0,

∂2 H

∂y∂z
= 0. (8)

First, we consider the general case of a magnetic field above
a unidirectional periodic sheet current with an arbitrary shape.
From this, the sheet current distributions that satisfy (8) are
identified, showing that only a pure harmonic sheet current
generates such a field and that, hence, only an exponentially
decaying field meets these requirements.

Consider a periodic sheet current K = K (x)ŷ that flows at
z = 0 in the y-direction in an infinite xy plane and is described
as the Fourier series

K (x) =
∞∑

n=0

Kn cos

(
n

2π

λ
x + φn

)
. (9)

We take every Kn to be positive. This can be achieved by
multiplying any negative Kn by a factor −1 and adding a
factor π to φn .

Above the current sheet, Ampére’s law dictates that ∇ ×
H = 0 since, in this region, the current density is zero. This
means that a scalar magnetic potential ψ can be invoked to
solve the field

H = ∇ψ (10)

by solving the Laplace equation

∇2ψ = 0. (11)

A standard approach to solve (11) is by separation of variables,
ψ(x, z) = X (x)Z(z) [38]. The general solution to (10)
and (11) can be written as

Hx =
∞∑

n=0

cos(kn x + θn)(ane+kn z + bne−kn z) (12a)

Hz =
∞∑

n=0

sin(knx + θn)(ane+kn z − bne−kn z). (12b)

These equations are valid in general for any current-free
region. The phases θn and the amplitudes an and bn need to be
derived from the boundary conditions, while kn are separation
constants.

2Horizontal field gradients are also of interest, as they can slow down, and
even reverse, particle motion over the fluid bed. The main source of horizontal
gradients is the truncation of the infinite xy plane to a finite-size magnet
system, which is explored further in a separate paper [32].
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Fig. 3. Arbitrary sheet current K (x) with a magnitude that varies periodically
with the horizontal coordinate x with period λ such that ∀x: K (x+λ) = K (x).

Invoking once more Ampere’s law, this time at the current
sheet, the boundary condition at z = 0 can be expressed as

K (x) = lim
z↓0

Hx(x, z)− lim
z↑0

Hx(x, z) = 2 lim
z↓0

Hx(x, z)

(13)

where the first limit represents the magnetic field just above
the sheet and the second one just below. In combination
with (9) and (12), (13) yields kn = 2πn/λ; θn = φn and
an + bn = Kn/2. Moreover, for a practical planar current
distribution as in Fig. 3, currents need to return to the source
so that the net current in the y-direction is zero and the
trivial solution with n = 0 (corresponding to a uniform field
generated by a uniform current sheet) may be excluded. In that
case, the requirement that the field magnitude H remains finite
for z ↑ ∞ implies that all coefficients an must be zero, and
the field generated by the periodic sheet current (9) becomes

Hx = +
∞∑

n=1

Kn

2
cos

(
n

2π

λ
x + φn

)
e−kn z (14a)

Hz = −
∞∑

n=1

Kn

2
sin

(
n

2π

λ
x + φn

)
e−kn z . (14b)

This is the general expression for the fields generated by
periodic sheet currents of the type of (9). We can now verify
which of these currents lead to a magnetic field that meets the
requirement of (8), i.e. which currents lead to a one-directional
field gradient. The magnitude of the field can be written as

H = 1

2

{ ∞∑
n=1

∞∑
m=1

Kn Km cos

[
(n − m)

2π

λ
x + φn − φm

]

× exp

[
−(n + m)

2π

λ
z

]}0.5

(15)

with partial derivate in the z-direction

∂H

∂z
= 1

2H

∂H 2

∂z
= − π

4H

∞∑
n=1

∞∑
m=1

(n + m)Kn Km

× cos

[
(n − m)

2π

λ
x + φn − φm

]

× exp

[
−(n + m)

2π

λ
z

]
. (16)

We require this function to be independent of x (see Cri-
terion (8)). If n and m are equal, the cosine terms are
independent of x and there are no restrictions on Kn . However,

if n and m are unequal, this will not be the case. One must
therefore make sure that these cross terms do not contribute.

For every contribution in the dual sum where n and m
are unequal, the cosine term has to be extinguished by
the coefficients that determine its amplitude. This cannot be
done by the factor (n + m), which is always positive. Thus,
we need to place demands on the product of the coefficients
Kn and Km

∞∑
n=1

∞∑
m=1
m �=n

Kn Km = 0. (17)

This means that only a single term Kn can be non-zero.
In other words, only a pure harmonic sheet current will pro-
duce a field with a purely one-directional magnitude gradient.
In that case, one may as well set K1 �= 0, choose the phase
angle φ1 to be zero, and write

K = K1 cos

(
2π

λ
x

)
ŷ (18)

Hx = + K1

2
cos

(
2π

λ
x

)
exp

(
−2π

λ
z

)
(19)

Hz = − K1

2
sin

(
2π

λ
x

)
exp

(
−2π

λ
z

)
(20)

H = K1

2
exp

(
−2π

λ
z

)
. (21)

IV. RACETRACK COILS: OPTIMIZATION OF THE 2-D
CURRENT DISTRIBUTION

Realizing a cosine-shaped sheet current distribution as
described by (18) is not practical since it would require a
complicated coil layout. In this section, more realistic current
distributions are considered, which approximates such an ideal
current distribution. The corresponding deviations from the
ideal magnetic field [see (19)–(21)] can be expressed in terms
of Fourier coefficients. First, in Section IV-A, the effects of
moving from a continuous to a discrete 2-D current distribution
are considered. This allows to model an infinite array of thin
racetrack coil and thus to optimize the shape of the coils.
Then, in Section IV-B, the effect of a finite winding pack
thickness (in the z-direction, see Figs. 3 and 4) is included,
switching from a 2-D sheet current to a 3-D volume current
and exploring the consequences both for the useful field above
the coils and for the peak field within the winding pack. Also,
this analysis will still consider an infinite array of coils. End
effects caused by truncating the periodic current distribution
to a finite number of coils (in the x-direction) with a finite
length (in the y-direction) are not considered in this article,
but discussed elsewhere [32].

A. Optimal Discrete Racetrack Geometry

A magnet system that is practical to produce is a series
of flat racetrack coils, as shown in Fig. 4. These are elec-
tromagnets that consist of two straight coil sections, each
with a width w, which are connected by two semicircular
“heads.” Assuming that a homogeneous current distribution
in the winding pack allows to model the magnetic field
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Fig. 4. Sketch of a magnet consisting of three flat racetrack coils. The current
direction is shown by blue straight arrows, and the magnetic field direction
is shown by red circular arrows. Coils are translated by a distance λ relative
to each other in the x-direction.

Fig. 5. Sheet current K (x) that has a magnitude varying stepwise with the
horizontal coordinate x with period λ. This rectangular current distribution
represents one period of the coil layout of the racetracks in Fig. 4.

produced by such a coil accurately, thus one does not need to
consider the individual wires within the winding pack [40].3

In the following analysis, we focus on the xz cross section
corresponding to the y-symmetry plane.4

Consider an infinite number of such racetrack coils, trans-
lated a distance λ from each other in the x-direction. In this
section, the relative thickness of the coils d/λ is still assumed
to be small enough to approximate the volume current density
J by a surface current density K (x) = J(x)d . The corre-
sponding sheet current then consists of alternating regions,
where K (x) is either +K0ŷ, zero, or −K0ŷ with periodicity
λ, as in Fig. 5. The question that can then be addressed is
which racetrack leg width w yields the best approximation of
the ideal field.

To determine an optimal value for w/λ, the discrete Fourier
components of the sheet current are of interest. To answer
this question, we develop this current distribution as a Fourier
series, such as in (9). Choosing x = 0 in the center of one
of the racetrack legs, we can exploit the symmetry K (x) =
K (−x) to set all the phases φn to zero

K (x) =
∞∑

n=1

Kn cos

(
n

2π

λ
x

)
(22)

3On condition that a correct packing factor is considered.
4In an MDS system, the direction of the fluid flow could be either in the

x- or y-direction.

Fig. 6. Rectangular (black solid line) sheet current distribution with
periodicity λ and width w = λ/3. The current distribution can be expanded
into a Fourier series, in which terms (up to n = 13) are plotted. The sum of
the terms is the blue thin solid line. The K1 term (black dashed-dotted line)
represents the ideal current distribution.

where, as discussed above, we omitted the n = 0 term to
consider that the net current in the y-direction is zero.

For a current distribution as in Fig. 5, the Fourier coeffi-
cients Kn can straightforwardly be derived to be

Kn = 2K0

nπ
sin

(
n
w

λ
π

)
[1 − cos(nπ)] (23)

where K0 is a scaling term. It is set to 1 in the remainder of this
article for simplicity. An example of such a Fourier expansion
is shown in Fig. 6, and for the specific case, w/λ = 1/3.
Note that the components with n even are zero. The field
generated by this current distribution can then be derived
from (14a) and (14b). As shown by (16), the presence of
the higher harmonics n = 3, 5, . . . leads to an undesired x-
component of ∇H . It is therefore important to minimize the
influence of K3 and higher components. However, compared
with our desired n = 1 term, these higher harmonics decay
fast with the height z above the magnet, due to the factor n in
the exponent. In other words, at larger distances, lower order
Fourier components contribute more to the magnetic field than
the higher order ones. To approximate the ideal field as closely
as possible, it is therefore especially important to minimize the
lower order harmonics.

In Fig. 7, the first terms of the Fourier expansion are shown
as a function of the current sheet width w/λ. By inves-
tigating (23), it can be seen that the nth component has
zero magnitude whenever w/λ = 1/n. Thus, by setting the
width of the current sheets equal to exactly one-third of the
coil system periodicity, w/λ = 1/3, the amplitude of the—
principal unwanted—third harmonic can be made zero (and,
more general, all K3+6m with m integer).

Note that this does not necessarily mean that a racetrack
coil needs a leg width of λ/3. One can also use racetracks
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Fig. 7. Variation of the magnitude of the magnetic field Fourier components
as a function of current sheet width. The nth component is zero at w/λ = 1/n.

with leg width λ/6 placed adjacent to each other, with the
current flowing in the same direction for touching legs.

Plotting the magnitude of the remaining Fourier components
for w/λ = 1/3 results in Fig. 8. With K3 removed, K5 is the
largest remaining unwanted component. A practical way of
eliminating this component is by adding five subdivisions of
period λ/5 and amplitude (2/5π) sin((5/3)π) to the original
current sheet profile. This type of current distribution may be
called a notched distribution. However, eliminating K5 (and
possibly higher order Fourier coefficients) comes at the price
of a more complex winding pack. More details on such further
refinement of the current distribution can be found in the
Appendix.

B. Effect of Winding Pack Thickness

A real coil has, of course, a finite winding pack thickness d
and carries a volumetric current density instead of a sheet cur-
rent. This has consequences not only for the magnetic field in
the fluid bed, where generally the highest possible magnitude
is desired, but also for the field experienced by the conductor
from which the coil is wound. Note that in superconducting
electro-magnets, the peak magnetic field on the windings limits
their current-carrying properties and should therefore be kept
as low as possible [41], [42].

For the magnetic field in the fluid bed, the effect of the
winding pack thickness on the field magnitude is of inter-
est, as well as—for the rectangular current distributions—the
change in ripple, which as discussed above is represented by
the higher order Fourier coefficients. Inside the winding pack,
we will show how the effect on the peak magnetic field differs
for the ideal current distribution and the rectangular current
distribution.

We start once more by considering the ideal pure har-
monic current configuration and work out the magnetic field

Fig. 8. Variation of the magnitude of non-zero Fourier components for the
rectangular current distribution in Fig. 5, for a width w/λ = 1/3. Components
are plotted up to n = 31. Square markers: positive values. Round markers:
negative values.

magnitude at a height z above the conductor when we gradu-
ally increase the winding pack thickness d while keeping the
current density J0 in the winding pack constant.

This can be done by integrating the field contributions
generated by a series of parallel sheet currents of infinites-
imal thickness dz′ located in the range z′ = [−d, 0], each
carrying a current amplitude K1 = J0 dz′. Note that with
this choice of coordinates, z = 0 corresponds to the top
of the winding pack. Referring to (19) and (20), we can
write

Hx = J0

2
cos

(
2π

λ
x

) ∫ z′=0

z′=−d
exp

(
−2π

λ
(z − z ′)

)
dz′ (24a)

= J0λ

4π
cos

(
2π

λ
x

)
exp

(
−2π

λ
z

)

×
[

1 − exp

(
−2π

λ
d

)]
(24b)

and analogously

Hz = − J0λ

4π
sin

(
2π

λ
x

)
exp

(
−2π

λ
z

)

×
[

1 − exp

(
−2π

λ
d

)]
(25)

H = − J0λ

4π
exp

(
−2π

λ
z

)[
1 − exp

(
−2π

λ
d

)]
. (26)

Note that in the limit d → 0 the expression reduces
to (21).

The value of the field magnitude just above the winding
pack (at z = 0) is plotted against winding pack thickness
in Fig. 9. For coils much thinner than λ/2π , the magnitude
increases linearly with coil thickness, as may be expected, but
for coils much thicker than λ/2π , additional windings added
at the bottom are too far away to contribute significantly and
the field magnitude saturates at H = J0λ/4π .
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Fig. 9. Scaled magnetic field magnitude as a function of coil thickness. The
red solid line indicates the field at the surface of the coils for an ideal harmonic
current distribution, and the red dashed line indicates the peak magnetic field
on the conductor. The round markers indicate the field at the surface of the
coils for a rectangular current distribution, and the triangular markers indicate
the peak magnetic field on the conductor.

The magnetic field components inside the current-carrying
space (−d ≤ z ≤ 0) are

Hx = + J0λ

4π
cos

(
2π

λ
x

)

×
[

exp

(
2π

λ
z

)
− exp

(
−2π

λ
(z + d)

)]
(27)

Hz = − J0λ

4π
sin

(
2π

λ
x

)

×
[

2 − exp

(
2π

λ
z

)
− exp

(
−2π

λ
(z + d)

)]
. (28)

These expressions are obtained by summing two integrals: the
first spanning [−d, z] and the second [z, 0]. It can be proved
that the maximum magnetic field is located at z = −d/2
by solving ∂H 2/∂x = 0 and ∂H 2/∂z = 0. The maximum
magnetic field inside the current-carrying space is given by

Hpeak = J0λ

2π

[
1 − exp

(
−π
λ

d
)]
. (29)

Also, (29) is plotted in Fig. 9. The rate of increase of the peak
field with winding pack thickness decreases as the winding
pack gets thicker but saturates at a higher thickness compared
to the field on the surface.

The ratio of the effective magnetic field magnitude at the
surface of the coils to the peak magnetic field on the conductor
scales as

Hz=0

Hpeak
∝

1 − exp
(

− 2π
λ

d
)

1 − exp
(

− π
λ

d
) = 1 + exp

(
− π

λ
d
)
. (30)

As the winding pack is made thicker, the relative increase of
the peak magnetic field is larger than that of the magnetic
field at the surface and this holds for all thicknesses d .
Intuitively, one may expect that this result also holds for
rectangular current distributions. However, analysis in detail of
these distributions, for both the “simple” and notched versions,
shows that this is not the case.

As a start, the mean magnitude of the magnetic field above
the rectangular and notched configurations can be accurately
approximated by (26) when including a small scaling term
K1 ≈ 1.10K0 (open circles in Fig. 9). The fact that K1 is
slightly larger than K0 for w = λ/3 can also be seen in Fig. 6.

What is significantly different, however, is the relation
between the peak magnetic field on the rectangular volume
current distribution and the winding pack thickness. This peak
field can be shown to be, once more using integration of the
field components

Hz=−d/2,rect = J0λ

2π

∞∑
n=1

Kn sin

(
n

2π

λ
x

)

×
[
1 − exp

(
− n

π

λ
d
)]
. (31)

This function varies with x , and the maximum is of interest

Hpeak,rect = max
−λ/2�x�λ/2

[Hz=−d/2,rect(x)]. (32)

This maximum as a function of coil thickness is shown
in Fig. 9, for both a rectangular and notched configuration
(both with w/λ = 1/3). For thin winding packs, a strong
increase relative to the ideal current distribution is visible.

The higher order harmonics decay quickly with distance,
so they do not influence the magnetic field significantly at the
fluid bed, whereas they do affect the peak magnetic field in
the winding pack. The thinner the coils are, the larger is the
influence of the higher harmonics on the peak field. For a
thicker winding pack, the harmonics are generated at a larger
distance from the peak field location, and due to their rapid
decay, their effect on the peak field is smaller.

By comparing the peak field of the notched configuration
against the simple rectangular one, it can be observed that the
effect of notching is the biggest for thin winding packs. For
thin coils, the K5 component and its multiples (K10, K15, . . .)
increase the peak field on the simple rectangular conductors,
whereas for the notched configuration, these harmonics are
zero. For larger winding pack thicknesses, these components
have decayed relative to the K1 component at the peak field
location, and as such, the notching has less effect on the peak
field magnitude.

Some counter-intuitive behavior due to the sharp increase
of the peak magnetic field for thin coils can be seen when
comparing the effective mean-field magnitude at the surface
of the coils with the peak field in the conductor. The ratio of
these functions is plotted in Fig. 10, for the rectangular (blue)
and notched (gray) configurations. They show a maximum at
a non-zero winding pack thickness. Thus, the intuitive result
found for an ideal distribution does not hold; adding extra
windings, i.e., making thicker coils, can provide a relative
boost to the obtained gradient in the fluid larger than the
accompanying increase in peak field in the conductor.
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Fig. 10. Ratio between the average magnetic field at the surface of the coils
(z = 0) and the peak field within the coils as a function of coil thickness.

Fig. 11. Magnitude of the non-zero Fourier components (up to n = 13),
plotted as a function of winding pack thickness, relative to the K1 component
at that thickness.

Next, the change in ripple of the magnetic field at the
fluid bed as a result of the finite winding pack thickness is
considered. As the magnetic field is ripple-free when generated
by the “ideal” sheet current distribution [see (18)], it will also
be ripple-free when generated by a sum of parallel ideal sheet
currents (i.e., an ideal volume current distribution).

For racetrack coils, moving from a sheet current to a
volume current shows a change in the amplitude of the Fourier
coefficients at the top of the winding pack. Each sheet current
Fourier component is considered to be effectively reduced
in magnitude at the top of the winding pack by a factor
exp(−n(2π/λ)z′), where z′ is the location of that current sheet

Kn,volume(z = 0, d) (33a)

= Kn

d

∫ z′=0

z′=−d
exp

[
− n

2π

λ
(−z′)

]
dz ′ (33b)

= Kn

d

λ

2πn

[
1 − exp

(
− n

2π

λ
d
)]
. (33c)

In Fig. 11, the effective magnitudes of the Fourier components
are shown as a function of winding pack thickness, relative to

Fig. 12. Magnetic field magnitude above configurations consisting of an
infinite number of racetrack coils, for varying thicknesses of the winding
pack (scaled to the periodicity λ). Two coils are plotted (each with a width
λ/2), and the polarity of the current is indicated by a red color with a plus
sign and a blue color with a minus sign. Thicker coils produce a smoother
field, as the K1 component is relatively large compared to the higher order
components.

the K1 component at this particular thickness. At d = λ/12,
the value coinciding with our demonstrator magnet design,
the contribution of the K5 component is more than halved
compared to its value for a single current sheet.

Moving from a sheet current to a volume current thus
has a positive effect on the ratio of the effective fluid bed
magnetic field to peak magnetic field, as well as on reducing
the magnetic field ripple at the fluid bed.

To visualize the influence of a thicker winding pack, Fig. 12
shows the magnetic field above a periodic array of racetrack
coils with characteristic width λ/3 for three different winding
pack thicknesses.
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The Fourier components of (33) are entered in (15) to obtain
the expression for the magnetic field magnitude generated by
a coil set with a non-zero winding pack thickness, valid for
z > 0

H = 1

2

{ ∞∑
n=1

∞∑
m=1

(
λ

2πd

)2 Kn Km

nm

×
[

1 − exp

(
−n

2π

λ
d

)]

×
[

1 − exp

(
−m

2π

λ
d

)]
cos

[
(m − n)

2π

λ
x

]

× exp

[
−(m + n)

2π

λ
z

]}0.5

. (34)

The Fourier components are given by (23).

V. CONCLUSION

MDS requires a magnetic field with a strong vertical gradi-
ent that changes with distance to the magnet but does not vary
in the horizontal plane. Such a magnetic field can in principle
only be generated by a pure harmonic sheet current with period
λ. This period determines the decay rate of the exponentially
decaying field magnitude. The obtainable separation resolution
scales linearly with λ.

A practical magnet configuration that approximates this
ideal current distribution consists of a planar array of racetrack
coils with a characteristic leg width equal to one-third of the
period λ.

Racetrack coils with a small thickness are inefficient,
i.e., the usable magnetic field gradient at the fluid bed relative
to the peak magnetic field in the coils is low. This can
be explained by considering the Fourier components of the
magnetic field. Also, the higher order Fourier components
represent an unwanted ripple in the magnetic field profile.
Their effect at the fluid bed is stronger for thin coils than
for thick coils.

A further refinement of the current distribution can be
achieved by a “notched” current profile, which reduces field
ripples close to the magnet. This refinement also reduces the
peak field in the conductor compared to simple racetracks.
This effect is larger for thin winding packs. The downside
is the added winding complexity. For the NbTi demonstrator
magnet under construction at the University of Twente, it was
decided to use three racetrack coils with a simple rectangular
cross section.

The considerations in this work are applicable not just to
MDS. They are valid for applications in general where a
magnetic field gradient perpendicular to the magnet surface
is required that changes with distance from the magnet and is
constant in the parallel plane.

For an analysis of the optimum number of coils for a
practical MDS system and the effects of using a system with
finite dimensions, the reader is referred to [32], where the
analytical results of this article are taken as a starting point
for numerical calculations.

Fig. 13. Notched (n = 5 notches) current distribution with periodicity λ.
The black line indicates the ideal harmonic current distribution.

APPENDIX

FURTHER APPROXIMATION OF IDEAL

CURRENT DISTRIBUTION

Here, a current distribution is considered that, compared to
the rectangular racetrack coils, still more closely resembles
the ideal current distribution. By adding five subdivisions of
period λ/5 to the original rectangular current sheet profile,
the current profile shown in Fig. 13 is obtained. In practice, this
profile can be realized, e.g., by shaping the winding pack cross
section, leaving out turns for certain x-values and adding turns
elsewhere, so-called “notching.” The effect of this notching is
that it removes the K5 component completely. Looking again
at the magnitudes of the Fourier components (see Fig. 8), it can
be seen that the largest remaining coefficient after K1 is now
K7 and it has a magnitude of K1/7 at z = 0.

One could in principle divide the winding pack into even
smaller segments, thereby eliminating the higher order Fourier
components. However, since the higher harmonics decay more
quickly with the height z, the gain from eliminating these har-
monics becomes smaller and is likely not worth the additional
effort and added complexity. It will depend on the desired λ
whether the improvements made are worth this effort, as for
smaller periodicities, the near-coil region may be effectively
enclosed in the cryostat.

For our NbTi demonstrator magnet, we decided to use
racetrack coils with a simple rectangular cross section, as sim-
plicity is valued above optimization for this first-of-a-kind
magnet.
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